page 200

37. [M] The vector space $H = \text{Span}\{1, \cos^2 t, \cos^4 t, \cos^6 t\}$ contains at least two interesting functions that will be used in a later exercise:

$$\mathbf{f}(t) = 1 - 8\cos^2 t + 8\cos^4 t$$

$$\mathbf{g}(t) = -1 + 18\cos^2 t - 48\cos^4 t + 32\cos^6 t$$

Study the graph of \mathbf{f} for $0 \le t \le 2\pi$, and guess a simple formula for $\mathbf{f}(t)$. Verify your conjecture by graphing the difference between $1 + \mathbf{f}(t)$ and your formula for $\mathbf{f}(t)$. (Hopefully, you will see the constant function 1.) Repeat for \mathbf{g} .

page 217

38. [M] Show that $\{1, \cos t, \cos^2 t, \dots, \cos^6 t\}$ is a linearly independent set of functions defined on \mathbb{R} . Use the method of Exercise 37. (This result will be needed in Exercise 34 in Section 4.5.)

page 232

34. [M] Let $\mathcal{B} = \{1, \cos t, \cos^2 t, \dots, \cos^6 t\}$ and $\mathcal{C} = \{1, \cos t, \cos 2t, \dots, \cos 6t\}$. Assume the following trigonometric identities (see Exercise 37 in Section 4.1).

$$\cos 2t = -1 + 2\cos^2 t$$

$$\cos 3t = -3\cos t + 4\cos^3 t$$

$$\cos 4t = 1 - 8\cos^2 t + 8\cos^4 t$$

$$\cos 5t = 5\cos t - 20\cos^3 t + 16\cos^5 t$$

$$\cos 6t = -1 + 18\cos^2 t - 48\cos^4 t + 32\cos^6 t$$

Let H be the subspace of functions spanned by the functions in \mathcal{B} . Then \mathcal{B} is a basis for H, by Exercise 38 in Section 4.3.

- a. Write the \mathcal{B} -coordinate vectors of the vectors in \mathcal{C} , and use them to show that \mathcal{C} is a linearly independent set in H.
- b. Explain why C is a basis for H.

page 245

- 17. [M] Let $\mathcal{B} = \{\mathbf{x}_0, \dots, \mathbf{x}_6\}$ and $C = \{\mathbf{y}_0, \dots, \mathbf{y}_6\}$, where \mathbf{x}_k is the function $\cos^k t$ and \mathbf{y}_k is the function $\cos kt$. Exercise 34 in Section 4.5 showed that both \mathcal{B} and \mathcal{C} are bases for the vector space $H = \operatorname{Span} \{\mathbf{x}_0, \dots, \mathbf{x}_6\}$.
 - a. Set $P = [[y_0]_{\mathcal{B}} \cdots [y_6]_{\mathcal{B}}]$, and calculate P^{-1} .
 - b. Explain why the columns of P^{-1} are the C-coordinate vectors of $\mathbf{x}_0, \ldots, \mathbf{x}_6$. Then use these coordinate vectors to write trigonometric identities that express powers of $\cos t$ in terms of the functions in C.