Inner Product Spaces

Branko Ćurgus

March 14, 2023 at 01:44

1 Inner Product Spaces

We will first introduce several "dot-product-like" objects. We start with the most general.

Definition 1.1. Let \mathscr{V} be a vector space over a scalar field \mathbb{F}. A function

$$
[\cdot, \cdot]: \mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}
$$

is a sesquilinear form on \mathscr{V} if the following two conditions are satisfied.
(a) (linearity in the first variable)

$$
\forall \alpha, \beta \in \mathbb{F} \quad \forall u, v, w \in \mathscr{V} \quad[\alpha u+\beta v, w]=\alpha[u, w]+\beta[v, w] .
$$

(b) (anti-linearity in the second variable)

$$
\forall \alpha, \beta \in \mathbb{F} \quad \forall u, v, w \in \mathscr{V} \quad[u, \alpha v+\beta w]=\bar{\alpha}[u, v]+\bar{\beta}[u, w] .
$$

Example 1.2. Let $M \in \mathbb{C}^{n \times n}$ be arbitrary. Then

$$
[\mathbf{x}, \mathbf{y}]=(M \mathbf{x}) \cdot \mathbf{y}, \quad \mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}
$$

is a sesquilinear form on the complex vector space \mathbb{C}^{n}. Here \cdot denotes the usual dot product in \mathbb{C}.

An abstract form of the Pythagorean Theorem holds for sesquilinear forms.

Theorem 1.3 (Pythagorean Theorem). Let $[\cdot, \cdot]$ be a sesquilinear form on a vector space \mathscr{V} over a scalar field \mathbb{F}. If $v_{1}, \cdots, v_{n} \in \mathscr{V}$ are such that $\left[v_{j}, v_{k}\right]=0$ whenever $j \neq k, j, k \in\{1, \ldots, n\}$, then

$$
\left[\sum_{j=1}^{n} v_{j}, \sum_{k=1}^{n} v_{k}\right]=\sum_{j=1}^{n}\left[v_{j}, v_{j}\right] .
$$

Proof. Assume that $\left[v_{j}, v_{k}\right]=0$ whenever $j \neq k, j, k \in\{1, \ldots, n\}$ and apply the additivity of the sesquilinear form in both variables to get:

$$
\begin{aligned}
{\left[\sum_{j=1}^{n} v_{j}, \sum_{k=1}^{n} v_{k}\right] } & =\sum_{j=1}^{n} \sum_{k=1}^{n}\left[v_{j}, v_{k}\right] \\
& =\sum_{j=1}^{n}\left[v_{j}, v_{j}\right] .
\end{aligned}
$$

th-poli Theorem 1.4 (Polarization identity). Let \mathscr{V} be a vector space over a scalar field \mathbb{F} and let $[\cdot, \cdot]: \mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}$ be a sesquilinear form on \mathscr{V}. If $\mathrm{i} \in \mathbb{F}$, then

$$
\begin{equation*}
[u, v]=\frac{1}{4} \sum_{k=0}^{3} \mathrm{i}^{k}\left[u+\mathrm{i}^{k} v, u+\mathrm{i}^{k} v\right] \tag{1}
\end{equation*}
$$

eq-pi
for all $u, v \in \mathscr{V}$.
Proof. For the proof we expend the sum on the right hand side, ignoring the fraction $1 / 4$, using the linearity in the first variable and anti-linearity in the second variable. The resulting expression will have the following four values of the sesquilinear form: $[u, u],[u, v],[v, u],[v, v]$. For each of these values and for each $k \in\{0,1,2,3\}$ we present the corresponding coefficients in a table with the values of the form in the header and values for each k in each row:

	$[u, u]$	$[u, v]$	$[v, u]$	$[v, v]$
$k=0$	1	1	1	1
$k=1$	i	1	-1	i
$k=2$	-1	1	1	-1
$k=3$	-i	1	-1	-i
sum	0	4	0	0

co-slf-0 Corollary 1.5. Let \mathscr{V} be a vector space over a scalar field \mathbb{F} and let $[\cdot, \cdot]$: $\mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}$ be a sesquilinear form on \mathscr{V}. If $\mathrm{i} \in \mathbb{F}$ and $[v, v]=0$ for all $v \in \mathscr{V}$, then $[u, v]=0$ for all $u, v \in \mathscr{V}$.

Definition 1.6. Let \mathscr{V} be a vector space over a scalar field \mathbb{F}. A sesquilinear form $[\cdot, \cdot]: \mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}$ is hermitian if
(c) (hermiticity) $\forall u, v \in \mathscr{V} \quad \overline{[u, v]}=[v, u]$.

A hermitian sesquilinear form is also called an inner product.
co-slf-her Corollary 1.7. Let \mathscr{V} be a vector space over a scalar field \mathbb{F} such that $\mathrm{i} \in \mathbb{F}$. Let $[\cdot, \cdot]: \mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}$ be a sesquilinear form on \mathscr{V}. Then $[\cdot, \cdot]$ is hermitian if and only if $[v, v] \in \mathbb{R}$ for all $v \in \mathscr{V}$.

Proof. The "only if" direction follows from the definition of a hermitian sesquilinear form. To prove "if" direction assume that $[v, v] \in \mathbb{R}$ for all $v \in \mathscr{V}$. Let $u, v \in \mathscr{V}$ be arbitrary. We will prove that $\overline{[v, u]}=[u, v]$. By the polarization identity

$$
\begin{equation*}
[v, u]=\frac{1}{4} \sum_{k=0}^{3} \mathrm{i}^{k}\left[v+\mathrm{i}^{k} u, v+\mathrm{i}^{k} u\right] \tag{2}
\end{equation*}
$$

It follows from the assumption that $\left[v+\mathrm{i}^{k} u, v+\mathrm{i}^{k} u\right] \in \mathbb{R}$ for all $k \in$ $\{0,1,2,3\}$. Therefore, in (2) we need to conjugate only i^{k} for $k \in\{0,1,2,3\}$ to calculate $\overline{[v, u]}$. Since $\overline{\mathrm{i}^{k}}=(-\mathrm{i})^{k}$, from (2) we obtain

$$
\begin{equation*}
\overline{[v, u]}=\frac{1}{4} \sum_{k=0}^{3}(-\mathrm{i})^{k}\left[v+\mathrm{i}^{k} u, v+\mathrm{i}^{k} u\right] \tag{3}
\end{equation*}
$$

As in the proof of the Polarization Identity we expend the sum on the right hand side in (3), ignoring the fraction $1 / 4$, using the linearity in the first variable and anti-linearity in the second variable. The resulting expression will have the following four values of the sesquilinear form: $[u, u],[u, v]$, $[v, u],[v, v]$. For each of these values and for each $k \in\{0,1,2,3\}$ we present the corresponding coefficients in a table with the values of the form in the header and values for each k in each row:

	$[u, u]$	$[u, v]$	$[v, u]$	$[v, v]$
$k=0$	1	1	1	1
$k=1$	-i	1	-1	-i
$k=2$	-1	1	1	-1
$k=3$	i	1	-1	i
sum	0	4	0	0

Hence, the sum in (3) is identical to the sum in (1). Therefore $\overline{[v, u]}=$ $[u, v]$.

Let $[\cdot, \cdot]$ be an inner product on \mathscr{V}. The hermiticity of $[\cdot, \cdot]$ implies that $\overline{[v, v]}=[v, v]$ for all $v \in \mathscr{V}$. Thus $[v, v] \in \mathbb{R}$ for all $v \in \mathscr{V}$. The natural trichotomy that arises is the motivation for the following definition.

Definition 1.8. An inner product $[\cdot, \cdot]$ on \mathscr{V} is called nonnegative if $[v, v] \geq$ 0 for all $v \in \mathscr{V}$, it is called nonpositive if $[v, v] \leq 0$ for all $v \in \mathscr{V}$, and it is called indefinite if there exist $u \in \mathscr{V}$ and $v \in \mathscr{V}$ such that $[u, u]<0$ and $[v, v]>0$.

2 Nonnegative inner products

The following implication that you might have learned in high school will be useful below.

Theorem 2.1 (High School Theorem). Let a, b, c be real numbers. Assume $a \geq 0$. Then the following implication holds:

$$
\begin{equation*}
\forall x \in \mathbb{Q} \quad a x^{2}+b x+c \geq 0 \quad \Rightarrow \quad b^{2}-4 a c \leq 0 . \tag{4}
\end{equation*}
$$

eq-impl

Theorem 2.2 (Cauchy-Bunyakovsky-Schwartz Inequality). Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a nonnegative inner product on \mathscr{V}. Then

$$
\begin{equation*}
\forall u, v \in \mathscr{V} \quad|\langle u, v\rangle|^{2} \leq\langle u, u\rangle\langle v, v\rangle . \tag{5}
\end{equation*}
$$

eq-CSBi
The equality occurs in (5) if and only if there exists $\alpha, \beta \in \mathbb{F}$ not both 0 such that $\langle\alpha u+\beta v, \alpha u+\beta v\rangle=0$.

Proof. Let $u, v \in \mathscr{V}$ be arbitrary. Since $\langle\cdot, \cdot\rangle$ is nonnegative we have

$$
\begin{equation*}
\forall t \in \mathbb{Q} \quad\langle u+t\langle u, v\rangle v, u+t\langle u, v\rangle v\rangle \geq 0 . \tag{6}
\end{equation*}
$$

eq-CSBst1
Since $\langle\cdot, \cdot\rangle$ is a sesquilinear hermitian form on $\mathscr{V},(6)$ is equivalent to

$$
\begin{equation*}
\forall t \in \mathbb{Q} \quad\langle u, u\rangle+2 t|\langle u, v\rangle|^{2}+t^{2}|\langle u, v\rangle|^{2}\langle v, v\rangle \geq 0 . \tag{7}
\end{equation*}
$$

eq-CSBst2

As $\langle v, v\rangle \geq 0$, the High School Theorem applies and (7) implies

$$
\begin{equation*}
4|\langle u, v\rangle|^{4}-4|\langle u, v\rangle|^{2}\langle u, u\rangle\langle v, v\rangle \leq 0 . \tag{8}
\end{equation*}
$$

Again, since $\langle u, u\rangle \geq 0$ and $\langle v, v\rangle \geq 0$, (8) is equivalent to

$$
|\langle u, v\rangle|^{2} \leq\langle u, u\rangle\langle v, v\rangle .
$$

Since $u, v \in \mathscr{V}$ were arbitrary, (5) is proved.
Next we prove the claim related to the equality in (5). We first prove the "if" part. Assume that $u, v \in \mathscr{V}$ and $\alpha, \beta \in \mathbb{F}$ are such that $|\alpha|^{2}+|\beta|^{2}>0$ and

$$
\langle\alpha u+\beta v, \alpha u+\beta v\rangle=0
$$

We need to prove that $|\langle u, v\rangle|^{2}=\langle u, u\rangle\langle v, v\rangle$.
Since $|\alpha|^{2}+|\beta|^{2}>0$, we have two cases $\alpha \neq 0$ or $\beta \neq 0$. We consider the case $\alpha \neq 0$. The case $\beta \neq 0$ is similar. Set $w=\alpha u+\beta v$. Then $\langle w, w\rangle=0$ and $u=\gamma v+\delta w$ where $\gamma=-\beta / \alpha$ and $\delta=1 / \alpha$. Notice that the Cauchy-Bunyakovsky-Schwarz inequality and $\langle w, w\rangle=0$ imply that $\langle w, x\rangle=0$ for all $x \in \mathscr{V}$. Now we calculate

$$
|\langle u, v\rangle|=|\langle\gamma v+\delta w, v\rangle|=|\gamma\langle v, v\rangle+\delta\langle w, v\rangle|=|\gamma\langle v, v\rangle|=|\gamma|\langle v, v\rangle
$$

and

$$
\langle u, u\rangle=\langle\gamma v+\delta w, \gamma v+\delta w\rangle=\langle\gamma v, \gamma v\rangle=|\gamma|^{2}\langle v, v\rangle .
$$

Thus,

$$
|\langle u, v\rangle|^{2}=|\gamma|^{2}\langle v, v\rangle^{2}=\langle u, u\rangle\langle v, v\rangle .
$$

This completes the proof of the "if" part.
To prove the "only if" part, assume $|\langle u, v\rangle|^{2}=\langle u, u\rangle\langle v, v\rangle$. If $\langle v, v\rangle=0$, then with $\alpha=0$ and $\beta=1$ we have

$$
\langle\alpha u+\beta v, \alpha u+\beta v\rangle=\langle v, v\rangle=0
$$

If $\langle v, v\rangle \neq 0$, then with $\alpha=\langle v, v\rangle$ and $\beta=-\langle u, v\rangle$ we have $|\alpha|^{2}+|\beta|^{2}>0$ and
$\langle\alpha u+\beta v, \alpha u+\beta v\rangle=\langle v, v\rangle\left(\langle v, v\rangle\langle u, u\rangle-|\langle u, v\rangle|^{2}-|\langle u, v\rangle|^{2}+|\langle u, v\rangle|^{2}\right)=0$.
This completes the proof of the characterization of equality in the Cauchy-Bunyakovsky-Schwartz Inequality.

Corollary 2.3. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a nonnegative inner product on \mathscr{V}. Then

$$
\mathscr{N}=\{v \in \mathscr{V}:\langle v, v\rangle=0\}
$$

is a subspace of \mathscr{V}.
Proof. Let $v \in \mathscr{N}$, that is let $\langle v, v\rangle=0$. Let $u \in \mathscr{V}$ be arbitrary. Then by Cauchy-Bunyakovsky-Schwarz inequality we have $|\langle u, v\rangle|^{2} \leq\langle u, u\rangle\langle u, u\rangle$. Consequently $\langle u, v\rangle=0$ for all $u \in \mathscr{V}$. Let now $u, v \in \mathscr{N}$ and $\alpha, \beta \in \mathbb{F}$ be arbitrary. Then

$$
\langle\alpha u+\beta v, \alpha u+\beta v\rangle=|\alpha|^{2}\langle u, u\rangle+\alpha \bar{\beta}\langle u, v\rangle+\bar{\alpha} \beta\langle v, u\rangle+|\beta|^{2}\langle v, v\rangle=0
$$

since $\langle u, u\rangle=\langle u, v\rangle=\langle v, u\rangle=\langle v, v\rangle=0$.

Corollary 2.4. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a nonnegative inner product on \mathscr{V}. Then the following two implications are equivalent.

i-nondeg

(i) If $v \in \mathscr{V}$ and $\langle u, v\rangle=0$ for all $u \in \mathscr{V}$, then $v=0$.
(ii) If $v \in \mathscr{V}$ and $\langle v, v\rangle=0$, then $v=0$.

