$\mathbb{Z}^{+} \times \mathbb{Z}^{+}$is countable

Branko Ćurgus

July 25, 2013

The symbol \mathbb{Z}^{+}denotes the set of positive integers.
Definition 1. A set A is countably infinite if there exists a bijection $f: \mathbb{Z}^{+} \rightarrow A$.
The goal of this note is to provide a rigorous proof that $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$is countably infinite. That is to provide a specific bijection from \mathbb{Z}^{+}to $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$. Below such a bijection is called B.

First some preliminaries. Recall that the sequence of triangular numbers is given by

$$
T_{n}=\frac{n(n+1)}{2}, \quad n \in \mathbb{Z}^{+} .
$$

It is convenient to also define $T_{0}=0$.
Exercise 2. Prove that for every $n \in \mathbb{Z}^{+}$we have $n \leq T_{n}$.
Solution. Let $n \in \mathbb{Z}^{+}$be arbitrary. Multiplying each side of the inequality $1 \leq n$ by $n>0$ we get $n \leq n^{2}$. Adding n to each side of the last inequality yields $2 n \leq n^{2}+n$, that is, $2 n \leq n(n+1)$. Dividing by 2 yields $n \leq T_{n}$.

To get an idea how triangular numbers are spaced among positive integers we present the following table. The triangular numbers are in bold face.

T_{1}		T_{2}		T_{3}			T_{4}				T_{5}					T_{6}							
n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
R_{n}	1	2	2	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	6	6	7	7

The table above indicates that the following sequence
$R_{1}=1, R_{2}=2, R_{3}=2, R_{4}=3, R_{5}=3, R_{6}=3, R_{7}=4, R_{8}=4, R_{9}=4, R_{10}=4, R_{11}=5, R_{12}=5, \ldots$
is closely related to the sequence of triangular numbers. For a given $n \in \mathbb{Z}^{+} R_{n}$ is the index of the smallest triangular number which is larger or equal than n. Formally, we define the sequence $R: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$by

$$
R_{n}=\min \left\{k \in \mathbb{Z}^{+}: n \leq T_{k}\right\}, \quad n \in \mathbb{Z}^{+}
$$

The above definition uses the concept of minimum. To make this definition rigorous, we need to prove that the above minimum exists. By Exercise 2 for arbitrary $n \in \mathbb{Z}^{+}$we have $n \leq T_{n}$. Therefore $n \in\left\{k \in \mathbb{Z}^{+}\right.$: $\left.n \leq T_{k}\right\}$; that is, the set $\left\{k \in \mathbb{Z}^{+}: n \leq T_{k}\right\}$ is a nonempty set of positive integers. By the well ordering axiom this set has a minimum. This justifies the definition of R_{n}.

By the definition of minimum, R_{n} belongs to the set $\left\{k \in \mathbb{Z}^{+}: n \leq T_{k}\right\}$. Therefore $n \leq T_{R_{n}}$. Also, by the definition of minimum $R_{n}-1$ does not belong to the set $\left\{k \in \mathbb{Z}^{+}: n \leq T_{k}\right\}$. Therefore $T_{R_{n}-1}<n$. Thus, for every $n \in \mathbb{Z}^{+}$we have

$$
\begin{equation*}
T_{R_{n}-1}<n \leq T_{R_{n}} . \tag{1}
\end{equation*}
$$

In other words, for an arbitrary $n \in \mathbb{Z}^{+}$, the integer R_{n} provides the index of the smallest triangular number which is $\geq n$. Notice that (1) also claims that n is larger than the triangular number with index $R_{n}-1$.

Remark 3. There are several other formulas for the sequence R. For example, for $n \in \mathbb{Z}^{+}$,

$$
R_{n}=\left\lfloor\frac{1}{2}+\sqrt{2 n}\right\rfloor=\left\lceil-\frac{1}{2}+\sqrt{2 n}\right\rceil .
$$

Here $\lfloor\cdot\rfloor$ is the floor function, $\lceil\cdot\rceil$ is the ceiling function and $\sqrt{\cdot}$ is the square root function.
Recall that

$$
\mathbb{Z}^{+} \times \mathbb{Z}^{+}:=\left\{(s, t): s, t \in \mathbb{Z}^{+}\right\}
$$

The set $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$is illustrated by the following infinite table:

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	\ldots
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	\ldots
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	\ldots
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	\ldots
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

Rearranging the pairs we can enumerate them with positive integers. This enumeration is demonstrated in the table below. Each pair is enumerated by a positive integer placed in a small circle. Usually the table below is considered to be a proof of the countability of $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$.

Table 1: Labeled $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$
If one accepts the above enumeration table as a proof, then one would never know which pair is associated with the positive integer 321, or, which circled positive integer is used to enumerate the pair $(21,5)$. Furthermore, the enumeration table above poses an interesting challenge: find a formula for the function $B: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+} \times \mathbb{Z}^{+}$which is indicated by the table. Since we expect such B to be a bijection, we also need to find a formula for its inverse, call it $A: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$, such that

$$
\begin{equation*}
B(A(s, t))=(s, t) \quad \forall(s, t) \in \mathbb{Z}^{+} \times \mathbb{Z}^{+} \quad \text { and } \quad A(B(n))=n \quad \forall n \in \mathbb{Z}^{+} . \tag{2}
\end{equation*}
$$

Two identities in (2) are equivalent to the statement: B is a bijection.

