Euler's Identity $e^{i t}=(\cos t)+i(\sin t)$

Branko Ćurgus

January 28, 2021 22:01

Abstract

In this note I present my variation on the proof of Euler's Identity in which I try to minimize background knowledge that is not presented in the note; there are no citations and I do not use any "well-known" facts. I try to build the proof from "first principles" as much as possible.

1 Preliminary Results

Proposition 1.1. Let $m \in \mathbb{N}$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{m^{n}}{n!}=0 \tag{1.1}
\end{equation*}
$$

Proof. The following inequality holds for all $m, n \in \mathbb{N}$

$$
\begin{equation*}
\frac{m^{n}}{n!} \leq \frac{m^{m}}{(m-1)!} \frac{1}{n} \tag{1.2}
\end{equation*}
$$

To prove the preceding inequality we notice that it is equivalent to $m^{n}(m-1)!\leq m^{m}(n-1)$!. The inequality is trivial if $m=n$. Assume $m>n$. Then $n \cdots(m-1) \leq m^{m-n}$, since the both sides have the same number of factors and the factors on the left-hand side are smaller. Multiplying both sides by $m^{n}(n-1)$! yields the desired inequality. Assume $m<n$. Then $m^{n-m} \leq m \cdots(n-1)$, since the both sides have the same number of factors and the factors on the left-hand side are smaller. Multiplying both sides by $m^{m}(m-1)$! yields the desired inequality. It follows from (1.2) that for arbitrary $\epsilon>0$ and $n>\left(m^{m}\right) /\left(\epsilon(m-1)\right.$!) we have $\left(m^{n}\right) /(n!)<\epsilon$. Hence, the limit in (1.1) is proved using the definition of limit.

Theorem 1.2. Let $r \in \mathbb{R}_{+}$and let $I=[-r, r]$ or $I=\mathbb{R}$. Let $g: I \rightarrow \mathbb{R}$ be a continuous function. Assume that there exists $M \in \mathbb{R}_{+}$and $m \in\{0\} \cup \mathbb{N}$ such that for all $x \in I$ we have

$$
\begin{equation*}
|g(x)| \leq M|x|^{m} \tag{1.3}
\end{equation*}
$$

Then for all $x \in I$ we have

$$
\begin{equation*}
\left|\int_{0}^{x} g(t) d t\right| \leq \frac{M}{m+1}|x|^{m+1} . \tag{1.4}
\end{equation*}
$$

Proof. Assume that there exists $M \in \mathbb{R}_{+}$and $m \in\{0\} \cup \mathbb{N}$ such that (1.3) holds for all $x \in I$. From the definition of the absolute value function it follows that (1.3) is equivalent to

$$
\begin{equation*}
-M|t|^{m} \leq g(t) \leq M|t|^{m} \tag{1.5}
\end{equation*}
$$

for all $t \in I$. Case 1. Assume $x \in I$ and $x>0$. Then for every $t \in[0, x]$ we have that (1.5) holds and we can drop the absolute value sign. By the monotonicity property of the definite integral we get

$$
-M \int_{0}^{x} t^{m} d t \leq \int_{0}^{x} g(t) d t \leq M \int_{0}^{x} t^{m} d t
$$

Consequently

$$
-\frac{M}{m+1} x^{m+1} d t \leq \int_{0}^{x} g(t) d t \leq \frac{M}{m+1} x^{m+1}
$$

which is equivalent to

$$
\begin{equation*}
\left|\int_{0}^{x} g(t) d t\right| \leq \frac{M}{m+1}|x|^{m+1} . \tag{1.6}
\end{equation*}
$$

Case 2. Assume $x \in I$ and $x<0$. Then for every $t \in[x, 0]$ we have that (1.5) holds and we can replace $|t|$ by $(-t)$. By the monotonicity property of the definite integral we get

$$
-M \int_{x}^{0}(-t)^{m} d t \leq \int_{x}^{0} g(t) d t \leq M \int_{x}^{0}(-t)^{m} d t
$$

and consequently

$$
-\frac{M}{m+1}(-x)^{m+1} d t \leq \int_{x}^{0} g(t) d t \leq \frac{M}{m+1}(-x)^{m+1}
$$