Proof. Assume that the implication (i) holds and let $v \in \mathscr{V}$ be such that $\langle v, v\rangle=0$. Let $u \in \mathscr{V}$ be arbitrary. By the the CBS inequality

$$
|\langle u, v\rangle|^{2} \leq\langle u, u\rangle\langle v, v\rangle=0
$$

Thus, $\langle u, v\rangle=0$ for all $u \in \mathscr{V}$. By (i) we conclude $v=0$. This proves (ii).
The converse is trivial. However, here is a proof. Assume that the implication (ii) holds. To prove (i), let $v \in \mathscr{V}$ and assume $\langle u, v\rangle=0$ for all $u \in \mathscr{V}$. Setting $u=v$ we get $\langle v, v\rangle=0$. Now (ii) yields $v=0$.

Definition 2.5. Let \mathscr{V} be a vector space over a scalar field \mathbb{F}. An inner product $[\cdot, \cdot]$ on \mathscr{V} is nondegenerate if the following implication holds
(d) (nondegenerecy) $u \in \mathscr{V}$ and $[u, v]=0$ for all $v \in \mathscr{V}$ implies $u=0$.

We conclude this section with a characterization of the best approximation property.
th-BA-Ort Theorem 2.6 (Best Approximation-Orthogonality Theorem). Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be an inner product space with a nonnegative inner product. Let \mathscr{U} be a subspace of \mathscr{V}. Let $v \in \mathscr{V}$ and $u_{0} \in \mathscr{U}$. Then

$$
\begin{equation*}
\forall u \in \mathscr{U} \quad\left\langle v-u_{0}, v-u_{0}\right\rangle \leq\langle v-u, v-u\rangle . \tag{9}
\end{equation*}
$$

eq-mind
if and only if

$$
\begin{equation*}
\forall u \in \mathscr{U} \quad\left\langle v-u_{0}, u\right\rangle=0 . \tag{10}
\end{equation*}
$$

eq-orth

Proof. First we prove the "only if" part. Assume (9). Let $u \in \mathscr{U}$ be arbitrary. Set $\alpha=\left\langle v-u_{0}, u\right\rangle$. Clearly $\alpha \in \mathbb{F}$. Let $t \in \mathbb{Q} \subseteq \mathbb{F}$ be arbitrary. Since $u_{0}-t \alpha u \in \mathscr{U},(9)$ implies

$$
\begin{equation*}
\forall t \in \mathbb{Q} \quad\left\langle v-u_{0}, v-u_{0}\right\rangle \leq\left\langle v-u_{0}+t \alpha u, v-u_{0}+t \alpha u\right\rangle . \tag{11}
\end{equation*}
$$

eq-mind1
Now recall that $\alpha=\left\langle v-u_{0}, u\right\rangle$ and expand the right-hand side of (11):

$$
\begin{aligned}
\left\langle v-u_{0}+t \alpha u, v-u_{0}+t \alpha u\right\rangle= & \left\langle v-u_{0}, v-u_{0}\right\rangle+\left\langle v-u_{0}, t \alpha u\right\rangle \\
& +\left\langle t \alpha u, v-u_{0}\right\rangle+\langle t \alpha u, t \alpha u\rangle \\
= & \left\langle v-u_{0}, v-u_{0}\right\rangle+t \bar{\alpha}\left\langle v-u_{0}, u\right\rangle
\end{aligned}
$$

$$
\begin{gathered}
+t \alpha\left\langle u, v-u_{0}\right\rangle+t^{2}|\alpha|^{2}\langle u, u\rangle \\
=\left\langle v-u_{0}, v-u_{0}\right\rangle+2 t|\alpha|^{2}+t^{2}|\alpha|^{2}\langle u, u\rangle .
\end{gathered}
$$

Thus (11) is equivalent to

$$
\begin{equation*}
\forall t \in \mathbb{Q} \quad 0 \leq 2 t|\alpha|^{2}+t^{2}|\alpha|^{2}\langle u, u\rangle . \tag{12}
\end{equation*}
$$

eq-mind2
By the High School Theorem, (12) implies

$$
4|\alpha|^{4}-4|\alpha|^{2}\langle u, u\rangle 0=4|\alpha|^{4} \leq 0 .
$$

Consequently $\alpha=\left\langle v-u_{0}, u\right\rangle=0$. Since $u \in \mathscr{U}$ was arbitrary, (10) is proved.
For the "if" part assume that (10) is true. Let $u \in \mathscr{U}$ be arbitrary. Notice that $u_{0}-u \in \mathscr{U}$ and calculate

$$
\begin{aligned}
\langle v-u, v-u\rangle & =\left\langle v-u_{0}+u_{0}-u, v-u_{0}+u_{0}-u\right\rangle \\
\text { by (10) and Pythag. thm. } & =\left\langle v-u_{0}, v-u_{0}\right\rangle+\left\langle u_{0}-u, u_{0}-u\right\rangle \\
\text { since }\left\langle u_{0}-u, u_{0}-u\right\rangle \geq 0 & \geq\left\langle v-u_{0}, v-u_{0}\right\rangle .
\end{aligned}
$$

This proves (9).

3 Positive definite inner products

It follows from Corollary 2.4 that a nonnegative inner product $\langle\cdot, \cdot\rangle$ on \mathscr{V} is nondegenerate if and only if $\langle v, v\rangle=0$ implies $v=0$. A nonnegative nondegenerate inner product is also called positive definite inner product. Since positive definite inner products are the most often encountered inner products we give the complete definition as it is commonly given in textbooks.

Definition 3.1. Let \mathscr{V} be a vector space over a scalar field \mathbb{F}. A function $\langle\cdot, \cdot\rangle: \mathscr{V} \times \mathscr{V} \rightarrow \mathbb{F}$ is called a positive definite inner product on \mathscr{V} if the following conditions are satisfied;
(a) $\forall u, v, w \in \mathscr{V} \quad \forall \alpha, \beta \in \mathbb{F} \quad\langle\alpha u+\beta v, v\rangle=\alpha\langle u, w\rangle+\beta\langle v, w\rangle$,
(b) $\forall u, v \in \mathscr{V} \quad\langle u, v\rangle=\overline{\langle v, u\rangle}$,
(c) $\forall v \in \mathscr{V} \quad\langle v, v\rangle \geq 0$,
(d) If $v \in \mathscr{V}$ and $\langle v, v\rangle=0$, then $v=0$.

A positive definite inner product gives rise to a norm.

Theorem 3.2. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a vector space over \mathbb{F} with a positive definite inner product $\langle\cdot, \cdot\rangle$. The function $\|\cdot\|: \mathscr{V} \rightarrow \mathbb{R}$ defined by

$$
\|v\|=\sqrt{\langle v, v\rangle}, \quad v \in \mathscr{V}
$$

is a norm on \mathscr{V}. That is for all $u, v \in \mathscr{V}$ and all $\alpha \in \mathbb{F}$ we have $\|v\| \geq 0$, $\|\alpha v\|=|\alpha|\|v\|,\|u+v\| \leq\|u\|+\|v\|$ and $\|v\|=0$ implies $v=0_{\mathscr{V}}$.

Definition 3.3. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a vector space over \mathbb{F} with a positive definite inner product $\langle\cdot, \cdot\rangle$. A set of vectors $\mathscr{A} \subset \mathscr{V}$ is said to form an orthogonal system in \mathscr{V} if for all $u, v \in \mathscr{A}$ we have $\langle u, v\rangle=0$ whenever $u \neq v$ and for all $v \in \mathscr{A}$ we have $\langle v, v\rangle>0$. An orthogonal system \mathscr{A} is called an orthonormal system if for all $v \in \mathscr{A}$ we have $\langle v, v\rangle=1$.

Theorem 3.4. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a vector space over \mathbb{F} with a positive definite inner product $\langle\cdot, \cdot\rangle$. Let $n \in \mathbb{N}$ and let u_{1}, \ldots, u_{n} be an orthogonal system in \mathscr{V}, and set $\mathscr{U}=\operatorname{span}\left\{u_{1}, \ldots, u_{n}\right\}$. The following statements hold.
(a) If $u=\sum_{j=1}^{n} \alpha_{j} u_{j}$, then for all $j \in\{1, \ldots, n\}$ we have $\alpha_{j}=\frac{\left\langle u, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle}$. In particular, an orthogonal system is linearly independent.
th-os-eci2
(b) For every $v \in \mathscr{V}$ we have

$$
v-\sum_{j=1}^{n} \frac{\left\langle v, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j} \quad \perp \quad \mathscr{U} .
$$

th-os-eci3
(c) For every $v \in \mathscr{V}$ Bessel's inequality holds

$$
\|v\|^{2} \geq \sum_{j=1}^{n} \frac{\left|\left\langle v, u_{j}\right\rangle\right|^{2}}{\left\langle u_{j}, u_{j}\right\rangle} .
$$

The equality holds in Bessel's inequality if and only if $v \in \mathscr{U}$.
Proof. To prove (a), let $u=\sum_{j=1}^{n} \alpha_{j} u_{j}$, let $k \in\{1, \ldots, n\}$ be arbitrary, and calculate the inner product with u_{k} for both sides of the equality. Then, using the linearity of the inner product in the first variable and the fact that $\left\langle u_{j}, u_{k}\right\rangle=0$ whenever $j \neq k$ we obtain $\left\langle u, u_{k}\right\rangle=\sum_{j=1}^{n} \alpha_{j}\left\langle u_{j}, u_{k}\right\rangle=$ $\alpha_{k}\left\langle u_{k}, u_{k}\right\rangle$. Since $\left\langle u_{k}, u_{k}\right\rangle>0$, we have $\alpha_{k}=\frac{\left\langle u, u_{k}\right\rangle}{\left\langle u_{k}, u_{k}\right\rangle}$.

To prove (b) let $v \in \mathscr{V}$ be arbitrary. Let let $k \in\{1, \ldots, n\}$ be arbitrary, and calculate the inner product

$$
\begin{aligned}
\left\langle v-\sum_{j=1}^{n} \frac{\left\langle v, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j}, u_{k}\right\rangle & =\left\langle v, u_{k}\right\rangle-\sum_{j=1}^{n} \frac{\left\langle v, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle}\left\langle u_{j}, u_{k}\right\rangle \\
& =\left\langle v, u_{k}\right\rangle-\left\langle v, u_{k}\right\rangle \\
& =0 .
\end{aligned}
$$

Since $k \in\{1, \ldots, n\}$ was arbitrary, replacing u_{k} with an arbitrary vector in \mathscr{U} also leads to the zero inner product.

To prove (c) we observe that the $n+1$ vectors on the right side in the equality

$$
v=\left(v-\sum_{j=1}^{n} \frac{\left\langle v, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j}\right)+\sum_{j=1}^{n} \frac{\left\langle v, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j}
$$

are mutually orthogonal and apply the Pythagorean Theorem to obtain

$$
\|v\|^{2}=\left\|v-\sum_{j=1}^{n} \frac{\left\langle v, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j}\right\|^{2}+\sum_{j=1}^{n} \frac{\left|\left\langle v, u_{j}\right\rangle\right|^{2}}{\left\langle u_{j}, u_{j}\right\rangle} .
$$

Bessel's inequality and the characterization of the equality follow from the preceding equality.

The formulas that appear in the preceding theorem are probably the most important formulas in positive definite inner product spaces. My nickname for the content in (a) is "easy coefficients" since (a) shows that finding the coefficients of a linear combination of an orthogonal system is given by clear formulas. The vector

$$
\sum_{j=1}^{n} \frac{\left\langle v, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j}
$$

in (b) is called the orthogonal projection of v onto \mathscr{U}. For more about the orthogonal projections see paragraphs after Corollary 3.11. My nickname for the content in (b) is "easy orthogonal projection" since (b) shows that finding the coefficients of the orthogonal projection onto a span of an orthogonal system is given by a clear formula. Bessel's inequality needs no nickname, it is one of the key tools in proving convergence of Fourier series.

Theorem 3.5 (The Gram-Schmidt orthogonalization). Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a vector space over \mathbb{F} with a positive definite inner product $\langle\cdot, \cdot\rangle$. Let $n \in$ \mathbb{N} and let v_{1}, \ldots, v_{n} be linearly independent vectors in \mathscr{V}. Let the vectors u_{1}, \ldots, u_{n} be defined recursively by

$$
\begin{aligned}
u_{1} & =v_{1} \\
u_{k+1} & =v_{k+1}-\sum_{j=1}^{k} \frac{\left\langle v_{k+1}, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j}, \quad k \in\{1, \ldots, n-1\} .
\end{aligned}
$$

Then the vectors u_{1}, \ldots, u_{n} form an orthogonal system which has the same fan as the given vectors v_{1}, \ldots, v_{n}.

Proof. We will prove by Mathematical Induction the following statement: For all $k \in\{1, \ldots, n\}$ we have:
(a) $\left\langle u_{k}, u_{k}\right\rangle>0$ and $\left\langle u_{j}, u_{k}\right\rangle=0$ whenever $j \in\{1, \ldots, k-1\}$;
(b) vectors u_{1}, \ldots, u_{k} are linearly independent;
(c) $\operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$.

For $k=1$ statements (a), (b) and (c) are clearly true. Let $m \in$ $\{1, \ldots, n-1\}$ and assume that statements (a), (b) and (c) are true for all $k \in\{1, \ldots, m\}$.

Next we will prove that statements (a), (b) and (c) are true for $k=m+1$. Recall the definition of u_{m+1} :

$$
u_{m+1}=v_{m+1}-\sum_{j=1}^{m} \frac{\left\langle v_{m+1}, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j} .
$$

By the Inductive Hypothesis we have $\operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$. Since $v_{1} \ldots, v_{m+1}$ are linearly independent, $v_{m+1} \notin \operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}$. Therefore, $u_{m+1} \neq 0_{\mathscr{V}}$. That is $\left\langle u_{m+1}, u_{m+1}\right\rangle>0$. Let $k \in\{1, \ldots, m\}$ be arbitrary. Then by the Inductive Hypothesis we have that $\left\langle u_{j}, u_{k}\right\rangle=0$ whenever $j \in\{1, \ldots, m\}$ and $j \neq k$. Therefore,

$$
\begin{aligned}
\left\langle u_{m+1}, u_{k}\right\rangle & =\left\langle v_{m+1}, u_{k}\right\rangle-\sum_{j=1}^{m} \frac{\left\langle v_{m+1}, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle}\left\langle u_{j}, u_{k}\right\rangle \\
& =\left\langle v_{m+1}, u_{k}\right\rangle-\left\langle v_{m+1}, u_{k}\right\rangle \\
& =0
\end{aligned}
$$

This proves claim (a). To prove claim (b) notice that by the Inductive Hypothesis u_{1}, \ldots, u_{m} are linearly independent and $u_{m+1} \notin \operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}$
since $v_{m+1} \notin \operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}$. To prove claim (c) notice that the definition of u_{m+1} implies $u_{m+1} \in \operatorname{span}\left\{v_{1}, \ldots, v_{m+1}\right\}$. Since by the inductive hypothesis $\operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$, we have $\operatorname{span}\left\{u_{1}, \ldots, u_{m+1}\right\} \subseteq$ $\operatorname{span}\left\{v_{1}, \ldots, v_{m+1}\right\}$. The converse inclusion follows from the fact that $v_{m+1} \in$ $\operatorname{span}\left\{u_{1}, \ldots, u_{m+1}\right\}$.

