In[114]:=

Problem 15

How many solutions of $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=21$?

$$
x_{1} \geq 1 ?
$$

In[115]:=

Binomial[21-1+4, 4]
Out [115]=
10626

If $x_{1} \geq 2, x_{2} \geq 2, x_{3} \geq 2, x_{4} \geq 2, x_{5} \geq 2$?
In[116]:=
Binomial[21-10+4, 4]
Out[116]= 1365
$x_{1} \leq 10 ?$
In[117]:=
Binomial[21 + 4, 4] - Binomial[21-11 + 4, 4]
Out[117]=
11649
In[118]: =
Sum[Binomial[21+3-k, 3], \{k, 0, 10\}]
Out[118]=
11649
$x_{1} \leq 3,1 \leq x_{2} \leq 3$ and $x_{3} \geq 15$?
In[119]:=
x1g3 $=$ Binomial[21-4+4, 4]
Out[119]=
5985
In[120]: =
x2r = Binomial[21-1 + 3, 3] + Binomial[21-2 + 3, 3] + Binomial[21-3 + 3, 3]
Out [120]=
4641

```
In[121]:=
    x3g14 = Binomial[21-15 + 4, 4]
Out[121]=
    210
In[122]:=
    x3g14c = Binomial[(21-15-4) - 1 + 3, 3] +
        Binomial[(21-15-4) - 2 + 3, 3] + Binomial[(21-15-4) - 3 + 3, 3]
Out[122]=
    5
In[123]:=
    x3g14r = Binomial[(21-15) - 1 + 3, 3] +
        Binomial[(21-15) - 2 + 3, 3] + Binomial[ (21 - 15) - 3 + 3, 3]
Out[123]=
    1 1 1
In[124]:=
    x3g14r - x3g14c
Out[124]=
    1 0 6
```

Or, easier way:
restriction on x_{3} and a part of x_{2}
In[125]:=
Binomial [(21-15-1) +4, 4]
Out[125]=
126

How many solutions of $y_{1}+y_{2}+y_{3}+y_{4}+y_{5}=5$ such that $y_{1} \leq 3$ and $y_{2} \leq 2$? Look at the complement: How many solutions such that $y_{1}>3$ or $y_{2}>2$? These are disjoint sets.

In[126]:=
Binomial $[(5-4)+4,4]$
Out [126]=
5
In[127]:=
Binomial[(5-3) +4, 4]
Out[127]=
15

Problem 16

How many solutions of $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=29$?

```
In[128]:=
    Binomial[34, 5]
Out[128]=
    278256
```

If $x_{1} \geq 1, x_{2} \geq 2, x_{3} \geq 3, x_{4} \geq 4, x_{5} \geq 6, x_{6} \geq 6$?
In[129]:=
Binomial[12, 5]
Out[129]=
792
$x_{1} \leq 5$?
In[130]:=
Binomial[34, 5] - Binomial[28, 5]
Out [130]=
179976
In[131]:=
Sum[Binomial[33-k, 4], \{k, 0, 5\}]
Out[131]=
179976
$x_{1} \leq 7$ and $x_{2} \geq 9 ?$
In[132]:=
x2g8 = Binomial[20 + 5, 5]
Out[132]=
53130
In[133]:=
x1g7 = Binomial[21 +5,5]
out[133]=
65780
In[134]:=
x2g8x1g7 = Binomial[12 + 5, 5]
Out [134]=
6188

```
In[135]:=
    x2g8-x2g8x1g7
Out[135]=
    4 6 9 4 2
```


Problem 20

```
In[136]:=
    Binomial[11 + 3, 3]
Out[136]=
    364
In[137]:=
    Length[Select[
        Flatten[Table[{x, y, z}, {x, 0, 11}, {y, 0, 11}, {z, 0, 11}], 2], (Apply[Plus, #] < 12) &]]
Out[137]=
    364
```


Problem 23

```
In[138]:=
    (* We are asked how many teams of two can be
                formed by }12\mathrm{ students. The teams have different colors. *)
In[139]:=
    (* There are two ways to think about this. First,
    team the students following the permutations. But,
    this would count each team twice. *)
In[140]:=
    12!
    (2!)
Out[140]=
    7 4 8 4 4 0 0
In[141]:=
    (* The second way is by the product
        rule: There are 12 choose 2 ways of selecting the red team,
        there are 10 choose 2 ways of selecting green team,
    there are 8 choose 2 ways of selecting blue team, ... *)
In[142]:=
    Product[Binomial[2k, 2], {k, 6, 1, -1}]
Out[142]=
    7484400
```