Multiplying the last expression by -1 and replacing $(-x)$ by $|x|$ we obtain

$$
-\frac{M}{m+1}|x|^{m+1} d t \leq \int_{0}^{x} g(t) d t \leq \frac{M}{m+1}|x|^{m+1}
$$

which is equivalent to

$$
\left|\int_{0}^{x} g(t) d t\right| \leq \frac{M}{m+1}|x|^{m+1}
$$

The preceding inequality and (1.6) prove that (1.4) holds for all $x \in I$.
Next we define three operations on functions inspired by the anti-derivative from the previous theorem. For a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ set

$$
\begin{aligned}
& (\mathcal{I} g)(x)=\int_{0}^{x} g(t) d t \\
& (\mathcal{J} g)(x)=1-\int_{0}^{x} g(t) d t \\
& (\mathcal{K} g)(x)=1+\int_{0}^{x} g(t) d t
\end{aligned}
$$

Corollary 1.3. Let $r \in \mathbb{R}_{+}$and let $I=[-r, r]$ or $I=\mathbb{R}$. Let $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ be continuous functions. Assume that there exists $M \in \mathbb{R}_{+}$and $m \in\{0\} \cup \mathbb{N}$ such that for all $x \in I$ we have

$$
\begin{equation*}
|f(x)-g(x)| \leq M|x|^{m} \tag{1.7}
\end{equation*}
$$

Then for all $x \in I$ we have

$$
\begin{align*}
|(\mathcal{I} f)(x)-(\mathcal{I} g)(x)| & \leq \frac{M}{m+1}|x|^{m+1} \tag{1.8}\\
|(\mathcal{J} f)(x)-(\mathcal{J} g)(x)| & \leq \frac{M}{m+1}|x|^{m+1} \tag{1.9}\\
|(\mathcal{K} f)(x)-(\mathcal{K} g)(x)| & \leq \frac{M}{m+1}|x|^{m+1} \tag{1.10}
\end{align*}
$$

Proof. To prove (1.8) we calculate

$$
(\mathcal{I} f)(x)-(\mathcal{I} g)(x)=\int_{0}^{x} f(t) d t-\int_{0}^{x} g(t) d t=\int_{0}^{x}(f(t)-g(t)) d t
$$

and apply Theorem 1.2 to deduce (1.8) from (1.7). To prove (1.9) we calculate

$$
|(\mathcal{J} f)(x)-(\mathcal{J} g)(x)|=\left|1-\int_{0}^{x} f(t) d t-1+\int_{0}^{x} g(t) d t\right|=\left|\int_{0}^{x}(f(t)-g(t)) d t\right|
$$

and apply Theorem 1.2 to deduce (1.9) from (1.7). To prove (1.10) we calculate

$$
|(\mathcal{K} f)(x)-(\mathcal{K} g)(x)|=\left|1+\int_{0}^{x} f(t) d t-1-\int_{0}^{x} g(t) d t\right|=\left|\int_{0}^{x}(f(t)-g(t)) d t\right|
$$

and apply Theorem 1.2 to deduce (1.10) from (1.7).

2 The Exponential Function

Theorem 2.1. Let $r \in \mathbb{R}_{+}$be arbitrary. Then for all $n \in \mathbb{N}$ and all $x \in[-r, r]$ we have

$$
\begin{equation*}
\left|e^{x}-\sum_{k=0}^{n} \frac{x^{k}}{k!}\right| \leq e^{r} \frac{|x|^{n+1}}{(n+1)!} \tag{2.1}
\end{equation*}
$$

Proof. Part 1. First we establish a pattern how repeated application of the operation \mathcal{K} starting with the constant 1 creates a sequence of polynomials. We start by applying \mathcal{K} to 1 , then we apply \mathcal{K} to the result $(\mathcal{K} 1)(x)$ and so on. We obtain the following sequence of polynomials

$$
\begin{align*}
& (\mathcal{K} 1)(x)=1+\int_{0}^{x} 1 d t=1+x, \tag{2.2}\\
& \left(\mathcal{K}^{2} 1\right)(x)=1+\int_{0}^{x}(1+t) d t=1+x+\frac{x^{2}}{2}, \tag{2.3}\\
& \left(\mathcal{K}^{3} 1\right)(x)=1+\int_{0}^{x}\left(1+t+\frac{t^{2}}{2}\right) d t=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}, \\
& \left(\mathcal{K}^{4} 1\right)(x)=1+\int_{0}^{x}\left(1+t+\frac{t^{2}}{2}+\frac{t^{3}}{3!}\right) d t=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!} .
\end{align*}
$$