It is clear that the claim of the theorem follows from the claim that has been proven.

The following two statements are immediate consequences of the GramSchmidt orthogonalization process.

Corollary 3.6. If \mathscr{V} is a finite dimensional vector space with positive definite inner product $\langle\cdot, \cdot\rangle$, then \mathscr{V} has an orthonormal basis.
c-onb-ut Corollary 3.7. If \mathscr{V} is a complex vector space with positive definite inner product and $T \in \mathscr{L}(\mathscr{V})$ then there exists an orthonormal basis \mathscr{B} such that $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper-triangular.
Definition 3.8. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a positive definite inner product space and $\mathscr{A} \subset \mathscr{V}$. We define $\mathscr{A}^{\perp}=\{v \in \mathscr{V}:\langle v, a\rangle=0 \forall a \in \mathscr{A}\}$.

The following is a straightforward proposition.
Proposition 3.9. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a positive definite inner product space and $\mathscr{A} \subset \mathscr{V}$. Then \mathscr{A}^{\perp} is a subspace of \mathscr{V}.
th-fd-ds Theorem 3.10. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a positive definite inner product space and let \mathscr{U} be a finite dimensional subspace of \mathscr{V}. Then $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$.

Proof. We first prove that $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$. Note that since \mathscr{U} is a subspace of \mathscr{V}, \mathscr{U} inherits the positive definite inner product from \mathscr{V}. Thus \mathscr{U} is a finite dimensional positive definite inner product space. Thus there exists an orthonormal basis of $\mathscr{U}, \mathscr{B}=\left\{u_{1}, u_{2}, \ldots u_{k}\right\}$.

Let $v \in \mathscr{V}$ be arbitrary. Then

$$
v=\left(\sum_{j=1}^{k}\left\langle v, u_{j}\right\rangle u_{j}\right)+\left(v-\sum_{j=1}^{k}\left\langle v, u_{j}\right\rangle u_{j}\right),
$$

where the first summand is in \mathscr{U}. By Theorem 3.4(b) the second summand is in \mathscr{U}^{\perp}. This proves that $\mathscr{V}=\mathscr{U}+\mathscr{U}^{\perp}$.

To prove that the sum is direct, let $w \in \mathscr{U}$ and $w \in \mathscr{U}^{\perp}$. Then $\langle w, w\rangle=$ 0 . Since $\langle\cdot, \cdot\rangle$ is positive definite, this implies $w=0 \%$. The theorem is proved.
co-pp Corollary 3.11. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a positive definite inner product space and let \mathscr{U} be a finite dimensional subspace of \mathscr{V}. Then $\left(\mathscr{U}^{\perp}\right)^{\perp}=\mathscr{U}$.

Recall that an arbitrary direct sum $\mathscr{V}=\mathscr{U} \oplus \mathscr{W}$ gives rise to a projection operator $P_{\mathscr{U} \| \mathscr{W}}$, the projection of \mathscr{V} onto \mathscr{U} parallel to \mathscr{W}.

If $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$, then the resulting projection of \mathscr{V} onto \mathscr{U} parallel to \mathscr{U}^{\perp} is called the orthogonal projection of \mathscr{V} onto \mathscr{U}; it is denoted simply by $P_{\mathscr{U}}$. By definition for every $v \in \mathscr{V}$,

$$
u=P_{\mathscr{U}} v \quad \Leftrightarrow \quad u \in \mathscr{U} \quad \text { and } \quad v-u \in \mathscr{U}^{\perp} .
$$

As for any projection we have $P_{\mathscr{U}} \in \mathscr{L}(\mathscr{V}), \operatorname{ran} P_{\mathscr{U}}=\mathscr{U}$, nul $P_{\mathscr{U}}=\mathscr{U}^{\perp}$, and $\left(P_{\mathscr{U}}\right)^{2}=P_{\mathscr{U}}$.

Theorems 3.10 and 2.6 yield the following solution of the best approximation problem for finite dimensional subspaces of a vector space with a positive definite inner product.

Corollary 3.12. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a vector space with a positive definite inner product and let \mathscr{U} be a finite dimensional subspace of \mathscr{V}. For arbitrary $v \in \mathscr{V}$ the vector $P_{\mathscr{U}} v \in \mathscr{U}$ is the unique best approximation for v in \mathscr{U}. That is

$$
\begin{equation*}
\left\|v-P_{\mathscr{U}} v\right\|<\|v-u\| \quad \text { for all } \quad u \in \mathscr{U} \backslash\left\{P_{\mathscr{U}} v\right\} . \tag{13}
\end{equation*}
$$

eq-bapp

Proof. Let $v \in \mathscr{V}$ and $u \in \mathscr{U} \backslash\left\{P_{\mathscr{U}} v\right\}$ be arbitrary. Recall that the basic facts about the orthogonal projection:

$$
P_{\mathscr{U}} v \in \mathscr{U}, \quad v-P_{\mathscr{U}} v \in \mathscr{U}^{\perp} .
$$

In the next calculation we use the preceding two facts, the Pythagorean Theorem and the fact that $u \neq P_{\mathscr{U}} v$ as follows

$$
\begin{aligned}
\|v-u\|^{2} & =\left\|v-P_{\mathscr{U}} v+P_{\mathscr{U}} v-u\right\|^{2} \\
& =\left\|v-P_{\mathscr{U}} v\right\|^{2}+\left\|P_{\mathscr{U}} v-u\right\|^{2} \\
& >\left\|v-P_{\mathscr{U}} v\right\|^{2} .
\end{aligned}
$$

Taking the square root of both sides of the preceding inequality proves the corollary.

4 The definition of an adjoint operator

Let \mathscr{V} be a vector space over \mathbb{F}. The space $\mathscr{L}(\mathscr{V}, \mathbb{F})$ is called the dual space of \mathscr{V}; it is denoted by \mathscr{V}^{*}.
th-Phi Theorem 4.1. Let \mathscr{V} be a finite dimensional vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. Define the mapping

$$
\Phi: \mathscr{V} \rightarrow \mathscr{V}^{*}
$$

as follows: for $w \in \mathscr{V}$ we set

$$
(\Phi(w))(v)=\langle v, w\rangle \quad \text { for all } \quad v \in \mathscr{V} .
$$

Then Φ is a anti-linear bijection.
Proof. Clearly, for each $w \in \mathscr{V}, \Phi(w) \in \mathscr{V}^{*}$. The mapping Φ is anti-linear, since for $\alpha, \beta \in \mathbb{F}$ and $u, w \in \mathscr{V}$, for all $v \in \mathscr{V}$ we have

$$
\begin{aligned}
(\Phi(\alpha u+\beta w))(v) & =\langle v, \alpha u+\beta w\rangle \\
& =\bar{\alpha}\langle v, u\rangle+\bar{\beta}\langle v, w\rangle \\
& =\bar{\alpha}(\Phi(u))(v)+\bar{\beta}(\Phi(w))(v) \\
& =(\bar{\alpha} \Phi(u)+\bar{\beta} \Phi(w))(v) .
\end{aligned}
$$

Thus $\Phi(\alpha u+\beta w)=\bar{\alpha} \Phi(u)+\bar{\beta} \Phi(w)$. This proves anti-linearity.
To prove injectivity of Φ, let $u, w \in \mathscr{V}$ be such that $\Phi(u)=\Phi(w)$. Then $(\Phi(u))(v)=(\Phi(w))(v)$ for all $v \in \mathscr{V}$. By the definition of Φ this means $\langle v, u\rangle=\langle v, w\rangle$ for all $v \in \mathscr{V}$. Consequently, $\langle v, u-w\rangle=0$ for all $v \in \mathscr{V}$. In particular, with $v=u-w$ we have $\langle u-w, u-w\rangle=0$. Since $\langle\cdot, \cdot \cdot\rangle$ is a positive definite inner product, it follows that $u-w=0_{\mathscr{V}}$, that is $u=w$.

To prove that Φ is a surjection we use the assumption that \mathscr{V} is finite dimensional. Then there exists an orthonormal basis u_{1}, \ldots, u_{n} of \mathscr{V}. Let $\varphi \in \mathscr{V}^{*}$ be arbitrary. Set

$$
w=\sum_{j=1}^{n} \overline{\varphi\left(u_{j}\right)} u_{j} .
$$

The proof that $\Phi(w)=\varphi$ follows. Let $v \in \mathscr{V}$ be arbitrary.

$$
\begin{aligned}
(\Phi(w))(v) & =\langle v, w\rangle \\
& =\left\langle v, \sum_{j=1}^{n} \overline{\varphi\left(u_{j}\right)} u_{j}\right\rangle \\
& =\sum_{j=1}^{n} \varphi\left(u_{j}\right)\left\langle v, u_{j}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle \varphi\left(u_{j}\right) \\
& =\varphi\left(\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle u_{j}\right) \\
& =\varphi(v)
\end{aligned}
$$

The theorem is proved.
pr-alb Proposition 4.2. Let \mathscr{V} and \mathscr{W} be vector spaces over \mathbb{F} and let \mathscr{V} be finitedimensional. If $\Psi: \mathscr{V} \rightarrow \mathscr{W}$ is an anti-linear bijection, then \mathscr{W} is finitedimensional and $\operatorname{dim} \mathscr{V}=\operatorname{dim} \mathscr{W}$.
Proof. Let $n=\operatorname{dim} \mathscr{V}$ and let u_{1}, \ldots, u_{n} be a basis for \mathscr{V}. We will prove that $\Psi\left(u_{1}\right), \ldots, \Psi\left(u_{n}\right)$ is a basis for \mathscr{W}. First we prove that $\Psi\left(u_{1}\right), \ldots, \Psi\left(u_{n}\right)$ are linearly independent. For this goal, let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ be such that

$$
\alpha_{1} \Psi\left(u_{1}\right)+\cdots+\alpha_{n} \Psi\left(u_{n}\right)=0_{\mathscr{W}} .
$$

Since $\Psi: \mathscr{V} \rightarrow \mathscr{W}$ is anti-linear, the last equality is equivalent to

$$
\Psi\left(\overline{\alpha_{1}} u_{1}+\cdots+\overline{\alpha_{n}} u_{n}\right)=0_{\mathscr{W}} .
$$

Consequently, since Ψ is anti-linear bijection, we have

$$
\overline{\alpha_{1}} u_{1}+\cdots+\overline{\alpha_{n}} u_{n}=0_{\mathscr{V}}
$$

Since u_{1}, \ldots, u_{n} are linearly independent, we deduce that for all $k \in\{1, \ldots, n\}$ we have $\overline{\alpha_{k}}=0_{\mathbb{F}}$. Therefore for all $k \in\{1, \ldots, n\}$ we have $\alpha_{k}=\overline{\overline{\alpha_{k}}}=\overline{0_{\mathbb{F}}}=$ $0_{\mathbb{F}}$. This proves linear independence.

Now we prove that $\Psi\left(u_{1}\right), \ldots, \Psi\left(u_{n}\right)$ span \mathscr{W}. Let $w \in \mathscr{W}$ be arbitrary. Since $\Psi: \mathscr{V} \rightarrow \mathscr{W}$ is a surjection there exists $v \in \mathscr{V}$ such that $\Psi(v)=w$. Since the vectors u_{1}, \ldots, u_{n} span \mathscr{V}, there exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ such that

$$
v=\alpha_{1} u_{1}+\cdot+\alpha_{n} u_{n}
$$

Applying Ψ to both sides of the preceding equality and using that Ψ is anti-linear, we obtain

$$
w=\Psi(v)=\Psi\left(\alpha_{1} u_{1}+\cdot+\alpha_{n} u_{n}\right)=\overline{\alpha_{1}} \Psi\left(u_{1}\right)+\cdots+\overline{\alpha_{n}} \Psi\left(u_{n}\right) .
$$

Thus, w is a linear combination of $\Psi\left(u_{1}\right), \ldots, \Psi\left(u_{n}\right)$. Since $w \in \mathscr{W}$ was arbitrary, the vectors $\Psi\left(u_{1}\right), \ldots, \Psi\left(u_{n}\right)$ span \mathscr{W}. This proves that $\Psi\left(u_{1}\right), \ldots, \Psi\left(u_{n}\right)$ is a basis for \mathscr{W}. Thus $\operatorname{dim} \mathscr{V}=\operatorname{dim} \mathscr{W}$.

Corollary 4.3. Let \mathscr{V} be a finite dimensional vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. Then $\operatorname{dim} \mathscr{V}=\operatorname{dim} \mathscr{V}^{*}$.

Proof. Since $\Phi: \mathscr{V} \rightarrow \mathscr{V}^{*}$ from Theorem 4.1 is an anti-linear bijection, Proposition 4.2 implies that $\operatorname{dim} \mathscr{V}=\operatorname{dim} \mathscr{V} *$.

