ln[1]:= NotebookDirectory[]

```
Out[1]= C:\Dropbox\Work\myweb\Courses\Math_pages\Math_225\
```

You can evaluate the entire notebook by using the keyboard shortcut Alt+v o, or the menu item Evaluation \rightarrow Evaluate Notebook.

Starting from a familiar curve

Mathematica comments

In the next subsubsection there is a simple picture in which I present only one point. This is to demonstrate how to plot geometric objects in *Mathematica*. For that we use Graphics[] command. One can get help on *Mathematica* commands by placing ? before the command name.

In[2]:= ? Graphics

Graphics[primitives, options] represents a two-dimensional graphical image. >>

In the command below there is only one primitive:

```
ln[3]:= {PointSize[0.02], Blue, Point[{1, 1}]}
```

```
Out[3]= {PointSize[0.02], RGBColor[0, 0, 1], Point[{1, 1}]}
```

and several options, the first option being

- ln[4]:= **Frame** \rightarrow **True**
- Out[4]= Frame \rightarrow True

The example given in Mathematica help is

In[5]:= Graphics[{Thick, Green, Rectangle[{0, -1}, {2, 1}], Red, Disk[], Blue, Circle[{2, 0}], Yellow, Polygon[{{2, 0}, {4, 1}, {4, -1}}], Purple, Arrowheads[Large], Arrow[{{4, 3/2}, {0, 3/2}, {0, 0}}], Black, Dashed, Line[{{-1, 0}, {4, 0}}]}]

This graphics command has six primitives and no options. I don't like how they write this command. In my opinion it is much nicer if we put each primitive in a separate list and all primitives we put in one list. Below is a nicer way of writing the above example

```
Im(6)= Graphics[{ (* the list of primitives starts here *)
    {Thick, Green, Rectangle[{0, -1}, {2, 1}]}, (* the first primitive *)
    {Red, Disk[]}, (* the second primitive *)
    {Thick, Blue, Circle[{2, 0}]}, (* the third primitive *)
    {Thick, Blue, Circle[{2, 0}, {4, 1}, {4, -1}}]}, (* the fourth primitive *)
    {Thick, Purple, Arrowheads[Large], Arrow[{4, 3/2}, {0, 3/2}, {0, 0}]},
    (* the fifth primitive *)
    {Thick, Black, Dashed, Line[{{-1, 0}, {4, 0}]} (* the sixth primitive *)
    } (* the list of primitives ends here *)
]
Out[6]=
Out[
```

The only disadvantage is that we have to repeat the graphics directive Thick three times.

You can experiment by adding options to the above command.

Plotting points

This is how to plot one point.

Next I want to show a family of points. I do it in several steps. First I introduce a variable, t and I give this variable t a specific value 0.5. Then I plot one point with coordinates {Cos[t],Sin[t]}.

Next I use command Manipulate[] to show many points with coordinates {Cos[t],Sin[t]}, as ta varies. Notice that the Graphics[] command from the previous cell is "wrapped" into Manipulate and the variable t is given range from 0 to 2π . To emphasize the change in t I show the value of t as PlotLabel.

```
In[10]= Clear[t];
Manipulate[ (* Manipulate[] starts here *)
Graphics[{
        {PointSize[0.02], Blue, Point[{Cos[t], Sin[t]}]}
     }, PlotLabel → N[t],
     Frame → True, PlotRange → {{-2, 2}, {-2, 2}},
     AspectRatio → Automatic,
     GridLines → {{#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} &/@Range[-10, 10],
        {#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} &/@Range[-10, 10],
        {#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} &/@Range[-10, 10]}
    ], (* Graphics[] ends here *)
    {t, 0., 2Pi} (* this tells Manipulate to use t in this range *)
```

```
] (* Manipulate[] ends here *)
```


In the next command I tell *Mathematica* to remember the points that have been plotted previously, so that we can see which curve is being plotted.

In the next several plots I show variations on a unit circle. The only thing that I change is that I make the radius to be a function of t. I call that function fr[t]


```
In[17]:= Clear[t];
         fr2[t_] := 1 + Cos[t];
         Manipulate
           Graphics
                \left\{ \texttt{PointSize[0.02], Blue, Table} \left[ \texttt{Point[fr2[v] } \{\texttt{Cos[v], Sin[v]}\} \right], \left\{ \texttt{v, 0, t, \frac{Pi}{64}} \right\} \right] \right\}
             },
             \texttt{Frame} \rightarrow \texttt{True}, \ \texttt{PlotRange} \rightarrow \{\{\texttt{-2}, \texttt{2}\}, \ \{\texttt{-2}, \texttt{2}\}\},\
             AspectRatio \rightarrow Automatic,
             \texttt{GridLines} \rightarrow \{ \{ \texttt{\#, \{GrayLevel[0.5], Dashing[\{0.01, 0.01\}]\}} \& / @ \texttt{Range[-10, 10]}, \} \} 
                  \{\#, \{GrayLevel[0.5], Dashing[\{0.01, 0.01\}]\}\} \& /@Range[-10, 10]\}
            \left], \left\{ \{t, Pi/2\}, 0, 2Pi, \frac{Pi}{64} \right\} \right]
                                                                                                                0
                                                                      ÷
             t
                                                                                          ••••
Out[19]=
                 0
                -1
               -2└─
-2
                                        ^{-1}
                                                                0
                                                                                      1
                                                                                                             2
```


The last "radius" function is more complicated. As a reward, the resulting graph is any regular n-gon. Just change 4 to any of 3,4,5,6,7, ... in fr4[v,4] in the Graphics[] command below.

