LINEAR OPERATORS

BRANKO ĆURGUS

Throughout this note \mathcal{V} is a vector space over a scalar field \mathbb{F} . \mathbb{N} denotes the set of positive integers and $i, j, k, l, m, n, p \in \mathbb{N}$.

1. LINEAR OPERATORS

In this section \mathcal{U}, \mathcal{V} and \mathcal{W} are vector spaces over a scalar field \mathbb{F} .

1.1. The definition and the vector space of all linear operators. A function $T: \mathcal{V} \to \mathcal{W}$ is said to be a *linear operator* if it satisfies the following conditions:

$$\forall u \in \mathcal{V} \quad \forall v \in \mathcal{V} \qquad T(u+v) = T(u) + f(v), \tag{1.1} \quad \text{eq-add}$$

$$\forall \alpha \in \mathbb{F} \ \forall v \in \mathcal{V} \qquad T(\alpha v) = \alpha T(v). \tag{1.2} \quad |eq-hom|$$

The property (1.1) is called *additivity*, while the property (1.2) is called *homogeneity*. Together additivity and homogeneity are called *linearity*.

Denote by $\mathcal{L}(\mathcal{V}, \mathcal{W})$ the set of all linear operators from \mathcal{V} to \mathcal{W} . Define the addition and scaling in $\mathcal{L}(\mathcal{V}, \mathcal{W})$. For $S, T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ and $\alpha \in \mathbb{F}$ we define

$$(S+T)(v) = S(v) + T(v), \qquad \forall v \in \mathcal{V}, \tag{1.3} \quad eq-po+$$

$$(\alpha T)(v) = \alpha T(v), \qquad \forall v \in \mathcal{V}.$$
(1.4) eq-po-s

Notice that two plus signs which appear in (1.3) have different meanings. The plus sign on the left-hand side stands for the addition of linear operators that is just being defined, while the plus sign on the right-hand side stands for the addition in \mathcal{W} . Notice the analogous difference in empty spaces between α and T in (1.4). Define the zero mapping in $\mathcal{L}(\mathcal{V}, \mathcal{W})$ to be

$$0_{\mathcal{L}(\mathcal{V},\mathcal{W})}(v) = 0_{\mathcal{W}}, \qquad \forall v \in \mathcal{V}.$$

For $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ we define its opposite operator by

$$(-T)(v) = -T(v), \quad \forall v \in \mathcal{V}.$$

Proposition 1.1. The set $\mathcal{L}(\mathcal{V}, \mathcal{W})$ with the operations defined in (1.3), and (1.4) is a vector space over \mathbb{F} .

For $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ and $v \in \mathcal{V}$ it is customary to write Tv instead of T(v).

Date: February 21, 2023 at 22:37.

Example 1.2. Assume that a vector space \mathcal{V} is a direct sum of its subspaces \mathcal{U} and \mathcal{W} , that is $\mathcal{V} = \mathcal{U} \oplus \mathcal{W}$. Define the function $P : \mathcal{V} \to \mathcal{V}$ by

 $Pv = w \quad \Leftrightarrow \quad v = u + w, \quad u \in \mathcal{U}, \quad w \in \mathcal{W}.$

Then P is a linear operator. It is called the *projection* of \mathcal{V} onto \mathcal{W} parallel to \mathcal{U} ; it is denoted by $P_{\mathcal{W}||\mathcal{U}}$.

The definition of the linearity of a function between vector spaces is expressed in the standard functional notation. The next proposition states that a function between vector spaces is linear if and only if its graph is a subspace of the direct product of the domain and the codomain of that function.

pr-lfsub

pr-inv-l

Proposition 1.3. Let \mathcal{V} and \mathcal{W} be vector spaces over a scalar field \mathbb{F} . Let $f: \mathcal{V} \to \mathcal{W}$ be a function and denote by F the graph of f; that is let

$$\mathcal{F} = \{ (v, w) \in \mathcal{V} \times \mathcal{W} : v \in \mathcal{V} \text{ and } w = f(v) \} \subseteq \mathcal{V} \times \mathcal{W}.$$

The function f is linear if and only if the set \mathcal{F} is a subspace of the vector space $\mathcal{V} \times \mathcal{W}$.

