$\ln [10]=\mathbf{f f}\left[\mathbf{x}_{-}\right]=\operatorname{Exp}\left[-\mathbf{x}^{\wedge} \mathbf{2}\right]$
Out[10]=
$e^{-x^{2}}$
In class we found that the parametric vector equation of the surface which determines a solution of Burgers' equation is
$\{\mathbf{f f}[\xi] \mathbf{s}+\boldsymbol{\xi}, \mathbf{s}, \mathbf{f f}[\xi]\}$
$\left\{e^{-\xi^{2}} s+\xi, s, e^{-\xi^{2}}\right\}$
We can plot it using ParametricPlot3D

```
ParametricPlot3D[{ff[\xi] s+\xi, s, ff[\xi]}, {s, 0, 3},{\xi, - 3, 3}, BoxRatios }->{4,1,1}, AxesLabel ->{x, t, z}
```


And from this picture it is clear that this is not a graph of function of x and t. However, if we restrict time, we might get a graph of a function of x and t :
$\operatorname{ParametricPlot3D}[\{f f[\xi] s+\xi, s, f f[\xi]\},\{s, 0,1\},\{\xi,-3,3\}$, BoxRatios $\rightarrow\{4,1,1\}$, AxesLabel $\rightarrow\{x, t, z\}]$

This surface looks like a graph of a function. Next we will find the maximum value of t, that is s in our setting for which our surface will be a graph of a function. To this end we look at the cross sections of the surface with fixed time, that is fixed s. We study the parametric equation
$\{\mathbf{f f}[\xi] \mathbf{s}+\boldsymbol{\xi}, \mathbf{f f}[\xi]\}$
$\left\{\mathbf{e}^{-\xi^{2}} \boldsymbol{s}+\xi, \mathbf{e}^{-\xi^{2}}\right\}$
in xz-plane. For this Manipulate[] is a great tool.
When you execute the Manipulate[] command, click on the + sign next to the " s " slider. That will give you the information about the s values that are used in the plot. We would like to find the smallest s for which the resulting graph is not a function, that is does not satisfy the vertical line test.

Manipulate $[$ ParametricPlot $[\{f f[\xi] s+\xi, f f[\xi]\},\{\xi,-4,4\}, \operatorname{PlotRange} \rightarrow\{\{-4,4\},\{-0.1,1.1\}\}$,

```
GridLines }->\mathrm{ {Range[-4, 4, 0.2], Range[0, 1, 0.2]}, AspectRatio }->1/2, ImageSize -> 500], {s, 0, 3}
```


Looking at the above manipulation, I conclude that at around $s \approx 1.205$ the graph is not a function. The vertical tangent line occurs around $x \approx 1.41$. These are my guesses that we will verify below.

The vertical tangent line will occur when the first component of the tangent vector is equal to 0 . Let us calculate the tangent vector:
$\ln [16]=\mathrm{D}[\{\mathbf{f f}[\xi] \mathbf{s}+\boldsymbol{\xi}, \mathbf{f f}[\xi]\}, \xi]$
Out[16] $=\left\{1-2 e^{-\xi^{2}} \mathrm{~s} \xi,-2 e^{-\xi^{2}} \xi\right\}$
For which s (time) the first component becomes 0 ?
$\ln [17]:=$ Solve $\left[1-2 e^{-\xi^{2}} s \xi=0, s\right]$
Out[17]= $\left\{\left\{s \rightarrow \frac{e^{\xi^{2}}}{2 \xi}\right\}\right\}$
Thus s must equal the above expression in ξ. Let us check that expression of ξ :
$\operatorname{Plot}\left[\frac{e^{\xi^{2}}}{2 \xi},\{\xi,-3,3\}\right.$, PlotRange $\rightarrow\{-4,4\}$,
GridLines $\rightarrow\{$ Range [-4, 4, 0.2], Range[-4, 4, 0.2]\}] We know that

We want a positive s, the smallest positive s. In the above plot s is on the vertical axis. Let us find the smallest such s:
$=\mathbf{D}\left[\frac{e^{\xi^{2}}}{2 \xi}, \xi\right]$
$=e^{\xi^{2}}-\frac{e^{\xi^{2}}}{2 \xi^{2}}$
$\ln [19]:=\operatorname{Solve}\left[e^{\xi^{2}}-\frac{e^{\xi^{2}}}{2 \xi^{2}}=0, \xi\right]$
Out $[19]=\left\{\left\{\xi \rightarrow-\frac{1}{\sqrt{2}}\right\},\left\{\xi \rightarrow \frac{1}{\sqrt{2}}\right\}\right\}$
Clearly we need $\xi=1 / \sqrt{2}$. Thus, the number below is the s that we seek
$\ln [20]=\left(\frac{e^{\xi^{2}}}{2 \xi}\right) / \cdot\left\{\xi \rightarrow \frac{1}{\sqrt{2}}\right\}$
Out $[20]=\sqrt{\frac{e}{2}}$
$\ln [21]]=N\left[\sqrt{\frac{e}{2}}\right]$
Out [21]= 1.16582
Ok, this is sufficiently close to what I guessed, around $s \approx 1.205$
Now check x. The x coordinate is in fact $f f[\xi] s+\xi$
$\ln [22]=(f f[\xi] s+\xi) / .\left\{\xi \rightarrow \frac{1}{\sqrt{2}}, s \rightarrow \sqrt{\frac{e}{2}}\right\}$
Out[22]= $\sqrt{2}$
$\ln [23]=\mathbf{N}[\sqrt{2}]$
Out [23]= 1.41421
This is much closer to my guess, around $x \approx 1.41$.