In[23]:= Clear[t];

Out[25]=

-2 L -2

-1

0

```
fr4[t_n] := \frac{Cos\left[\frac{Pi}{n}\right]}{Cos[Mod[t, \frac{2\pi}{n}] - \frac{Pi}{n}]};
Manipulate
  Graphics
      \left\{ \text{PointSize}[0.02], \text{Blue, Table} \left[ \text{Point}[\text{fr4}[v, 4] \{ \text{Cos}[v], \text{Sin}[v] \} \right], \left\{ v, 0, t, \frac{\text{Pi}}{64} \right\} \right] \right\}
    },
    Frame \rightarrow True, PlotRange \rightarrow {{-2, 2}, {-2, 2}},
    AspectRatio \rightarrow Automatic,
    \texttt{GridLines} \rightarrow \{ \{ \texttt{\#, \{GrayLevel[0.5], Dashing[\{0.01, 0.01\}]\}} \& / @ \texttt{Range[-10, 10]}, \} \} 
        {#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} & /@Range[-10, 10]}
  ], \{\{t, Pi\}, 0, 2Pi, \frac{Pi}{64}\}]
                                                                                                 0
   t
                                                       -
       0
```

In the next few examples we demonstrate curves in three-space. We start with a helix above the unit circle and which climes one unit for each complete unit circle.

2

1

The next example shows a helix like curve that climes on a cone

The next plot is the same helix shown as line, not just a collection of points.

```
ln[31]:= Clear[t, fx, fy, fz];
```

$$fx[t_] := \frac{t}{Pi} \cos[4t]; fy[t_] := \frac{t}{Pi} \sin[4t]; fz[t_] := \frac{t}{Pi};$$

Manipulate

```
Graphics3D[{
```

```
\left\{ \text{Thickness}[0.015], \text{Blue}, \text{Line} \left[ \text{Table} \left[ \{ fx[v], fy[v], fz[v] \}, \left\{ v, -2 \text{ Pi}, t, \frac{\text{Pi}}{128} \right\} \right] \right] \right\}
```

```
, PlotLabel \rightarrow N[t],
```

```
PlotRange \rightarrow {{-2, 2}, {-2, 2}, {-2, 2}, Axes \rightarrow True,
AxesEdge \rightarrow {{-1, -1}, {1, -1}, {-1, -1}}, BoxRatios \rightarrow {1, 1, 1.5}
```

```
\left], \left\{ \{t, -Pi\}, -2 \text{ Pi}, 2 \text{ Pi}, \frac{Pi}{128} \right\} \right]
```


The next helix is on the same cone, but winds more often then the previous one.

```
In[34]:= Clear[t, fx, fy, fz];
         fx[t_] := \frac{t}{Pi} \cos[8t]; fy[t_] := \frac{t}{Pi} \sin[8t]; fz[t_] := \frac{t}{Pi};
         Manipulate
           Graphics3D[{
                \left\{ \text{Thickness[0.015], Blue, Line} \left[ \text{Table} \left[ \{ fx[v], fy[v], fz[v] \}, \left\{ v, -2 \text{ Pi}, t, \frac{\text{Pi}}{2 \times 128} \right\} \right] \right] \right\}
             , PlotLabel \rightarrow N[t],
             \texttt{PlotRange} \rightarrow \{\{-2, 2\}, \{-2, 2\}, \{-2, 2\}\}, \texttt{Axes} \rightarrow \texttt{True},
             AxesEdge \rightarrow {{-1, -1}, {1, -1}, {-1, -1}}, BoxRatios \rightarrow {1, 1, 1.5}
           \Big], \, \Big\{ \{t, \, -Pi\}, \, -2 \, Pi, \, 2 \, Pi, \, \frac{Pi}{2 \times 128} \Big\} \Big]
                                                                                                  0
                                                                     123
                                                   -3.14159
               2
Out[36]=
                   (
                   -1
                     -2
                                                                   2
```

Lines

Point and a vector

Given a point say *P* and a direction given by a vector, say \vec{v} , how do does a point walk starting from *P* in the direction specified by the vector \vec{v} ?

```
\ln[37]:= pP = \{1, 1\}; vv = \{-1, -1/2\};
       Graphics[{
          {PointSize[0.02], Blue, Point[pP]},
          \{Green, Arrow[\{\{0, 0\}, vv\}]\}
         },
        Frame \rightarrow True, PlotRange \rightarrow {{-2, 2}, {-2, 2}},
        AspectRatio → Automatic,
        \texttt{GridLines} \rightarrow \{ \{ \texttt{\#}, \{ \texttt{GrayLevel}[0.5], \texttt{Dashing}[\{0.01, 0.01\}] \} \} \& / @ \texttt{Range}[-10, 10], \} 
            {#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} & /@Range[-10, 10]}
       ]
        2
Out[38]=
        0
        _2 ∟
_2
                          -1
                                            0
                                                             1
                                                                              2
```

After one second, the point will be at the green point whose position vector is $\overrightarrow{OP} + \vec{v}$

```
\ln[39]:= pP = \{1, 1\}; vv = \{-1, -1/2\};
       t = 1;
       Graphics[{
          {PointSize[0.02], Green, Point[pP+tvv]},
          {PointSize[0.02], Blue, Point[pP]},
         {Green, Arrow[{\{0, 0\}, vv\}]}
        },
        Frame \rightarrow True, PlotRange \rightarrow {{-2, 2}, {-2, 2}},
        AspectRatio \rightarrow Automatic,
        \texttt{GridLines} \rightarrow \{ \{ \texttt{\#, \{GrayLevel[0.5], Dashing[\{0.01, 0.01\}]\}} \& / @ \texttt{Range[-10, 10]}, \} \} 
           {#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} & /@Range[-10, 10]}
       ]
        2
        1
Out[41]=
        0
       -2 L
-2
                         -1
                                         0
                                                         1
                                                                         2
```

