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1 Axioms for the Integers

In the axioms below we use the standard notation for logical operators: the conjunction is
∧, the disjunction is ∨, the exclusive disjunction is ⊕, the implication is ⇒, the universal
quantifier is ∀, the existential quantifier is ∃.

We also use the standard set notation: the set membership ∈, the subset ⊆, the equality
=, the set difference \ and the Cartesian product ×. For singleton sets instead of writing
{a} = {b} we write a = b.

The notation f : A → B stands for a function f which is defined on a set A with the
values in B.

Axiom 2 below establishes the existence of the addition function defined on Z×Z with
the values in Z. It is common to denote the value of + at a pair (a, b) ∈ Z× Z by a+ b.

Axiom 7 establishes the existence of the multiplication function defined on Z×Z with
the values in Z. It is common to denote the value of this function at a pair (a, b) ∈ Z × Z

by a · b which is almost always abbreviated as ab.

Axiom 12 introduces the set of positive integers.

As a mnemonic aid I have assigned each axiom an abbreviation. Here are explanations
of the abbreviations: ZE - integers exist, AE - addition exists, AA - addition is associative,
AC - addition is commutative, AZ - addition has zero, AO - addition has opposites, ME -
multiplication exists, MA - multiplication is associative, MC - multiplication is commutative,
MO - multiplication has one, MZ - multiplication respects zero, DL - distributive law, PE -
positive integers exist, PD - dichotomy involving positive integers, PA - positive integers
respect addition, PM - positive integers respect multiplication, WO - the well-ordering axiom.
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Definition. The set Z of integers satisfies the following 16 axioms.

Axiom 1 (ZE). Z 6= ∅
Axiom 2 (AE). ∃ + : Z× Z → Z

Axiom 3 (AA). ∀a ∈ Z ∀b ∈ Z ∀c ∈ Z a+(b+c) = (a+ b)+c

Axiom 4 (AC). ∀a ∈ Z ∀b ∈ Z a+ b = b+ a

Axiom 5 (AZ). ∃ 0 ∈ Z ∀a ∈ Z 0 + a = a

Axiom 6 (AO). ∀a ∈ Z ∃ (−a) ∈ Z a+ (−a) = 0

Axiom 7 (ME). ∃ · : Z×Z → Z.

Axiom 8 (MA). ∀a ∈ Z ∀b ∈ Z ∀c ∈ Z a(bc) = (ab)c

Axiom 9 (MC). ∀a ∈ Z ∀b ∈ Z ab = ba

Axiom 10 (MO). ∃ 1 ∈ Z\{0} ∀a ∈ Z 1 · a = a

Axiom 11 (DL). ∀a ∈ Z ∀b ∈ Z ∀c ∈ Z a(b+ c) = ab+ ac

Axiom 12 (PE). ∃ P
(

P ⊆ Z\{0}
)

∧
(

P 6= ∅
)

Axiom 13 (PD). ∀a ∈ Z\{0} (a ∈ P)⊕ (−a ∈ P)

Axiom 14 (PA). ∀a ∈ P ∀b ∈ P a+ b ∈ P

Axiom 15 (PM). ∀ a ∈ P ∀b ∈ P ab ∈ P

Axiom 16 (WO).
(

S ⊆ P
)

∧
(

S 6= ∅
)

⇒
(

∃m ∈ S ∀x ∈ S\{m} x+ (−m) ∈ P
)

2 Basic algebraic properties of the integers

In this section we list properties of the integers which involve the axioms related to the
addition and the multiplication, but not the order.

Proposition 2.1. Let a, b and c be integers. Then a+ c = b+ c implies a = b.

Proof. Let a, b and c be arbitrary integers. Assume a + c = b + c. By Axiom AO there
exists −c ∈ Z such that c + (−c) = 0. Since + is a function a + c = b + c implies that
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(a + c) + (−c) = (b + c) + (−c). By Axiom AA a + (c + (−c)) = b + (c + (−c)) and, since
c+ (−c) = 0, a+ 0 = b+ 0. By Axiom AZ this yields. a = b.

Proposition 2.2. The element 0 ∈ Z introduced in AxiomAZ is unique.

