ON THE MAXIMUM OF A CONTINUOUS FUNCTION

BRANKO ĆURGUS

In this note a and b are real numbers such that $a<b$ and $f:[a, b] \rightarrow \mathbb{R}$ is a function.
Definition 1. If $c \in[a, b]$ and $f(c) \geq f(x)$ for all $x \in[a, b]$, then the value $f(c)$ is called a maximum of f.

Definition 2. A function $f:[a, b] \rightarrow \mathbb{R}$ is continuous at a point $x_{0} \in[a, b]$ if for every $\epsilon>0$ there exists $\delta=\delta\left(\epsilon, x_{0}\right)>0$ such that

$$
x \in[a, b] \text { and }\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

The function f is continuous on $[a, b]$ if it is continuous at each point $x_{0} \in[a, b]$.
Definition 3. Let $s \in[a, b)$. We say that a function $f:[a, b] \rightarrow \mathbb{R}$ is dominated on $[a, s]$ if there exists $z_{0} \in(s, b]$ such that $f(x)<f\left(z_{0}\right)$ for all $x \in[a, s]$.

Notice the negation of this definition: f is not dominated on $[a, s]$ if for every $z \in(s, b]$ there exists $x \in[a, s]$ such that $f(z) \leq f(x)$.

A useful property of domination is:
Fact D. Let $s, t \in[a, b)$ be such that $s \leq t$. If f is dominated on $[a, t]$, then f is dominated on $[a, s]$.

Observe the contrapositive of Fact D: If f is not dominated on $[a, s]$, then f is not dominated on $[a, t]$.
Theorem. Let $a, b \in \mathbb{R}, a<b$. If $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function on $[a, b]$, then there exists $c \in[a, b]$ such that $f(c)$ is a maximum of f.

Proof. Case I. The value $f(a)$ is a maximum of f. In this case we can set $c=a$.
Case II. The value $f(b)$ is a maximum of f. In this case we can set $c=b$.
Case III. Neither $f(a)$ nor $f(b)$ is a maximum of f. We define two sets:

$$
A=\{x \in[a, b): \quad f \text { is dominated on }[a, x]\} .
$$

and

$$
B=\{y \in[a, b]: \forall x \in A \quad x \leq y\} .
$$

Since neither $f(a)$ nor $f(b)$ is a maximum of f, there exists $x_{0} \in(a, b)$ such that $f(a)<$ $f\left(x_{0}\right)$ and $f(b)<f\left(x_{0}\right)$. Since f is a continuous function at a and b, with

$$
\epsilon_{1}=\frac{1}{2} \min \left\{f\left(x_{0}\right)-a, f\left(x_{0}\right)-b\right\}>0
$$

and

$$
\eta=\frac{1}{2} \min \left\{\delta\left(\epsilon_{1}, a\right), \delta\left(\epsilon_{1}, b\right), b-a\right\}>0
$$

we have

$$
\begin{equation*}
\forall x \in[a, a+\eta] \cup[b-\eta, b] \quad f(x)<f\left(x_{0}\right) . \tag{1}
\end{equation*}
$$

The strict inequality in (1) implies that $x_{0} \in(a+\eta, b-\eta)$. Further, (1) implies that f is dominated on $[a, a+\eta]$. By Fact D, $[a, a+\eta] \subseteq A$.

Since $x_{0} \in[a, b-\eta)$, (1) implies that f is not dominated on $[a, b-\eta]$. By the contrapositive of Fact D , it follows that f is not dominated on $[a, t]$ for every $t \in[b-\eta, b]$. Therefore $A \subseteq[a, b-\eta)$. This inclusion implies $[b-\eta, b] \subseteq B$.

