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The symbol Z+ denotes the set of positive integers.

Definition 1. A set A is countably infinite if there exists a bijection f : Z+ → A.

The goal of this note is to provide a rigorous proof that Z+×Z+ is countably infinite. That is to provide
a specific bijection from Z

+ to Z
+×Z

+. Below such a bijection is called B.
First some preliminaries. Recall that the sequence of triangular numbers is given by

Tn =
n(n+ 1)

2
, n ∈ Z

+.

It is convenient to also define T0 = 0.

Exercise 2. Prove that for every n ∈ Z
+ we have n ≤ Tn.

Solution. Let n ∈ Z
+ be arbitrary. Multiplying each side of the inequality 1 ≤ n by n > 0 we get n ≤ n2.

Adding n to each side of the last inequality yields 2n ≤ n2+n, that is, 2n ≤ n(n+1). Dividing by 2 yields
n ≤ Tn.

To get an idea how triangular numbers are spaced among positive integers we present the following
table. The triangular numbers are in bold face.

T1 T2 T3 T4 T5 T6

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Rn 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 7 7

The table above indicates that the following sequence

R1 = 1, R2 = 2, R3 = 2, R4 = 3, R5 = 3, R6 = 3, R7 = 4, R8 = 4, R9 = 4, R10 = 4, R11 = 5, R12 = 5, . . .

is closely related to the sequence of triangular numbers. For a given n ∈ Z
+ Rn is the index of the smallest

triangular number which is larger or equal than n. Formally, we define the sequence R : Z+ → Z
+ by

Rn = min
{
k ∈ Z

+ : n ≤ Tk

}
, n ∈ Z

+.

The above definition uses the concept of minimum. To make this definition rigorous, we need to prove that
the above minimum exists. By Exercise 2 for arbitrary n ∈ Z

+ we have n ≤ Tn. Therefore n ∈
{
k ∈ Z

+ :
n ≤ Tk

}
; that is, the set

{
k ∈ Z

+ : n ≤ Tk

}
is a nonempty set of positive integers. By the well ordering

axiom this set has a minimum. This justifies the definition of Rn.

By the definition of minimum, Rn belongs to the set
{
k ∈ Z

+ : n ≤ Tk

}
. Therefore n ≤ TRn

. Also, by
the definition of minimum Rn − 1 does not belong to the set

{
k ∈ Z

+ : n ≤ Tk

}
. Therefore TRn−1 < n.

Thus, for every n ∈ Z
+ we have

TRn−1 < n ≤ TRn
. (1)

In other words, for an arbitrary n ∈ Z
+, the integer Rn provides the index of the smallest triangular

number which is ≥ n. Notice that (1) also claims that n is larger than the triangular number with index
Rn − 1.
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Remark 3. There are several other formulas for the sequence R. For example, for n ∈ Z
+,

Rn =

⌊
1

2
+

√
2n

⌋

=

⌈

−1

2
+

√
2n

⌉

.

Here ⌊ · ⌋ is the floor function, ⌈ · ⌉ is the ceiling function and
√ · is the square root function.

Recall that
Z
+ × Z

+ :=
{
(s, t) : s, t ∈ Z

+
}
.

The set Z+×Z
+ is illustrated by the following infinite table:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) . . .

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) . . .

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) . . .

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) . . .

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) . . .

...
...

...
...

...
. . .

Rearranging the pairs we can enumerate them with positive integers. This enumeration is demonstrated
in the table below. Each pair is enumerated by a positive integer placed in a small circle. Usually the table
below is considered to be a proof of the countability of Z+×Z

+.

(1, 1)
❤1

✲
(1, 2)

❤2

❄
(1, 3)

❤4

❄
(1, 4)

❤7

❄
(1, 5)

❤11

❄
(1, 6)

❤16

❄
. . .

(2, 1)
❤3

✁✁✕

(2, 2)
❤5

❄
(2, 3)

❤8

❄
(2, 4)

❤12

❄
(2, 5)

❤17

❄
. . .

(3, 1)
❤6

✂✂✍

(3, 2)
❤9

❄
(3, 3)

❤13

❄
(3, 4)

❤18

❄
. . .

(4, 1)
❤10

✂✂✍

(4, 2)
❤14

❄
(4, 3)

❤19

❄
. . .

(5, 1)
❤15

✂✂✍

(5, 2)
❤20

❄
. . .

(6, 1)
❤21

✂✂✍

. . .

. . .