Proposition 1.4. Let \mathcal{V} and \mathcal{W} be vector spaces over a scalar field \mathbb{F} . Let $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$, let \mathcal{G} be a subspace of \mathcal{V} and let \mathcal{H} be a subspace of \mathcal{W} . Then

$$T(\mathcal{G}) = \{ w \in \mathcal{W} : \exists v \in \mathcal{G} \text{ such that } w = Tv \}$$

is a subspace of \mathcal{W} and

$$T^{-1}(\mathcal{H}) = \left\{ v \in \mathcal{V} : Tv \in \mathcal{H} \right\}$$

is a subspace of \mathcal{V} .

1.2. Composition, inverse, isomorphism. In the next two propositions we prove that the linearity is preserved under composition of linear operators and under taking the inverse of a linear operator.

Proposition 1.5. Let $S : U \to V$ and $T : V \to W$ be linear operators. The composition $T \circ S : U \to W$ is a linear operator.

Proof. Prove this as an exercise.

When composing linear operators it is customary to write simply TS instead of $T \circ S$.

The identity function on \mathcal{V} is denoted by $I_{\mathcal{V}}$. It is defined by $I_{\mathcal{V}}(v) = v$ for all $v \in \mathcal{V}$. It is clearly a linear operator.

Proposition 1.6. Let $T : \mathcal{V} \to \mathcal{W}$ be a linear operator which is a bijection. Then the inverse $T^{-1} : \mathcal{W} \to \mathcal{V}$ of T is a linear operator.

Proof. Since T is a bijection, from what we learned about function, there exists a function $S: \mathcal{W} \to \mathcal{V}$ such that $ST = I_{\mathcal{V}}$ and $TS = I_{\mathcal{W}}$. Since T is linear and $TS = I_{\mathcal{W}}$ we have

$$T(\alpha Sx + \beta Sy) = \alpha T(Sx) + \beta T(Sy) = \alpha (TS)x + \beta (TS)y = \alpha x + \beta y$$

 $\mathbf{2}$

for all $\alpha, \beta \in \mathbb{F}$ and all $x, y \in \mathcal{W}$. Applying S to both sides of

$$T(\alpha Sx + \beta Sy) = \alpha x + \beta y$$

we get

th-cor

$$(ST)(\alpha Sx + \beta Sy) = S(\alpha x + \beta y) \quad \forall \alpha, \beta \in \mathbb{F} \quad \forall x, x \in \mathcal{W}.$$

Since $ST = I_{\mathcal{V}}$, we get

$$\alpha Sx + \beta Sy = S(\alpha x + \beta y) \qquad \forall \alpha, \beta \in \mathbb{F} \quad \forall x, y \in \mathcal{W},$$

thus proving the linearity of S. Since by definition $S = T^{-1}$ the proposition is proved.

A linear operator $T : \mathcal{V} \to \mathcal{W}$ which is a bijection is called an *isomorphism* between vector spaces \mathcal{V} and \mathcal{W} .

By Proposition 1.6 each isomorphism is invertible and its inverse is also an isomorphism.

In the next theorem we introduce the most important isomorphism between a finite-dimensional space \mathcal{V} and a space \mathbb{F}^n where $n = \dim \mathcal{V}$.

Theorem 1.7. Let \mathcal{V} be a finite dimensional vector space over \mathbb{F} , let $n = \dim \mathcal{V}$ and let $\mathcal{B} = \{b_1, \ldots, b_n\}$ be a basis for \mathcal{V} . The function $C_{\mathcal{B}} : \mathcal{V} \to \mathbb{F}^n$ defined by: for all $v \in \mathcal{V}$

$$C_{\mathcal{B}}(v) := \mathbf{a} \quad where \quad \mathbf{a} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{F}^n \quad and \quad v = \alpha_1 b_1 + \dots + \alpha_n b_n,$$

is an isomorphism between \mathcal{V} and \mathbb{F}^n .

It is important to point out that the formula for the inverse $(C_{\mathcal{B}})^{-1} : \mathbb{F}^n \to \mathcal{V}$ of $C_{\mathcal{B}}$ is given by

$$(C_{\mathcal{B}})^{-1} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \sum_{j=1}^n \alpha_j v_j, \quad \text{for all} \quad \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{F}^n.$$
(1.5) eq-CB-i

Notice that (1.5) defines a function from \mathbb{F}^n to \mathcal{V} even if \mathcal{B} is not a basis of \mathcal{V} .

