Axioms for the Set \mathbb{R} of Real Numbers

Axiom 1 (AE: Addition exists). If $a, b \in \mathbb{R}$, then the sum of a and b, denoted by $a+b$, is a uniquely defined number in \mathbb{R}.

Axiom 2 (AA: Addition is associative). For all $a, b, c \in \mathbb{R}$ we have $a+(b+c)=(a+b)+c$.
Axiom 3 (AC: Addition is commutative). For all $a, b \in \mathbb{R}$ we have $a+b=b+a$.
Axiom 4 (AZ: Addition has 0). There is an element 0 in \mathbb{R} such that $0+a=a+0=a$ for all $a \in \mathbb{R}$.

Axiom 5 (AO: Addition has opposites). If $a \in \mathbb{R}$, then the equation $a+x=0$ has a solution $-a \in \mathbb{R}$. The number $-a$ is called the opposite of a.

Axiom 6 (ME: Multiplication exists). If $a, b \in \mathbb{R}$, then the product of a and b, denoted by $a b$, is a uniquely defined number in \mathbb{R}.

Axiom 7 (MA: Multiplication is associative). For all $a, b, c \in \mathbb{R}$ we have $a(b c)=(a b) c$.
Axiom 8 (MC: Multiplication is commutative). For all $a, b \in \mathbb{R}$ we have $a b=b a$.
Axiom 9 (MO: Multiplication has 1). There is an element $1 \neq 0$ in \mathbb{R} such that $1 \cdot a=a \cdot 1=a$ for all $a \in \mathbb{R}$.

Axiom 10 (MR: Multiplication has reciprocals). If $a \in \mathbb{R}$ is such that $a \neq 0$, then the equation $a \cdot x=1$ has a solution $a^{-1}=\frac{1}{a}$ in \mathbb{R}. The number $a^{-1}=\frac{1}{a}$ is called the reciprocal of a.

Axiom 11 (DL: Distributive law, the connection between addition and multiplication). For all $a, b, c \in \mathbb{R}$ we have $a(b+c)=a b+a c$.

Axiom 12 (OE: Order exists). Given any $a, b \in \mathbb{R}$, exactly one of these statements is true: $a<b, \quad a=b$, or $b<a$. (The symbol $a \leq b$ stands for $a<b$ or $a=b$.)

Axiom 13 (OT: Order is transitive). Given any $a, b, c \in \mathbb{R}$, if $a<b$ and $b<c$, then $a<c$.
Axiom 14 (OA: Order respects addition). Given any $a, b, c \in \mathbb{R}$, if $a<b$ then $a+c<b+c$.
Axiom 15 (OM: Order respects multiplication). Given any $a, b, c \in \mathbb{R}$, if $a<b$ and $0<c$, then $a c<b c$.

Axiom 16 (CA: Completeness Axiom). If A and B are nonempty subsets of \mathbb{R} such that for every $a \in A$ and for every $b \in B$ we have $a \leq b$, then there exists $c \in \mathbb{R}$ such that $a \leq c \leq b$ for all $a \in A$ and all $b \in B$.

The end of axioms.

All statements about real numbers that are studied in beginning mathematical analysis courses can be deduced from these sixteen axioms.

The formulation of the Completeness Axiom given as Axiom 16 is not standard. This formulation I found in the book Mathematical analysis by Vladimir Zorich, published by Springer in 2004. Zorich's formulation is easier to state and it is equivalent to the standard formulation of the Completeness Axiom.

