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March 9, 2022 19:09

Abstract

In this paper, I present my variation on the proof of the famous equality in the title. The
key idea in this proof is attributed to the French 19th-century mathematician Augustin-Louis
Cauchy. My contribution is that I prove all the significant mathematical facts that are used in
the paper. I do not use any big theorems. If I use something, I prove it. It is my goal to build
the proof from “first principles” as much as possible.
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1 Background knowledge

In this section we present two main tools for the proof of the equality in the title. Notice that the
trigonometric inequality at the beginning of the proof of the next proposition is also used in the
proof of the limit limx→0(sinx)/x = 1.

Proposition 1.1. For all θ ∈
(

0, π/2
)

we have

1

(sin θ)2
− 1 <

1

θ2
<

1

(sin θ)2
. (1.1)

Proof. Let θ ∈ (0, π/2) and let the angle ∠DOC in Figure 1 be equal to θ. In Figure 1 the length
of OC is 1, the length of AB is sin θ, and the length of CD is tan θ. Therefore the area of the
triangle △OCB is (sin θ)/2 and the area of the triangle △OCD is (tan θ)/2. The area of the sector

OCB of the unit disk bounded by the line segments OC and OB and the circular arc joining
points C and B is θ/2.

Since clearly

△OCB ⊂ OCB ⊂ △OCD,

for the corresponding areas we have

sin θ

2
<

θ

2
<

tan θ

2
.

Multiplying by 2, squaring and taking the re-
ciprocals yield

(cos θ)2

(sin θ)2
<

1

θ2
<

1

(sin θ)2
,

which is equivalent to the inequality in the
proposition.

O

1

1A

B

C

D

Figure 1: The unit circle

The proof of the next theorem is a little longer and will be presented in Section 4. In this note
N denotes the set of positive integers. At few places we will work with the set of all nonnegative
integers. That set we represent as the union N ∪ {0}.

Theorem 1.2. For all n ∈ N we have

n
∑

k=1

1
(

sin
(

k π
2n+1

)

)2
=

2

3
n(n+ 1).

2 Proof of the equality in the title

We first establish a squeeze for the partial sums of the series in the title.

Theorem 2.1. For all n ∈ N we have

π2

6

(

1−
3

2n+ 1

)

≤
n
∑

k=1

1

k2
≤

π2

6

(

1−
1

(2n + 1)2

)

. (2.1)
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Proof. Let n ∈ N be arbitrary. For all k ∈ {1, . . . , n} we have that

k π

2n+ 1
∈
(

0,
π

2

)

.

Substituting θ = kπ/(2n + 1) in (1.1) we obtain that for all k ∈ {1, . . . , n} we have

1
(

sin
(

k π
2n+1

))2
− 1 ≤

(2n + 1)2

π2k2
≤

1
(

sin
(

k π
2n+1

))2
. (2.2)

Summing the expressions in (2.2) we get

−n+

n
∑

k=1

1
(

sin
(

k π
2n+1

))2
≤

(2n+ 1)2

π2

n
∑

k=1

1

k2
≤

n
∑

k=1

1
(

sin
(

k π
2n+1

))2
. (2.3)

The identity from Theorem 1.2 yields

−n+
2

3
n(n+ 1) ≤

(2n+ 1)2

π2

n
∑

k=1

1

k2
≤

2

3
n(n+ 1).

A simplification of the expressions on the left-hand side and on the right-hand side of the preceding
inequalities gives

1

6

(

(2n + 1)2 − 3(2n + 1) + 2
)

≤
(2n + 1)2

π2

n
∑

k=1

1

k2
≤

1

6

(

(2n + 1)2 − 1
)

.

Since clearly
(2n+ 1)2 − 3(2n + 1) ≤ (2n+ 1)2 − 3(2n + 1) + 2,

from the last two displayed inequalities we deduce

2n + 1

6

(

(2n+ 1)− 3
)

≤
(2n + 1)2

π2

n
∑

k=1

1

k2
≤

1

6

(

(2n + 1)2 − 1
)

.

Multiplying the last expression by π2/(2n + 1)2 leads to the inequality in the theorem.

Corollary 2.2.

