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In[1]:= NotebookDirectory[]
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In[2]:= NotebookFileName[]
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Burgers’ Equation
The PDE  

u(x, t) ∂u
∂x

(x, t) + ∂u
∂t

(x, t) = 0  

is called Burgers’ equation.  This is NOT a linear equation.  In this equation instead of 
the independent variable y we write t since it is convenient to think of it as time. 

We will consider this equation subject to the initial condition 

u(x, 0) = f (x)   where  x ∈ .  (To make illustrations in Mathematica we will choose  
f (x) = Exp-x2. 

The vector field that we need for the characteristic equations of this equation is 
< z, 1, 0 >.  

In[3]:= VPbe = {1.3`, -2.4`, 2.`}

Out[3]= {1.3, -2.4, 2.}

In[4]:= ChVecFiBE[{x_, t_, z_}] = {z, 1, 0}

Out[4]= {z, 1, 0}



In[5]:= VPbe = {0.8937514594363056`, -2.8253081061674683`, 1.6336592159871852`}

Out[5]= {0.893751, -2.82531, 1.63366}

In[6]:= vecsbe = VectorPlot3D[ChVecFiBE[{x, t, z}], {x, -2, 3}, {t, 0, 2},

{z, -0, 1.5},
VectorColorFunction  (RGBColor[0, 0.5, 0.5] &),

VectorColorFunctionScaling  False,
VectorStyle -> {Opacity[0.75], Thickness[0.006]},

VectorPoints  {8, 12, 8} , VectorScale  {0.07, Scaled[0.6]},
BoxRatios  {2, 2, 1}, PlotRange  {{-2, 2}, {0, 2}, {0, 1.5}},

ImageSize  500, ViewPoint  Dynamic[VPbe]]

Out[6]=

In[7]:= VPbe

Out[7]= {0.893751, -2.82531, 1.63366}

Now we need to solve the initial value problem for the characteristic equations. For 
that we will specify the initial condition for the Burgers’ equation. We choose u[x,0] = 
Exp[-x^2]. 
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In[8]:= Clear[solbe];

solbe[s_, ξ_] =
FullSimplify{x[s], t[s], z[s]} /.

DSolvex'[s]  z[s], t'[s]  1, z'[s]  0, x[0]  ξ, t[0]  0,

z[0]  Exp-ξ2, {x[s], t[s], z[s]}, s[[1]]

Out[9]= -ξ
2
s + ξ, s, -ξ

2


The above triple, for a fixed ξ and for a varying  s  gives a curve in xtz-space.  For many 
ξ-s we get many curves. These curves are the characteristics of Burgers’ equation.  
However, for Burgers’ equation the projected characteristics are more important.  
(Projected characteristics are the projections of the characteristics onto xt-plane.)  
Below we plot the projected characteristics. They are straight lines with slope 
Exp-ξ2 in the xt-plane.  

In[10]:= ParametricPlot[Evaluate[Table[solbe[s, ξ]〚{1, 2}〛, {ξ, -9, 3, .05}]],

{s, 0, 6}, PlotStyle  {Thickness[0.002]}, PlotRange  {{-2, 3}, {0, 2}},
ImageSize  600]

Out[10]=
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Recall that the value of z along a fixed projected characteristic is constant. Thus at 
the points were projected characteristics intersect the function u(x, t) should be 
having two different values. That is clearly impossible.  Next we will try to answer the 
following question: What is the maximum time tm for which no projected 
characteristics intersect below the line t = tm.  I will first guess that value, say tm = 1. 
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In[11]:= ParametricPlot[Evaluate[Table[solbe[s, ξ]〚{1, 2}〛, {ξ, -9, 3, .05}]],

{s, 0, 6}, PlotStyle  {Thickness[0.002]},
Epilog  {{Red, Line[{{-3, 1}, {5, 1}}]}}, PlotRange  {{-2, 3}, {0, 2}},

ImageSize  600]

Out[11]=

-2 -1 0 1 2

0.5

1.0

1.5

2.0

From this plot it is clear that tm > 1.  Next we will try to find the exact value of tm. 

First look at the surface that we found. 

In[12]:= solbe[s, ξ]

Out[12]= -ξ
2
s + ξ, s, -ξ

2


This is a parametric equation of a surface in xtz-space. 
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In[13]:= ParametricPlot3D[solbe[s, ξ], {ξ, -2, 3}, {s, 0, 2}, PlotPoints  {70, 30},

PlotRange  {{-2, 3}, {0, 2}}, ImageSize  600, AxesLabel  {"x", "t", "z"}]

Out[13]=

Think of a fixed time in the above plot, say t = t0, and consider the curve z = u(x, t0). 
From the graph we can see that for small values of t0 we have that  z = u(x, t0) is a 
function. But for some larger values of t0, say close to 2, we have that  z = u(x, t0) is 
NOT a function.  

Recall the equation of this surface: 

In[14]:= solbe[s, ξ]

Out[14]= -ξ
2
s + ξ, s, -ξ

2


A lucky aspect of this equation is that the time is the second coordinate, that is the 
time equals s.  Next I will explore the parametric curves with fixed s = s0  

In[15]:= solbe[s0, ξ]

Out[15]= -ξ
2
s0 + ξ, s0, -ξ

2
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In[16]:= Manipulate[ParametricPlot[solbe[s0, ξ]〚{1, 3}〛, {ξ, -2, 3},

PlotPoints  150, PlotRange  {{-2, 3}, {0, 1.5}}, ImageSize  600],
{s0, 0, 3}, ControlPlacement  Top]