Problem 25

How many positive integers less than 10^{6} have the sum of their digits equal to 19 .

```
In[143]:=
    (* this is a permutations with repetitions problem,
    but we are permited to put only digits 0,1,...,
    9 in six boxes. First we calculate all possibilities with nonnegative integers,
    then subtract those that contain 10 or larger integers. Fortunately
        10}\mathrm{ or larger number can appear only at one spot *)
In[144]:=
    Binomial[24, 5] - }6\mathrm{ Binomial[14, 5]
Out[144]=
    30492
In[145]:=
    Length[Select[IntegerDigits[#] & /@ Range[999999],(Apply[Plus, #] == 19) &]]
Out[145]=
    30492
```


- How about the sum is 20

```
In[146]:=
    Length[Select[IntegerDigits[#] & /@ Range[999999], (Apply[Plus, #] == 20) &]]
Out[146]=
    35127
In[147]:=
    Binomial[25, 5] - (6 Binomial[15, 5] - Binomial[6, 2])
Out[147]=
    35127
```


- How about the sum is 21

```
In[148]:=
    Length[Select[IntegerDigits[#] & /@ Range[999999], (Apply[Plus, #] == 21) &]]
Out[148]=
    3 9 6 6 2
In[149]:=
    Binomial[26, 5] - (6 Binomial[16, 5] - 2 Binomial[6, 2])
Out[149]=
    3 9 6 0 2
```


Problem 26

How many positive integers less than 10^{6} have the sum of their digits equal to 13 and exactly one digit equal to 9 .

```
In[150]:=
    (* total sum to 13 *)
In[151]:=
    Binomial[13 + 5, 5]-6 Binomial[3 + 5, 5]
Out[151]=
    8 2 3 2
In[152]:=
    (* no 9 s *)
In[153]:=
    Binomial[13 + 5, 5] - 6 Binomial[4 + 5, 5]
Out[153]=
    7 8 1 2
In[154]:=
    (* the difference is one nine *)
In[155]:=
    (Binomial[13 + 5, 5] - 6 Binomial[3 + 5, 5]) - (Binomial[13 + 5, 5] - 6 Binomial[4 + 5, 5])
Out[155]=
    4 2 0
In[156]:=
    (* different logic how meny with only 9 at first *)
In[157]:=
    6 Binomial[4 + 4, 4]
Out[157]=
    420
In[158]:=
    Length[
    Select[IntegerDigits[#] & /@ Range[999999], (And[Apply[Plus, #] == 13, Max[#] == 9]) &]]
Out[158]=
    4 2 0
```


Problem 27

There arc 10 questions on a discrete mathematics final exam. How many ways are there to assign scores to the problems if the sum of the scores is 100 and each question is worth at least 5 points?

```
In[159]:=
    Binomial[50 + 9, 9]
Out[159]=
    12565671261
In[160]:=
    Binomial[50 + 9, 9]
Out[160]=
    12565671261
```


Problem 33

```
In[161]:=
    3 (* words with one letter *) +
        (* words with two letters *) +
        1 (* two Os *) +
        2*2 (* one 0 *) +
        2 (* no Os *) +
        (* words with three letters *) +
        1 (* three Os *) +
        Binomial[3, 2] *2 (* two Os *) +
        Binomial[3, 1] *2 (* one 0 *) +
        (* words with four letters *) +
        Binomial[4, 3] *2 (* three Os *) +
        Binomial[4, 2] *2 (* two Os *) +
        (* words with five letters *)
        Binomial[5, 3] 2
Out[161]=
    6 3
Notice
In[162]:=
    5!/3!
Out[162]=
    2 0
In[163]:=
    Binomial[5, 3] Binomial[2, 1]
Out[163]=
    20
```

A similar explanation.

```
In[164]:=
    {0, R, O, N, O}
Out[164]=
    {0, R, O, N, O}
In[165]:=
    Binomial[3, 1] (* one letter *) + (3*2 + 1) (* two letters *) +
        (3*2*1 + Binomial[3, 2] * 2 + 1) (* three letters *) +
        (Binomial[4, 2] * 2 + Binomial[4, 3] * 2) (* four letters *) + 5!
Out[165]=
    6 3
```