∞
∑

k=1

1

k2
=

π2

6
.

Proof. It follows from the squeeze in Theorem 2.1 that

0 <
π2

6
−

n
∑

k=1

1

k2
≤

π2

2(2n + 1)
<

π2

4n
.

Let ǫ > 0 be arbitrary. The preceding inequality, yields the following implication

for all n ∈ N n >
π2

4ǫ
implies 0 <

π2

6
−

n
∑

k=1

1

k2
< ǫ,

which, by the definition of convergence, proves that the sequence of partial sums converges to π2/6,
that is

lim
n→∞

n
∑

k=1

1

k2
=

π2

6
.

The corollary is proved.
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3 Background knowledge for proof of Theorem 1.2

3.1 Trigonometric identities

We need the angle addition formulas for the sine function

sin(α+ β) = (sinα)(cos β) + (cosα)(sin β), sin(α− β) = (sinα)(cos β)− (cosα)(sin β)

and the double angle formulas

sin(2α) = 2(sinα)(cosα), cos(2α) = 1− 2(sinα)2.

We also need the triple angle formula

sin(3α) = sin(2α)(cos α) + cos(2α)(sin α)

= (sinα)
(

2(cosα)2 + 1− 2(sinα)2
)

= (sinα)
(

2− 2(sinα)2 + 1− 2(sinα)2
)

= (sinα)
(

3− 4(sinα)2
)

= 3(sinα)− 4(sinα)3.

3.2 Addition formulas

For all n ∈ N the following summation formulas hold

1 + 3 + 5 + · · ·+ (2n − 1) = n2 (3.1)

12 + 22 + 32 + · · ·+ n2 =
1

6
n(n+ 1)(2n + 1). (3.2)

(If you know mathematical induction you can prove these identities by induction. However, it
might be good to see another way of proving these formulas.) There is a convenient way of proving
these summation formulas using telescoping sums. To prove the first formula we recall that for all
k ∈ N we have

k2 − (k − 1)2 = 2k − 1.

Now we use the preceding identity to represent the sum of positive odd integers as a telescoping
sum of the differences of squares:

n
∑

k=1

(2k − 1) =

n
∑

k=1

(

k2 − (k − 1)2
)

= (12 − 02) + (22 − 12) + (32 − 22) + · · · +
(

(n− 1)2 − (n− 2)2
)

+
(

n2 − (n− 1)2
)

= n2.

This proves the first summation formula (3.1).
We use the same method to prove the second summation formula (3.2). For convenience we set

qk =
1

6
k(k + 1)(2k + 1) for all k ∈ N ∪ {0}. (3.3)

Then we verify that for all k ∈ N we have

qk − qk−1 =
k

6

(

(k + 1)(2k + 1)− (k − 1)(2k − 1)
)

=
k

6

(

2k2 + 3k + 1− (2k2 − 3k + 1)
)

= k2.
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Now we use the preceding identity to represent the sum of squares as a telescoping sum of differences
of qk-s: For all n ∈ N we have:

n
∑

k=1

k2 =

n
∑

k=1

(

qk − qk−1

)

=
(

q1 − q0
)

+
(

q2 − q1
)

+ · · · +
(

qn−1 − qn−2

)

+
(

qn − qn−1

)

= qn.

Hence, (3.2) is proved.
In the following proposition we characterize the sequence {qn} defined in (3.3).

Proposition 3.1. Let {bn} be a sequence of real numbers. The following two statements are

equivalent:

(I) For all n ∈ N ∪ {0} we have

bn =
1

6
n(n+ 1)(2n + 1) (3.4)

(II) We have b0 = 0, b1 = 1, and for all n ∈ N we have

(

bn+1 − bn
)

−
(

bn − bn−1

)

= 2n + 1. (3.5)

Proof. First we prove (I)⇒(II). Assume (I). That is assume that for all k ∈ N ∪ {0} we have
bk = qk. Then, we calculate b0 = 0 and b1 = 1. Since we already established that for all k ∈ N we
have qk − qk−1 = k2, then we also have bk − bk−1 = k2 for all k ∈ N. Further, for all k ∈ N we have

(

bk+1 − bk
)

−
(

bk − bk−1

)

= (k + 1)2 − k2 = 2k + 1.