Proof. Assume that there exist 0′ ∈ Z such that for all a ∈ Z we have 0′ + a = a. Let c ∈ Z.
The universal instantiation yields 0′+ c = c. The universal instantiation in Axiom AZ yields
0 + c = c. Thus 0′ + c = 0 + c. By Proposition 2.1 we deduce 0′ = 0.

Proposition 2.3. For every a ∈ Z the equation a+ x = 0 has a unique solution.

Proof. Let a ∈ Z be arbitrary. By AxiomAO the equation a+ x = 0 has a solution x = −a,
that is a+(−a) = 0. Assume that a+x′ = 0. Consequently, a+(−a) = a+x. By Axiom AC
the last equality implies (−a) + a = x+ a. By Proposition 2.1 we deduce x = −a.

Definition 2.4. Let a ∈ Z. The unique solution −a of the equation a + x = 0 is called the
opposite of a. For b ∈ Z we write b− a instead of b+ (−a).

Proposition 2.5. For every a ∈ Z we have −(−a) = a.

Proof. Let a ∈ Z be arbitrary. By definition −(−a) we have (−a) +
(

−(−a)
)

= 0. By
definition of −a we have a + (−a) = 0. By Axiom AC we have (−a) + a = 0. From
(−a) +

(

−(−a)
)

= 0 and (−a) + a = 0 we conclude that (−a) +
(

−(−a)
)

= (−a) + a. By
By Proposition 2.1 we conclude that a = −(−a).

Proposition 2.6. For every a ∈ Z we have a = 0 if and only if −a = a.

Proof. Assume that a = 0. By Definition 2.4 −0 is the unique solution of the equation
0 + x = 0. Since by Axiom AZ we have 0 + 0 = 0, we deduce −0 = 0. That is −a = a

holds. We prove the converse by proving its contrapositive. Assume that a 6= 0. Then by
Axiom PD we have that

(

(a ∈ P) ∧ −a 6∈ P
)

⊕
(

(−a ∈ P) ∧ (a 6∈ P)
)

In both cases −a 6= a.

Proposition 2.7. For every a ∈ Z we have a0 = 0a = 0.

Proof. Let a ∈ Z be arbitrary. By AxiomAZ and universal instantiation we have 0 + 0 = 0.
Since the multiplication is a function a(0 + 0) = a0. By Axiom DL a0 + a0 = a0. By
Axiom ME a0 ∈ Z. Hence −(a0) ∈ Z exists by Axiom AO. Now a0 + a0 = a0 yields
(a0+a0)− (a0) = a0− (a0). By AxiomAA andAO we obtain a0 = 0. AxiomAC now yields
a0 = 0a = 0.

Proposition 2.8. For every a ∈ Z and for every b ∈ Z we have (−a)b = a(−b) = −(ab).
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Proof. Let a and b be arbitrary integers. Then by Axiom AO we have a + (−a) = 0. By
AxiomsME, we have

(

a + (−a)
)

b = 0b. Now, AxiomsMC andDL and Proposition 2.7 yield
ab+(−a)b = 0. By Axiom AO we have ab+

(

−(ab)
)

= 0. Hence, ab+(−a)b = ab+
(

−(ab)
)

.
By Axiom AC (−a)b+ab =

(

−(ab)
)

+ab. By Proposition 2.1 we conclude (−a)b =
(

−(ab)
)

.
The equality a(−b) = −(ab) is proved similary.

Proposition 2.9. For every a ∈ Z and for every b ∈ Z we have (−a)(−b) = ab.

Proof. Let a and b be arbitrary integers. By Proposition2.8 we have (−a)(−b) = −
(

a(−b)
)

.
Applying Proposition 2.8 yields a(−b) = −(ab). Hence (−a)(−b) = −

(

−(ab)
)

. Now, Propo-
sition 2.5 implies −

(

−(ab)
)

= ab, and consequently (−a)(−b) = ab.

3 Basic properties of the integers involving the order

The following proposition gives in some sense a converse of Axiom PM.

Proposition 3.1. For every a ∈ Z and every b ∈ P we have ab ∈ P if and only if a ∈ P.