Table 1: Labeled Z
+×Z

+

If one accepts the above enumeration table as a proof, then one would never know which pair is
associated with the positive integer 321, or, which circled positive integer is used to enumerate the pair
(21, 5). Furthermore, the enumeration table above poses an interesting challenge: find a formula for the
function B : Z+ → Z

+×Z
+ which is indicated by the table. Since we expect such B to be a bijection, we

also need to find a formula for its inverse, call it A : Z+×Z
+ → Z

+, such that

B
(
A(s, t)

)
= (s, t) ∀ (s, t) ∈ Z

+×Z
+ and A

(
B(n)

)
= n ∀n ∈ Z

+. (2)

Two identities in (2) are equivalent to the statement: B is a bijection.
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Notice that the circled labels along the diagonal in Table 1 are triangular numbers. The pattern is
clear: the label for (s, 1) is the triangular number Ts. The sum of the entries of each pair in the same
column as (s, 1) is s+ 1. The labels decrease as we climb up the column, that is as t increases. This gives
us the function A : Z+×Z

+ → Z
+:

A(s, t) =
(s+ t− 1)(s + t)

2
+ 1− t, s, t ∈ Z

+.

Next we have to figure out a pair associated with n ∈ Z
+. As we have noticed before triangular numbers

play an important role in the labeling. As we can see from Table 1 the numbers s and t are related to how
far n is from the previous and the following triangular number. We already know from (1) that

(Rn − 1)Rn

2
< n ≤ Rn(Rn + 1)

2
.

Now it is not difficult to see from Table 1 that B : Z+ → Z
+×Z

+ is given by

B(n) =

(

n−
(
Rn − 1

)
Rn

2
︸ ︷︷ ︸
distance to the preced-
ing triangular number

,
Rn

(
Rn + 1

)

2
− n

︸ ︷︷ ︸
distance to the follow-
ing triangular number

+1

)

, n ∈ Z
+.

By the definition of triangular numbers the formulas for A and B can be written as

A(s, t) = T(s+t−1) + 1− t, s, t ∈ Z
+,

B(n) =
(

n− T(Rn−1) , TRn
− n+ 1

)

, n ∈ Z
+.

Let s, t ∈ Z
+. We evaluate R(T(s+t−1)+1−t) first. Since 0 < s and 0 ≤ t− 1 we have

T(s+t−2) = T(s+t−1) − (s+ t− 1) < T(s+t−1) + 1− t ≤ T (s+ t− 1).

In the first equality above we used the identity

Tk = T(k−1) + k, (3)

which follows from

Tk − T(k−1) =
k(k + 1)

2
− (k − 1)k

2
=

k2 + k − k2 + k

2
= k.

Hence, the integer T(s+t−1) + 1− t is squeezed between two consecutive triangular numbers:

T(s+t−2) < T(s+t−2) + s = T(s+t−2) + s+ t− 1 + 1− t = T(s+t−1) + 1− t ≤ T(s+t−1),

so, by (1),
R(

T(s+t−1)+1−t
) = s+ t− 1.

We have thus calculated that
RA(s,t) = s+ t− 1.

Next we use the last identity, the definitions of A and B and (3) to calculate

B
(
A(s, t)

)
=

(

A(s, t)−
(
RA(s,t) − 1

)
RA(s,t)

2

)
,
RA(s,t)

(
RA(s,t) + 1

)

2
−A(s, t) + 1

)

=
(

A(s, t)− (s+ t− 1− 1)(s + t− 1)

2

)
,
(s+ t− 1)(s + t− 1 + 1)

2
−A(s, t) + 1

)

=
(

A(s, t)− T(s+t−2) , T(s+t−1) −A(s, t) + 1
)

=
(

T(s+t−1) + 1− t− T(s+t−2) , T(s+t−1) −
(
T(s+t−1) + 1− t

)
+ 1

)

=
(
s+ t− 1 + 1− t , t

)

= (s, t).
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This proves B
(
A(s, t)

)
= (s, t) for all s, t ∈ Z

+.
Let n ∈ Z

+ be arbitrary. Before proceeding with the proof A
(
B(n)

)
= n, notice that by (3) the sum

of entries in the pair B(n) is

n− (Rn − 1)Rn

2
+

Rn(Rn + 1)

2
− n+ 1 = Rn + 1.

We use this and the definitions of A and B to calculate

A
(
B(n)

)
= A

(

n− (Rn − 1)Rn

2
,
Rn(Rn + 1)

2
− n+ 1

)

=

(
Rn + 1− 1

)(
Rn + 1

)

2
+ 1−

(Rn(Rn + 1)

2
− n+ 1

)

= n.

This proves A
(
B(n)

)
= n for all n ∈ Z

+.
Thus (2) is proved, implying the B : Z+ → Z

+×Z
+ is a bijection. This completes our rigorous proof

that Z+×Z
+ is countable.
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