Example 1.8. Inspired by the definition of $C_{\mathcal{B}}$ and (1.5) we define a general operator of this kind. Let \mathcal{V} and \mathcal{W} be vector spaces over \mathbb{F} . Let \mathcal{V} be finite dimensional, $n = \dim \mathcal{V}$ and let \mathcal{B} be a basis for \mathcal{V} . Let $\mathcal{C} = (w_1, \ldots, w_n)$ be any *n*-tuple of vectors in \mathcal{W} . The entries of an *n*-tuple can be repeated, they can all be equal, for example to $0_{\mathcal{V}}$. We define the linear operator $L_{\mathcal{C}}^{\mathcal{B}}: \mathcal{V} \to \mathcal{W}$ by

$$L_{\mathcal{C}}^{\mathcal{B}}(v) = \sum_{j=1}^{n} \alpha_{j} w_{j} \quad \text{where} \quad \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix} = C_{\mathcal{B}}(v). \quad (1.6) \quad \boxed{\text{eq-rCA}}$$

In fact, $L_{\mathcal{C}}^{\mathcal{B}}: \mathcal{V} \to \mathcal{W}$ is a composition of $C_{\mathcal{B}}: \mathcal{V} \to \mathbb{F}^n$ and the operator $\mathbb{F}^n \to \mathcal{W}$ defined by

$$\begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix} \mapsto \sum_{j=1}^n \xi_j w_j \quad \text{for all} \quad \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix} \in \mathbb{F}^n. \quad (1.7) \quad \boxed{\text{eq-rC}}$$

It is easy to verify that (1.7) defines a linear operator.

Denote by \mathcal{E} the standard basis of \mathbb{F}^n , that is the basis which consists of the columns of the identity matrix I_n . Then $C_{\mathcal{B}} = L_{\mathcal{E}}^{\mathcal{B}}$ and $(C_{\mathcal{B}})^{-1} = L_{\mathcal{B}}^{\mathcal{E}}$.

Exercise 1.9. Let \mathcal{V} and \mathcal{W} be vector spaces over \mathbb{F} . Let \mathcal{V} be finite dimensional, $n = \dim \mathcal{V}$ and let \mathcal{B} be a basis for \mathcal{V} . Let $\mathcal{C} = (w_1, \ldots, w_n)$ be a list of vectors in \mathcal{W} with n entries.

- (a) Characterize the injectivity of $L_{\mathcal{C}}^{\mathcal{B}}: \mathcal{V} \to \mathcal{W}$.
- (b) Characterize the surjectivity of $L_{\mathcal{C}}^{\mathcal{B}}: \mathcal{V} \to \mathcal{W}$. (c) Characterize the bijectivity of $L_{\mathcal{C}}^{\mathcal{B}}: \mathcal{V} \to \mathcal{W}$.
- (d) If $L_{\mathcal{C}}^{\mathcal{B}}: \mathcal{V} \to \mathcal{W}$ is an isomorphism, find a simple formula for $(L_{\mathcal{C}}^{\mathcal{B}})^{-1}$.

1.3. The nullity-rank theorem. Let $T: \mathcal{V} \to \mathcal{W}$ is be a linear operator. The linearity of T implies that the set

$$\operatorname{nul} T = \{ v \in \mathcal{V} : Tv = 0_{\mathcal{W}} \}$$

is a subspace of \mathcal{V} . This subspace is called the *null space* of T. Similarly, the linearity of T implies that the range of T is a subspace of \mathcal{W} . Recall that

$$\operatorname{ran} T = \{ w \in \mathcal{W} : \exists v \in \mathcal{V} \ w = Tv \}.$$

Proposition 1.10. A linear operator $T: \mathcal{V} \to \mathcal{W}$ is an injection if and only *if* nul $T = \{0_{\mathcal{V}}\}.$

Proof. We first prove the "if" part of the proposition. Assume that $\operatorname{nul} T =$ $\{0_{\mathcal{V}}\}$. Let $u, v \in \mathcal{V}$ be arbitrary and assume that Tu = Tv. Since T is linear, Tu = Tv implies $T(u-v) = 0_{\mathcal{W}}$. Consequently $u-v \in \operatorname{nul} T = \{0_{\mathcal{V}}\}$. Hence, $u - v = 0_{\mathcal{V}}$, that is u = v. This proves that T is an injection.