Out[16]=
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Since the parameter s is in fact the time, I will change the variable name to t.  It does 
not make any difference mathematically but it might be easier to think about what is 
going on.  I will also add some negative time to get the idea how this process evolves. 
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In[17]:= Manipulate[ParametricPlot[solbe[t, ξ]〚{1, 3}〛, {ξ, -2, 3},

PlotPoints  150, PlotRange  {{-2, 3}, {0, 1.5}}, ImageSize  600],
{{t, 0}, -1, 3}, ControlPlacement  Top]

Out[17]=
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As I pointed out earlier from the above graphs we can see that for small values of t we 
have that  z = u(x, t) is a function. But for some larger values of t, say close to 2, we 
have that  z = u(z, t) is NOT a function. The point is to find the exact value of the cut-
off t.  To find that t I will add the tangent vector to the above parametric curve. Recall 
that t is fixed and ξ is the variable, so the tangent vector is 

In[18]:= solbe[t, ξ]〚{1, 3}〛

Out[18]= -ξ
2
t + ξ, -ξ

2


In[19]:= D[solbe[t, ξ]〚{1, 3}〛, ξ]

Out[19]= 1 - 2 -ξ
2
t ξ, -2 -ξ

2
ξ
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In[20]:= ManipulateParametricPlotsolbe[t, ξ]〚{1, 3}〛, {ξ, -2, 3},

PlotPoints  150,
Epilog 

Arrow-ξ0
2
t + ξ0, -ξ0

2
,

-ξ0
2
t + ξ0, -ξ0

2
 + 1 - 2 -ξ0

2
t ξ0, -2 -ξ0

2
ξ0,

PlotRange  {{-2, 3}, {-1, 1.5}}, ImageSize  600, {{t, 0}, -1, 3},

{{ξ0, 0}, -2, 3}, ControlPlacement  Top

Out[20]=
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Based on this manipulation, can you calculate the the value of t for which  z = u(z, t) 
becomes multivalued? 

Here is the calculation: 

Calculate the tangent vector to the curve 
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In[21]:= solbe[t, ξ]〚{1, 3}〛

Out[21]= -ξ
2
t + ξ, -ξ

2


for a fixed  t 

In[22]:= D[solbe[t, ξ]〚{1, 3}〛, ξ]

Out[22]= 1 - 2 -ξ
2
t ξ, -2 -ξ

2
ξ

The first component of the tangent vector is 

In[23]:= D[solbe[t, ξ]〚{1, 3}〛, ξ]〚1〛

Out[23]= 1 - 2 -ξ
2
t ξ

Plot this function for a fixed t and then manipulate t: 

In[24]:= ManipulatePlot1 - 2 -ξ
2
t ξ, {ξ, -1, 3}, PlotRange  {-0.2, 1.5},

{t, 0, 2}, ControlPlacement  Top

Out[24]=

t

-1 1 2 3

0.5

1.0

1.5

Find the derivative of the first component of the tangent vector. 
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In[25]:= FullSimplifyD1 - 2 -ξ
2
t ξ, ξ

Out[25]= 2 -ξ
2
t -1 + 2 ξ2

Find for which ξ the function 1-2 -ξ2
t ξ takes a minimum. 

In[26]:= Solve-2 -ξ
2
t + 4 -ξ

2
t ξ2  0, ξ

Out[26]= ξ  -
1

2
, ξ 

1

2


Calculate the second derivative of the first component to prove that it reaches the 
minimum at the above value of ξ: 

In[27]:= FullSimplifyD1 - 2 -ξ
2
t ξ, {ξ, 2} /. ξ 

1

2


Out[27]= 4
2


t

Since t is positive, the last quantity is positive. Thus, the first component of the 
tangent vector has the minimum at ξ = 1

2

In[28]:= 1 - 2 -ξ
2
t ξ /. ξ 

1

2


Out[28]= 1 -
2


t

Hence: at ξ = 1  2  the derivative of the first component of the tangent vector takes 

the minimum value 1- 2


t. Finally, for which t is this minimum equal to 0: 

In[29]:= Solve1 -
2


t  0, t

Out[29]= t 


2
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In[30]:= N E/2 

Out[30]= 1.16582

Thus, the parametric equations 

In[31]:= solbe[t, ξ]

Out[31]= -ξ
2
t + ξ, t, -ξ

2


represent a function for all (t,ξ) such that t ∈ 0,  /2   and ξ ∈ . Although we can 

not find an explicit formula for the function u(x, t).  For that formula we would need 
to solve 

In[32]:= SolveExp-ξ2 t + ξ  x, ξ

Solve: This system cannot be solved with the methods available to Solve.

Out[32]= Solve-ξ
2
t + ξ  x, ξ
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In[33]:= ParametricPlot3Dsolbe[t, ξ], {ξ, -2, 3}, t, 0,


2
,

PlotPoints  {70, 30}, PlotRange  {-2, 3}, 0,


2
, ImageSize  600,

AxesLabel  {"x", "t", "z"}

Out[33]=

Mathematica algorithms can not solve this equation: 

In[34]:= Clear[ff, u];
DSolve[{u[x, t] D[u[x, t], x] + D[u[x, t], t]  0, u[x, 0]  ff[x]},

u[x, t], {x, t}]

Out[34]= DSolve

u(0,1)[x, t] + u[x, t] u(1,0)[x, t]  0, u[x, 0]  ff[x], u[x, t], {x, t}

Or, with the specific initial condition that we used: 
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In[35]:= DSolveu[x, t] D[u[x, t], x] + D[u[x, t], t]  0, u[x, 0]  Exp-x2,

u[x, t], {x, t}

Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for

complete solution information.

Out[35]= DSolveu(0,1)[x, t] + u[x, t] u(1,0)[x, t]  0, u[x, 0]  -x
2
, u[x, t], {x, t}
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