That is, we proved (II).
Now we prove the converse. That is we prove (II)⇒(I). Assume (II). Let n ∈ N be arbitrary.

Notice that the following sum is a telescopic sum (and work out how the cancaletion works in it),
so we have the following equality

n−1
∑

k=1

(

(bk+1 − bk)− (bk − bk−1)
)

=
(

(b2 − b1)− (b1 − b0)
)

+ · · · +
(

(bn − bn−1)− (bn−1 − bn−2)
)

= −1 + (bn − bn−1).

Since we assume (II) we have

n−1
∑

k=1

(

(bk+1 − bk)− (bk − bk−1)
)

=
n−1
∑

k=1

(2k + 1).

By (3.1) we have
n−1
∑

k=1

(2k + 1) = 3 + 5 + · · ·+ 2n− 1 = n2 − 1.

From the last three displayed equalities we have

−1 + (bn − bn−1) = n2 − 1.
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Since n ∈ N was arbitrary, the preceding equality proves that for all n ∈ N we have bn− bn−1 = n2.
Consequently, using a telescoping sum and (3.2), we obtain that

bn =

n
∑

k=1

(

bk − bk−1

)

=

n
∑

k=1

k2 =
1

6
n(n+ 1)(2n + 1)

is true for all n ∈ N. This proves (I).

3.3 Coefficients and roots of polynomials

It is familiar from our experience with quadratic polynomials that there are formulas relating the
coefficients of a polynomial to the roots of a polynomial. Let us review some of those formulas.
Assume that a0, a1, a2 ∈ R and assume that a0 6= 0 and a2 6= 0. Let r1 and r2 be distinct real roots
of the quadratic

a0 + a1x+ a2x
2.

Then
a0 + a1x+ a2x

2 = a2(x− r1)(x− r2).

Multiplying out the product on the right-hand side we get

a0 + a1x+ a2x
2 = a2r1r2 − a2(r1 + r2)x+ a2x

2.

Therefore,
a0 = a2r1r2, a1 = −a2(r1 + r2).

Since we assume that a0 6= 0 and a2 6= 0, we have that r1 6= 0 and r2 6= 0 and

−
a1
a0

=
a2(r1 + r2)

a2r1r2
=

1

r1
+

1

r2
.

That is, the ratio −a1/a0 of coefficients equals to the sum of the reciprocals of the roots. In the
next proposition we prove that the preceding relationship between the coefficients a0 and a1 and the
roots is universal, that is, it holds for an arbitrary polynomial with a nonzero constant coefficient
a0.

Proposition 3.2. Let a0, a1, . . . , an ∈ R. Let

P (x) = a0 + a1x+ · · ·+ an−1x
n−1 + anx

n

be a polynomial of degree n with a0 6= 0 and an 6= 0. Assume that P (x) has distinct real roots

r1, . . . , rn. Then rk 6= 0 for all k ∈ {1, . . . , n} and for all x ∈ R we have

P (x) = a0 + a1x+ · · ·+ an−1x
n−1 + anx

n = a0

n
∏

k=1

(

1−
x

rk

)

. (3.6)

In particular,
n
∑

k=1

1

rk
= −

a1
a0

.
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Proof. By repeated factoring of linear terms we obtain the identity

P (x) = a0 + a1x+ · · ·+ an−1x
n−1 + anx

n = an

n
∏

k=1

(

x− rk
)

. (3.7)

By multiplying out the linear factors we calculate the constant coefficient on the right-hand side to
be

a0 = (−1)nanρ,

where we set ρ = r1 · · · rn. Since a0 6= 0 it follows that ρ 6= 0 and therefore rk 6= 0 for each
k ∈ {1, . . . , n}. Next we factor out −rk in each of the linear factors in (3.7), that is

(

x − rk
)

=
(−rk)

(

1− x/rk
)

, to get

P (x) = a0 + a1x+ · · ·+ an−1x
n−1 + anx

n = (−1)nanρ

n
∏

k=1

(

1−
x

rk

)

.