Proof. Let a ∈ Z and b ∈ P be arbitrary. If a ∈ P, then by Axiom PM ab ∈ P. We prove
the converse by proving its contrapositive. Assume that a 6∈ P. We distinguish two cases:
a = 0 and a 6= 0. If a = 0, then by Proposition 2.7 ab = 0. Therefore, ab 6∈ P. If a 6= 0, then
the disjunctive syllogism of a 6∈ P and Axiom PD yields that −a ∈ P. Now, by Axiom PM
and Proposition 2.8 we conclude −(ab) ∈ P. Since ab 6= 0, Axiom PD yields ab 6∈ P. In both
cases a 6∈ P ⇒ ab 6∈ P.

In Axiom PE we have introduced the nonempty set of nonzero integers P. Now we will
prove that this set contains a lot of integers.

Proposition 3.2. For every nonzero integer a we have aa ∈ P.

Proof. Let a be an arbitrary nonzero integer. By Axiom PD we have two possibilities for a:
either a ∈ P or −a ∈ P. We proceed with two cases. Case 1. Assume a ∈ P. By Axiom PM
we have aa ∈ P. Case 2. Assume −a ∈ P. By Axiom PM we have (−a)(−a) ∈ P. By
Proposition 2.9 we have (−a)(−a) = aa. Therefore aa ∈ P in this case as well.

Proposition 3.3. For all a ∈ Z and all b ∈ Z we have ab = 0 if and only if a = 0 or b = 0.

Proof. We first prove the “only if” part by proving its contrapositive. Assume a 6= 0 and
b 6= 0. By Axiom PD we have (a ∈ P) ⊕ (−a ∈ P) and (b ∈ P) ⊕ (−b ∈ P). Therefore we
consider four different cases: Case 1 a ∈ P and b ∈ P, Case 2 a ∈ P and −b ∈ P, Case 3
−a ∈ P and b ∈ P, Case 4 −a ∈ P and −b ∈ P. By Axiom PM, in Case 1 and Case 4 (using
Proposition 2.9) we have ab ∈ P. By Axiom PM and Proposition 2.8, in Case 2 and Case 3
we have −ab ∈ P. The converse follows from Proposition 2.7.

Definition 3.4. For a ∈ Z the product aa is called the square of a and it is denoted by a2.
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Corollary 3.5. 1 ∈ P.

Proof. By Axiom MO we have 1 6= 0. By Proposition 3.2 we deduce 12 ∈ P. By Axiom MO
12 = 1. Thus, 1 ∈ P.

Corollary 3.6. For every a ∈ P we have a + 1 ∈ P.

Proof. Let a ∈ P be arbitrary. Since 1 ∈ P, Axiom PA implies a+ 1 ∈ P.

Thus, 1 ∈ P, 1+ 1 ∈ P, 1 + 1+ 1 ∈ P, and so on. This is the motivation for the following
definition

Definition 3.7. The integers in the set P are called positive integers. An alternative notation
for positive integers is Z+. An integer a is said to be negative if and only if −a ∈ P. The
set of all negative integers is denoted by Z

−.

Notice the following important trichotomy for integers which follows from Axioms PE
and PD: For each a ∈ Z exactly one of the following three propositions is true:

a is negative a = 0 a is positive

Definition 3.8. For arbitrary integers a and b we say that a is smaller then b and write
a < b (or equivalently b > a) if and only if b− a ∈ P.

Since 1 − 0 = 1 and 1 ∈ P we have 0 < 1. The following proposition gives the basic
properties of order <.

Proposition 3.9. (A) For all a ∈ Z and for all b ∈ Z exactly one of the following three

propositions is true:

a < b a = b b < a

(B) ∀a ∈ Z ∀b ∈ Z ∀c ∈ Z (a < b) ∧ (b < c) ⇒ (a < c)

(C) ∀a ∈ Z ∀b ∈ Z ∀c ∈ Z (a < b) ⇔ (a + c < b+ c)

(D) ∀a ∈ Z ∀b ∈ Z ∀c ∈ P (a < b) ⇔ (ac < bc)

Proof. We prove (A). Let a ∈ Z and b ∈ Z be arbitrary. Then by Axioms AE and AO we
have b− a ∈ Z. We have two exclusive cases: Case 1: b− a = 0 and Case 2: b− a ∈ Z\{0}.
In Case 1 we have a = b. In Case 2 we use Axiom PD to conclude

(b− a ∈ P)⊕ (−(b− a) ∈ P),

that is
(a < b)⊕ (b < a).