The mapping Φ from Theorem 4.1 is a convenient tool for defining the adjoint of a linear operator. In the following definition, we will deal with two positive definite inner product spaces $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$. We will use subscripts to emphasize the inner products and different mappings Φ :

$$
\Phi_{\mathscr{V}}: \mathscr{V} \rightarrow \mathscr{V}^{*}, \quad \Phi_{\mathscr{W}}: \mathscr{W} \rightarrow \mathscr{W}^{*} .
$$

Recall that for every $x, v \in \mathscr{V}$ we have

$$
\left(\Phi_{\mathscr{V}}(v)\right)(x)=\langle x, v\rangle_{\mathscr{V}}
$$

and for every $y, w \in \mathscr{W}$ we have

$$
\left(\Phi_{\mathscr{W}}(w)\right)(y)=\langle y, w\rangle_{\mathscr{W}} .
$$

Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be two finite dimensional vector spaces over the same scalar field \mathbb{F} and with positive definite inner products. Let $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$. We define the adjoint $T^{*}: \mathscr{W} \rightarrow \mathscr{V}$ of T by

$$
\begin{equation*}
T^{*} w=\Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T\right), \quad w \in \mathscr{W} . \tag{14}
\end{equation*}
$$

Since $\Phi_{\mathscr{W}}$ and $\Phi_{\mathscr{V}}^{-1}$ are anti-linear, T^{*} is linear. For arbitrary $\alpha_{1}, \alpha_{1} \in \mathbb{F}$ and $w_{1}, w_{2} \in \mathscr{W}$ we have

$$
\begin{aligned}
T^{*}\left(\alpha_{1} w_{1}+\alpha_{2} w_{2}\right) & =\Phi_{\mathscr{\mathscr { V }}}^{-1}\left(\Phi_{\mathscr{W}}\left(\alpha_{1} w_{1}+\alpha_{2} w_{2}\right) \circ T\right) \\
& =\Phi_{\mathscr{\mathscr { V }}}^{-1}\left(\left(\bar{\alpha}_{1} \Phi_{\mathscr{W}}\left(w_{1}\right)+\bar{\alpha}_{2} \Phi_{\mathscr{W}}\left(w_{2}\right)\right) \circ T\right) \\
& =\Phi_{\mathscr{V}}^{-1}\left(\bar{\alpha}_{1} \Phi_{\mathscr{W}}\left(w_{1}\right) \circ T+\bar{\alpha}_{2} \Phi_{\mathscr{W}}\left(w_{2}\right) \circ T\right) \\
& =\alpha_{1} \Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}\left(w_{1}\right) \circ T\right)+\alpha_{2} \Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}\left(w_{2}\right) \circ T\right) \\
& =\alpha_{1} T^{*} w_{1}+\alpha_{2} T^{*} w_{2} .
\end{aligned}
$$

Thus, $T^{*} \in \mathscr{L}(\mathscr{W}, \mathscr{V})$.
Next we will deduce the most important property of T^{*}. By the definition of $T^{*}: \mathscr{W} \rightarrow \mathscr{V}$, for a fixed arbitrary $w \in \mathscr{W}$ we have

$$
T^{*} w=\Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T\right) .
$$

This is equivalent to

$$
\Phi_{\mathscr{V}}\left(T^{*} w\right)=\Phi_{\mathscr{W}}(w) \circ T,
$$

which is, by the definition of $\Phi_{\mathscr{V}}$, equivalent to

$$
\left(\Phi_{\mathscr{W}}(w) \circ T\right)(v)=\left\langle v, T^{*} w\right\rangle_{\mathscr{V}} \quad \text { for all } \quad v \in \mathscr{V}
$$

which, in turn, is equivalent to

$$
\left(\Phi_{\mathscr{W}}(w)\right)(T v)=\left\langle v, T^{*} w\right\rangle_{\mathscr{V}} \quad \text { for all } \quad v \in \mathscr{V} .
$$

From the definition of $\Phi_{\mathscr{W}}$ the last statement is equivalent to

$$
\langle T v, w\rangle_{\mathscr{W}}=\left\langle v, T^{*} w\right\rangle_{\mathscr{V}} \quad \text { for all } \quad v \in \mathscr{V} .
$$

The reasoning above proves the following proposition.
p-ch-adj Proposition 4.4. Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be two finite dimensional vector spaces over the same scalar field \mathbb{F} and with positive definite inner products. Let $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ and $S \in \mathscr{L}(\mathscr{W}, \mathscr{V})$. Then $S=T^{*}$ if and only if

$$
\begin{equation*}
\langle T v, w\rangle_{\mathscr{W}}=\langle v, S w\rangle_{\mathscr{V}} \quad \text { for all } \quad v \in \mathscr{V}, w \in \mathscr{W} . \tag{15}
\end{equation*}
$$

$$
\mathrm{eq}-\mathrm{def}-\mathrm{T} * \mathrm{e}
$$

5 Properties of the adjoint operator

Theorem 5.1. Let $\left(\mathscr{U},\langle\cdot, \cdot\rangle_{\mathscr{U}}\right),\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be three finite dimensional vector space over the same scalar field \mathbb{F} and with positive definite inner products. Let $S \in \mathscr{L}(\mathscr{U}, \mathscr{V})$ and $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$. Then $(T S)^{*}=S^{*} T^{*}$.
Proof. By definition for every $u \in \mathscr{U}, v \in \mathscr{V}$ and $w \in \mathscr{W}$ we have

$$
\begin{aligned}
S^{*} v & =\Phi_{\mathscr{U}}^{-1}\left(\Phi_{\mathscr{V}}(v) \circ S\right) \\
T^{*} w & =\Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T\right) \\
(T S)^{*} w & =\Phi_{\mathscr{U}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ(T S)\right)
\end{aligned}
$$

With this, for arbitrary $w \in \mathscr{W}$ we calculate

$$
\begin{aligned}
S^{*} T^{*} w & =S^{*}\left(T^{*} w\right) \\
& =\Phi_{\mathscr{U}}^{-1}\left(\Phi_{\mathscr{V}}\left(\Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T\right)\right) \circ S\right) \\
& =\Phi_{\mathscr{U}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T \circ S\right) \\
& =(T S)^{*} w .
\end{aligned}
$$

Thus $(T S)^{*}=S^{*} T^{*}$.

A function $f: X \rightarrow X$ is said to be an involution if it is its own inverse, that is if $f(f(x))=x$ for all $x \in X$.
th-pr-adj-in Theorem 5.2. Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be two finite dimensional vector spaces over the same scalar field \mathbb{F} and with positive definite inner products. The adjoint mapping

$$
{ }^{*}: \mathscr{L}(\mathscr{V}, \mathscr{W}) \rightarrow \mathscr{L}(\mathscr{W}, \mathscr{V})
$$

is an anti-linear bijection. Its inverse is the adjoint mapping from $\mathscr{L}(\mathscr{W}, \mathscr{V})$ to $\mathscr{L}(\mathscr{V}, \mathscr{W})$. In particular the adjoint mapping in $\mathscr{L}(\mathscr{V}, \mathscr{V})$ is an anti-linear involution.

Proof. To prove that ${ }^{*}: \mathscr{L}(\mathscr{V}, \mathscr{W}) \rightarrow \mathscr{L}(\mathscr{W}, \mathscr{V})$ is anti-linear let $\alpha, \beta \in \mathbb{F}$ be arbitrary and let $S, T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ be arbitrary. By the definition of * for arbitrary $w \in \mathscr{W}$ we have

$$
\begin{aligned}
(\alpha S+\beta T)^{*} w & =\Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ(\alpha S+\beta T)\right) \\
& =\Phi_{\mathscr{V}}^{-1}\left(\alpha \Phi_{\mathscr{W}}(w) \circ S+\beta \Phi_{\mathscr{W}}(w) \circ T\right) \\
& =\bar{\alpha} \Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ S\right)+\bar{\beta} \Phi_{\mathscr{V}}^{-1}\left(\Phi_{\mathscr{W}}(w) \circ T\right) \\
& =\bar{\alpha} S^{*} w+\bar{\beta} T^{*} w \\
& =\left(\bar{\alpha} S^{*}+\bar{\beta} T^{*}\right) w .
\end{aligned}
$$

Hence $(\alpha S+\beta T)^{*}=\bar{\alpha} S^{*}+\bar{\beta} T^{*}$.
To prove that the adjoint mapping ${ }^{*}: \mathscr{L}(\mathscr{V}, \mathscr{W}) \rightarrow \mathscr{L}(\mathscr{W}, \mathscr{V})$ is a bijection we will use the adjoint mapping ${ }^{*}: \mathscr{L}(\mathscr{W}, \mathscr{V}) \rightarrow \mathscr{L}(\mathscr{V}, \mathscr{W})$. In fact we will prove that ${ }^{*}$ is the inverse of ${ }^{*}$. To this end we will prove that for all $S \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ we have that $\left(S^{*}\right)^{\star}=S$ and that for all $T \in \mathscr{L}(\mathscr{W}, \mathscr{V})$ we have that $\left(T^{\star}\right)^{*}=T$.

Here are the proofs. By the definition of the mapping ${ }^{*}: \mathscr{L}(\mathscr{V}, \mathscr{W}) \rightarrow$ $\mathscr{L}(\mathscr{W}, \mathscr{V})$ for an arbitrary $S \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ we have

$$
\forall v \in \mathscr{V} \quad \forall w \in \mathscr{W} \quad\left\langle S^{*} w, v\right\rangle_{\mathscr{V}}=\langle w, S v\rangle_{\mathscr{W}} .
$$

By Proposition 4.4 this identity yields $\left(S^{*}\right)^{\star}=S$. By the definition of the mapping ${ }^{*}: \mathscr{L}(\mathscr{W}, \mathscr{V}) \rightarrow \mathscr{L}(\mathscr{V}, \mathscr{W})$ for an arbitrary $T \in \mathscr{L}(\mathscr{W}, \mathscr{V})$ we have

$$
\forall w \in \mathscr{W} \quad \forall v \in \mathscr{V} \quad\left\langle T^{*} v, w\right\rangle_{\mathscr{W}}=\langle v, T w\rangle_{\mathscr{V}} .
$$

By Proposition 4.4 this identity yields $\left(T^{\star}\right)^{*}=T$.
th-pr-adj Theorem 5.3. Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be two finite dimensional vector spaces over the same scalar field \mathbb{F} and with positive definite inner products. The following statements hold.
(i) $\operatorname{nul}\left(T^{*}\right)=(\operatorname{ran} T)^{\perp}$.
(ii) $\operatorname{ran}\left(T^{*}\right)=(\operatorname{nul} T)^{\perp}$.
(iii) $\operatorname{nul}(T)=\left(\operatorname{ran} T^{*}\right)^{\perp}$.
(iv) $\operatorname{ran}(T)=\left(\operatorname{nul} T^{*}\right)^{\perp}$.
th-adj-mat Theorem 5.4. Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be two finite dimensional vector spaces over the same scalar field \mathbb{F} and with positive definite inner products. Let \mathscr{B} and \mathscr{C} be orthonormal bases of $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$, respectively, and let $T \in\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$. Then $\mathrm{M}_{\mathscr{B}}^{\mathscr{C}}\left(T^{*}\right)$ is the conjugate transpose of the matrix $\mathrm{M}_{\mathscr{C}}^{\mathscr{B}}(T)$.

Proof. Let $\mathscr{B}=\left\{v_{1}, \ldots, v_{m}\right\}$ and $\mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ be orthonormal bases from the theorem. Let $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, m\}$. Then the term in the j-th column and the i-th row of the $n \times m$ matrix $\mathrm{M}_{\mathscr{C}}^{\mathscr{B}}(T)$ is $\left\langle T v_{j}, w_{i}\right\rangle$, while the term in the i-th column and the j-th row of the $m \times n$ matrix $\mathrm{M}_{\mathscr{B}}^{\mathscr{C}}\left(T^{*}\right)$ is

$$
\left\langle T^{*} w_{i}, v_{j}\right\rangle=\left\langle w_{i}, T v_{j}\right\rangle=\overline{\left\langle T v_{j}, w_{i}\right\rangle}
$$

This proves the claim.
le-Uinv Lemma 5.5. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. Let \mathscr{U} be a subspace of \mathscr{V} and let $T \in \mathscr{L}(\mathscr{V})$. The subspace \mathscr{U} is invariant under T if and only if the subspace \mathscr{U}^{\perp} is invariant under T^{*}.

Proof. By the definition of adjoint we have

$$
\begin{equation*}
\langle T u, v\rangle=\left\langle u, T^{*} v\right\rangle \tag{16}
\end{equation*}
$$

eq-ad-1
for all $u, v \in \mathscr{V}$. Assume $T \mathscr{U} \subseteq \mathscr{U}$. From (16) we get

$$
0=\langle T u, v\rangle=\left\langle u, T^{*} v\right\rangle \quad \forall u \in \mathscr{U} \quad \text { and } \quad \forall v \in \mathscr{U}^{\perp}
$$

Therefore, $T^{*} v \in \mathscr{U}^{\perp}$ for all $v \in \mathscr{U}^{\perp}$. This proves "only if" part.
The proof of the "if" part is similar.

6 Self-adjoint and normal operators

Definition 6.1. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. An operator $T \in \mathscr{L}(\mathscr{V})$ is said to be self-adjoint if $T=T^{*}$. An operator $T \in \mathscr{L}(\mathscr{V})$ is said to be normal if $T T^{*}=T^{*} T$.
Proposition 6.2. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. All eigenvalues of a self-adjoint $T \in \mathscr{L}(\mathscr{V})$ are real.

Proof. Let $\lambda \in \mathbb{F}$ be an eigenvalue of T and let $T v=\lambda v$ with a nonzero $v \in \mathscr{V}$. Then

$$
\lambda\langle v, v\rangle=\langle T v, v\rangle=\langle v, T v\rangle=\langle v, \lambda v\rangle=\bar{\lambda}\langle v, v\rangle .
$$

Since $\langle v, v\rangle>0$ the preceding equalities yield $\lambda=\bar{\lambda}$.

> In the rest of this section we will consider only scalar fields \mathbb{F} which contain the imaginary unit i.

Proposition 6.3. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. Let $T \in \mathscr{L}(\mathscr{V})$. Then $T=0$ if and only if $\langle T v, v\rangle=0$ for all $v \in \mathscr{V}$.
Proof. Set, $[u, v]=\langle T u, v\rangle$ for all $u, v \in \mathscr{V}$. Then $[\cdot, \cdot]$ is a sesquilinear form on \mathscr{V}. Since $\langle\cdot, \cdot\rangle$ is a positive definite inner product, $T=0$ if and only if for all $u, v \in \mathscr{V}$ we have $\langle T u, v\rangle=0$, which in turn is equivalent to for all $u, v \in \mathscr{V}$ we have $[u, v]=0$. By Corollary $1.5[u, v]=0$ for all $u, v \in \mathscr{V}$ is equivalent to $[u, u]=0$ for all $u \in \mathscr{V}$, that is to $\langle T u, u\rangle=0$ for all $u \in \mathscr{V}$.

Proposition 6.4. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. An operator $T \in \mathscr{L}(\mathscr{V})$ is self-adjoint if and only if $\langle T v, v\rangle \in \mathbb{R}$ for all $v \in \mathscr{V}$.

Proof.
th-no-iff Theorem 6.5. Let \mathscr{V} be a vector space over \mathbb{F} and let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. An operator $T \in \mathscr{L}(\mathscr{V})$ is normal if and only if $\|T v\|=\left\|T^{*} v\right\|$ for all $v \in \mathscr{V}$.

Corollary 6.6. Let \mathscr{V} be a vector space over \mathbb{F}, let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V} and let $T \in \mathscr{L}(\mathscr{V})$ be normal. Then $\lambda \in \mathbb{C}$ is an eigenvalue of T if and only if $\bar{\lambda}$ is an eigenvalue of T^{*} and

$$
\operatorname{nul}\left(T^{*}-\bar{\lambda} I\right)=\operatorname{nul}(T-\lambda I) .
$$

7 The Spectral Theorem

> In the rest of the notes we will consider only the scalar field \mathbb{C}.