Since a0 = (−1)nanρ, the preceding equality proves (3.6).
To calculate the coefficient of x in the product in (3.6), for each k ∈ {1, . . . , n} we multiply

−
x

rk
by all 1s in the remaining factors and take into account the distributivity of multiplication to

conclude that the coefficient of x in the product in (3.6) is

−a0

(

1

r1
+ · · ·+

1

rn

)

.

Consequently, equating the coefficients of x on the left and right side of the last equality in (3.6)
we obtain

a1 = −a0

(

1

r1
+ · · ·+

1

rn

)

.

The last claim in the proposition follows by dividing by −a0 6= 0.

4 Proof of Theorem 1.2

In the trigonometry background knowledge we proved the triple angle formula for the sine function

sin(3θ) = (sin θ)
(

3− 4(sin θ)2
)

.

Our next goal is to establish the analogous formulas for sin(5θ), sin(7θ), in fact for all odd multiple
angles:

sin
(

(2n + 1)θ
)

where n ∈ N ∪ {0}.

To accomplish this task we will use a remarkable idea due to the Russian mathematician Pafnuty
Chebyshev who lived in 19th century. To expand sin(5θ) as a linear combination of sines we will
use the sine addition formulas. We think of sin(5θ) as sin(3θ + 2θ), but at the same time we think
of sin(θ) as sin(3θ − 2θ) to obtain the following two formulas:

sin(5θ) = sin(3θ) cos(2θ) + cos(3θ) sin(2θ),

sin(θ) = sin(3θ) cos(2θ)− cos(3θ) sin(2θ).

Adding the preceding two formulas and moving sin(θ) to the right-hand side gives us

sin(5θ) = 2 sin(3θ) cos(2θ)− sin(θ).
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Next we substitute the triple angle formula and the double angle formula for the cosine and we get

sin(5θ) = (sin θ)
(

2
(

3− 4(sin θ)2
)(

1− 2(sin θ)2
)

− 1
)

. (4.1)

Now it remains to simplify the last expression to get

sin(5θ) = (sin θ)
(

5− 20(sin θ)2 + 16(sin θ)4
)

.

Our reader can imagine that these formulas are becoming more complicated. To facilitate their
easier writing we introduce the following polynomials:

P0(x) = 1, P1(x) = 3− 4x, P2(x) = 5− 20x+ 16x2. (4.2)

With this new notation we can write the odd multiple angle formulas that we know so far as

sin θ = (sin θ)P0

(

(sin θ)2
)

, sin(3θ) = (sin θ)P1

(

(sin θ)2
)

, sin(5θ) = (sin θ)P2

(

(sin θ)2
)

.

Moreover, formula (4.1) can now be rewritten as

(sin θ)P2

(

(sin θ)2
)

= (sin θ)
(

2P1

(

(sin θ)2
)(

1− 2(sin θ)2
)

− P0

(

(sin θ)2
)

)

.

Dividing by sin θ 6= 0 and setting x = (sin θ)2 the last formula tells us the following recursive
relationship between P0(x), P1(x), and P2(x).

P2(x) = 2P1(x)(1 − 2x)− P0(x).

This pattern continues. To calculate sin(7θ) we would expand sin(5θ + 2θ) and sin(3θ) =
sin(5θ− 2θ) using the angle addition formulas, add the resulting expressions, substitute cos(2θ) by
1− 2(sin θ)2 and simplify. Or, what is equivalent, we can calculate

P3(x) = 2P2(x)(1 − 2x)− P1(x) = 7− 56x+ 112x2 − 64x3,

and then we have
sin(7θ) = (sin θ)P3

(

(sin θ)2
)

.

What we did for n = 2 (for sin(5θ)) and n = 3 (for sin(7θ)) we can do for every n ∈ N. Assuming
that we already have

sin
(

(2n− 1)θ
)

= (sin θ)Pn−1

(

(sin θ)2
)

and sin
(

(2n + 1)θ
)

= (sin θ)Pn

(

(sin θ)2
)

,

we use Chebyshev’s idea to calculate sin
(

(2n+ 3)θ
)

. As before,

sin
(

(2n+ 3)θ
)

= sin
(

(2n+ 1)θ + 2θ
)

= sin
(

(2n + 1)θ
)

cos(2θ) + cos
(

(2n+ 1)θ
)

sin(2θ),

sin
(

(2n− 1)θ
)

= sin
(

(2n+ 1)θ − 2θ
)

= sin
(

(2n + 1)θ
)

cos(2θ)− cos
(

(2n+ 1)θ
)

sin(2θ).