This proves (A). Statements (B), (C) and (D) are proved similarly.
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Proposition 3.10. Let a and b be integers. Then a < b if and only if −b < −a.

Proof. Let a and b be arbitrary integers. By Proposition 2.5 we have b − a = (−a)− (−b).
Therefore, a < b if and only if b − a ∈ P if and only if (−a) − (−b) ∈ P if and only if
−b < −a.

Proposition 3.11. Let a, b and c be integers. Then a < b and c < 0 imply bc < ac.

Proof. Let a, b and c be arbitrary integers. Assume a < b and c < 0. Then by Proposi-
tions 3.10 and 2.6 0 < −c. Now, a < b, 0 < −c and Proposition 3.9(D) imply a(−c) < b(−c).
By Proposition 2.8, the last inequality can be rewritten as −(ac) < −(bc). By Proposi-
tions 3.10 the last inequality implies bc < ac.

Since 0 < 1, Proposition 3.9(C) yields 1 < 1 + 1. Therefore, by Proposition 3.9(A),
1 6= 1 + 1. Therefore we define

Definition 3.12. 2 = 1 + 1.

Again by Proposition 3.9(C) 2 < 2 + 1. Therefore we define

Definition 3.13. 3 = 2+1, 4 = 3+1, 5 = 4+1, 6 = 5+1, 7 = 6+1, 8 = 7+1, 9 = 8+1.

By Proposition 3.9(C), 0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

Exercise 3.14. Prove 2 + 2 = 4.

Exercise 3.15. Prove 2 · 2 = 4.

4 The Well Ordering Axiom

We use the common abbreviation a ≤ b for the proposition (a < b) ⊕ (a = b). With this
abbreviation and the notation P = Z

+ the Well-Ordering Axiom can be rewritten as:

Axiom 16 (WO).
(

S ⊆ Z+
)

∧
(

S 6= ∅
)

⇒
(

∃m ∈ S ∀x ∈ S m ≤ x
)

Definition 4.1. Let S be a nonempty subset of Z. We say that S has a minimum if there
exists m ∈ S such that for every x ∈ S we have m ≤ x. Formally,

S has a minimum ⇔ ∃m ∈ S ∀ x ∈ S m ≤ x. (4.1)

The integer m ∈ S satisfying the proposition on the right-hand side of (4.1) is called the
minimum of S. It is denoted by minS.
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With this definition the Well-Ordering Axiom can be restated as

(

S ⊆ Z
+
)

∧
(

S 6= ∅
)

⇒ S has a minimum (4.2)

Recall that the propositions p ∧ q ⇒ r and p ∧ ¬r ⇒ ¬q are equivalent. Consequently,
the well ordering AxiomWO, as stated in (4.2), is equivalent to

(

S ⊆ Z
+
)

∧
(

S does not have a minimum
)

⇒
(

S = ∅
)

(4.3)

At this point it is useful to note the formal meaning of the phrase “S does not have a
minimum”. Negating (4.1) we get:

S does not have a minimum ⇔ ∀x ∈ S ∃ y ∈ S y < x.

I will illustrate how to use (4.3) in the following proposition.

Proposition 4.2. There are no integers between 0 and 1.

Proof. Define the set S by

S = {x ∈ Z | (0 < x) ∧ (x < 1)}.

Clearly S ⊂ Z+. Next we will prove that S does not have a minimum. Let x ∈ S be arbitrary.
Then 0 < x and x < 1. The last two inequalities and Proposition 3.9(D) imply x2 < x.
Since x 6= 0, Proposition 3.2 implies 0 < x2. Since x2 < x and x < 1, Proposition 3.9(B)
implies x2 < 1. Now we have, x2 ∈ Z and 0 < x2 and x < 1. Thus, x2 ∈ S and also x2 < x.
Hence we have proved that for every x ∈ S there exists y = x2 ∈ S such that y = x2 < x.
That is, S does not have a minimum. By (4.3), we deduce S = ∅.

The next proposition can be deduced from the previous one. However, I will give a direct
proof.

Proposition 4.3. The minimum of Z+ is 1.