Notice that the circled labels along the diagonal in Table 1 are triangular numbers. The pattern is clear: the label for $(s, 1)$ is the triangular number T_{s}. The sum of the entries of each pair in the same column as $(s, 1)$ is $s+1$. The labels decrease as we climb up the column, that is as t increases. This gives us the function $A: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$:

$$
A(s, t)=\frac{(s+t-1)(s+t)}{2}+1-t, \quad s, t \in \mathbb{Z}^{+}
$$

Next we have to figure out a pair associated with $n \in \mathbb{Z}^{+}$. As we have noticed before triangular numbers play an important role in the labeling. As we can see from Table 1 the numbers s and t are related to how far n is from the previous and the following triangular number. We already know from (1) that

$$
\frac{\left(R_{n}-1\right) R_{n}}{2}<n \leq \frac{R_{n}\left(R_{n}+1\right)}{2}
$$

Now it is not difficult to see from Table 1 that $B: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+} \times \mathbb{Z}^{+}$is given by

$$
B(n)=(\underbrace{n-\frac{\left(R_{n}-1\right) R_{n}}{2}}_{\begin{array}{c}
\text { distance to the preced- } \\
\text { ing triangular number }
\end{array}}, \underbrace{\frac{R_{n}\left(R_{n}+1\right)}{2}-n}_{\begin{array}{c}
\text { distance to the follow- } \\
\text { ing triangular number }
\end{array}}+1), \quad n \in \mathbb{Z}^{+}
$$

By the definition of triangular numbers the formulas for A and B can be written as

$$
\begin{array}{rlrl}
A(s, t) & =T_{(s+t-1)}+1-t, & & s, t \in \mathbb{Z}^{+} \\
B(n) & =\left(n-T_{\left(R_{n}-1\right)}, T_{R_{n}}-n+1\right), & n \in \mathbb{Z}^{+}
\end{array}
$$

Let $s, t \in \mathbb{Z}^{+}$. We evaluate $R_{\left(T_{(s+t-1)}+1-t\right)}$ first. Since $0<s$ and $0 \leq t-1$ we have

$$
T_{(s+t-2)}=T_{(s+t-1)}-(s+t-1)<T_{(s+t-1)}+1-t \leq T(s+t-1)
$$

In the first equality above we used the identity

$$
\begin{equation*}
T_{k}=T_{(k-1)}+k \tag{3}
\end{equation*}
$$

which follows from

$$
T_{k}-T_{(k-1)}=\frac{k(k+1)}{2}-\frac{(k-1) k}{2}=\frac{k^{2}+k-k^{2}+k}{2}=k
$$

Hence, the integer $T_{(s+t-1)}+1-t$ is squeezed between two consecutive triangular numbers:

$$
T_{(s+t-2)}<T_{(s+t-2)}+s=T_{(s+t-2)}+s+t-1+1-t=T_{(s+t-1)}+1-t \leq T_{(s+t-1)}
$$

so, by (1),

$$
R_{\left(T_{(s+t-1)}+1-t\right)}=s+t-1
$$

We have thus calculated that

$$
R_{A(s, t)}=s+t-1
$$

Next we use the last identity, the definitions of A and B and (3) to calculate

$$
\begin{aligned}
B(A(s, t)) & \left.=\left(A(s, t)-\frac{\left(R_{A(s, t)}-1\right) R_{A(s, t)}}{2}\right), \frac{R_{A(s, t)}\left(R_{A(s, t)}+1\right)}{2}-A(s, t)+1\right) \\
& \left.=\left(A(s, t)-\frac{(s+t-1-1)(s+t-1)}{2}\right), \frac{(s+t-1)(s+t-1+1)}{2}-A(s, t)+1\right) \\
& =\left(A(s, t)-T_{(s+t-2)}, T_{(s+t-1)}-A(s, t)+1\right) \\
& =\left(T_{(s+t-1)}+1-t-T_{(s+t-2)}, T_{(s+t-1)}-\left(T_{(s+t-1)}+1-t\right)+1\right) \\
& =(s+t-1+1-t, t) \\
& =(s, t) .
\end{aligned}
$$

This proves $B(A(s, t))=(s, t)$ for all $s, t \in \mathbb{Z}^{+}$.
Let $n \in \mathbb{Z}^{+}$be arbitrary. Before proceeding with the proof $A(B(n))=n$, notice that by (3) the sum of entries in the pair $B(n)$ is

$$
n-\frac{\left(R_{n}-1\right) R_{n}}{2}+\frac{R_{n}\left(R_{n}+1\right)}{2}-n+1=R_{n}+1
$$

We use this and the definitions of A and B to calculate

$$
\begin{aligned}
A(B(n)) & =A\left(n-\frac{\left(R_{n}-1\right) R_{n}}{2}, \frac{R_{n}\left(R_{n}+1\right)}{2}-n+1\right) \\
& =\frac{\left(R_{n}+1-1\right)\left(R_{n}+1\right)}{2}+1-\left(\frac{R_{n}\left(R_{n}+1\right)}{2}-n+1\right) \\
& =n
\end{aligned}
$$

This proves $A(B(n))=n$ for all $n \in \mathbb{Z}^{+}$.
Thus (2) is proved, implying the $B: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+} \times \mathbb{Z}^{+}$is a bijection. This completes our rigorous proof that $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$is countable.