To prove the "only if" part assume that $T: \mathcal{V} \to \mathcal{W}$ is an injection. Let $v \in \operatorname{nul} T$ be arbitrary. Then $Tv = 0_{\mathcal{W}} = T0_{\mathcal{V}}$. Since T is injective, $Tv = T0_{\mathcal{V}}$ implies $v = 0_{\mathcal{V}}$. Thus we have proved that nul $T \subseteq \{0_{\mathcal{V}}\}$. Since the converse inclusion is trivial, we have nul $T = \{0_{\mathcal{V}}\}$.

Theorem 1.11 (Nullity-Rank Theorem). Let \mathcal{V} and \mathcal{W} be vector spaces over a scalar field \mathbb{F} and let $T: \mathcal{V} \to \mathcal{W}$ be a linear operator. If \mathcal{V} is finite dimensional, then $\operatorname{nul} T$ and $\operatorname{ran} T$ are finite dimensional and

$$\dim(\operatorname{nul} T) + \dim(\operatorname{ran} T) = \dim \mathcal{V}. \tag{1.8} \quad |\operatorname{eq-rnt}|$$

Proof. Assume that \mathcal{V} is finite dimensional. We proved earlier that for an arbitrary subspace \mathcal{U} of \mathcal{V} there exists a subspace \mathcal{X} of \mathcal{V} such that

$$\mathcal{U} \oplus \mathcal{X} = \mathcal{V}$$
 and $\dim \mathcal{U} + \dim \mathcal{X} = \dim \mathcal{V}$

4

LINEAR OPERATORS

Thus, there exists a subspace \mathcal{X} of \mathcal{V} such that

$$(\operatorname{nul} T) \oplus \mathcal{X} = \mathcal{V}$$
 and $\dim(\operatorname{nul} T) + \dim \mathcal{X} = \dim \mathcal{V}.$

Since $\dim(\operatorname{nul} T) + \dim \mathcal{X} = \dim \mathcal{V}$, to prove the theorem we only need to prove that $\dim \mathcal{X} = \dim(\operatorname{ran} T)$. To this end, we consider the restriction $T|_{\mathcal{X}}: \mathcal{X} \to \operatorname{ran} T$ of T to the subspace \mathcal{X} . This operator is defined by

$$T|_{\mathcal{X}}(v) = Tv \quad \forall v \in \mathcal{X}.$$

We will prove that $T|_{\mathcal{X}}$ is an isomorphism. The first step in this direction is to prove that $T|_{\mathcal{X}}$ is a surjection. That is

$$\operatorname{span}\{Tx_1,\ldots,Tx_m\} = \operatorname{ran} T. \tag{1.10} \quad \operatorname{eq-span-rnt}$$

Clearly $\{Tx_1, \ldots, Tx_m\} \subseteq \operatorname{ran} T$. Consequently, since $\operatorname{ran} T$ is a subspace of \mathcal{W} , we have span $\{Tx_1, \ldots, Tx_m\} \subseteq \operatorname{ran} T$. To prove the converse inclusion, let $w \in \operatorname{ran} T$ be arbitrary. Then, there exists $v \in \mathcal{V}$ such that Tv = w. Since $\mathcal{V} = (\operatorname{nul} T) + \mathcal{X}$, there exist $u \in \operatorname{nul} T$ and $x \in \mathcal{X}$ such that v = u + x. Then Tv = T(u+x) = Tu + Tx = Tx. As $x \in \mathcal{X}$, there exist $\xi_1, \ldots, \xi_m \in \mathbb{F}$ such that $x = \sum_{j=1}^{m} \xi_j x_j$. Now we use linearity of T to deduce

$$w = Tv = Tx = \sum_{j=1}^{m} \xi_j Tx_j.$$

This proves that $w \in \text{span}\{Tx_1, \ldots, Tx_m\}$. Since w was arbitrary in ran T this completes a proof of (1.10).

Next we prove that the vectors Tx_1, \ldots, Tx_m are linearly independent. Let $\alpha_1, \ldots, \alpha_m \in \mathbb{F}$ be arbitrary and assume that

$$\alpha_1 T x_1 + \dots + \alpha_m T x_m = 0_{\mathcal{W}}.$$
(1.11) |eq-li-rnt

Since T is linear (1.11) implies that

$$\alpha_1 x_1 + \dots + \alpha_m x_m \in \operatorname{nul} T. \tag{1.12} \quad |\operatorname{eq-li2-rnt}|$$

Recall that $x_1, \ldots, x_m \in cX$ and \mathcal{X} is a subspace of \mathcal{V} , so

$$\alpha_1 x_1 + \dots + \alpha_m x_m \in \mathcal{X}. \tag{1.13} \quad | eq-li3-rnt|$$

Now (1.12), (1.13) and the fact that $(\operatorname{nul} T) \cap \mathcal{X} = \{0_{\mathcal{V}}\}$ imply

$$\alpha_1 x_1 + \dots + \alpha_m x_m = 0_{\mathcal{V}}.$$
(1.14) |eq-li4-rn

Since x_1, \ldots, x_m are linearly independent (1.14) yields $\alpha_1 = \cdots = \alpha_m = 0$. This completes a proof of the linear independence of Tx_1, \ldots, Tx_m .