Proof. Since 1 ∈ Z
+ the set Z

+ is not empty. Since clearly Z
+ ⊆ Z

+, AxiomWO implies
that Z+ has a minimum. Denote by m the minimum of Z+; that is, set m = minZ+. Recall
that m has the following properties:

m ∈ Z
+ and ∀x ∈ Z

+ m ≤ x. (4.4)

Since 1 ∈ Z+ we have m ≤ 1. Since m > 0, Axiom OM yields m2 ≤ m. Since 0 < m by
Proposition 3.9(D) we deduce 0 < m2. Thus m2 ∈ Z+. Since m = minZ+ we conclude
m ≤ m2. Since both m2 ≤ m and m ≤ m2, we have m = m2, that is m(m − 1) = 0. Now
Proposition 3.3 implies m = 0 or m − 1 = 0. Since m > 0, disjunctive syllogism yields
m− 1 = 0. That is m = 1 is proved.

Definition 4.4. An integer a is a square if there exists an integer b such that a = b2.

7



Proposition 4.5. Let s be an integer. If s and 2s are both square, then s = 0.

Proof. In this proof we will use the fact that an integer x is even if and only if x2 is even.

Consider the set

S =
{

s ∈ Z | s > 0, s and 2s are squares
}

.

Clearly S ⊆ Z+.

Next we shall prove that S does not have a minimum. Let s ∈ S be arbitrary. Then
s > 0 and there exist positive integers j and k such that s = j2 and 2s = k2. Since k2 is
even, the integer k is even. Therefore there exist a positive integer m such that k = 2m.
Thus, 2s = 4m2, or, equivalently s = 2m2. Clearly, m2 < 2m2 = s. Since m is positive,
m2 > 0. Now we have that m2 > 0 and both integers m2 and 2m2 = s are square. Therefore
m2 ∈ S and m2 < s. Consequently s is not a minimum of S. Since s ∈ S was arbitrary
element in S, we have proved that S does not have a minimum. By AxiomWO, see (4.3),
S = ∅. Thus, there are no positive integers s such that both s and 2s are squares. Therefore,
if s and s2 are both square, then s ≤ 0. Since for each square number s by Proposition 3.2
we have s ≥ 0, we conclude that s = 0.

Proposition 4.6. If p ∈ Z and q ∈ Z
+, then p2 6= 2q2.

Proof. Let p ∈ Z and q ∈ Z+. Proposition 4.5 is equivalent to: If s is a square and s 6= 0,
then 2s is not a square. Applying this to q2 we conclude that 2q2 is not a square. Since p2

is a square, we conclude p2 6= 2q2.

The preceding proposition implies that a square of a rational number cannot equal 2. In
other words,

√
2 is irrational.

5 Proof of the principle of mathematical induction

In the next theorem the universe of discourse is the set Z+ of positive integers.

Theorem 5.1. Let P (n) be a propositional function involving a positive integer n. Then

P (1) ∧
(

∀ k
(

P (k) ⇒ P (k + 1)
)

)

⇒ ∀n P (n)

Proof. Recall that the implications p∧ q ⇒ r and p∧ (¬r) ⇒ (¬q) are equivalent. Therefore
we will prove:

P (1) ∧
(

∃ j ¬P (j)
)

⇒ ∃ k
(

P (k) ∧ ¬P (k + 1)
)

. (5.1)

8



Assume P (1) and ∃ j ¬P (j) . That is, assume that there exists j0 ∈ Z
+ such that

¬P (j0) . Now consider the set

S =
{

n ∈ Z
+ | ¬P (n)

}

=
{

n |
(

n ∈ Z
+
)

∧
(

¬P (n)
)}

.

Clearly S ⊆ Z+ and j0 ∈ S. Hence

(

S ⊆ Z
+
)

∧
(

S 6= ∅
)

is true. This and AxiomWO, via modus ponens, yield that the set S has a minimum, that
is,

∃m ∈ S ∀ x ∈ S m ≤ x . (5.2)

Since m ∈ S we have m ∈ Z
+ and ¬P (m) . As P (1) is true,

(

¬P (m)
)

∧ P (1) imply

1 6= m. Since 1 = minZ+ we have 1 < m . By the definition of the order < we have

m− 1 ∈ Z
+ .

Next we rewrite the proposition (5.2). First, we notice that the proposition

∀x ∈ S m ≤ x

is equivalent to
∀x x ∈ S ⇒ m ≤ x,

which is further equivalent to
∀x x < m ⇒ x 6∈ S.