After 1/2 second, the point will be at the green point whose position vector is $\overrightarrow{OP} + \frac{1}{2} \overrightarrow{v}$

```
\ln[42]:= pP = \{1, 1\}; vv = \{-1, -1/2\};
       t = 1 / 2;
      Graphics[{
          {PointSize[0.02], Green, Point[pP+tvv]},
          {PointSize[0.02], Blue, Point[pP]},
         {Green, Arrow[{\{0, 0\}, vv\}}]
        },
        Frame \rightarrow True, PlotRange \rightarrow {{-2, 2}, {-2, 2}},
        AspectRatio \rightarrow Automatic,
        \texttt{GridLines} \rightarrow \{ \{ \texttt{\#, \{GrayLevel[0.5], Dashing[\{0.01, 0.01\}]\}} \& / @ \texttt{Range[-10, 10]}, \} \} 
           {#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} & /@Range[-10, 10]}
       ]
        2
        1
Out[44]=
        0
       -2 └─
-2
                                         0
                         -1
                                                         1
                                                                          2
```

Now we are ready to illustrate the motion of the point with the Manipulation[] command

```
ln[45]:= pP = \{1, 1\}; vv = \{-1, -1/2\};
      Clear[t];
      Manipulate[
        Graphics[{
           {PointSize[0.02], Green, Point[pP+tvv]},
           {PointSize[0.02], Blue, Point[pP]},
           \{Green, Arrow[\{\{0, 0\}, vv\}]\}
         },
         \texttt{Frame} \rightarrow \texttt{True}, \ \texttt{PlotRange} \rightarrow \{\{-2, 2\}, \{-2, 2\}\},\
         AspectRatio \rightarrow Automatic,
         \texttt{GridLines} \rightarrow \{ \{ \#, \{\texttt{GrayLevel}[0.5], \texttt{Dashing}[\{0.01, 0.01\}] \} \} \& /@ \texttt{Range}[-10, 10], \} 
             {#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} & /@Range[-10, 10]}
        ],
        {{t,
           1},
         Ο,
```


The same illustration with point's positions remembered.

```
\ln[48]:= pP = \{1, 1\}; vv = \{-1, -1/2\};
     Clear[t];
     Manipulate[
      Graphics[{
         {PointSize[0.02], Green, Table[Point[pP+svv], {s, 0, t, .01}]},
         {PointSize[0.02], Blue, Point[pP]},
         \{Green, Arrow[\{\{0, 0\}, vv\}]\}
        },
        Frame \rightarrow True, PlotRange \rightarrow {{-2, 2}, {-2, 2}},
        AspectRatio \rightarrow Automatic,
        GridLines \rightarrow {{#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} & /@ Range[-10, 10],
           {#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} & /@Range[-10, 10]}
       ],
       {{t,
         1},
        Ο,
```


Two points

In this subsection I illustrate how to find the line determined by two points.

```
ln[51]:= pP = \{1, 1\}; pQ = \{1/2, -1/2\};
       Graphics[{
          {PointSize[0.02], Blue, Point[pP]},
          {PointSize[0.02], Cyan, Point[pQ]},
          {Text[P, pP, {-1, -1}], Text[Q, pQ, {-1, 1}]}
         },
         Frame \rightarrow True, PlotRange \rightarrow {{-2, 2}, {-2, 2}},
         \texttt{AspectRatio} \rightarrow \texttt{Automatic},
         \texttt{GridLines} \rightarrow \{ \{ \texttt{\#}, \{ \texttt{GrayLevel}[0.5], \texttt{Dashing}[\{0.01, 0.01\}] \} \} \& / @ \texttt{Range}[-10, 10], \} 
            {#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} & /@Range[-10, 10]}
       ]
        2
         1
Out[52]=
        0
                                                    Q
        -1
       -2 ∟
-2
                                           0
                          -1
                                                            1
                                                                             2
```


The same logic applies in three dimensions:

```
\ln[57]:= pP1 = \{3/2, 1, 3/2\}; pQ1 = \{1/2, -3/2, -1/2\};
```

```
Manipulate[
Graphics3D[{
    {PointSize[0.01], Green, Table[Point[pP1 + s (pQ1 - pP1)], {s, 0, t, .01}]},
    {PointSize[0.02], Blue, Point[pP1]},
    {PointSize[0.02], Cyan, Point[pQ1]},
    {Cyan, Arrow[{0, 0, 0}, pQ1 - pP1}]},
    {Text[P, pP1, {-1, -1}], Text[Q, pQ1, {-1, 1}]}
    },
    PlotLabel → N[t],
    Boxed → True, Axes → True, PlotRange → {{-2, 2}, {-2, 2}, {-2, 2}},
    AxesLabel → {x, y, z}
],
    {{t, 3/4}, 0, 4}]
```


Two points and the unit sphere

```
\ln[59]:= pP1 = \{3/2, 1, 3/2\}; pQ1 = \{1/4, -3/2, -3/2\};
```

```
Manipulate[
Graphics3D[{
    {PointSize[0.01], Green, Table[Point[pP1+s (pQ1-pP1)], {s, 0, t, .01}]},
    {PointSize[0.02], Blue, Point[pP1]},
    {PointSize[0.02], Cyan, Point[pQ1]},
    {Opacity[0.75], Sphere[{0, 0, 0}, 1]},
    {Text[P, pP1, {-1, -1}], Text[Q, pQ1, {-1, 1}]}
    },
    PlotLabel → N[t],
    Boxed → True, Axes → True, PlotRange → {{-2, 2}, {-2, 2}, {-2, 2}},
    AxesLabel → {x, y, z}
],
```


An relevant question for the above graph would be: Does a person located at the point P sees a person located at the point Q? To answer this question we need to calculate whether the line joining P and Q intersects the unit sphere. I will do this in *Mathematica*.