Adding the last two identities, moving sin
(

(2n − 1)θ
)

to the right-hand side and substituting
cos(2θ) = 1− 2(sin θ)2 we get

sin
(

(2n + 3)θ
)

= 2 sin
(

(2n+ 1)θ
)(

1− 2(sin θ)2
)

− sin
(

(2n− 1)θ
)

. (4.3)

As we assume that we already know the identities

sin
(

(2n− 1)θ
)

= (sin θ)Pn−1

(

(sin θ)2
)

and sin
(

(2n + 1)θ
)

= (sin θ)Pn

(

(sin θ)2
)

,
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substituting the preceding two identities in (4.3) yields

sin
(

(2n+ 3)θ
)

= (sin θ)
(

2Pn

(

(sin θ)2
)(

1− 2(sin θ)2
)

− Pn−1

(

(sin θ)2
)

)

. (4.4)

Consequently, defining the new polynomial Pn+1(x) by

Pn+1(x) = 2Pn(x)(1 − 2x)− Pn−1(x),

enables us to write (4.4) as

sin
(

(2n+ 3)θ
)

= (sin θ)Pn+1

(

(sin θ)2
)

.

In the above reasoning we constructed a special sequence of polynomials Pn(x) of degree n
where n is a nonnegative integer. In the next proposition we use the following notation for these
polynomials

Pn(x) = a0,n + a1,nx+ · · ·+ an,nx
n,

that is, for k ∈ {0, 1, . . . , n} the coefficient with the k-th monomial xk is denoted by ak,n.

Proposition 4.1. Let Pn(x) be the recursively defined sequence of polynomials:

P0(x) = 1, P1(x) = 3− 4x, and Pn+1(x) = 2Pn(x)(1 − 2x)− Pn−1(x) (4.5)

for all n ∈ N. Then each polynomial Pn(x) is of degree n and for all n ∈ N ∪ {0} we have

a0,n = 2n+ 1, a1,n = −
2

3
n(n+ 1)(2n + 1), an,n = (−4)n. (4.6)

For every n ∈ N ∪ {0} and for all θ ∈ R we have

sin
(

(2n+ 1)θ
)

= (sin θ)Pn

(

(sin θ)2
)

. (4.7)

Proof. Step 1. By the recursive definition in (4.5) the polynomial P0(x) = 1 is of degree 0 and
P1(x) is of degree 1. The recursive formula produces P2(x) of degree 2, and in general, each next
polynomial will have the degree one higher than the preceding one. Hence, Pn(x) will be of degree
n. This is also confirmed by calculating each an,n. Clearly, a0,0 = 1 = (−4)0 and a1,1 = −4. To
calculate the leading coefficient an+1,n+1 of Pn+1(x) it is convenient to write

Pn+1(x) = (−4)xPn(x) + 2Pn(x)− Pn−1(x).

Hence, an+1,n+1 = (−4)an,n. Consequently, a2,2 = (−4)2, a3,3 = (−4)3, and, so on, an,n = (−4)n.
This proves the third formula in (4.6).

Step 2. Now we prove the formula for a0,n. It follows from (4.5) that

a0,0 = 1, a0,1 = 3, a0,n+1 = 2a0,n − a0,n−1 (4.8)

for all n ∈ N. Rewriting the preceding recursion we get the recursion for the differences

a0,1 − a0,0 = 2, a0,n+1 − a0,n = a0,n − a0,n−1

for all n ∈ N. Consequently, a0,n − a0,n−1 = 2 for all n ∈ N. Now we represent a0,n as the sum of
differences and deduce

a0,n = (a0,n − a0,n−1) + (a0,n−1 − a0,n−2) + · · ·+ (a0,1 − a0,0) + a0,0

= 2 + 2 + · · ·+ 2 + 1

= 2n+ 1.
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This proves the first formula in (4.6).