Thus $\{Tx_1, \ldots, Tx_m\}$ is a basis for ran T. Consequently dim $(\operatorname{ran} T) = m$. Since $m = \dim \mathcal{X}$, (1.9) implies (1.8). This completes the proof.

A direct proof of the Nullity-Rank Theorem is as follows:

Proof. Since nul T is a subspace of V it is finite dimensional. Set k =dim(nul T) and let $\mathcal{C} = \{u_1, \ldots, u_k\}$ be a basis for nul T.

Since \mathcal{V} is finite dimensional there exists a finite set $\mathcal{F} \subset \mathcal{V}$ such that $\operatorname{span}(\mathcal{F}) = \mathcal{V}$. Then the set $T\mathcal{F}$ is a finite subset of \mathcal{W} and $\operatorname{ran} T =$

eq-st1-rnt

(1.9)

span $(T\mathcal{F})$. Thus ran T is finite dimensional. Let dim $(\operatorname{ran} T) = m$ and let $\mathcal{E} = \{w_1, \ldots, w_m\}$ be a basis of ran T.

Since clearly for every $j \in \{1, \ldots, m\}$, $w_j \in \operatorname{ran} T$, we have that for every $j \in \{1, \ldots, m\}$ there exists $v_j \in \mathcal{V}$ such that $Tv_j = w_j$. Set $\mathcal{D} = \{v_1, \ldots, v_m\}$.

Further set $\mathcal{B} = \mathcal{C} \cup \mathcal{D}$.

We will prove the following three facts:

- (I) $\mathcal{C} \cap \mathcal{D} = \emptyset$,
- (II) span $\mathcal{B} = \mathcal{V}$,
- (III) \mathcal{B} is a linearly independent set.

To prove (I), notice that the vectors in \mathcal{E} are nonzero, since \mathcal{E} is linearly independent. Therefore, for every $v \in \mathcal{D}$ we have that $Tv \neq 0_{\mathcal{W}}$. Since for every $u \in \mathcal{C}$ we have $Tu = 0_{\mathcal{W}}$ we conclude that $u \in \mathcal{C}$ implies $u \notin \mathcal{D}$. This proves (I).

To prove (II), first notice that by the definition of $\mathcal{B} \subset \mathcal{V}$. Since \mathcal{V} is a vector space, we have span $\mathcal{B} \subseteq \mathcal{V}$.

To prove the converse inclusion, let $v \in \mathcal{V}$ be arbitrary. Then $Tv \in \operatorname{ran} T$. Since \mathcal{E} spans $\operatorname{ran} T$, there exist $\beta_1, \ldots, \beta_m \in \mathbb{F}$ such that

$$Tv = \sum_{j=1}^{m} \beta_j w_j.$$

 Set

$$v' = \sum_{j=1}^m \beta_j v_j.$$

Then, by linearity of T we have

$$Tv' = \sum_{j=1}^{m} \beta_j Tv_j = \sum_{j=1}^{m} \beta_j w_j = Tv.$$

The last equality yields and the linearity of T yield $T(v - v') = 0_{\mathcal{W}}$. Consequently, $v - v' \in \operatorname{nul} T$. Since \mathcal{C} spans $\operatorname{nul} T$, there exist $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$ such that

$$v - v' = \sum_{j=1}^{k} \alpha_i u_i.$$

Consequently,

$$v = v' + \sum_{j=1}^{k} \alpha_i u_i = \sum_{j=1}^{k} \alpha_i u_i + \sum_{j=1}^{m} \beta_j v_j.$$

This proves that for arbitrary $v \in \mathcal{V}$ we have $v \in \operatorname{span} \mathcal{B}$. Thus $\mathcal{V} \subseteq \operatorname{span} \mathcal{B}$ and (II) is proved.