 $\ln[61]:= pP1 = \{3/2, 1, 3/2\}; pQ1 = \{1/4, -3/2, -3/2\};$

The equation of the line joining these two points is

Out[62]=
$$\left\{\frac{3}{2} - \frac{5t}{4}, 1 - \frac{5t}{2}, \frac{3}{2} - 3t\right\}$$

Now we calculate if there are points on this line which are at the distance 1 from the origin

In[63]:= Solve
$$\left[\left(\frac{3}{2} - \frac{5 t}{4} \right)^2 + \left(1 - \frac{5 t}{2} \right)^2 + \left(\frac{3}{2} - 3 t \right)^2 = 1, t \right]$$

Out[63]= $\left\{ \left\{ t \rightarrow \frac{2}{269} \left(71 - \sqrt{199} \right) \right\}, \left\{ t \rightarrow \frac{2}{269} \left(71 + \sqrt{199} \right) \right\} \right\}$

Or, look for a numerical solution

$$\ln[64] = \text{NSolve} \left[\left(\frac{3}{2} - \frac{5 t}{4} \right)^2 + \left(1 - \frac{5 t}{2} \right)^2 + \left(\frac{3}{2} - 3 t \right)^2 = 1, t \right]$$

Out[64]= { { t > 0.422998 }, { t > 0.632764 }

Yes, there are two points on the line joining P and Q which are on the unit sphere. Therefore a person located at the point P cannot see the person located at the point Q. This changes if we change the position of Q

 $ln[65]:= pP1 = \{3/2, 1, 3/2\}; pQ2 = \{1/2, -3/2, -3/2\};$

The equation of the line joining these two points is

$$ln[66]:= pP1 + t (pQ2 - pP1)$$

Out[66]= $\left\{\frac{3}{2} - t, 1 - \frac{5t}{2}, \frac{3}{2} - 3t\right\}$

Now we calculate if there are points on this line which are at the distance 1 from the origin

In[67]:= Solve
$$\left[\left(\frac{3}{2} - t \right)^2 + \left(1 - \frac{5t}{2} \right)^2 + \left(\frac{3}{2} - 3t \right)^2 = 1, t \right]$$

Out[67]= $\left\{ \left\{ t \rightarrow \frac{1}{65} \left(34 - i \sqrt{14} \right) \right\}, \left\{ t \rightarrow \frac{1}{65} \left(34 + i \sqrt{14} \right) \right\} \right\}$

There are no real solutions. Therefore there are on points on the line joining P and this new Q which are on the unit sphere. Here we can calculate the closest point on this line to the unit sphere. First plot

$$\ln[71] = \mathbf{pP1} + \frac{\mathbf{34}}{\mathbf{65}} (\mathbf{pQ2} - \mathbf{pP1})$$
$$\operatorname{Out}[71] = \left\{ \frac{127}{130}, -\frac{4}{13}, -\frac{9}{130} \right\}$$

Its distance from the origin is

$$\ln[72] = \sqrt{\left(\left(\frac{127}{130}\right)^2 + \left(-\frac{4}{13}\right)^2 + \left(-\frac{9}{130}\right)^2\right)}$$
$$Out[72] = \sqrt{\frac{137}{130}}$$

approximated by

$$\ln[73] = N \left[\sqrt{\frac{137}{130}} \right]$$

Out[73]= 1.02657

Thus this point is really close to the unit sphere.

Finally see it in three-space

```
Manipulate[
Graphics3D[{
    {PointSize[0.01], Green, Table[Point[pP1 + s (pQ2 - pP1)], {s, 0, t, .01}]},
    {PointSize[0.02], Blue, Point[pP1]},
    {PointSize[0.02], Cyan, Point[pQ2]},
    {Opacity[0.75], Sphere[{0, 0, 0}, 1]},
    {Text[P, pP1, {-1, -1}], Text[Q, pQ2, {-1, 1}]}
    },
    PlotLabel → N[t],
    Boxed → True, Axes → True, PlotRange → {{-2, 2}, {-2, 2}, {-2, 2}},
    AxesLabel → {x, y, z}
  ],
```

```
\{\{t, 1/4\}, 0, 4\}\}
```


We need a different ViewPoint to see what is happening.

In[75]:= VP = {2.5435418911596623`, -2.052328399828016`, 0.8765516454695087`}
Out[75]= {2.54354, -2.05233, 0.876552}

```
Manipulate[
Graphics3D[{
    {PointSize[0.01], Green, Table[Point[pP1 + s (pQ2 - pP1)], {s, 0, t, .01}]},
    {PointSize[0.02], Blue, Point[pP1]},
    {PointSize[0.02], Cyan, Point[pQ2]},
    {Opacity[0.75], Sphere[{0, 0, 0}, 1]},
    {Text[P, pP1, {-1, -1}], Text[Q, pQ2, {-1, 1}]}
    },
    PlotLabel → N[t],
    Boxed → True, Axes → True, PlotRange → {{-2, 2}, {-2, 2}, {-2, 2}},
    AxesLabel → {x, y, z},
    ViewPoint → VP
  ],
    {{t, 1/4}, 0, 4}]
```


Now it is clear that this line gets very close to the unit sphere, but does not touch it.