In general, for all $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\left(\mathcal{K}^{n} 1\right)(x)=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}=\sum_{k=0}^{n} \frac{x^{k}}{k!} . \tag{2.4}
\end{equation*}
$$

Part 2. Let $r>0$ be arbitrary. Then for all $x \in[-r, r]$ we have

$$
\left|e^{x}\right| \leq e^{r}
$$

Applying Theorem 1.2 to the preceding inequality yields

$$
\begin{equation*}
\left|e^{x}-1\right| \leq e^{r}|x| \tag{2.5}
\end{equation*}
$$

for all $x \in[-r, r]$. The preceding inequality proves (2.1) for $n=0$.
Part 3. In this part of the proof we use the fact that the operation \mathcal{K} does not change the exponential function. That is,

$$
(\mathcal{K} \exp)(x)=1+\int_{0}^{x} e^{t} d t=1+e^{x}-1=e^{x}=\exp (x)
$$

Step 1. Apply \mathcal{K} to both functions $\exp x$ and 1 in (2.5) and use (1.10) to conclude

$$
\begin{equation*}
|(\exp x)-(\mathcal{K} 1)(x)| \leq \frac{e^{r}}{2!}|x|^{2} \tag{2.6}
\end{equation*}
$$

for all $x \in[-r, r]$. Since (2.2) holds, we see that (2.6) proves (2.1) for $n=1$.
Step 2. Apply \mathcal{K} to both functions $\exp x$ and $(\mathcal{K} 1)(x)$ in (2.6) and use (1.10) to conclude

$$
\begin{equation*}
\left|(\exp x)-\left(\mathcal{K}^{2} 1\right)(x)\right| \leq \frac{e^{r}}{3!}|x|^{3} \tag{2.7}
\end{equation*}
$$

for all $x \in[-r, r]$. Since (2.3) holds, we see that (2.6) proves (2.1) for $n=2$.
Repeating these steps for a total of n times we deduce

$$
\left|(\exp x)-\left(\mathcal{K}^{n} 1\right)(x)\right| \leq \frac{e^{r}}{(n+1)!}|x|^{n+1}
$$

Since (2.4) holds, the preceding inequality proves (2.1).

Corollary 2.2. For all $x \in \mathbb{R}$ we have

$$
\begin{equation*}
e^{x}=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k} \tag{2.8}
\end{equation*}
$$

Proof.

3 The Cosine and Sine Functions

In this section we utilize the reasoning very similar to the reasoning from Section 2 to deduce similar conclusions for the cosine and sine function. Since we are dealing with two functions, instead of one operation \mathcal{K} used in Section 2, here we use two operations \mathcal{I} and \mathcal{J} and apply them successively.

Theorem 3.1. For all $n \in \mathbb{N}$ and all $x \in \mathbb{R}$ we have

$$
\begin{equation*}
\left|\cos x-\sum_{k=0}^{n} \frac{(-1)^{k}}{(2 k)!} x^{2 k}\right| \leq \frac{|x|^{2 n+1}}{(2 n+1)!} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sin x-\sum_{k=0}^{n} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}\right| \leq \frac{|x|^{2 n+2}}{(2 n+2)!} \tag{3.2}
\end{equation*}
$$

Proof. Part 1. First we establish a pattern how repeated application of the operations \mathcal{I} and \mathcal{J} starting with the constant 1 creates a sequence of polynomials. We start by applying \mathcal{I} to 1 , then we apply \mathcal{J} to the result and so on. We obtain

$$
\begin{align*}
(\mathcal{I} 1)(x) & =\int_{0}^{x} 1 d t=x, \tag{3.3}\\
((\mathcal{J} \circ \mathcal{I}) 1)(x) & =1-\int_{0}^{x} t d t=1-\frac{x^{2}}{2}, \tag{3.4}\\
(\mathcal{I} \circ(\mathcal{J} \circ \mathcal{I}) 1)(x) & =\int_{0}^{x}\left(1-\frac{t^{2}}{2}\right) d t=x-\frac{x^{3}}{3!}, \tag{3.5}\\
\left((\mathcal{J} \circ \mathcal{I})^{2} 1\right)(x) & =1-\int_{0}^{x}\left(t-\frac{t^{3}}{3!}\right) d t=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}, \tag{3.6}\\
\left(\mathcal{I} \circ(\mathcal{J} \circ \mathcal{I})^{2} 1\right)(x) & =\int_{0}^{x}\left(1-\frac{t^{2}}{2}+\frac{t^{4}}{4!}\right) d t=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}, \tag{3.7}\\
\left((\mathcal{J} \circ \mathcal{I})^{3} 1\right)(x) & =1-\int_{0}^{x}\left(t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}\right) d t=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}, \\
\left(\mathcal{I} \circ(\mathcal{J} \circ \mathcal{I})^{3} 1\right)(x) & =\int_{0}^{x}\left(1-\frac{t^{2}}{2}+\frac{t^{4}}{4!}-\frac{t^{6}}{6!}\right) d t=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} .
\end{align*}
$$