Theorem 7.1. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} and $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. Let $T \in \mathscr{L}(\mathscr{V})$. Then \mathscr{V} has an orthonormal basis which consists of eigenvectors of T if and only if T is normal. In other words, T is normal if and only if there exists an orthonormal basis \mathscr{B} of \mathscr{V} such that $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ is a diagonal matrix.

Proof. Let $n=\operatorname{dim}(\mathscr{V})$. Assume that T is normal. By Corollary 3.7 there exists an orthonormal basis $\mathscr{B}=\left\{u_{1}, \ldots, u_{n}\right\}$ of \mathscr{V} such that $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ is upper-triangular. That is,

$$
\mathbf{M}_{\mathscr{B}}^{\mathscr{B}}(T)=\left[\begin{array}{cccc}
\left\langle T u_{1}, u_{1}\right\rangle & \left\langle T u_{2}, u_{1}\right\rangle & \cdots & \left\langle T u_{n}, u_{1}\right\rangle \tag{17}\\
0 & \left\langle T u_{2}, u_{2}\right\rangle & \cdots & \left\langle T u_{n}, u_{2}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \left\langle T u_{n}, u_{n}\right\rangle
\end{array}\right]
$$

> eq-MBBut
or, equivalently,

$$
\begin{equation*}
T u_{k}=\sum_{j=1}^{k}\left\langle T u_{k}, u_{j}\right\rangle u_{j} \quad \text { for all } \quad k \in\{1, \ldots, n\} . \tag{18}
\end{equation*}
$$

eq-Tuk

By Theorem 5.4 we have

$$
\mathbf{M}_{\mathscr{B}}^{\mathscr{B}}\left(T^{*}\right)=\left[\begin{array}{cccc}
\overline{\frac{\left\langle T u_{1}, u_{1}\right\rangle}{\left\langle T u_{2}, u_{1}\right\rangle}} & \frac{0}{\left\langle T u_{2}, u_{2}\right\rangle} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\left\langle T u_{n}, u_{1}\right\rangle}{} & \frac{\left.\vdots T u_{n}, u_{2}\right\rangle}{\cdots} & \overline{\left\langle T u_{n}, u_{n}\right\rangle}
\end{array}\right] .
$$

Consequently,

$$
\begin{equation*}
T^{*} u_{k}=\sum_{j=k}^{n} \overline{\left\langle T u_{j}, u_{k}\right\rangle} u_{j} \quad \text { for all } \quad k \in\{1, \ldots, n\} \tag{19}
\end{equation*}
$$

eq-T*uk

Since T is normal, Theorem 6.5 implies

$$
\left\|T u_{k}\right\|^{2}=\left\|T^{*} u_{k}\right\|^{2} \quad \text { for all } \quad k \in\{1, \ldots, n\} .
$$

Together with (18) and (19) the last identities become

$$
\sum_{j=1}^{k}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}=\sum_{j=k}^{n}\left|\overline{\left\langle T u_{j}, u_{k}\right\rangle}\right|^{2} \quad \text { for all } \quad k \in\{1, \ldots, n\},
$$

or, equivalently,

$$
\begin{equation*}
\sum_{j=1}^{k}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}=\sum_{j=k}^{n}\left|\left\langle T u_{j}, u_{k}\right\rangle\right|^{2} \quad \text { for all } \quad k \in\{1, \ldots, n\} \tag{20}
\end{equation*}
$$

The equality in (20) corresponding to $k=1$ reads

$$
\left|\left\langle T u_{1}, u_{1}\right\rangle\right|^{2}=\left|\left\langle T u_{1}, u_{1}\right\rangle\right|^{2}+\sum_{j=2}^{n}\left|\left\langle T u_{j}, u_{1}\right\rangle\right|^{2},
$$

which implies

$$
\begin{equation*}
\left\langle T u_{j}, u_{1}\right\rangle=0 \quad \text { for all } \quad j \in\{2, \ldots, n\} \tag{21}
\end{equation*}
$$

eq-1st-row
In other words we have proved that the off-diagonal entries in the first row of the upper triangular matrix $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ in (17) are all zero.

Substituting the value $\left\langle T u_{2}, u_{1}\right\rangle=0$ (from (21)) in the equality in (20) corresponding to $k=2$ reads we get

$$
\left|\left\langle T u_{2}, u_{2}\right\rangle\right|^{2}=\left|\left\langle T u_{2}, u_{2}\right\rangle\right|^{2}+\sum_{j=3}^{n}\left|\left\langle T u_{j}, u_{2}\right\rangle\right|^{2},
$$

which implies

$$
\begin{equation*}
\left\langle T u_{j}, u_{2}\right\rangle=0 \quad \text { for all } \quad j \in\{3, \ldots, n\} \tag{22}
\end{equation*}
$$

eq-2nd-row
In other words we have proved that the off-diagonal entries in the second row of the upper triangular matrix $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ in (17) are all zero.

Repeating this reasoning $n-2$ more times would prove that all the offdiagonal entries of the upper triangular matrix $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ in (17) are zero. That is, $\mathrm{M}_{\mathscr{B}}^{\mathscr{B}}(T)$ is a diagonal matrix.

To prove the converse, assume that there exists an orthonormal basis $\mathscr{B}=\left\{u_{1}, \ldots, u_{n}\right\}$ of \mathscr{V} which consists of eigenvectors of T. That is, for some $\lambda_{j} \in \mathbb{C}$,

$$
T u_{j}=\lambda_{j} u_{j} \quad \text { for all } \quad j \in\{1, \ldots, n\},
$$

Then, for arbitrary $v \in \mathscr{V}$ we have

$$
\begin{equation*}
T v=T\left(\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle u_{j}\right)=\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle T u_{j}=\sum_{j=1}^{n} \lambda_{j}\left\langle v, u_{j}\right\rangle u_{j} . \tag{23}
\end{equation*}
$$

Therefore, for arbitrary $k \in\{1, \ldots, n\}$ we have

$$
\begin{equation*}
\left\langle T v, u_{k}\right\rangle=\lambda_{k}\left\langle v, u_{k}\right\rangle . \tag{24}
\end{equation*}
$$

Now we calculate

$$
\begin{aligned}
T^{*} T v & =\sum_{j=1}^{n}\left\langle T^{*} T v, u_{j}\right\rangle u_{j} \\
& =\sum_{j=1}^{n}\left\langle T v, T u_{j}\right\rangle u_{j} \\
& =\sum_{j=1}^{n}\left\langle T v, T u_{j}\right\rangle u_{j} \\
& =\sum_{j=1}^{n} \bar{\lambda}_{j}\left\langle T v, u_{j}\right\rangle u_{j} \\
& =\sum_{j=1}^{n} \lambda_{j} \bar{\lambda}_{j}\left\langle v, u_{j}\right\rangle u_{j} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
T T^{*} v & =T\left(\sum_{j=1}^{n}\left\langle T^{*} v, u_{j}\right\rangle u_{j}\right) \\
& =\sum_{j=1}^{n}\left\langle v, T u_{j}\right\rangle T u_{j} \\
& =\sum_{j=1}^{n}\left\langle v, \lambda_{j} u_{j}\right\rangle \lambda_{j} u_{j} \\
& =\sum_{j=1}^{n} \lambda_{j} \bar{\lambda}_{j}\left\langle v, u_{j}\right\rangle u_{j} .
\end{aligned}
$$

Thus, we proved $T^{*} T v=T T^{*} v$, that is, T is normal.
A different proof of the "only if" part of the spectral theorem for normal operators follows. In this proof we use $\delta_{i j}$ to represent the Kronecker delta function; that is, $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ otherwise.

Proof. Set $n=\operatorname{dim} \mathscr{V}$. We first prove "only if" part. Assume that T is normal. Set

$$
\mathbb{K}=\left\{k \in\{1, \ldots, n\}: \begin{array}{l}
\exists w_{1}, \ldots, w_{k} \in \mathscr{V} \text { and } \exists \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C} \\
\text { such that }\left\langle w_{i}, w_{j}\right\rangle=\delta_{i j} \text { and } T w_{j}=\lambda_{j} w_{j} \\
\text { for all } i, j \in\{1, \ldots, k\}
\end{array}\right\}
$$

Clearly $1 \in \mathbb{K}$. Since \mathbb{K} is finite, $m=\max \mathbb{K}$ exists. Clearly, $m \leq n$.
Next we will prove that $k \in \mathbb{K}$ and $k<n$ implies that $k+1 \in \mathbb{K}$. Assume $k \in \mathbb{K}$ and $k<n$. Let $w_{1}, \ldots, w_{k} \in \mathscr{V}$ and $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C}$ be such that $\left\langle w_{i}, w_{j}\right\rangle=\delta_{i j}$ and $T w_{j}=\lambda_{j} w_{j}$ for all $i, j \in\{1, \ldots, k\}$. Set

$$
\mathscr{W}=\operatorname{span}\left\{w_{1}, \ldots, w_{k}\right\} .
$$

Since w_{1}, \ldots, w_{k} are eigenvectors of T we have $T \mathscr{W} \subseteq \mathscr{W}$. By Lemma 5.5, $T^{*}\left(\mathscr{W}^{\perp}\right) \subseteq \mathscr{W}^{\perp}$. Thus, $\left.T^{*}\right|_{\mathscr{W} \perp} \in \mathscr{L}\left(\mathscr{W}^{\perp}\right)$. Since $\operatorname{dim} \mathscr{W}=k<n$ we have $\operatorname{dim}\left(\mathscr{W}^{\perp}\right)=n-k \geq 1$. Since \mathscr{W}^{\perp} is a complex vector space the operator $\left.T^{*}\right|_{\mathscr{W} \perp}$ has an eigenvalue μ with the corresponding unit eigenvector u. Clearly, $u \in \mathscr{W}^{\perp}$ and $T^{*} u=\mu u$. Since T^{*} is normal, Corollary 6.6 yields that $T u=\bar{\mu} u$. Since $u \in \mathscr{W}^{\perp}$ and $T u=\bar{\mu} u$, setting $w_{k+1}=u$ and $\lambda_{k+1}=\bar{\mu}$ we have

$$
\left\langle w_{i}, w_{j}\right\rangle=\delta_{i j} \quad \text { and } \quad T w_{j}=\lambda_{j} w_{j} \quad \text { for all } \quad i, j \in\{1, \ldots, k, k+1\} .
$$

Thus $k+1 \in \mathbb{K}$. Consequently, $k<m$. Thus, for $k \in \mathbb{K}$, we have proved the implication

$$
k<n \quad \Rightarrow \quad k<m .
$$

The contrapositive of this implication is: For $k \in \mathbb{K}$, we have

$$
k \geq m \quad \Rightarrow \quad k \geq n
$$

In particular, for $m \in \mathbb{K}$ we have $m=m$ implies $m \geq n$. Since $m \leq n$ is also true, this proves that $m=n$. That is, $n \in \mathbb{K}$. This implies that there exist $u_{1}, \ldots, u_{n} \in \mathscr{V}$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ such that $\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j}$ and $T u_{j}=\lambda_{j} u_{j}$ for all $i, j \in\{1, \ldots, n\}$.

Since u_{1}, \ldots, u_{n} are orthonormal, they are linearly independent. Since $n=\operatorname{dim} \mathscr{V}$, it turns out that u_{1}, \ldots, u_{n} form a basis of \mathscr{V}. This completes the proof.

8 Invariance under a normal operator

th-normo-inv

Theorem 8.1. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C}. Let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. Let $T \in \mathscr{L}(\mathscr{V})$ be normal and let \mathscr{U} be a subspace of \mathscr{V}. Then

$$
T \mathscr{U} \subseteq \mathscr{U} \quad \Leftrightarrow \quad T \mathscr{U}^{\perp} \subseteq \mathscr{U}^{\perp}
$$

(Recall that we have previously proved that for any $T \in \mathscr{L}(\mathscr{V}), T \mathscr{U} \subseteq$ $\mathscr{U} \Leftrightarrow T^{*} \mathscr{U}^{\perp} \subseteq \mathscr{U}^{\perp}$. Hence if T is normal, showing that any one of \mathscr{U} or \mathscr{U}^{\perp} is invariant under either T or T^{*} implies that the rest are, also.)

Proof. Assume $T \mathscr{U} \subseteq \mathscr{U}$. We know $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$. Let u_{1}, \ldots, u_{m} be an orthonormal basis of \mathscr{U} and u_{m+1}, \ldots, u_{n} be an orthonormal basis of \mathscr{U}^{\perp}. Then u_{1}, \ldots, u_{n} is an orthonormal basis of \mathscr{V}. If $j \in\{1, \ldots, m\}$ then $u_{j} \in \mathscr{U}$, so $T u_{j} \in \mathscr{U}$. Hence

$$
T u_{j}=\sum_{k=1}^{m}\left\langle T u_{j}, u_{k}\right\rangle u_{k}
$$

Also, clearly,

$$
T^{*} u_{j}=\sum_{k=1}^{n}\left\langle T^{*} u_{j}, u_{k}\right\rangle u_{k}
$$

By normality of T we have $\left\|T u_{j}\right\|^{2}=\left\|T^{*} u_{j}\right\|^{2}$ for all $j \in\{1, \ldots, m\}$. Starting with this, we calculate

$$
\begin{aligned}
\sum_{j=1}^{m}\left\|T u_{j}\right\|^{2} & =\sum_{j=1}^{m}\left\|T^{*} u_{j}\right\|^{2} \\
\hline \text { Pythag. thm. } & =\sum_{j=1}^{m} \sum_{k=1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} \\
\text { group terms } & =\sum_{j=1}^{m} \sum_{k=1}^{m}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} \\
\text { def. of } T^{*} & =\sum_{j=1}^{m} \sum_{k=1}^{m}\left|\left\langle u_{j}, T u_{k}\right\rangle\right|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} \\
\boxed{|\alpha|=|\bar{\alpha}|} & =\sum_{j=1}^{m} \sum_{k=1}^{m}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { order of sum. }=\sum_{k=1}^{m} \sum_{j=1}^{m}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} \\
& \text { Pythag. thm. }=\sum_{k=1}^{m}\left\|T u_{k}\right\|^{2}+\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2} \text {. }
\end{aligned}
$$

From the above equality we deduce that $\sum_{j=1}^{m} \sum_{k=m+1}^{n}\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2}=0$. As each term is nonnegative, we conclude that $\left|\left\langle T^{*} u_{j}, u_{k}\right\rangle\right|^{2}=\left|\left\langle u_{j}, T u_{k}\right\rangle\right|^{2}=0$, that is,

$$
\begin{equation*}
\left\langle u_{j}, T u_{k}\right\rangle=0 \quad \text { for all } j \in\{1, \ldots, m\}, k \in\{m+1, \ldots, n\} . \tag{25}
\end{equation*}
$$

eq-T*-bv
Let now $w \in \mathscr{U}^{\perp}$ be arbitrary. Then

$$
\begin{aligned}
T w & =\sum_{j=1}^{n}\left\langle T w, u_{j}\right\rangle u_{j} \\
& =\sum_{j=1}^{n}\left\langle\sum_{k=m+1}^{n}\left\langle w, u_{k}\right\rangle T u_{k}, u_{j}\right\rangle u_{j} \\
& =\sum_{j=1}^{n} \sum_{k=m+1}^{n}\left\langle w, u_{k}\right\rangle\left\langle T u_{k}, u_{j}\right\rangle u_{j} \\
\text { by }(25) & =\sum_{j=m+1}^{n} \sum_{k=m+1}^{n}\left\langle w, u_{k}\right\rangle\left\langle T u_{k}, u_{j}\right\rangle u_{j}
\end{aligned}
$$

Hence $T w \in \mathscr{U}^{\perp}$, that is $T \mathscr{U}^{\perp} \subseteq \mathscr{U}^{\perp}$.
A different proof follows. The proof below uses the property of polynomials that for arbitrary distinct $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{C}$ and arbitrary $\beta_{1}, \ldots, \beta_{m} \in$ \mathbb{C} there exists a polynomial $p(z) \in \mathbb{C}[z]_{<m}$ such that $p\left(\alpha_{j}\right)=\beta_{j}, j \in$ $\{1, \ldots, m\}$.

