Vibrating String whose Left-end is soaked in super-glue

Robin Boundary Conditions

Consider a ribrating string whose left-end of length h is soabed in super-glue, so it is not flexible. This physical situation leads to Robin Boundry conditions at 0. Juloit) U(xit) The red super-glued part determines the value of the slope of the string at 0, that is $\frac{\partial H}{\partial x}(o,t)$: $\frac{\partial \mathcal{M}}{\partial X}(o_i t) = \frac{\mathcal{M}(o_i t)}{h}$ This is a Robin Boundary Condition:

 $u(o_i t) - h' \frac{\partial u}{\partial x}(o_i t) = 0.$ We consider a uniform shing with tension force To, mass density go and we set $c = \sqrt{T_0}/g_0$. In this case, the vibrating string problem is: with L > 0, $h \in \mathbb{R} \setminus \{0\}$ $\frac{\partial^2 u}{\partial t^2}(x,t) = c^2 \frac{\partial^2 u}{\partial x^2}(x,t) , x \in [0,L], t \ge 0$ PDE : $u(o,t) - l_{t} \frac{\partial u}{\partial x}(o,t) = 0 , \quad u(L,t) = 0 \quad \forall t \ge 0$ BCs: $IC_{s} : \qquad u(x, 0) = f(x) \quad and \quad \frac{\partial u}{\partial t}(x, 0) = g(x) \quad \forall x \in [0, 2]$ Here we excluded h = 0 since in this case we have a Diridulet Boundary condition which we considered earlier. (Although Hic case will be implicitly included in our considerations.) there fand g are piecewise smooth functions such that f(0) - hf(0) = 0 and f(L) = 0(no boundary conditions on g)

Separation of variables u(x,t) = A(x)B(t) leads to the second order equation for B: $B''(t) = -\lambda c^2 B(t)$ and the boundary-eigenvalue problem for A: $A''(x) = -\lambda A(x)$ A(0) - hA'(0) = 0It will be proved for an arbitrary Sturm-Liouville problem fliat such a problem does not have non-real eigenvalues. So we consider three possibilities for 7: Case 1. 240 Case 2. 2=0 Case 3. 2>0

<u>Case 1</u>. $\lambda < 0$. We set $\lambda = -\mu^2$ with $\mu > 0$. We need to find those values for μ for which there exist a non-zero function A(x) such that: A''_{K}= u^2 A(x) and A(0) - hA'(0) = 0 and A(L) = 0. The reasoning in problems like this is based on the fact that we know the fundamental set of solutions of A"(x) = u²A(x). In this case we chose to work with the fundamental set of solutions cosh (ux) and sinh (ux), which we abbreviate as ch (ux) and sh (ux): We need to find $A(x) = C_1 ch(\mu x) + C_2 sl(\mu x) \quad (mon zero)$ _ a big step in which satisfies the boundary conditions fight direction

So, the question is: For which $\mu > 0$ there exist non zero $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ such that $C_1 c_1 (\mu x) + C_2 sl(\mu x)$ BCS: A(0) - A(0) = 0 and A(L) = 0.To answer this question we substitute into BCs and consider the linear system that we obtain: $A(0) = C_1$, $A'(0) = MC_2$, $A(L) = C_1(\mu L) + C_2 ch(\mu L)$ The system is : $C_1 - h \mu C_2 = 0$ $C_1 ch(\mu L) + C_2 sh(\mu L) = 0$ Written as a matrix équation fluis system reads

 $\begin{bmatrix} 1 & -h\mu\\ ch\mu\\ \end{pmatrix} & sh\mu\\ \end{bmatrix} \begin{bmatrix} C_1\\ C_2\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix}$ the logic here is similar to finding eigenvalues of a 2×2 matrix. The difficulty here is that I is involved in ch and sh The above matrix equation has a nontrivial solution $\begin{bmatrix} C_1 \\ C_2 \end{bmatrix} \text{ of and only if } \begin{vmatrix} 1 & -h \\ ch (\mu L) \\ sh (\mu L) \end{vmatrix} = 0,$ $sl_{(\mu l)} + l_{\mu} u ch(\mu l) = 0.$ that is

It is not likely that we can find a symbolic solution of this equation. So, let us solve it "graphically": $ch(\mu L)>0$, so $\frac{sh(\mu L)}{ch(\mu L)} = -h\mu$ So we need to understand the solutions of the equation $th(\mu L) = -h\mu$. It is easier to picture the solutions of this equation if we introduce a new variable $\overline{5} = \mu L$ and chudy $th(\overline{5}) = -\frac{h}{L}\overline{5}$. Now we can graph th (3) and the line through the origin

of a solution: //slope-1/ existence of and analyze the $th(\overline{s}),$ we are not slope at 0 nis 1. interested in 340 -L (for small positive - L) Since M>00 slope = h What we see from the above graph is that the equation $H_1(z) = -\frac{h}{E} z$ has no solution if $-h \ge L$ $OR - \frac{h}{L} \leq 0$, that is sole exists no solution tr≥0 $-\frac{h}{L} \ge 1$ no solution no solupion-L

thus the solution exists if -L< G<0. If -L<G<0 is satisfied, then Mathematica can solve the equation in Mathematic $fl_{\mu}(\mu L) = -h\mu$. We use the command Find Root [, Notice that if - h is a small positive number, then a good approximation for the solution for mis = 1/h. comment -Denote the solution found by Mathematica by M_{-1} . Then $\lambda_{-1} = -(M_{-1})^2$.