Problem 34

SEERESS

Strings of length 5

There are $3^{\wedge} 5=243$ strings of length 5 using these three characters. Out of these 243 strings there are 90 strings that use one of these $3 \mathrm{Es}, 1 \mathrm{R}$ and 1 S , or $3 \mathrm{Es}, 0 \mathrm{R}$ and 2 S , or $2 \mathrm{Es}, 1 \mathrm{R}$ and 2 Ss, or $2 \mathrm{Es}, 0 \mathrm{R}$ and 3 Ss , or $1 \mathrm{E}, 1 \mathrm{R}$ and 3 Ss . That is there are 90 strings of length 5 that can be formed from these 7 characters. Below is Mathematica proof of that. The corresponding calculation is as follows

```
In[166]:=
    5!
Out[166]=
    90
```

Mathematica selects all such strings in the following command. We had to identify E to $0, \mathrm{R}$ to $1, \mathrm{~S}$ to 2 to do the selection.

```
In[167]:=
    Length[Select[Strings[{0, 1, 2}, 5], Function[y,
        Or[(Sort[y]) == {0, 0, 0, 1, 2}, (Sort[y]) == {0, 0, 0, 2, 2}, (Sort[y]) == {0, 0, 1, 2, 2},
            (Sort[y]) == {0, 0, 2, 2, 2}, (Sort[y]) == {0, 1, 2, 2, 2}]]]]
Out[167]=
    90
```

Strings of length 6.

```
In[168]:=
    3^6
```

Out[168]=
729

There are $3^{\wedge} 5=729$ strings of length 6 using these three characters. Out of these 729 strings there are 140 strings that use one of these $3 \mathrm{Es}, 1 \mathrm{R}$ and 2 Ss , or $3 \mathrm{Es}, 0 \mathrm{R}$ and 3 Ss , or $2 \mathrm{Es}, 1 \mathrm{R}$ and 3 Ss . That is there are 90 strings of length 5 that can be formed from these 7 characters. Below is Mathematica proof of that. The corresponding calculation is as follows

```
In[169]:=
    6!
Out[169]=
    140
```

Mathematica selects all such strings in the following command. We had to identify E to $0, \mathrm{R}$ to $1, \mathrm{~S}$ to 2 to do the selection.

```
In[170]:=
    Length[Select[Strings[{0, 1, 2}, 6], Function[y, Or[(Sort[y]) == {0, 0, 0, 1, 2, 2},
        (Sort[y]) == {0, 0, 0, 2, 2, 2}, (Sort[y]) == {0, 0, 1, 2, 2, 2}]]]]
Out[170]=
    1 4 0
```

Strings of length 7.

There are 140 such strings.

```
In[171]:=
    7!
Out[171]=
    140
```

Mathematica selects all such strings in the following command. We had to identify E to $0, \mathrm{R}$ to $1, \mathrm{~S}$ to 2 to do the selection.

```
In[172]:=
    Length[Select[Strings[{0, 1, 2}, 7], Function[y, Or[(SOrt[y]) == {0, 0, 0, 1, 2, 2, 2}]]]]
Out[172]=
    140
```


Problem, similar smaller

FEEL

Strings of length 3
In[173]:=
$3^{\wedge} 3$
Out[173]=

There are $3^{\wedge} 3=27$ strings of length 3 using these three characters. Out of these 27 strings there are ?? strings that use one of these $3 \mathrm{Es}, 1 \mathrm{R}$ and 1 S , or $3 \mathrm{Es}, 0 \mathrm{R}$ and 2 S , or $2 \mathrm{Es}, 1 \mathrm{R}$ and 2 Ss , or $2 \mathrm{Es}, 0 \mathrm{R}$ and 3 Ss , or $1 \mathrm{E}, 1 \mathrm{R}$ and 3 Ss . That is there are 90 strings of length 5 that can be formed from these 7 characters. Below is Mathematica proof of that. The corresponding calculation is as follows

```
In[174]:=
    3!}1!2!0! +\frac{3!}{1!1!1!}+\frac{3!}{0!2!1!
Out[174]=
    1 2
```