Proof. Assume T is normal. By Theorem 7.1 there exists an orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subseteq \mathbb{C}$ such that

$$
T u_{j}=\lambda_{j} u_{j} \quad \text { for all } \quad j \in\{1, \ldots, n\} .
$$

Consequently,

$$
T^{*} u_{j}=\bar{\lambda}_{j} u_{j} \quad \text { for all } \quad j \in\{1, \ldots, n\} .
$$

Let v be arbitrary in \mathscr{V}. Applying T and T^{*} to the expansion of v in the basis vectors $\left\{u_{1}, \ldots, u_{n}\right\}$ we obtain

$$
T v=\sum_{j=1}^{n} \lambda_{j}\left\langle v, u_{j}\right\rangle u_{j}
$$

and

$$
T^{*} v=\sum_{j=1}^{n} \overline{\lambda_{j}}\left\langle v, u_{j}\right\rangle u_{j} .
$$

Let $p(z)=a_{0}+a_{1} z+\cdots+a_{m} z^{m} \in \mathbb{C}[z]$ be such that

$$
p\left(\lambda_{j}\right)=\bar{\lambda}_{j} \quad \text { for all } \quad j \in\{1, \ldots, n\} .
$$

Clearly, for all $j \in\{1, \ldots, n\}$ we have

$$
p(T) u_{j}=p\left(\lambda_{j}\right) u_{j}=\bar{\lambda}_{j} u_{j}=T^{*} u_{j} .
$$

Therefore $p(T)=T^{*}$.
Now assume $T \mathscr{U} \subseteq \mathscr{U}$. Then $T^{k} \mathscr{U} \subseteq \mathscr{U}$ for all $k \in \mathbb{N}$ and also $\alpha T \mathscr{U} \subseteq$ \mathscr{U} for all $\alpha \in \mathbb{C}$. Hence $p(T) \mathscr{U}=T^{*} \mathscr{U} \subseteq \mathscr{U}$. The theorem follows from Lemma 5.5.

Lastly we review the proof in the book. This proof is in essence very similar to the first proof. It brings up a matrix representation of T for easier visualization of what we are doing.

Proof. Assume $T \mathscr{U} \subseteq \mathscr{U}$. By Lemma 5.5 $T^{*}\left(\mathscr{U}^{\perp}\right) \subseteq \mathscr{U}^{\perp}$.
Now $\mathscr{V}=\mathscr{U} \oplus \mathscr{U}^{\perp}$. Let $n=\operatorname{dim}(\mathscr{V})$. Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be an orthonormal basis of \mathscr{U} and let $\left\{u_{m+1}, \ldots, u_{n}\right\}$ be an orthonormal basis of \mathscr{U}^{\perp}. Then $\mathscr{B}=\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal basis of \mathscr{V}. Since $T u_{j} \in \mathscr{U}$ for all $j \in\{1, \ldots, m\}$ we have

eq-MBBTis

Here we prepended the basis vectors on the left hand side of the matrix and we appended the images of the basis vectors under T below the matrix to emphasize that an appended vector $T u_{k}$ is expended as a linear combination of the basis vectors which are prepended with the coefficients given in the k-th column of the matrix.

For $k \in\{1, \ldots, m\}$ we have $T u_{k}=\sum_{j=1}^{m}\left\langle T u_{k}, u_{j}\right\rangle u_{j}$. By the Pythagorean Theorem

$$
\left\|T u_{k}\right\|^{2}=\sum_{j=1}^{m}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2} \quad \text { and } \quad\left\|T^{*} u_{k}\right\|^{2}=\sum_{j=1}^{n}\left|\left\langle T^{*} u_{k}, u_{j}\right\rangle\right|^{2} .
$$

Since T is normal, $\left\|T u_{k}\right\|^{2}=\left\|T^{*} u_{k}\right\|^{2}$ for all $k \in\{1, \ldots, m\}$, and therefore $\sum_{k=1}^{m}\left\|T u_{k}\right\|^{2}=\sum_{k=1}^{m}\left\|T^{*} u_{k}\right\|^{2}$. Consequently,

$$
\begin{aligned}
\sum_{k=1}^{m} \sum_{j=1}^{m}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2} & =\sum_{k=1}^{m} \sum_{j=1}^{n}\left|\left\langle T^{*} u_{k}, u_{j}\right\rangle\right|^{2} \\
& =\sum_{k=1}^{m} \sum_{j=1}^{m}\left|\left\langle T^{*} u_{k}, u_{j}\right\rangle\right|^{2}+\sum_{k=1}^{m} \sum_{j=m+1}^{n}\left|\left\langle T^{*} u_{k}, u_{j}\right\rangle\right|^{2} \\
& =\sum_{k=1}^{m} \sum_{j=1}^{m}\left|\left\langle u_{k}, T u_{j}\right\rangle\right|^{2}+\sum_{k=1}^{m} \sum_{j=m+1}^{n}\left|\left\langle T^{*} u_{k}, u_{j}\right\rangle\right|^{2} .
\end{aligned}
$$

We have

$$
\sum_{k=1}^{m} \sum_{j=1}^{m}\left|\left\langle T u_{k}, u_{j}\right\rangle\right|^{2}=\sum_{k=1}^{m} \sum_{j=1}^{m}\left|\left\langle u_{k}, T u_{j}\right\rangle\right|^{2}
$$

since these sums consist of identical terms. Hence, the last two displayed equalities yield

$$
\sum_{k=1}^{m} \sum_{j=m+1}^{n}\left|\left\langle T^{*} u_{k}, u_{j}\right\rangle\right|^{2}=0
$$

As the last double sum consists of the nonnegative terms we deduce that for all $k \in\{1, \ldots, m\}$ and for all $j \in\{m+1, \ldots, n\}$ we have

$$
0=\left|\left\langle T^{*} u_{k}, u_{j}\right\rangle\right|^{2}=\left|\left\langle u_{k}, T u_{j}\right\rangle\right|^{2}=\left|\left\langle T u_{j}, u_{k}\right\rangle\right|^{2} .
$$

Hence also $\left\langle T u_{j}, u_{k}\right\rangle=0$ for all $k \in\{1, \ldots, m\}$ and for all $j \in\{m+1, \ldots, n\}$. This proves that $B=0$ in (26). Therefore, $T u_{j}$ is orthogonal to \mathscr{U} for all $j \in\{m+1, \ldots, n\}$, which implies $T\left(\mathscr{U}^{\perp}\right) \subseteq \mathscr{U}^{\perp}$.

Theorem 8.1 and Lemma 5.5 yield the following corollary.

Corollary 8.2. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C}. Let $\langle\cdot, \cdot\rangle$ be a positive definite inner product on \mathscr{V}. Let $T \in \mathscr{L}(\mathscr{V})$ be normal and let \mathscr{U} be a subspace of \mathscr{V}. The following statements are equivalent:
(a) $T \mathscr{U} \subseteq \mathscr{U}$.
(b) $T\left(\mathscr{U}^{\perp}\right) \subseteq \mathscr{U}^{\perp}$.
(c) $T^{*} \mathscr{U} \subseteq \mathscr{U}$.
(d) $T^{*}\left(\mathscr{U}^{\perp}\right) \subseteq \mathscr{U}^{\perp}$.

If any of the for above statements are true, then the following statements are true
(e) $\left(\left.T\right|_{\mathscr{U}}\right)^{*}=\left.T^{*}\right|_{\mathscr{U}}$.
(f) $\left(\left.T\right|_{U^{\perp}}\right)^{*}=\left.T^{*}\right|_{U^{\perp}}$.
(g) $\left.T\right|_{\mathscr{U}}$ is a normal operator on \mathscr{U}.
(h) $\left.T\right|_{\mathscr{U} \perp}$ is a normal operator on \mathscr{U}^{\perp}.

9 Polar Decomposition

There are two distinct subsets of \mathbb{C}. Those are the set of nonnegative real numbers, denoted by $\mathbb{R}_{\geq 0}$, and the set of complex numbers of modulus 1 , denoted by \mathbb{T}. An important tool in complex analysis is the polar representation of a complex number: for every $\alpha \in \mathbb{C}$ there exists $r \in \mathbb{R}_{\geq 0}$ and $u \in \mathbb{T}$ such that $\alpha=r u$.

In this section we will prove that an analogous statement holds for operators in $\mathscr{L}(\mathscr{V})$, where \mathscr{V} is a finite dimensional vector space over \mathbb{C} with a positive definite inner product. The first step towards proving this analogous result is identifying operators in $\mathscr{L}(\mathscr{V})$ which will play the role of nonnegative real numbers and the role of complex numbers with modulus 1. That is done in the following two definitions.

Definition 9.1. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle\cdot, \cdot\rangle$. An operator $Q \in \mathscr{L}(\mathscr{V})$ is said to be nonnegative if $\langle Q v, v\rangle \geq 0$ for all $v \in \mathscr{V}$.

Note that Axler uses the term "positive" instead of nonnegative. We think that nonnegative is more appropriate, since $0_{\mathscr{L}(\mathscr{Y})}$ is a nonnegative operator. There is nothing positive about any zero, we think.

Proposition 9.2. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle\cdot, \cdot\rangle$ and let $T \in \mathscr{L}(\mathscr{V})$. Then T is nonnegative if and only if T is normal and all its eigenvalues are nonnegative.

Theorem 9.3. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle\cdot, \cdot\rangle$. Let $Q \in \mathscr{L}(\mathscr{V})$ be a nonnegative operator and let u_{1}, \ldots, u_{n} be an orthonormal basis of \mathscr{V} and let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}_{\geq 0}$ be such that

$$
\begin{equation*}
Q u_{j}=\lambda_{j} u_{j} \quad \text { for all } j \in\{1, \ldots, n\} . \tag{27}
\end{equation*}
$$

eq-sqrt-nno-1
The following statements are equivalent.
i-sqrt-nno-a
i-sqrt-nno-b
i-sqrt-nno-c
(a) $S \in \mathscr{L}(\mathscr{V})$ is a nonnegative operator and $S^{2}=Q$.
(b) For every $\lambda \in \mathbb{R}_{\geq 0}$ we have

$$
\operatorname{nul}(Q-\lambda I)=\operatorname{nul}(S-\sqrt{\lambda} I)
$$

(c) For every $v \in \mathscr{V}$ we have

$$
S v=\sum_{j=1}^{n} \sqrt{\lambda_{j}}\left\langle v, u_{j}\right\rangle u_{j} .
$$

Proof. (a) \Rightarrow (b). We first prove that nul $Q=\operatorname{nul} S$. Since $Q=S^{2}$ we have $\operatorname{nul} S \subseteq \operatorname{nul} Q$. Let $v \in \operatorname{nul} Q$, that is, let $Q v=S^{2} v=0$. Then $\left\langle S^{2} v, v\right\rangle=0$. Since S is nonnegative it is self-adjoint. Therefore, $\left\langle S^{2} v, v\right\rangle=\langle S v, S v\rangle=$ $\|S v\|^{2}$. Hence, $\|S v\|=0$, and thus $S v=0$. This proves that $\operatorname{nul} Q \subseteq \operatorname{nul} S$ and (b) is proved for $\lambda=0$.

Let $\lambda>0$. Then the operator $S+\sqrt{\lambda} I$ is invertible. To prove this, let $v \in \mathscr{V} \backslash\left\{0_{\mathscr{V}}\right\}$ be arbitrary. Then $\|v\|>0$ and therefore

$$
\langle(S+\sqrt{\lambda} I) v, v\rangle=\langle S v, v\rangle+\sqrt{\lambda}\langle v, v\rangle \geq \sqrt{\lambda}\|v\|^{2}>0
$$

Thus, $v \neq 0$ implies $(S+\sqrt{\lambda} I) v \neq 0$. This proves the injectivity of $S+\sqrt{\lambda} I$.
To prove $\operatorname{nul}(Q-\lambda I)=\operatorname{nul}(S-\sqrt{\lambda} I)$, let $v \in \mathscr{V}$ be arbitrary and notice that $(Q-\lambda I) v=0$ if and only if $\left(S^{2}-\sqrt{\lambda}^{2} I\right) v=0$, which, in turn, is equivalent to

$$
(S+\sqrt{\lambda} I)(S-\sqrt{\lambda} I) v=0
$$

Since $S+\sqrt{\lambda} I$ is injective, the last equality is equivalent to $(S-\sqrt{\lambda} I) v=0$. This completes the proof of (b).
(b) \Rightarrow (c). Let u_{1}, \ldots, u_{n} be an orthonormal basis of \mathscr{V} and let $\lambda_{1}, \ldots, \lambda_{n} \in$ $\mathbb{R}_{\geq 0}$ be such that (27) holds. For arbitrary $j \in\{1, \ldots, n\}$ (27) yields $u_{j} \in \operatorname{nul}\left(Q-\lambda_{j} I\right)$. By (b), $u_{j} \in \operatorname{nul}\left(S-\sqrt{\lambda_{j}} I\right)$. Thus

$$
\begin{equation*}
S u_{j}=\sqrt{\lambda_{j}} u_{j} \quad \text { for all } \quad j \in\{1, \ldots, n\} . \tag{28}
\end{equation*}
$$

eq-sqrt-nno-2
Let $v=\sum_{j=1}^{n}\left\langle v, u_{j}\right\rangle u_{j}$ be arbitrary vector in \mathscr{V}. Then, the linearity of S and (28) imply the claim in (c).