Thus (5.2) is equivalent to

∃m ∈ S ∀x
(

x < m ⇒ x 6∈ S
)

. (5.3)

Define k = m − 1. Then k ∈ Z
+ . Further, since k < m , (5.3) implies k 6∈ S .

Since n ∈ S is equivalent to (n ∈ Z+) ∧ (¬P (n)) we conclude that k 6∈ S is equivalent to
(

k 6∈ Z
+
)

∨ P (k) . Since we know that k ∈ Z
+ and k 6∈ S , by disjunctive syllogism we

deduce P (k) is true. Recall that k + 1 = m ∈ S . Hence ¬P (k + 1) is true. Thus, by

setting k = m− 1, we just proved that

∃ k
(

P (k) ∧ ¬P (k + 1)
)

is true. This completes the proof.
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6 Even and Odd Integers

First recall the definitions of even and odd integers. The set of all even integers we denote
by E and the set of all odd integers we denote by O. For n ∈ Z we define

n ∈ E ⇔ ∃k ∈ Z n = 2k, (6.1)

n ∈ O ⇔ ∃k ∈ Z n = 2k + 1. (6.2)

Proposition 6.1. E ∩O = ∅.

Proof. We prove this by contradiction. Assume that E∩O is a nonempty set. Let n ∈ E∩O.
Then there exist k, j ∈ Z such that n = 2k = 2j+1. Hence, there exists m = k− j ∈ Z such
that 1 = 2m. Recall that we proved 0 < 1 < 2. Substituting 1 = 2m, we get 0 < 2m < 2.
Since 0 < 2, Proposition 3.9(D) applied to 2 · 0 < 2m, yields 0 < m. Proposition 3.9(D)
applied to 2m < 2 · 1, yields m < 1. Thus, we have 0 < m and m < 1 and m ∈ Z. By
Proposition 4.2 the statement “0 < m and m < 1 and m ∈ Z” is false. Since the assumption
that E ∩O 6= ∅ leads to a false statement, we proved E ∩O = ∅.
Proposition 6.2. E ∪O = Z.

Proof. First we prove that Z+ ⊆ E ∪O. In other words we prove

∀n ∈ Z
+ (n ∈ E) ∨ (n ∈ O)

The last displayed statement can be proved by Mathematical Induction. Set P (n) to be
(n ∈ E) ∨ (n ∈ O).

Since 1 = 2 · 0+ 1 we have 1 ∈ O. Therefore, (1 ∈ E)∨ (1 ∈ O) is true. So, the base step
P (1) is true.

Next we prove the inductive step. Let n ∈ Z
+ be arbitrary and prove the implication

P (n) ⇒ P (n + 1). Assume that P (n) is true. That is, assume that (n ∈ E) ∨ (n ∈ O).
Consider two cases. For Case 1, assume n ∈ E. Clearly n ∈ E implies n+1 ∈ O. Therefore,
(n + 1 ∈ E) ∨ (n + 1 ∈ O) is true. Thus P (n + 1) holds in this case. For Case 2, assume
n ∈ O. Clearly n ∈ O implies n+ 1 ∈ E. Therefore, (n+ 1 ∈ E)∨ (n+ 1 ∈ O) is true. Thus
P (n+1) holds in this case as well. Thus, for every n ∈ Z+ we proved that P (n) ⇒ P (n+1).

By Mathematical induction, this proves that ∀n ∈ Z+ we have (n ∈ E) ∨ (n ∈ O). In
other words, Z+ ⊆ E ∪O.

Since 0 = 2 · 0, we have 0 ∈ E. Hence, 0 ∈ E ∪O.

Finally we prove that Z
− ⊆ E ∪ O. Let n ∈ Z be such that n < 0. Then −n > 0 and

thus, −n ∈ E ∪ O. Now consider two cases. Case 1: if −n ∈ E, then −n = 2k for some
k ∈ Z. Hence, n = 2(−k) with −k ∈ Z. Consequently, n ∈ E. Case 2: if −n ∈ O, then
−n = 2j + 1 for some j ∈ Z. Hence, n = 2(−j) − 1 = 2(−j − 1) + 1 with −j − 1 ∈ Z.
Consequently, n ∈ O. In either case, n ∈ E ∪O.

In conclusion, we have proved that for every n ∈ Z we have n ∈ E ∪ O. That is
E ∪O = Z.
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7 The division algorithm

The following theorem is called the division algorithm.