Mathematica selects all such strings in the following command. We had to identify E to $0, \mathrm{~F}$ to $1, \mathrm{~L}$ to 2 in order to do the selection.

```
In[175]:=
    Length[Select[Strings[{0, 1, 2}, 3],
        Function[y, Or[(Sort[y]) == {0, 1, 1}, (Sort[y]) =={0, 1, 2},(SOrt[y]) =={1, 1, 2}]]]]
```

Out[175]=
12

Strings of length 4.
In[176]:=
3^4
Out[176]=
81

There are $3 \wedge 4=81$ strings of length 4 using these three characters. Out of these 81 strings there are 12 strings that use 2 Es, 1 F and 1 L . Below is Mathematica proof of that. The corresponding calculation is as follows

```
In[177]:=
    4!
Out[177]=
    1 2
```

Mathematica selects all such strings in the following command. We had to identify E to $0, \mathrm{R}$ to $1, \mathrm{~S}$ to 2 to do the selection.

```
In[178]:=
    Length[Select[Strings[{0, 1, 2}, 4], Function[y, Or[(Sort[y]) == {0, 1, 1, 2}]]]]
```

Out[178]=
12

Total 24.

Problem, similar smaller

SEEDS

Strings of length 3

There are $3^{\wedge} 3=27$ strings of length 3 using these three characters. Out of these 27 strings there are ?? strings that use one of these $3 \mathrm{Es}, 1 \mathrm{R}$ and 1 S , or $3 \mathrm{Es}, 0 \mathrm{R}$ and 2 S , or $2 \mathrm{Es}, 1 \mathrm{R}$ and 2 Ss , or $2 \mathrm{Es}, 0 \mathrm{R}$ and 3 Ss , or $1 \mathrm{E}, 1 \mathrm{R}$ and 3 Ss . That is there are 90 strings of length 5 that can be formed from these 7 characters. Below is Mathematica proof of that. The corresponding calculation is as follows

```
In[179]:=
    3!
Out[179]=
    1 5
```

Mathematica selects all such strings in the following command. We had to identify D to $0, \mathrm{E}$ to $1, \mathrm{~S}$ to 2 in order to do the selection.

```
In[180]:=
    Length[Select[Strings[{0, 1, 2}, 3], Function[y, Or[(Sort[y]) == {0, 1, 1},
        (\operatorname{Sort[y]) == {0, 1, 2}, (Sort[y]) == {1, 1, 2}, (SOrt[y]) =={1, 2, 2}]]]]}]
Out[180]=
    1 5
```

Strings of length 4.

```
In[181]:=
    3^4
Out[181]=
    8 1
```

There are $3^{\wedge} 4=81$ strings of length 4 using these three characters. ??? strings of length 4 that can be formed from these 7 characters. Below is Mathematica proof of that. The corresponding calculation is as follows

```
In[182]:=
    4!
Out[182]=
    30
```

Mathematica selects all such strings in the following command. We had to identify E to $0, \mathrm{R}$ to $1, \mathrm{~S}$ to 2 to do the selection.

```
In[183]:=
    Length[Select[Strings[{0, 1, 2}, 4], Function[y,
        Or[(Sort[y]) == {0, 1, 1, 2}, (Sort[y]) =={0, 1, 2, 2},(Sort[y]) == {1, 1, 2, 2}]]]]
Out[183]=
    30
```

Strings of length 5.

There are 140 such strings.

```
In[184]:=
    5!
Out[184]=
    30
```

Mathematica selects all such strings in the following command. We had to identify E to $0, \mathrm{R}$ to $1, \mathrm{~S}$ to 2 to do the selection.

```
In[185]:=
    Length[Select[Strings[{0, 1, 2}, 5], Function[y, Or[(Sort[y]) == {0, 1, 1, 2, 2}]]]]
Out[185]=
    30
```

Total 75.