Step 3. To prove the formula for a1,n we set a1,0 = 0, pretending that P0(x) = 1 + 0x. Then it
follows from (4.5) that

a1,0 = 0, a1,1 = −4, a1,n+1 = 2a1,n − 4a0,n − a1,n−1

for all n ∈ N. Since we already know that a0,n = 2n + 1 for all n ∈ N ∪ {0} we can rewrite the
preceding recursion as

a1,0 = 0, a1,1 = −4, a1,n+1 = 2a1,n − 4(2n + 1)− a1,n−1 (4.9)

Set bn = −a1,n/4 for all n ∈ N ∪ {0}. Now we divide all equalities in (4.9) by −4 and rewrite (4.9)
in terms of bn to get

b0 = 0, b1 = 1, bn+1 − 2bn + bn−1 = 2n+ 1 (4.10)

for all n ∈ N. The recursion in (4.10) is identical to the recursion in Proposition 3.1(II). By the
implication (II)⇒(I) proved in Proposition 3.1 we conclude that bn = n(n + 1)(2n + 1)/6 for all
n ∈ N ∪ {0}. Since bn = −a1,n/4, we have

a1,n = −4
1

6
n(n+ 1)(2n + 1) = −

2

3
n(n+ 1)(2n + 1)

for all n ∈ N ∪ {0}. This proves the second formula in (4.6).

Step 4. The identity (4.7) was proved by the recursive reasoning preceding this proposition.

Finally we can prove Theorem 1.2 which is the key tool in the proof of the equality in the title.
First we will restate the theorem.

Theorem 1.2. For all n ∈ N we have

n
∑

k=1

1
(

sin
(

k π
2n+1

)

)2
=

2

3
n(n+ 1).

Proof. Let n ∈ N be arbitrary. Consider the polynomial Pn(x) of degree n from Proposition 4.1.
Then, as stated in (4.7), for all θ ∈ R we have

sin
(

(2n+ 1)θ
)

= (sin θ)Pn

(

(sin θ)2
)

. (4.11)

Notice that

0 <
π

2n+ 1
<

2π

2n+ 1
< · · · <

(n− 1)π

2n+ 1
<

nπ

2n+ 1
<

π

2
.

Further notice that the function θ 7→ (sin θ)2 defined for θ ∈ (0, π/2), is strictly increasing from 0
to 1 and consequently

0 <
(

sin
π

2n+ 1

)2

<
(

sin
2π

2n+ 1

)2

< · · · <
(

sin
(n− 1)π

2n + 1

)2

<
(

sin
nπ

2n+ 1

)2

< 1. (4.12)

Substituting

θ =
kπ

2n+ 1
∈
(

0,
π

2

)

, with k ∈ {1, . . . , n},
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in (4.7) we get

(

sin
kπ

2n+ 1

)

Pn

(

(

sin
kπ

2n+ 1

)2
)

= sin
(

(2n + 1)
kπ

2n + 1

)

= sin(kπ) = 0.

Since sin
(

kπ
2n+1

)

6= 0, we conclude that

Pn

(

(

sin
kπ

2n+ 1

)2
)

= 0.

Thus,

rk =
(

sin
kπ

2n + 1

)2

with k ∈ {1, . . . , n}

are the roots of Pn(x). The roots rk are n distinct numbers in (0, 1) which are listed in (4.12).
Since Pn(x) is of degree n it has at most n roots. Hence, we have all the roots of Pn(x).

From Proposition 4.1 we know two coefficients of Pn(x) to be

a0,n = 2n+ 1, a1,n = −
2

3
n(n+ 1)(2n + 1).

Since rk with k ∈ {1, . . . , n} are the roots of Pn(x), using Proposition 3.2 we deduce

n
∑

k=1

1
(

sin
(

kπ
2n+1

)

)2
=

n
∑

k=1

1

rk
= −

a1
a0

=
2

3

n(n+ 1)(2n + 1)

2n+ 1
=

2

3
n(n+ 1).

The identity in the theorem is proved.
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