The implication (c) \Rightarrow (a) is straightforward.
The implication (a) \Rightarrow (c) of Theorem 9.3 yields that for a given nonnegative Q a nonnegative S such that $Q=S^{2}$ is uniquely determined. The common notation for this unique S is \sqrt{Q}.

Definition 9.4. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle\cdot, \cdot\rangle$. An operator $U \in \mathscr{L}(\mathscr{V})$ is said to be unitary if $U^{*} U=I$.
pr-uop Proposition 9.5. Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle\cdot, \cdot\rangle$ and let $T \in \mathscr{L}(\mathscr{V})$. The following statements are equivalent.
(a) T is unitary.
(b) For all $u, v \in \mathscr{V}$ we have $\langle T u, T v\rangle=\langle u, v\rangle$.
(c) For all $v \in \mathscr{V}$ we have $\|T v\|=\|v\|$.
(d) T is normal and all its eigenvalues have modulus 1 .

Theorem 9.6 (Polar Decomposition in $\mathscr{L}(\mathscr{V})$). Let \mathscr{V} be a finite dimensional vector space over \mathbb{C} with a positive definite inner product $\langle\cdot, \cdot\rangle$. For every $T \in \mathscr{L}(\mathscr{V})$ there exist a unitary operator U in $\mathscr{L}(\mathscr{V})$ and a unique nonnegative $Q \in \mathscr{L}(\mathscr{V})$ such that $T=U Q ; U$ is unique if and only if T is invertible.

Proof. First, notice that the operator $T^{*} T$ is nonnegative: for every $v \in \mathscr{V}$ we have

$$
\left\langle T^{*} T v, v\right\rangle=\langle T v, T v\rangle=\|T v\|^{2} \geq 0
$$

To prove the uniqueness of Q assume that $T=U Q$ with U unitary and Q nonnegative. Then $Q^{*}=Q, U^{*}=U^{-1}$ and therefore, $T^{*} T=Q^{*} U^{*} U Q=$ $Q U^{-1} U Q=Q^{2}$. Since Q is nonnegative we have $Q=\sqrt{T^{*} T}$.

Set $Q=\sqrt{T^{*} T}$. By Theorem 9.3(b) we have nul $Q=\operatorname{nul}\left(T^{*} T\right)$. Moreover, we have $\operatorname{nul}\left(T^{*} T\right)=\operatorname{nul} T$. The inclusion $\operatorname{nul} T \subseteq \operatorname{nul}\left(T^{*} T\right)$ is trivial.

For the converse inclusion notice that $v \in \operatorname{nul}\left(T^{*} T\right)$ implies $T^{*} T v=0$, which yields $\left\langle T^{*} T v, v\right\rangle=0$ and thus $\langle T v, T v\rangle=0$. Consequently, $\|T v\|=0$, that is $T v=0$, yielding $v \in \operatorname{nul} T$. So,

$$
\begin{equation*}
\operatorname{nul} Q=\operatorname{nul}\left(T^{*} T\right)=\operatorname{nul} T \tag{29}
\end{equation*}
$$

eq-nQ=nT
is proved.
First assume that T is invertible. By (29) and ??, Q is invertible as well. Therefore $T=U Q$ is equivalent to $U=T Q^{-1}$ in this case. Since Q is unique, this proves the uniqueness of U. Set $U=T Q^{-1}$. Since Q is self-adjoint, Q^{-1} is also self-adjoint. Therefore $U^{*}=Q^{-1} T^{*}$, yielding $U^{*} U=Q^{-1} T^{*} T Q^{-1}=Q^{-1} Q^{2} Q^{-1}=I$. That is, U is unitary.

Now assume that T is not invertible. Since by (29) we have nul $Q=$ $\operatorname{nul} T$, the Nullity-Rank Theorem implies that $\operatorname{dim}(\operatorname{ran} Q)=\operatorname{dim}(\operatorname{ran} T)$. Notice that nul $Q=(\operatorname{ran} Q)^{\perp}$ since Q is self-adjoint. Since T is not invertible, $\operatorname{dim}(\operatorname{ran} Q)=\operatorname{dim}(\operatorname{ran} T)<\operatorname{dim} \mathscr{V}$, implying that

$$
\begin{equation*}
\operatorname{dim}(\operatorname{nul} Q)=\operatorname{dim}\left((\operatorname{ran} Q)^{\perp}\right)=\operatorname{dim}\left((\operatorname{ran} T)^{\perp}\right)>0 \tag{30}
\end{equation*}
$$

eq- $d r Q p=d r T p$
We have two orthogonal decompositions of \mathscr{V} :

$$
\mathscr{V}=(\operatorname{ran} Q) \oplus(\operatorname{nul} Q)=(\operatorname{ran} T) \oplus\left((\operatorname{ran} T)^{\perp}\right) .
$$

These two orthogonal decompositions are compatibile in the sense that the corresponding components have same dimensions, that is

$$
\operatorname{dim}(\operatorname{ran} Q)=\operatorname{dim}(\operatorname{ran} T) \quad \text { and } \quad \operatorname{dim}(\operatorname{nul} Q)=\operatorname{dim}\left((\operatorname{ran} T)^{\perp}\right)
$$

We will define $U: \mathscr{V} \rightarrow \mathscr{V}$ in two steps based on these two orthogonal decompositions. First we define the action of U on $\operatorname{ran} Q$, that is we define the operator $U_{r}: \operatorname{ran} Q \rightarrow \operatorname{ran} T$, then we define an operator $U_{n}: \operatorname{nul} Q \rightarrow$ $(\operatorname{ran} T)^{\perp}$.

We define $U_{r}: \operatorname{ran} Q \rightarrow \operatorname{ran} T$ in the following way: Let $u \in \operatorname{ran} Q$ be arbitrary and let $x \in \mathscr{V}$ be such that $u=Q x$. Then we set

$$
U_{r} u=T x .
$$

First we need to show that U_{r} is well defined. Let $x_{1}, x_{2} \in \mathscr{V}$ be such that $u=Q x_{1}=Q x_{2}$. Then, $x_{1}-x_{2} \in \operatorname{nul} Q$. Since nul $Q=\operatorname{nul} T$, we thus have $x_{1}-x_{2} \in \operatorname{nul} T$. Consequently, $T x_{1}=T x_{2}$, that is U_{r} is well defined.

Next we prove that U_{r} is angle-preserving. Let $u_{1}, u_{2} \in \operatorname{ran} Q$ be arbitrary and let $x_{1}, x_{1} \in \mathscr{V}$ be such that $u_{1}=Q x_{1}$ and $u_{2}=Q x_{2}$ and calculate

$$
\left\langle U_{r} u_{1}, U_{r} u_{2}\right\rangle=\left\langle U_{r}\left(Q x_{1}\right), U_{r}\left(Q x_{2}\right)\right\rangle
$$

$$
\begin{aligned}
\text { by definition of } U_{r} & =\left\langle T x_{1}, T x_{2}\right\rangle \\
\hline \text { by definition of adjoint } & =\left\langle T^{*} T x_{1}, x_{2}\right\rangle \\
\text { by definition of } Q & =\left\langle Q^{2} x_{1}, x_{2}\right\rangle \\
\text { since } Q \text { is self-adjoint } & =\left\langle Q x_{1}, Q x_{2}\right\rangle \\
\text { by definition of } x_{1}, x_{2} & =\left\langle u_{1}, u_{2}\right\rangle
\end{aligned}
$$

Thus $U_{r}: \operatorname{ran} Q \rightarrow \operatorname{ran} T$ is angle-preserving.
Next we define an angle-preserving operator

$$
U_{n}: \operatorname{nul} Q \rightarrow(\operatorname{ran} T)^{\perp}
$$

By (30), we can set

$$
m=\operatorname{dim}(\operatorname{nul} Q)=\operatorname{dim}\left((\operatorname{ran} T)^{\perp}\right)>0 .
$$

Let e_{1}, \ldots, e_{m} be an orthonormal basis on nul Q and let f_{1}, \ldots, f_{m} be an orthonormal basis on $(\operatorname{ran} T)^{\perp}$. For arbitrary $w \in \operatorname{nul} Q$ define

$$
U_{n} w=U_{n}\left(\sum_{j=1}^{m}\left\langle w, e_{j}\right\rangle e_{j}\right):=\sum_{j=1}^{m}\left\langle w, e_{j}\right\rangle f_{j} .
$$

Then, for $w_{1}, w_{2} \in \operatorname{nul} Q$ we have

$$
\begin{aligned}
\left\langle U_{n} w_{1}, U_{n} w_{2}\right\rangle & =\left\langle\sum_{i=1}^{m}\left\langle w_{1}, e_{i}\right\rangle f_{i}, \sum_{j=1}^{m}\left\langle w_{2}, e_{j}\right\rangle f_{j}\right\rangle \\
& =\sum_{j=1}^{m}\left\langle w_{1}, e_{j}\right\rangle \overline{\left\langle w_{2}, e_{j}\right\rangle} \\
& =\left\langle w_{1}, w_{2}\right\rangle
\end{aligned}
$$

Hence U_{n} is angle-preserving on $(\operatorname{ran} Q)^{\perp}$.
Since the orthomormal bases in the definition of U_{n} were arbitrary and since $m>0$, the operator U_{n} is not unique.

Finally we define $U: \mathscr{V} \rightarrow \mathscr{V}$ as a direct sum of U_{r} and U_{n}. Recall that

$$
\mathscr{V}=(\operatorname{ran} Q) \oplus(\operatorname{nul} Q)
$$

Let $v \in \mathscr{V}$ be arbitrary. Then there exist unique $u \in(\operatorname{ran} Q)$ and $w \in(\operatorname{nul} Q)$ such that $v=u+w$. Set

$$
U v=U_{r} u+U_{n} w .
$$

We claim that U is angle-preserving. Let $v_{1}, v_{2} \in \mathscr{V}$ be arbitrary and let $v_{i}=u_{i}+w_{i}$ with $u_{i} \in(\operatorname{ran} Q)$ and $w_{i} \in(\operatorname{nul} Q)$ with $i \in\{1,2\}$. Notice that

$$
\begin{equation*}
\left\langle v_{1}, v_{2}\right\rangle=\left\langle u_{1}+w_{1}, u_{2}+w_{2}\right\rangle=\left\langle u_{1}, u_{2}\right\rangle+\left\langle w_{1}, w_{2}\right\rangle \tag{31}
\end{equation*}
$$

eq-pom-1
since u_{1}, u_{2} are orthogonal to w_{1}, w_{2}. Similarly

$$
\begin{equation*}
\left\langle U_{r} u_{1}+U_{n} w_{1}, U_{r} u_{2}+U_{n} w_{2}\right\rangle=\left\langle U_{r} u_{1}, U_{r} u_{2}\right\rangle+\left\langle U_{n} w_{1}, U_{n} w_{2}\right\rangle, \tag{32}
\end{equation*}
$$

eq-pom-2
since $U_{r} u_{1}, U_{r} u_{2} \in(\operatorname{ran} T)$ and $U_{n} w_{1}, U_{n} w_{2} \in(\operatorname{ran} T)^{\perp}$. Now we calculate, starting with the definition of U,

$$
\begin{aligned}
\left\langle U v_{1}, U v_{2}\right\rangle & =\left\langle U_{r} u_{1}+U_{n} w_{1}, U_{r} u_{2}+U_{n} w_{2}\right\rangle \\
\text { by }(32) & =\left\langle U_{r} u_{1}, U_{r} u_{2}\right\rangle+\left\langle U_{n} w_{1}, U_{n} w_{2}\right\rangle \\
U_{r} \text { and } U_{n} \text { are angle-preserving } & =\left\langle u_{1}, u_{2}\right\rangle+\left\langle w_{1}, w_{2}\right\rangle \\
\text { by (31) } & =\left\langle v_{1}, v_{2}\right\rangle .
\end{aligned}
$$

Hence U is angle-preserving and by Proposition 9.5 we have that U is unitary.

Finally we show that $T=U Q$. Let $v \in \mathscr{V}$ be arbitrary. Then $Q v \in$ $\operatorname{ran} Q$. By definitions of U and U_{r} we have

$$
U Q v=U_{r} Q v=T v
$$

Thus $T=U Q$, where U is unitary and Q is nonnegative.

10 Singular Value Decomposition

The following theorem is long. It deals with an arbitrary nonzero operator between finite-dimensional positive definite inner product spaces. Its main parts are (I) and (IV). Part (I) establishes the existence of a Singular Value Decomposition, while in Part (IV), we prove the existence and uniqueness of the Moore-Penrose inverse for such an operator.
th-svd Theorem 10.1. Let $m, n \in \mathbb{N}$. Let $\left(\mathscr{V},\langle\cdot, \cdot\rangle_{\mathscr{V}}\right)$ and $\left(\mathscr{W},\langle\cdot, \cdot\rangle_{\mathscr{W}}\right)$ be finitedimensional positive definite inner product vector spaces over \mathbb{C} such that $m=\operatorname{dim} \mathscr{V}$ and $n=\operatorname{dim} \mathscr{W}$. Let $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$ be a nonzero operator. Then there exist $r \in \mathbb{N}$ such that $r \leq \min \{m, n\}$, positive scalars $\sigma_{1}, \ldots, \sigma_{r}$ and orthonormal bases $\mathscr{B}=\left\{v_{1}, \ldots, v_{m}\right\}$ of \mathscr{V} and $\mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ of \mathscr{W} such that the following statements hold.
(I) For every $v \in \mathscr{V}$ we have

$$
\begin{equation*}
T v=\sum_{j=1}^{r} \sigma_{j}\left\langle v, v_{j}\right\rangle_{\mathscr{V}} w_{j} \tag{33}
\end{equation*}
$$

eq-svd
th-svd-i1a
(II) The $r \times r$ top left block corner of the $n \times m$ matrix $\mathrm{M}_{\mathscr{C}}^{\mathscr{B}}(T)$ is the diagonal matrix with the positive diagonal entries $\sigma_{1}, \ldots, \sigma_{r}$ and all the other entries of $\mathrm{M}_{\mathscr{C}}^{\mathscr{B}}(T)$ are equal to 0 . That is