Two lines

Two pairs of points determine two lines.

```
Improve pP1 = {1, 1, 3/2}; pQ1 = {1/2, -1/2, 0};
pP2 = {-3/2, 1/2, 3/2}; pQ2 = {1/2, 1/2, -1};
Manipulate[
Graphics3D[{
    {PointSize[0.01], Green, Table[Point[pP1 + s (pQ1 - pP1)], {s, 0, t, .01}]},
    {PointSize[0.01], Magenta, Table[Point[pP2 + s2 (pQ2 - pP2)], {s2, 0, t2, .01}]},
    {PointSize[0.02], Blue, Point[pP1], , Point[pP2]},
    {PointSize[0.02], Cyan, Point[pQ1], Point[pQ2]},
    {Text[P, pP1, {-1, -1}], Text[Q, pQ1, {-1, 1}]}
    },
    PlotLabel → {N[t], N[t2]},
    Boxed → True, Axes → True, PlotRange → {{-2, 2}, {-2, 2}, {-2, 2}}
    ],
    {{t, .75}, 0, 4}, {{t2, .5}, 0, 4}]
```


Do these lines intersect? Here is the algebraic answer. The parametric equations of these lines are

```
In[80]:= \mathbf{pP1} + \mathbf{t} (\mathbf{pQ1} - \mathbf{pP1})
Out[80]:= \left\{ 1 - \frac{t}{2}, 1 - \frac{3t}{2}, \frac{3}{2} - \frac{3t}{2} \right\}
In[81]:= \mathbf{pP2} + \mathbf{s} (\mathbf{pQ2} - \mathbf{pP2})
Out[81]:= \left\{ -\frac{3}{2} + 2 \text{ s}, \frac{1}{2}, \frac{3}{2} - \frac{5 \text{ s}}{2} \right\}
Do \text{ they have a common point?}
In[82]:= \mathbf{Solve} \left[ \left\{ 1 - \frac{t}{2} = -\frac{3}{2} + 2 \text{ s}, 1 - \frac{3t}{2} = -\frac{1}{2}, \frac{3}{2} - \frac{3t}{2} = -\frac{3}{2} - \frac{5 \text{ s}}{2} \right\}, \{ \text{ s}, t \} \right]
```

Out[82]= { }

No solutions, so these two lines do not intersect.

Miscellaneous

An egg

This parametric equation of a cross section of an egg I found on the Internet.

In[84]:=

Velocity

Each parametric curve studied above can be interpreted as a moving particle which leaves a trace: the parametric curve. For each curve we will name its parametric equation, find the velocity vector and illustrate on the graph of the curve.

The unit circle

```
In[85]:= Clear[t, r1];
```

```
In[86]:= r1[t_] := {Cos[t], Sin[t]}
```

- ln[87]:= D[r1[t], t]
- Out[87]= {-Sin[t], Cos[t]}

```
In[88]:= Clear[v1]; v1[t_] := {-Sin[t], Cos[t]}
```

```
In[89]:= Manipulate
          Graphics {
              \left\{ \texttt{Thickness[0.001], Blue, Line} \left[ \texttt{Table} \left[ \texttt{r1[v]}, \left\{ \texttt{v}, 0, 2 \, \texttt{Pi}, \frac{\texttt{Pi}}{64} \right\} \right] \right] \right\},
              \left\{ \text{Thickness}[0.007], \text{Blue}, \text{Line}\left[ \text{Table}\left[ \text{r1}[v], \left\{ v, 0, t, \frac{\text{Pi}}{64} \right\} \right] \right] \right\},\
              \left\{ \text{Thickness}[0.0035], \text{Magenta}, \text{Table} \left[ \text{Arrow}[\{r1[v], r1[v] + v1[v]\}], \left\{ v, 0, t, \frac{\text{Pi}}{16} \right\} \right] \right\},
              {Thickness[0.007], Magenta, Arrow[{r1[t], r1[t] + v1[t]}]},
              {PointSize[0.025], Blue, Point[r1[t]]}
            , PlotLabel \rightarrow N[t],
            Frame \rightarrow True, PlotRange \rightarrow {{-2, 2}, {-2, 2}},
            AspectRatio → Automatic,
            GridLines → {{#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} & /@ Range[-10, 10],
                {#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} & /@Range[-10, 10]}
          ], \left\{ \{t, 1\}, 0, 2 \text{ Pi}, \frac{\text{Pi}}{64} \right\}]
                                                                                                        0
           t
                                                                1.
```


0

2

1

Clover

Out[89]=

```
In[90]:= Clear[t, r2];
```

-2 ⊾ -2

ln[91]:= r2[t_] := (1 + Cos[3t]) {Cos[t], Sin[t]}

-1

ln[92]:= D[r2[t], t]

Out[92]= {-(1+Cos[3t]) Sin[t] - 3Cos[t] Sin[3t], Cos[t] (1+Cos[3t]) - 3Sin[t] Sin[3t]}

For esthetic reasons, in the picture below I will uniformly shorten each velocity vector to half of its magnitude.