Since $[a, a+\eta] \subseteq A$ and $[b-\eta, b] \subseteq B$, the sets A and B are nonempty and the Completeness Axiom applies: there exists $c \in \mathbb{R}$ such that

$$
\begin{equation*}
\forall x \in A \quad \forall y \in B \quad x \leq c \leq y \tag{2}
\end{equation*}
$$

The number c whose existence is established by the Completeness Axiom has the following three special properties:
Fact 1. $a<c<b$. (To prove this we recall that $a+\eta \in A$ and $b-\eta \in B$ and set $x=a+\eta>a$ and $y=b-\eta<b$ in (2).)
Fact 2. If $s \in[a, c)$, then f is dominated on $[a, s]$. (To prove this fact, assume $s \in[a, c)$. By (2), $s \notin B$. Therefore, there exists $x \in A$ such that $s<x$. Since f is dominated on $[a, x]$ and $s<x$, Fact D implies that f is dominated on $[a, s]$.)
Fact 3. If $t \in(c, b]$, then f is not dominated on $[a, t]$. (For the proof, notice that by (2), $t \in(c, b]$ implies $t \notin A$.)

Finally, we will use the continuity of the function f at c to prove that $f(c)$ is the maximum of f. Let $\epsilon>0$ be arbitrary. Since by Fact 1 we have $c \in(a, b)$, the definition of continuity at c implies that there exists $\delta(\epsilon)$ such that $0<\delta(\epsilon) \leq \frac{1}{2} \min \{b-c, c-a\}$ and

$$
\begin{equation*}
c-\delta(\epsilon)<x<c+\delta(\epsilon) \quad \Rightarrow \quad f(c)-\epsilon<f(x)<f(c)+\epsilon . \tag{3}
\end{equation*}
$$

We set

$$
s=c-\delta(\epsilon) / 2 \quad \text { and } \quad t=c+\delta(\epsilon) / 2
$$

and use the following consequence of (3):

$$
\begin{equation*}
\forall x \in[s, t] \quad f(x)<f(c)+\epsilon . \tag{4}
\end{equation*}
$$

Since $s \in[a, c)$, Fact 2 yields that f is dominated on $[a, s]$. That is, there exists $z_{0} \in(s, b]$ such that

$$
\begin{equation*}
\forall x \in[a, s] \quad f(x)<f\left(z_{0}\right) \tag{5}
\end{equation*}
$$

Now we consider two cases for z_{0} : the first case $z_{0} \in(s, t]$ and the second case $z_{0} \in(t, b]$.
In the first case, (4) yields

$$
\begin{equation*}
f\left(z_{0}\right)<f(c)+\epsilon \tag{6}
\end{equation*}
$$

Inequality (6) holds true in the second case as well. To prove it, recall that $t \in(c, b]$, so, by Fact 3 , we have that f is not dominated on $[a, t]$. Consequently, since in this case $z_{0} \in(t, b]$, there exists $x_{0} \in[a, t]$ such that $f\left(z_{0}\right) \leq f\left(x_{0}\right)$. The last inequality and (5) imply that $x_{0} \in(s, t]$. Now (4) yields $f\left(x_{0}\right)<f(c)+\epsilon$. Since $f\left(z_{0}\right) \leq f\left(x_{0}\right)$, this proves (6) for the second case.

Statements (5) and (6) imply

$$
\forall x \in[a, s] \quad f(x)<f(c)+\epsilon
$$

Together with (4) the last statement yields,

$$
\begin{equation*}
\forall x \in[a, t] \quad f(x)<f(c)+\epsilon . \tag{7}
\end{equation*}
$$

Since $[a, t]$ is not dominated, we have

$$
\begin{equation*}
\forall z \in(t, b] \quad \exists x \in[a, t] \quad \text { such that } \quad f(z) \leq f(x) \text {. } \tag{8}
\end{equation*}
$$

Statements (7) and (8) yield

$$
\forall x \in[a, b] \quad f(x)<f(c)+\epsilon .
$$

Since $\epsilon>0$ was arbitrary,

$$
\forall x \in[a, b] \quad f(x) \leq f(c)
$$

