Axioms for the Set \mathbb{R} of Real Numbers

Axiom 1 (**AE**: Addition exists). If $a, b \in \mathbb{R}$, then the sum of a and b, denoted by a + b, is a uniquely defined number in \mathbb{R} .

Axiom 2 (**AA**: Addition is associative). For all $a, b, c \in \mathbb{R}$ we have a + (b + c) = (a + b) + c.

Axiom 3 (AC: Addition is commutative). For all $a, b \in \mathbb{R}$ we have a + b = b + a.

Axiom 4 (**AZ**: Addition has 0). There is an element 0 in \mathbb{R} such that 0 + a = a + 0 = a for all $a \in \mathbb{R}$.

Axiom 5 (AO: Addition has opposites). If $a \in \mathbb{R}$, then the equation a + x = 0 has a solution $-a \in \mathbb{R}$. The number -a is called the *opposite* of a.

Axiom 6 (ME: Multiplication exists). If $a, b \in \mathbb{R}$, then the product of a and b, denoted by ab, is a uniquely defined number in \mathbb{R} .

Axiom 7 (MA: Multiplication is associative). For all $a, b, c \in \mathbb{R}$ we have a(bc) = (ab)c.

Axiom 8 (MC: Multiplication is commutative). For all $a, b \in \mathbb{R}$ we have ab = ba.

Axiom 9 (MO: Multiplication has 1). There is an element $1 \neq 0$ in \mathbb{R} such that $1 \cdot a = a \cdot 1 = a$ for all $a \in \mathbb{R}$.

Axiom 10 (MR: Multiplication has reciprocals). If $a \in \mathbb{R}$ is such that $a \neq 0$, then the equation $a \cdot x = 1$ has a solution $a^{-1} = \frac{1}{a}$ in \mathbb{R} . The number $a^{-1} = \frac{1}{a}$ is called the *reciprocal* of a.

Axiom 11 (**DL**: Distributive law, the connection between addition and multiplication). For all $a, b, c \in \mathbb{R}$ we have a(b+c) = ab + ac.

Axiom 12 (**OE**: Order exists). Given any $a, b \in \mathbb{R}$, exactly one of these statements is true: a < b, a = b, or b < a. (The symbol $a \le b$ stands for a < b or a = b.)

Axiom 13 (OT: Order is transitive). Given any $a, b, c \in \mathbb{R}$, if a < b and b < c, then a < c.

Axiom 14 (**OA**: Order respects addition). Given any $a, b, c \in \mathbb{R}$, if a < b then a + c < b + c.

Axiom 15 (**OM**: Order respects multiplication). Given any $a, b, c \in \mathbb{R}$, if a < b and 0 < c, then ac < bc.

Axiom 16 (**CA**: Completeness Axiom). If A and B are nonempty subsets of \mathbb{R} such that for every $a \in A$ and for every $b \in B$ we have $a \leq b$, then there exists $c \in \mathbb{R}$ such that $a \leq c \leq b$ for all $a \in A$ and all $b \in B$.

The end of axioms.

All statements about real numbers that are studied in beginning mathematical analysis courses can be deduced from these sixteen axioms.

The formulation of the **Completeness Axiom** given as **Axiom 16** is not standard. This formulation I found in the book *Mathematical analysis* by Vladimir Zorich, published by Springer in 2004. Zorich's formulation is easier to state and it is equivalent to the standard formulation of the Completeness Axiom.