In[93]:= Clear[v2];

$$v2[t_] := \frac{1}{2} \{-(1 + \cos[3t]) \sin[t] - 3\cos[t] \sin[3t], \cos[t] (1 + \cos[3t]) - 3\sin[t] \sin[3t] \}$$

```
In[94]:= Manipulate
           Graphics [{
                \left\{ \texttt{Thickness[0.001], Blue, Line} \left[ \texttt{Table} \left[ \texttt{r2[v]}, \left\{ \texttt{v}, 0, 2 \, \texttt{Pi}, \frac{\texttt{Pi}}{64} \right\} \right] \right] \right\},
                \left\{ \texttt{Thickness[0.007], Blue, Line} \left[ \texttt{Table} \left[ \texttt{r2[v],} \left\{ \texttt{v, 0, t,} \frac{\texttt{Pi}}{\texttt{64}} \right\} \right] \right] \right\},
                \left\{ \text{Thickness}[0.0035], \text{Magenta}, \text{Table} \left[ \text{Arrow}[\{r2[v], r2[v] + v2[v]\}], \{v, 0, t, \frac{\text{Pi}}{3 * 16} \} \right] \right\},
                {Thickness[0.007], Magenta, Arrow[{r2[t], r2[t] + v2[t]}]},
                {PointSize[0.025], Blue, Point[r2[t]]}
              , PlotLabel \rightarrow N[t],
              Frame \rightarrow True, PlotRange \rightarrow {{-3, 3}, {-3, 3}},
              AspectRatio → Automatic,
              \texttt{GridLines} \rightarrow \{ \{ \texttt{\#}, \{ \texttt{GrayLevel}[0.5], \texttt{Dashing}[\{0.01, 0.01\}] \} \} \& /@ \texttt{Range}[-10, 10], \texttt{Constant} \} \} 
                  {#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} & /@Range[-10, 10]}
           ], \left\{\left\{t, \frac{2 \operatorname{Pi}}{3}\right\}, 0, 2 \operatorname{Pi}, \frac{\operatorname{Pi}}{64}\right\}\right\}
                                                                                                                       0
                                                                         t
```


Cardioid

In[95]:= Clear[t, r3]; r3[t_] := (1 + Cos[t]) {Cos[t], Sin[t]}

```
ln[96]:= D[r3[t], t]
Out[96] = \{-Cos[t] Sin[t] - (1 + Cos[t]) Sin[t], Cos[t] (1 + Cos[t]) - Sin[t]^2\}
 \ln[97]:= \text{Clear}[v3]; v3[t_]:= \left\{-\cos[t] \sin[t] - (1 + \cos[t]) \sin[t], \cos[t] (1 + \cos[t]) - \sin[t]^2\right\}
 In[98]:= Manipulate
           Graphics
               \left\{ \text{Thickness}[0.001], \text{Blue}, \text{Line}\left[ \text{Table}\left[ r3[v], \left\{ v, 0, 2\text{Pi}, \frac{P_1}{64} \right\} \right] \right] \right\},
               \left\{ \text{Thickness}[0.007], \text{Blue}, \text{Line}\left[ \text{Table}\left[ \text{r3}[\text{v}], \left\{ \text{v}, 0, t, \frac{\text{Pi}}{64} \right\} \right] \right] \right\},\
               \left\{ \text{Thickness}[0.0035], \text{ Magenta, Table} \left[ \text{Arrow}[\{r3[v], r3[v] + v3[v]\}], \left\{ v, 0, t, \frac{P_1}{2 \star 16} \right\} \right] \right\},
               {Thickness[0.007], Magenta, Arrow[{r3[t], r3[t] + v3[t]}]},
                {PointSize[0.025], Blue, Point[r3[t]]}
              , PlotLabel \rightarrow N[t],
             Frame \rightarrow True, PlotRange \rightarrow {{-2, 3}, {-2.5, 2.5}},
             AspectRatio → Automatic,
             \texttt{GridLines} \rightarrow \{ \{ \texttt{\#}, \{ \texttt{GrayLevel}[0.5], \texttt{Dashing}[\{0.01, 0.01\}] \} \} \& /@ \texttt{Range}[-10, 10], \texttt{Constant} \} \} 
                 {#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} & /@Range[-10, 10]}
           \Big], \Big\{ \Big\{ t, \frac{\mathtt{Pi}}{3} \Big\}, 0, 2 \mathtt{Pi}, \frac{\mathtt{Pi}}{64} \Big\} \Big]
```


Unnamed curve

```
\ln[99]:= Clear[t, r4]; r4[t_] := (1 + Cos[2t]^2) \{Cos[t], Sin[t]\}
```

