For most functions f a proof of $\lim _{x \rightarrow+\infty} f(x)=L$ based on the definition in the notes should consist from the following steps.
(1) Find X_{0} such that $f(x)$ is defined for all $x \geq X_{0}$. Justify your choice.
(2) Use algebra to simplify the expression $|f(x)-L|$ with the assumption that $x \geq X_{0}$. Try to eliminate the absolute value.
(3) Use the simplification from (2) to discover a BIN:

$$
\begin{array}{|l}
||f(x)-L| \leq b(x) \\
\text { The content of the box above is a BIN. }
\end{array}
$$

Here $b(x)$ should be a simple function with the following properties:
(a) $b(x)>0$ for all $x \geq X_{0}$.
(b) $b(x)$ is tiny for huge x.
(c) $b(x)<\epsilon$ is easily solvable for x for each $\epsilon>0$. The solution should be of the form

$$
x>\quad \text { some expression involving } \epsilon \text {. }
$$

Warning: In the above inequality some expression involving ϵ must be huge when ϵ is tiny.
(4) Use the solution of $b(x)<\epsilon$, that is some expression involving ϵ, and X_{0} to define

$$
X(\epsilon)=\max \left\{X_{0}, \text { some expression involving } \epsilon\right\}
$$

(5) Use the BIN above to prove the implication $x>X(\epsilon) \Rightarrow|f(x)-L|<\epsilon$.

Note: The structure of this proof is always the same.
(i) First assume that $x>X(\epsilon)$.
(ii) The definition of $X(\epsilon)$ yields that

$$
X(\epsilon) \geq X_{0} \quad \text { and } \quad X(\epsilon) \geq \text { some expression involving } \epsilon \text {. }
$$

(iii) Based of (5i) and (5ii) we conclude that the following two inequalities are true:

$$
x>X_{0} \quad \text { and } \quad x>\text { some expression involving } \epsilon .
$$

(iv) From (3) part (c) we know that

$$
x>\text { some expression involving } \epsilon \quad \text { implies } \quad b(x)<\epsilon .
$$

Therefore (5iii) yields that $b(x)<\epsilon$ is true.
(v) We also established that the BIN is true:

$$
|f(x)-L| \leq b(x) \quad \text { valid for } \quad x \geq X_{0}
$$

(vi) Together $|f(x)-L| \leq b(x)$ and $b(x)<\epsilon$ yield

$$
|f(x)-L|<\epsilon
$$

This is exactly what we needed to prove.