Or, in block-matrix notation

$$
M_{\mathscr{C}}^{\mathscr{B}}(T)=\left[\begin{array}{c|c}
\Sigma_{r} & 0 \\
\hline 0 & 0
\end{array}\right], \quad\left(\begin{array}{ll}
n \times m & \text { matrix })
\end{array}\right.
$$

where Σ_{r} is an $r \times r$ diagonal matrix with positive entries $\sigma_{1}, \ldots, \sigma_{r}$ on the diagonal and the zero matrices of the appropriate sizes.
th-svd-i2
(III) For every $w \in \mathscr{W}$ we have

$$
\begin{equation*}
T^{*} w=\sum_{j=1}^{r} \sigma_{j}\left\langle w, w_{j}\right\rangle_{\mathscr{W}} v_{j} \tag{34}
\end{equation*}
$$

eq-svd*

Equivalently,

$$
M_{\mathscr{B}}^{\mathscr{C}}\left(T^{*}\right)=\left[\begin{array}{c|c}
\Sigma_{r} & 0 \\
\hline 0 & 0
\end{array}\right], \quad\left(\begin{array}{ll}
m \times n & \text { matrix })
\end{array}\right.
$$

(IV) Let $S \in \mathscr{L}(\mathscr{W}, \mathscr{V})$. The following three statements are equivalent.
(i) S satisfies the following four equations

$$
\begin{equation*}
T S T=T, \quad S T S=S, \quad(T S)^{*}=T S, \quad(S T)^{*}=S T \tag{35}
\end{equation*}
$$

(ii) For every $w \in \mathscr{W}$ we have

$$
\begin{equation*}
S w=\sum_{j=1}^{r} \frac{1}{\sigma_{j}}\left\langle w, w_{j}\right\rangle_{\mathscr{W}} v_{j} . \tag{36}
\end{equation*}
$$

eq-svdMPi
th-svd-i33
(iii)

$$
M_{\mathscr{B}}^{\mathscr{C}}(S)=\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & 0
\end{array}\right] . \quad(m \times n \quad \text { matrix })
$$

Proof. (I) Let $T^{*} \in \mathscr{L}(\mathscr{W}, \mathscr{V})$ be the adjoint of T. Since for all $v \in \mathscr{V}$ we have

$$
\left\langle T^{*} T v, v\right\rangle_{\mathscr{V}}=\langle T v, T v\rangle_{\mathscr{W}} \geq 0,
$$

the operator $T^{*} T \in \mathscr{L}(\mathscr{V})$ is nonnegative, and, as such, self-adjoint with the nonnegative eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. We assume that the eigenvalues are ordered in nonincreasing order $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Since $T \neq 0 \mathscr{L}(\mathscr{V})$ we have $\lambda_{1}>0$. Set

$$
\begin{equation*}
r=\max \left\{k \in\{1, \ldots, n\}: \lambda_{k}>0\right\} . \tag{37}
\end{equation*}
$$

eq-rankr

Thus, for all $k \in\{1, \ldots, n\}$, if $k \leq r$, then $\lambda_{k}>0$, and, if $k>r$, then $\lambda_{k}=0$. Set

$$
\begin{equation*}
\sigma_{k}=\sqrt{\lambda_{k}}, \quad k \in\{1, \ldots, r\} . \tag{38}
\end{equation*}
$$

$$
\mathrm{eq}-\mathrm{svs}
$$

Since $T^{*} T$ is self-adjoint, there exists an orthonormal basis $\mathscr{B}=\left\{v_{1}, \ldots, v_{m}\right\}$ of \mathscr{V} such that

$$
\begin{equation*}
\forall k \in\{1, \ldots, n\} \quad T^{*} T v_{k}=\lambda_{k} v_{k} . \tag{39}
\end{equation*}
$$

eq-tstep
Recall that

$$
\operatorname{nul}(T)=\operatorname{nul}\left(T^{*} T\right) \quad \text { and } \quad \operatorname{ran}\left(T^{*}\right)=\operatorname{ran}\left(T^{*} T\right)
$$

It follows from the definition of r in (37) and (39) that

$$
\operatorname{nul}(T)=\operatorname{nul}\left(T^{*} T\right)=\operatorname{span}\left\{v_{k}: k \in\{1, \ldots, n\} \wedge k>r\right\} .
$$

Since $T^{*} T$ is self-adjoint and since \mathscr{B} is an orthonormal basis of $\mathscr{V},(37)$ and (39) imply

$$
\operatorname{ran}\left(T^{*}\right)=\operatorname{ran}\left(T^{*} T\right)=\left(\operatorname{nul}\left(T^{*} T\right)\right)^{\perp}=\operatorname{span}\left\{v_{k}: k \in\{1, \ldots, n\} \wedge k \leq r\right\} .
$$

Therefore

$$
r=\operatorname{dim} \operatorname{ran}\left(T^{*}\right) .
$$

Notice that for all $k \in\{1, \ldots, r\}$ we have

$$
0<\lambda_{k}=\left(\sigma_{k}\right)^{2}=\lambda_{k}\left\langle v_{k}, v_{k}\right\rangle_{\mathscr{V}}=\left\langle T^{*} T v_{k}, v_{k}\right\rangle_{\mathscr{V}}=\left\langle T v_{k}, T v_{k}\right\rangle_{\mathscr{W}}=\left\|T v_{k}\right\|_{\mathscr{W}}^{2},
$$

and define r unit vectors in $\operatorname{ran}(T) \subseteq \mathscr{W}$ as follows

$$
w_{k}=\frac{1}{\sigma_{k}} T v_{k}, \quad k \in\{1, \ldots, r\} .
$$

The following calculation shows that the vectors w_{1}, \ldots, w_{r} are mutually orthogonal. Let $j, k \in\{1, \ldots, r\}$ be arbitrary and such that $j \neq k$. Then

$$
\left\langle w_{j}, w_{k}\right\rangle_{\mathscr{W}}=\frac{1}{\sigma_{j} \sigma_{k}}\left\langle T v_{j}, T v_{k}\right\rangle_{\mathscr{W}}=\frac{1}{\sigma_{j} \sigma_{k}}\left\langle T^{*} T v_{j}, v_{k}\right\rangle_{\mathscr{V}}=\frac{\lambda_{j}}{\sigma_{j} \sigma_{k}}\left\langle v_{j}, v_{k}\right\rangle_{\mathscr{V}}=0,
$$

since \mathscr{B} is an orhonormal basis for \mathscr{V}. Consequently, w_{1}, \ldots, w_{r} are linearly independent in \mathscr{W}. Hence, $r \leq \min \{m, n\}$.

Since

$$
r+\operatorname{dim} \operatorname{nul}(T)=m=\operatorname{dim} \mathscr{V}
$$

and, by the Nullity-Rank Theorem,

$$
\operatorname{dim} \operatorname{nul}(T)+\operatorname{dim} \operatorname{ran}(T)=m=\operatorname{dim} \mathscr{V}
$$

we deduce that $r=\operatorname{dim} \operatorname{ran}(T)$. Hence $\left\{w_{1}, \ldots, w_{r}\right\}$ is an orthonormal basis for $\operatorname{ran}(T)$. If $\operatorname{ran}(T)$ is a proper subspace of \mathscr{W}, since $(\operatorname{ran}(T))^{\perp}=\operatorname{nul}\left(T^{*}\right)$, choosing w_{r+1}, \ldots, w_{n} to be an orthonormal basis for nul $\left(T^{*}\right)$ we obtain an orthonormal basis $\mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ for \mathscr{W}. Let $v \in \mathscr{V}$ be arbitrary and calculate

$$
\begin{aligned}
T v & =T\left(\sum_{k=1}^{m}\left\langle v, v_{k}\right\rangle_{\mathscr{V}} v_{k}\right) \\
& =\sum_{k=1}^{m}\left\langle v, v_{k}\right\rangle_{\mathscr{V}} T v_{k} \\
\text { dinearity of } T & =\sum_{k=1}^{r}\left\langle v, v_{k}\right\rangle_{\mathscr{V}} T v_{k} \\
\text { definition of } r & \text { defion of } w_{k}
\end{aligned}=\sum_{k=1}^{r}\left\langle v, v_{k}\right\rangle_{\mathscr{V}} \sigma_{k} w_{k} .
$$

(III) Define $S \in \mathscr{L}(\mathscr{W}, \mathscr{V})$ by: For every $w \in \mathscr{W}$ set

$$
S w=\sum_{j=1}^{r} \sigma_{j}\left\langle w, w_{j}\right\rangle_{\mathscr{W}} v_{j} .
$$

For an arbitrary $v \in \mathscr{V}$ and an arbitrary $w \in \mathscr{W}$ calculate

$$
\begin{aligned}
\langle v, S w\rangle_{\mathscr{V}} & =\left\langle v, \sum_{j=1}^{r} \sigma_{j}\left\langle w, w_{j}\right\rangle_{\mathscr{W}} v_{j}\right\rangle_{\mathscr{V}} \\
& =\sum_{j=1}^{r} \sigma_{j} \overline{\overline{\left\langle w, w_{j}\right\rangle_{\mathscr{W}}}\left\langle v, v_{j}\right\rangle_{\mathscr{V}}} \\
& =\sum_{j=1}^{r} \sigma_{j}\left\langle v, v_{j}\right\rangle_{\mathscr{V}}\left\langle w_{j}, w\right\rangle_{\mathscr{W}} \\
& =\left\langle\sum_{j=1}^{r} \sigma_{j}\left\langle v, v_{j}\right\rangle_{\mathscr{V}} w_{j}, w\right\rangle_{\mathscr{W}} \\
& =\langle T v, w\rangle_{\mathscr{W}} .
\end{aligned}
$$

Since $v \in \mathscr{V}$ and $w \in \mathscr{W}$ were arbitrary, the preceding calculation proves that $S=T^{*}$. (citation)
(IV) The equivalence (ii) \Leftrightarrow (iii) follows from the definition of the matrices Σ_{r} and $M_{\mathscr{C}}^{\mathscr{B}}(S)$.

To prove (ii) $\Rightarrow(\mathrm{i})$, assume (ii). (This is proof of the existence of the Moore-Penrose inverse.) Then, (34) and (36) imply that $\operatorname{ran}(S)=\operatorname{ran}\left(T^{*}\right)$ and $\operatorname{nul}(S)=\operatorname{nul}\left(T^{*}\right)$. Further, (33) and (36) yield

$$
T S=P_{\operatorname{ran}(T)}=P_{\operatorname{nul}(S)^{\perp}} \quad \text { and } \quad S T=P_{\operatorname{ran}(S)}=P_{\operatorname{nul}(T)^{\perp}}
$$

Consequently, $T S$ and $S T$ are self-adjoint (citation), and, since $P_{\operatorname{ran}(T)} T=T$ and $P_{\operatorname{ran}(S)} S=S$, we deduce that $T S T=T$ and $S T S=S$. Thus (ii) $\Rightarrow(\mathrm{i})$.

To prove (i) \Rightarrow (iii), assume (i). (This is proof of the uniqueness of the Moore-Penrose inverse.) Let

$$
M_{\mathscr{B}}^{\mathscr{C}}(S)=\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right], \quad(m \times n \text { matrix })
$$

where A is an $r \times r$ matrix, B is $r \times(n-r)$ matrix, C is $(m-r) \times r$ matrix, and D is $(m-r) \times(n-r)$ matrix. We proved in (II)

$$
M_{\mathscr{C}}^{\mathscr{B}}(T)=\left[\begin{array}{c|c}
\Sigma_{r} & 0 \\
\hline 0 & 0
\end{array}\right], \quad(n \times m \text { matrix })
$$

with Σ_{r} being an $r \times r$ diagonal matrix with positive entries on the diagonal and the zeros of appropriate sizes. Then

$$
M_{\mathscr{C}}^{\mathscr{C}}(T S)=\left[\begin{array}{c|c}
\Sigma_{r} A & \Sigma_{r} B \\
\hline 0 & 0
\end{array}\right], \quad(n \times n \text { matrix })
$$

and

$$
M_{\mathscr{B}}^{\mathscr{B}}(S T)=\left[\begin{array}{l|l}
A \Sigma_{r} & 0 \\
\hline C \Sigma_{r} & 0
\end{array}\right] . \quad(m \times m \text { matrix })
$$

Since $T S$ and $S T$ are self-adjoint, we deduce that $\Sigma_{r} B=0$ and $C \Sigma_{r}=0$. Consequently, $B=0$ and $C=0$ as Σ_{r} is invertible. Since $T S T=T$, the operator $T S$ acts as an identity on $\operatorname{ran}(T)$. Therefore $\Sigma_{r} A=I_{r}$. Hence $A=\Sigma_{r}^{-1}$. Hence,

$$
M_{\mathscr{B}}^{\mathscr{C}}(S)=\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & D
\end{array}\right] .
$$

Now the equality $S=S T S$ yields

$$
\begin{aligned}
{\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & D
\end{array}\right] } & =M_{\mathscr{B}}^{\mathscr{C}}(S) \\
& =M_{\mathscr{B}}^{\mathscr{C}}(S T S) \\
& =M_{\mathscr{B}}^{\mathscr{C}}(S) M_{\mathscr{C}}^{\mathscr{B}}(T) M_{\mathscr{B}}^{\mathscr{C}}(S) \\
& =\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & D
\end{array}\right]\left[\begin{array}{c|c}
\Sigma_{r} & 0 \\
\hline 0 & 0
\end{array}\right]\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & D
\end{array}\right] \\
& =\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & D
\end{array}\right]\left[\begin{array}{c|c}
I_{r} & 0 \\
\hline 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & 0
\end{array}\right]
\end{aligned}
$$

Hence, $D=0$, and consequently,

$$
M_{\mathscr{B}}^{\mathscr{C}}(S)=\left[\begin{array}{c|c}
\Sigma_{r}^{-1} & 0 \\
\hline 0 & 0
\end{array}\right] .
$$

This proves (i) \Rightarrow (iii). Since we proved

$$
(\mathrm{i}) \Rightarrow(\mathrm{iii}) \Rightarrow(\mathrm{ii}) \Rightarrow(\mathrm{i})
$$

proof of (IV) is complete.

The values $\sigma_{1}, \ldots, \sigma_{r}$ from Theorem 10.1 , which are in fact the squareroots of the positive eigenvalues of $T^{*} T$, are called singular values of T. Equality (33) or the matrix in (II) is called a singular value decomposition of T.

For $T \in \mathscr{L}(\mathscr{V}, \mathscr{W})$, the unique operator $T^{+} \in \mathscr{L}(\mathscr{W}, \mathscr{V})$ that satisfies the equalities

$$
T T^{+} T=T, \quad T^{+} T T^{+}=T^{+}, \quad\left(T T^{+}\right)^{*}=T T^{+}, \quad\left(T^{+} T\right)^{*}=T^{+} T . \quad \text { (40) } \quad \text { eq-MPi }
$$

is called the Moore-Penrose inverse of T,

11 Problems

Exercise 11.1. Let $(\mathscr{V},\langle\cdot, \cdot\rangle)$ be a positive definite inner product space and let \mathscr{U} be a subspace of \mathscr{V}. Prove that $\left(\left(\mathscr{U}^{\perp}\right)^{\perp}\right)^{\perp}=\mathscr{U}^{\perp}$.