In[100]:= D[r4[t], t]

```
\begin{array}{l} \text{Out[100]=} & \left\{ -\left(1 + \cos\left[2 \ t\right]^2\right) \ \text{Sin}\left[t\right] - 4 \ \text{Cos}\left[t\right] \ \text{Cos}\left[2 \ t\right] \ \text{Sin}\left[2 \ t\right], \\ & \quad \text{Cos}\left[t\right] \ \left(1 + \cos\left[2 \ t\right]^2\right) - 4 \ \text{Cos}\left[2 \ t\right] \ \text{Sin}\left[t\right] \ \text{Sin}\left[2 \ t\right] \right\} \end{array}
```

```
 \ln[101]:= \ Clear[v4]; v4[t_] := \left\{ -\left(1 + \cos[2t]^2\right) \sin[t] - 4\cos[t] \cos[2t] \sin[2t], \\ \cos[t] \left(1 + \cos[2t]^2\right) - 4\cos[2t] \sin[t] \sin[2t] \right\}
```

```
In[102]:= Manipulate
            Graphics [{
                \left\{ \texttt{Thickness[0.001], Blue, Line} \left[ \texttt{Table} \left[ \texttt{r4[v],} \left\{ \texttt{v}, 0, 2 \texttt{Pi}, \frac{\texttt{Pi}}{64} \right\} \right] \right] \right\},
                \left\{ \texttt{Thickness[0.007], Blue, Line} \left[ \texttt{Table} \left[ \texttt{r4[v],} \left\{ \texttt{v, 0, t,} \frac{\texttt{Pi}}{\texttt{64}} \right\} \right] \right] \right\},
                \left\{ \text{Thickness}[0.0035], \text{Magenta}, \text{Table} \left[ \text{Arrow}[\{r4[v], r4[v] + v4[v]\}], \{v, 0, t, \frac{\text{Pi}}{2 * 16} \} \right] \right\},
                 {Thickness[0.007], Magenta, Arrow[{r4[t], r4[t] + v4[t]}]},
                 {PointSize[0.025], Blue, Point[r4[t]]}
              , PlotLabel \rightarrow N[t],
              Frame \rightarrow True, PlotRange \rightarrow {{-3, 3}, {-3, 3}},
              AspectRatio → Automatic,
              \texttt{GridLines} \rightarrow \{ \{ \texttt{\#}, \{ \texttt{GrayLevel}[0.5], \texttt{Dashing}[\{0.01, 0.01\}] \} \} \& /@ \texttt{Range}[-10, 10], \texttt{Constant} \} \} 
                   {#, {GrayLevel[0.5], Dashing[{0.01, 0.01}]}} & /@Range[-10, 10]}
            ], \left\{\left\{t, \frac{Pi}{3}\right\}, 0, 2Pi, \frac{Pi}{64}\right\}\right\}
                                                                                                                   0
                                                                       t
                                                              1.0472
```


 $\ln[103]:= \text{Clear[t, r5]; r5[t_]} := \left\{0.78 \text{ Cos}\left[\frac{t}{4}\right] \text{Sin[t], 1-Cos[t]}\right\}$

```
 \begin{split} & \text{Manipulate} \Big[ \\ & \text{Graphics} \Big[ \Big\{ \\ & \left\{ \text{Thickness} \left[ 0.001 \right], \text{Blue}, \text{Line} \Big[ \text{Table} \Big[ \text{r5}[v], \left\{ v, -\text{Pi}, \text{Pi}, \frac{\text{Pi}}{64} \right\} \Big] \Big] \Big\}, \\ & \left\{ \text{Thickness} \left[ 0.007 \right], \text{Blue}, \text{Line} \Big[ \text{Table} \Big[ \text{r5}[v], \left\{ v, -\text{Pi}, t, \frac{\text{Pi}}{64} \right\} \Big] \Big] \Big\}, \\ & \left\{ \text{Thickness} \left[ 0.0035 \right], \text{Magenta}, \text{Table} \Big[ \text{Arrow} \left\{ \left\{ \text{r5}[v], r5[v] + v5[v] \right\} \right\}, \left\{ v, -\text{Pi}, t, \frac{\text{Pi}}{2 * 16} \right\} \Big] \Big\}, \\ & \left\{ \text{Thickness} \left[ 0.0035 \right], \text{Magenta}, \text{Arrow} \left\{ \left\{ \text{r5}[t], r5[t] + v5[v] \right\} \right\}, \left\{ v, -\text{Pi}, t, \frac{\text{Pi}}{2 * 16} \right\} \Big] \right\}, \\ & \left\{ \text{Thickness} \left[ 0.007 \right], \text{Magenta}, \text{Arrow} \left\{ \left\{ \text{r5}[t], r5[t] + v5[t] \right\} \right\}, \\ & \left\{ \text{PointSize} \left[ 0.025 \right], \text{Blue}, \text{Point} \left[ \text{r5}[t] \right] \right\} \\ & \left\}, \text{PlotLabel} \rightarrow \text{N[t]}, \\ & \text{Frame} \rightarrow \text{True}, \text{PlotRange} \rightarrow \left\{ \left\{ -1, 1 \right\}, \left\{ -.25, 2.25 \right\} \right\}, \\ & \text{AspectRatio} \rightarrow \text{Automatic}, \\ & \text{GridLines} \rightarrow \left\{ \left\{ \#, \left\{ \text{GrayLevel} \left[ 0.5 \right], \text{Dashing} \left\{ 0.01, 0.01 \right\} \right\} \right\} \right\} \& \left| \text{@Range} \left[ -10, 10, 1 / 4 \right], \\ & \left\{ \left\{ t, \frac{\text{Pi}}{4} \right\}, -\text{Pi}, \text{Pi}, \frac{\text{Pi}}{64} \right\} \Big] \\ \end{array} \right] \end{split}
```


Helix

 $In[107]:= Clear[t, r6]; r6[t_] := \left\{ Sin[t], Cos[t], \frac{t}{2Pi} \right\}$ In[108]:= D[r6[t], t] $Out[108]= \left\{ Cos[t], -Sin[t], \frac{1}{2\pi} \right\}$ $In[109]:= Clear[v6]; v6[t_] := \left\{ Cos[t], -Sin[t], \frac{1}{2\pi} \right\}$

```
 \begin{split} & \text{In[110]= Manipulate} \begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
```