Now we go back to the matrix equation that we need to solve:

 $\begin{bmatrix} 1 & -h\mu \\ -h\mu \\ ch\mu \\ -1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ With the μ_{-1} that we found the 2x2 matrix is singular and since we need only one pair $\begin{bmatrix} C_{1}\\ C_{2} \end{bmatrix}$ we can choose $C_{1} = h\mu_{-1}$ and $C_{2} = 1$ Hence the eigenvalue (negative one) is $\lambda_{-2} = -(\mu_{-2})^2$ and a corresponding eigenfunction is:

 $h\mu_1 ch(\mu_1 X) + sh(\mu X)$ Now we go back and solve the equation for B(t): $B''(t) = (\mu_{-1})^{c^2} B(t).$ The general solution of this equation is: $a_1 ch(\mu_1 ct) + b_1 sh(\mu_1 ct)$ where a_{-1} and b_{-1} are arbitrary constants. Finally we write two separated solutions $ch(\mu_{-1}ct)(h\mu_{-1}ch(\mu_{-1}x) + sh(\mu_{-1}x))$ and $sh(m_1,ct)(h_1,ch(u,t)+sh(u,t))$

These two solutions correspond to "natural modes" of vibrations; the only difference being that these solutions do not vibrate; practically they mean the string will break. $\frac{Case 2}{Ts fluere a function A(x) such that the guestian.}$ and B(g) - hA'(0) = 0 and A(L) = 0. A fundamental set of solutions of A'(L) = 0 is $\{1, X\}$. The general solution is $A(x) = C_1 + C_2 x$. $C_1 - h C_2 = 0$ $C_1 + L C_2 = 0$ Substitude into BCs:

Written as a matrix equation: $\begin{bmatrix} 1 & -l_{n} \\ 1 & L \end{bmatrix} \begin{bmatrix} C_{1} \\ C_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ The preceding matrix equation has a nontrivial solution if and only if $\begin{vmatrix} 1 & -h \end{vmatrix} = 0$, that is L + h = 0. Hence $\lambda = 0$ is an eigenvalue if and only if h = -L. In this case a corresponding eigenfunction is $L - \chi$ (here $C_1 = L$, $C_2 = -1$)

Now solve the time equation B''(t) = 0. The general solution is $a_0 \cdot 1 + b_0 t$. Thus, two special "separated" solutions of the PDE and the BCs are 1(L-x) and t(L-x)These solution are relevant only in the case h=-L. Whenever $h\neq -L$, D is NOT an eigenvalue. <u>Case 3</u> $\lambda > 0$. Set $\lambda = \mu^2$ with $\mu > 0$. We need to find all positive values of μ for Which there exists a nonzero function A(x) such

that $A''(x) = -\mu^2 A(x)$ and BCs A(0) - hA'(0) = 0 $A(L_0) = 0$. The fundamental set of solutions is $\int cos(\mu x), \sin(\mu x) f$. The general solution is $A(x) = C_1 cos(\mu x) + C_2 sin(\mu x)$ This expression is a big step in right direction. The unknown function A(x) is replaced by two The unknow numbers C_1 and C_2 ; certainly an easier task to mknow numbers C_1 and C_2 ; C_2 and C_3 is replaced by find. Calculate: $A(0) = C_1, A'(0) = \mu C_2$ $A(L) = C_1 c(\mu L) + C_2 s(\mu L)$ and substitute into boundry conditions:

 $C_1 - h\mu C_2 = 0$ $C(\mu L)C_1 + S(\mu L)C_2 = 0$ Write it as a matrix equation: this matrix equation has a nontrivial solution if and only if

we need $C(\mu L) \neq 0$. So, we first consider the case $\mu L = (2k-1)\frac{\pi}{2}$ with $k \in \mathbb{N}$. In this case $\cos(\mu L) = 0$ and $\sin(\mu L) = (-1)^{k+1}$. The DIn Hirscase (*) becomes $(f_1)^{k+1} + 0 = 0$ which is never tone. Therefore we will lose no solutions if we assume $c(\mu L) \neq 0$. Then (*) is equivalent (positive) $tan(\mu L) = -h\mu \cdot n$ Introducing $\xi = \mu L$ we look for the solutions of tan (3) = - I 3. black graph graph

there are countably many solutions regardless of the doorce of hand. $\frac{h}{L} \left\{ \begin{array}{c} \tau u & fluis case \\ h & 70 \\ h & 70 \\ h & 2 \end{array} \right\}$ Mathematica can calculate approximations for M1, M2, M3, ..., Mn, In fact, when calculating Prese approximations I use the equation (*)

Sin $(\mu L) + \mu L \cos(\mu L) = 0$. Now we can consider $\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \dots, \mathcal{M}_n, \dots$ green. We know them (to some extend). What are the corresponding eigenfunctions? The eigenfunction corresponding to the ligenvalue $\lambda_n = (\mu_n)^{-1}$ is unh. Cos(MnX) + sin(MnX)

To find the natural modes of vibrations we med to solve $B'(t) = -(U_n)^2 c^2 B(t)$ He fundamental set of solutions is Cos(unct), Sin(unct) A typical natural mode of vibration is Cos(mact) (M. h. Cos(M.X) + sin(M.X)) (of nat-modes) We can ignore other forms since they are just Shifts and scales of this one. the End?