Problem 35

EVERGREEN

(4) E to 0 , (1) G to 1 , (1) N to 2 , (2) R to 3 , (1) V to 4

Strings of length 7

```
In[186]:=
    5^7
Out[186]=
    7 8 1 2 5
```

There are $5^{\wedge} 7=78125$ strings of length 7 using these five characters. Out of these 78125 strings there are ?? strings that use appropriate counts of each letter. That is there are 90 strings of length 5 that can be formed from these 7 characters. Below is Mathematica proof of that. The corresponding calculation is as follows

```
In[187]:=
    7!}4!1!1!1!0! +\frac{7!}{4!1!1!0!1!}+\frac{7!}{4!1!0!2!0!}
    7!1!0!1!1!}+\frac{7!}{4!0!1!1!1!}+\frac{7!}{4!0!0!2!1!}+\frac{7!}{3!1!1!2!0!}
    7!
Out[187]=
    4 4 1 0
```

Mathematica selects all such strings in the following command. We had to identify E to $0, \mathrm{G}$ to $1, \mathrm{~N}$ to $2, \mathrm{R}$ to $3, \mathrm{~V}$ to 4 in oeder to do the selection.

```
In[188]:=
    Length[Select[Strings[{0, 1, 2, 3, 4}, 7],
        Function[y, Or[(SOrt[y]) == {0, 0, 0, 0, 1, 2, 3}, (Sort[y]) == {0, 0, 0, 0, 1, 2, 4},
            (Sort[y]) =={0, 0, 0, 0, 1, 3, 3}, (Sort[y]) =={0, 0, 0, 0, 1, 3, 4},
            (Sort[y]) =={0, 0, 0, 0, 2, 3, 4}, (Sort[y]) =={0, 0, 0, 0, 3, 3, 4},
            (Sort[y]) =={0, 0, 0, 1, 2, 3, 3}, (Sort[y]) =={0, 0, 0, 1, 2, 3, 4},
            (Sort[y]) =={0, 0, 0, 1, 3, 3, 4}, (Sort[y]) =={0, 0, 0, 2, 3, 3, 4},
            (Sort[y]) =={0, 0, 1, 2, 3, 3, 4}]]]]
    4 4 1 0
```

Strings of length 8 .

```
5^8
390625
```

There are $5^{\wedge} 8=390625$ strings of length 8 using these five characters. Out of these 390625 strings there are ???? strings that use appropriate number of each letter. Below is Mathematica proof of that. The corresponding calculation is as follows

$$
\begin{aligned}
& \frac{8!}{4!1!1!2!0!}+\frac{8!}{4!1!1!1!1!}+\frac{8!}{4!1!0!2!1!}+\frac{8!}{4!0!1!2!1!}+\frac{8!}{3!1!1!2!1!} \\
& 7560
\end{aligned}
$$

Mathematica selects all such strings in the following command. We had to identify E to $0, \mathrm{G}$ to $1, \mathrm{~N}$ to $2, \mathrm{R}$ to $3, \mathrm{~V}$ to 4 in oeder to do the selection.

```
Length[Select[Strings[{0, 1, 2, 3, 4}, 8],
    Function[y, Or[(Sort[y]) == {0, 0, 0, 0, 1, 2, 3, 3},
            (Sort[y]) =={0, 0, 0, 0, 1, 2, 3, 4}, (Sort[y]) =={0, 0, 0, 0, 1, 3, 3, 4},
            (Sort[y]) =={0, 0, 0, 0, 2, 3, 3, 4}, (Sort[y]) =={0, 0, 0, 1, 2, 3, 3, 4}]]]]
7 5 6 0
```

Strings of length 9 .

$5^{\wedge} 9$

1953125

There are $5^{\wedge} 9=1953125$ such strings

There are 7560 strings which use 4 Es, 1 G, 1 N, 2 Rs, 1 V.
$\frac{9!}{4!1!1!2!1!}$
7560

Mathematica selects all such strings in the following command. We had to identify E to $0, \mathrm{G}$ to $1, \mathrm{~N}$ to $2, \mathrm{R}$ to $3, \mathrm{~V}$ to 4 in oeder to do the selection.

```
Length[Select[Strings[{0, 1, 2, 3, 4}, 9],
    Function[y, Or[(Sort[y]) == {0, 0, 0, 0, 1, 2, 3, 3, 4}]]]]
```

7560

Problem 39

We have to make 12 steps: 4 in x drection, 3 in y direction and 5 in z direction. This is exactly the same as counting the number of strings of 12 characters $\{x, x, x, x, y, y, y, z, z, z, z, z\}$

$$
\begin{aligned}
& \frac{(4+3+5)!}{3!4!5!} \\
& 27720
\end{aligned}
$$

For a $3 \times 3 \times 3$ cube that would be:

$$
\frac{(3+3+3)!}{3!3!3!}
$$

1680