Conical helix

In[111]:=

 $\ln[112] = \operatorname{Clear}[t, r7]; r7[t_] := \frac{t}{Pi} \{\operatorname{Sin}[8t], \operatorname{Cos}[8t], 1\}$ $\ln[113] = \operatorname{D}[r7[t], t]$ $\operatorname{Out}[113] = \left\{\frac{8 \operatorname{t} \operatorname{Cos}[8t]}{\pi} + \frac{\operatorname{Sin}[8t]}{\pi}, \frac{\operatorname{Cos}[8t]}{\pi} - \frac{8 \operatorname{t} \operatorname{Sin}[8t]}{\pi}, \frac{1}{\pi}\right\}$ $\ln[114] = \operatorname{Clear}[v7]; v7[t_] := \frac{1}{8} \left\{\frac{8 \operatorname{t} \operatorname{Cos}[8t]}{\pi} + \frac{\operatorname{Sin}[8t]}{\pi}, \frac{\operatorname{Cos}[8t]}{\pi}, \frac{\operatorname{Cos}[8t]}{\pi} - \frac{8 \operatorname{t} \operatorname{Sin}[8t]}{\pi}, \frac{1}{\pi}\right\}$

Length

Smile

What is a smile mathematically? It could be defined as a graph of the square function near the origin; for example for x between -1/2 and 1/2.

```
In[116]:= Graphics[{
```


Cardioid


```
\ln[129]:= Integrate \left[\sqrt{2(1+\cos[t])}, t\right]
Out[129]= 2\sqrt{2}\sqrt{1 + \cos[t]} \operatorname{Tan}\left[\frac{t}{2}\right]
         Egg
 In[130]:= Graphics
                \operatorname{Line}\left[\operatorname{Table}\left[\left\{0.78 \operatorname{Cos}\left[\frac{\theta}{4}\right] \operatorname{Sin}\left[\theta\right], 1 - \operatorname{Cos}\left[\theta\right]\right\}, \left\{\theta, -\operatorname{Pi}, \operatorname{Pi}, \frac{\operatorname{Pi}}{128}\right\}\right]\right]
              },
               Frame \rightarrow True, PlotRange \rightarrow {{-1., 1}, {-.25, 2.25}},
              AspectRatio \rightarrow Automatic, GridLines \rightarrow { {#, {GrayLevel[0.8]}} & /@Range[-10, 10, 1 / 4],
                    {#, {GrayLevel[0.8]}} & /@Range[-10, 10, 1 / 4]}
            2.0
             1.5
Out[130]= 1.0
            0.5
            0.0
              -1.0
                                       -0.5
                                                                0.0
                                                                                         0.5
                                                                                                                 1.0
```

```
I will modify this egg to
```


The integral below is a difficult integral, it takes too long to evaluate.

$$\ln[134] = (* \text{ Integrate} \left[\sqrt{\left(\frac{1}{10249} \left(3 \cos \left[\frac{3 \cdot \theta}{4} \right] + 5 \cos \left[\frac{5 \cdot \theta}{4} \right] \right)^2 + \sin \left[\theta \right]^2} \right), \{\theta, -\text{Pi}, \text{Pi}\} \right] * \right)$$

So, find a numerical approximation

This shows that this integral is not calculable using the functions that we learn in Pre-calculus. A numerical approximation is

In[142]:=
$$N\left[8 \text{ Elliptice}\left[-\frac{5}{4}\right]\right]$$

Out[142]= 15.8654

We can expect that the general case will involve EllipticE function. However, to calculate the general integral one needs to use an option for the Integral[].

Calculating the general integral takes 48 seconds

$$\ln[143] = (* \operatorname{Timing}\left[\operatorname{Integrate}\left[\sqrt{b^2 \operatorname{Cos}[t]^2 + a^2 \operatorname{Sin}[t]^2}, \{t, 0, 2Pi\}, \operatorname{Assumptions} And[a > 0, b > 0]\right]\right] *)$$

It is a little easier to calculate

$$\ln[144] = \operatorname{Timing}\left[\operatorname{Integrate}\left[\sqrt{\operatorname{Cos}[t]^2 + (a)^2 \operatorname{Sin}[t]^2}, \{t, 0, 2\operatorname{Pi}\}, \operatorname{Assumptions} \Rightarrow \operatorname{And}[a > 0]\right]\right]$$
$$\operatorname{Out}[144] = \left\{27.752, 4\operatorname{EllipticE}\left[1 - a^2\right]\right\}$$

Then the general integral equals

In[145]:= **4 b EllipticE**
$$\left[1 - \left(\frac{a}{b}\right)^2\right]$$

Out[145]= 4 b EllipticE $\left[1 - \frac{a^2}{b^2}\right]$

since $\sqrt{b^2 \operatorname{Cos}[t]^2 + a^2 \operatorname{Sin}[t]^2} = b \sqrt{\operatorname{Cos}[t]^2 + \left(\frac{a}{b}\right)^2 \operatorname{Sin}[t]^2}$

It is clear that exchanging the role of *a* and *b* does not change the length of an ellipse. Therefore $4 b \text{ EllipticE}\left[1 - \left(\frac{a}{b}\right)^2\right] = 4 a \text{ EllipticE}\left[1 - \left(\frac{b}{a}\right)^2\right]$. It is interesting that *Mathematica* does not know that the preceding expressions are equal

$$\ln[146]:= FullSimplify\left[b \ EllipticE\left[1-\frac{a^2}{b^2}\right] - a \ EllipticE\left[1-\frac{b^2}{a^2}\right], \ And\left[a > 0, \ b > 0\right]\right]$$
$$Out[146]= \ b \ EllipticE\left[1-\frac{a^2}{b^2}\right] - a \ EllipticE\left[1-\frac{b^2}{a^2}\right]$$

The above expression should simplify to 0.

Now explore the function for the length of an ellipse as a function of a and b.