Proposition 7.1. Let n be an integer and let d be a positive integer. Then there exist unique

integers q and r such that

n = dq + r and 0 ≤ r < d.

Proof. Let n ∈ Z and let d ∈ Z+. Define the set

S =
{

k ∈ Z
∣

∣

(

k ≥ 0
)

∧
(

∃ j ∈ Z k = n− dj
)

}

.

By the definition of S we have S ⊂ Z and S is bounded below by 0.

Next we prove that S is a nonempty set. We distinguish two cases for n: n ≥ 0 and
n < 0. If n ≥ 0, then n ∈ S since n = n− d · 0 ≥ 0. Now assume that n < 0. Then −n > 0.
Now −n > 0 and d ≥ 1, imply −nd ≥ −n. Adding n to both sides of −nd ≥ −n we get
n− dn ≥ n− n = 0. Since with j = n k = n− dj = n− dn ∈ S we have proved that S 6= ∅
in this case. Thus, in each case we identified an integer in S, so S is a nonempty set.

Since S is both bounded below and nonempty, Proposition ?? implies that S has a
minimum. Denote that minimum by r. The integer r has the following two properties:
r ∈ S and r ≤ k for all k ∈ S. Since r ∈ S, we have r ≥ 0 and there exists q ∈ Z such that
r = n − dq. Hence we proved that there exist integers r and q such that n = dq + r and
r ≥ 0.

It remains to prove that r < d. Consider the integer r − d. As d > 0 we have r − d < r.
Since x ∈ S implies r ≤ x, the contrapositive of the last implication yields r − d 6∈ S. Since

x ∈ S ⇔ (x ≥ 0) ∧
(

∃ j ∈ Z x = n− dj
)

r − d 6∈ S means
(

r − d < 0
)

∨
(

∀ j ∈ Z r − d 6= n− dj
)

. (7.1)

However, we know that the following is true

r − d = n− dq − d = n− d(q + 1).

Thus
∃ j ∈ Z r − d = n− dj. (7.2)

By disjunctive syllogism, (7.1) and (7.2) yield r − d < 0. That is r < d.

It remains to prove the uniqueness of r and q. Assume that q, r, q′, r′ are integers such
that

(n = dq + r) ∧ (0 ≤ r < d) and (n = dq′ + r′) ∧ (0 ≤ r′ < d).

Then
dq + r = dq′ + r′ and 0 ≤ r < d and − d < r′ ≤ 0.
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Simplifying the first equality and adding the last two inequalities we get

r − r′ = d(q′ − q) and − d < r − r′ < d.

Hence
−d < d(q′ − q) < d.

Since 0 < d, Proposition 3.9(D) implies

−1 < q′ − q < 1.

In Proposition 4.2 we proved that there are no integers between 0 and 1. Since q′ − q is an
integer we must have −1 < q′ − q ≤ 0. Multiplying by −1 < 0 and using Proposition 3.11
we conclude 0 ≤ −q′ + q < 1. Now Proposition 4.2 yields −q′ + q = 0. That is q = q′. Since
r − r′ = d(q′ − q) we also conclude that r′ = r.

Definition 7.2. The integer r in Proposition 7.1 is called the remainder left by n when
divided by m.

Example 7.3. When divided by 5, the integer 17 leaves a remainders of 2: 17 = 5 · 3 + 2.
When divided by 5, the integer −17 leaves a remainder of 3: −17 = 5(−4) + 3.

Definition 7.4. Let n be an integer. Let r be the remainder left by n when divided by 2.
Then r = 0 or r = 1. We say that n is even if r = 0 and that n is odd if r = 1.

Remark 7.5. In Proposition 7.1 we proved that for every n ∈ Z and every d ∈ Z+ there
exist unique q ∈ Z and unique r ∈ Z such that

n = dq + r and 0 ≤ r < d. (7.3)

Dividing both relations in (7.3) by d > 0 we get

n

d
= q +

r

d
and 0 ≤ r

d
< 1.

Therefore we have
q ∈ Z and q ≤ n

d
< q + 1.

The last displayed line is exactly the definition of the floor of
n

d
. Thus, in the division

algorithm

q =
⌊n

d

⌋

and r = n− d
⌊n

d

⌋
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