In general, for all $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\left((\mathcal{J} \circ \mathcal{I})^{n} 1\right)(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\cdots+\frac{(-1)^{n}}{(2 n)!} x^{2 n}=\sum_{k=0}^{n} \frac{(-1)^{k}}{(2 k)!} x^{2 k} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{I} \circ\left((\mathcal{J} \circ \mathcal{I})^{n} 1\right)(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+\frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}=\sum_{k=0}^{n} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} \tag{3.9}
\end{equation*}
$$

Part 2. The basic property of the sine function is that for all $x \in \mathbb{R}$ we have

$$
|-\sin x| \leq 1
$$

Here $g(x)=-\sin x, M=1$ and $m=0$ in (1.3). Theorem 1.2 applied to the preceding inequality yields

$$
\begin{equation*}
|(\cos x)-1| \leq|x| \tag{3.10}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Now we apply Theorem 1.2 again to get

$$
\begin{equation*}
|(\sin x)-x| \leq \frac{1}{2}|x|^{2} \tag{3.11}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Inequalities (3.10) and (3.11) prove inequalities (3.1) and (3.2) for $n=0$.
Part 3. In this part of the proof we use the following properties of the operations \mathcal{I} and \mathcal{J}

$$
(\mathcal{J} \sin)(x)=\cos (x) \quad \text { and } \quad(\mathcal{I} \cos)(x)=\sin (x) .
$$

Step 1. We apply \mathcal{J} to both functions $\sin x$ and $x=(\mathcal{I} 1)(x)$ in the difference in (3.11) and use (1.9) to conclude

$$
\begin{equation*}
|(\cos x)-((\mathcal{J} \circ \mathcal{I}) 1)(x)| \leq \frac{1}{3!}|x|^{3} . \tag{3.12}
\end{equation*}
$$

Further, we apply \mathcal{I} to the preceding inequality and use (1.8) to obtain

$$
\begin{equation*}
|(\sin x)-(\mathcal{I} \circ(\mathcal{J} \circ \mathcal{I}) 1)(x)| \leq \frac{1}{4!}|x|^{4} . \tag{3.13}
\end{equation*}
$$

Using the equalities established in Part 1 of this proof we see that (3.12) and (3.13) prove (3.1) and (3.2) for $n=1$.
Step 2. We apply \mathcal{J} to both functions in the difference in (3.13) and use (1.9) to conclude

$$
\begin{equation*}
\left|(\cos x)-\left((\mathcal{J} \circ \mathcal{I})^{2} 1\right)(x)\right| \leq \frac{1}{5!}|x|^{5} . \tag{3.14}
\end{equation*}
$$

Further, we apply \mathcal{I} to the preceding inequality and use (1.8) to obtain

$$
\begin{equation*}
\left|(\sin x)-\left(\mathcal{I} \circ(\mathcal{J} \circ \mathcal{I})^{2} 1\right)(x)\right| \leq \frac{1}{6!}|x|^{6} . \tag{3.15}
\end{equation*}
$$

Using the equalities established in Part 1 of this proof we see that (3.14) and (3.15) prove (3.1) and (3.2) for $n=2$.
Step n. Repeating these steps for a total of n times we obtain

$$
\left|(\cos x)-\left((\mathcal{J} \circ \mathcal{I})^{n} 1\right)(x)\right| \leq \frac{1}{(2 n+1)!}|x|^{2 n+1}
$$

and

$$
\left|(\sin x)-\left(\mathcal{I} \circ(\mathcal{J} \circ \mathcal{I})^{n} 1\right)(x)\right| \leq \frac{1}{(2 n+2)!}|x|^{2 n+2}
$$

With the equalities established in Part 1 of this proof, the preceding two inequalities prove (3.1) and (3.2).

Corollary 3.2. For all $x \in \mathbb{R}$ we have

$$
\begin{equation*}
\cos x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k} \quad \text { and } \quad \sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} \tag{3.16}
\end{equation*}
$$

4 Euler's Identity

In Corollary 2.2 we proved that for all $x \in \mathbb{R}$ we have

$$
\begin{equation*}
e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n} . \tag{4.1}
\end{equation*}
$$

A remarkable feature of this equality is that the value e^{x} of the exponential function is expressed as a sum of the nonnegative powers of x; nonnegative powers of x being the simplest functions of x.

The series representation of e^{x} in (4.1) can be used to understand the exponentiation with imaginary numbers.

Recall that the imaginary unit i is defined as a complex number whose square is -1 . That is $i^{2}=-1$. A general complex number z is commonly represented as a sum $z=a+i b$, where a and b are real numbers. In this representation a is called the real part of z and b is called the imaginary part of z. Doing calculations with complex numbers, the objective is always to represent a complex number as a sum of its real and imaginary part multiplied by i. For example, when multiplying two complex numbers $z=a+i b$ and $w=c+i d$ the product is

$$
z w=(a+i b)(c+i d)=a c+i a d+i b c+i^{2} b d=(a c-b d)+i(a d+b c) .
$$

Thus, the real part of the product $z w=(a+i b)(c+i d)$ is the real number $a c-b d$ while the imaginary part of the product is $a d+b c$.

So we ask:
For a real number t, what is the real part and what is the imaginary part of the complex number $e^{i t}$?

To answer this question we resort to the series representation (4.1), we replace x by it and define

$$
\begin{equation*}
e^{i t}=\sum_{n=0}^{\infty} \frac{1}{n!}(i t)^{n} . \tag{4.2}
\end{equation*}
$$

Now we do algebra with the infinite series with complex numbers $(i t)^{k}$ with $k \in\{0\} \cup \mathbb{N}$. Since the multiplication of complex numbers works the same as with real numbers we have

$$
(i t)^{n}=i^{n} t^{n} \quad \text { where } \quad n \in\{0\} \cup \mathbb{N} \text {. }
$$

Now we need to understand the complex numbers i^{n} with $n \in\{0\} \cup \mathbb{N}$.

$$
\begin{array}{rlrrl}
i^{0}=1, & i^{1}=i, & i^{2}=-1, & & i^{3}=-i, \\
i^{4}=1 & i^{5}=i & i^{6}=-1 & i^{7}=-i \\
i^{8}=1 & i^{9}=i & i^{10}=-1 & i^{11}=-i .
\end{array}
$$

We distinguish two cases: n is even, that is $n=2 k$ with $k \in\{0\} \cup \mathbb{N}$ and n is odd, that is $n=2 k+1$ with $k \in\{0\} \cup \mathbb{N}$. For n even we have

$$
\begin{equation*}
i^{n}=i^{2 k}=\left(i^{2}\right)^{k}=(-1)^{k} . \tag{4.3}
\end{equation*}
$$

For n odd we have

$$
\begin{equation*}
i^{n}=i^{2 k+1}=i i^{2 k}=i\left(i^{2}\right)^{k}=i(-1)^{k} . \tag{4.4}
\end{equation*}
$$

Now we are ready to further expand (4.2):

$$
\begin{array}{rlrl}
e^{i t} & =\sum_{n=0}^{\infty} \frac{1}{n!}(i t)^{n} & \\
& =\sum_{n=0}^{\infty} \frac{i^{n}}{n!} t^{n} & & \text { algebra }(i t)^{n}=i^{n} t^{n} \\
& =\sum_{n \text { is even }} \frac{i^{n}}{n!} t^{n}+\sum_{n \text { is odd }} \frac{i^{n}}{n!} t^{n} & & \text { separate even and odd } \\
& =\sum_{k=0}^{\infty} \frac{i^{2 k}}{(2 k)!} t^{2 k}+\sum_{k=0}^{\infty} \frac{i^{2 k+1}}{(2 k-1)!} t^{2 k-1} & & n=2 k \text { for even and } n=2 k+1 \text { for odd } \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} t^{2 k}+i \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k-1)!} t^{2 k-1} & & \text { see (4.3) and (4.4) } \\
& =(\cos t)+i(\sin t) . & & \text { see }(3.16)
\end{array}
$$

Hence, we proved Euler's identity

$$
e^{i t}=(\cos t)+i(\sin t) \quad \text { for all } \quad t \in \mathbb{R}
$$