 $\mathbf{6}$

To prove (III) let $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$ and $\beta_1, \ldots, \beta_m \in \mathbb{F}$ be arbitrary and assume that

$$\sum_{j=1}^{k} \alpha_i u_i + \sum_{j=1}^{m} \beta_j v_j = 0_{\mathcal{V}}.$$
(1.15) eq-assu-4-l-i

Applying T to both sides of the last equality, and using the fact that $u_i \in$ nul T and the definition of v_i we get

$$\sum_{j=1}^{m} \beta_j w_j = 0_{\mathcal{W}}.$$

Since \mathcal{E} is a linearly independent set the last equality implies that $\beta_j = 0$ for all $j \in \{1, \ldots, m\}$. Now substitute these equalities in (1.15) to get

$$\sum_{j=1}^k \alpha_i u_i = 0_{\mathcal{V}}.$$

Since C is a linearly independent set the last equality implies that $\alpha_i = 0$ for all $i \in \{1, \ldots, k\}$. This proves the linear independence of \mathcal{B} .

It follows from (II) and (III) that \mathcal{B} is a basis for \mathcal{V} . By (I) we have that $|\mathcal{B}| = |\mathcal{C}| + |\mathcal{D}| = k + m$. This completes proof of the theorem.

The nonnegative integer $\dim(\operatorname{nul} T)$ is called the *nullity* of T; the nonnegative integer $\dim(\operatorname{ran} T)$ is called the *rank* of T.

The nullity-rank theorem in English reads: If a linear operator is defined on a finite dimensional vector space, then its nullity and its rank are finite and they add up to the dimension of the domain.

Proposition 1.12. Let \mathcal{V} and \mathcal{W} be vector spaces over \mathbb{F} . Assume that \mathcal{V} is finite dimensional. The following statements are equivalent

- (a) There exists a surjection $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.
- (b) \mathcal{W} is finite dimensional and dim $\mathcal{V} \geq \dim \mathcal{W}$.

Proposition 1.13. Let \mathcal{V} and \mathcal{W} be vector spaces over \mathbb{F} . Assume that \mathcal{V} is finite dimensional. The following statements are equivalent

- (a) There exists an injection $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.
- (b) Either \mathcal{W} is infinite dimensional or dim $\mathcal{V} \leq \dim \mathcal{W}$.

Proposition 1.14. Let \mathcal{V} and \mathcal{W} be vector spaces over \mathbb{F} . Assume that \mathcal{V} is finite dimensional. The following statements are equivalent

- (a) There exists an isomorphism $T: \mathcal{V} \to \mathcal{W}$.
- (b) \mathcal{W} is finite dimensional and dim $\mathcal{W} = \dim \mathcal{V}$.

1.4. Isomorphism between $\mathcal{L}(\mathcal{V}, \mathcal{W})$ and $\mathbb{F}^{n \times m}$. Let \mathcal{V} and \mathcal{W} be finite dimensional vector spaces over \mathbb{F} , $m = \dim \mathcal{V}$, $n = \dim \mathcal{W}$, let $\mathcal{B} = \{v_1, \ldots, v_n\}$ be a basis for \mathcal{V} and let $\mathcal{C} = \{w_1, \ldots, w_n\}$ be a basis for \mathcal{W} . The mapping $C_{\mathcal{B}}$ provides an isomorphism between \mathcal{V} and \mathbb{F}^m and $C_{\mathcal{C}}$ provides an isomorphism between \mathcal{W} and \mathbb{F}^n .

BRANKO ĆURGUS

Recall that the simplest way to define a linear operator from \mathbb{F}^m to \mathbb{F}^n is to use an $n \times m$ matrix B. It is convenient to consider an $n \times m$ matrix to be an *m*-tuple of its columns, which are vectors in \mathbb{F}^n . For example, let $\mathbf{b}_1, \ldots, \mathbf{b}_m \in \mathbb{F}^n$ be columns of an $n \times m$ matrix B. Then we write

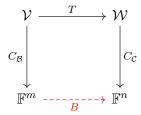
$$B = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_m \end{bmatrix}.$$

This notation is convenient since it allows us to write a multiplication of a vector $\mathbf{x} \in \mathbb{F}^m$ by a matrix B as

$$B\mathbf{x} = \sum_{j=1}^{m} \xi_j \mathbf{b}_j \quad \text{where} \quad \mathbf{x} = \begin{vmatrix} \xi_1 \\ \vdots \\ \xi_n \end{vmatrix}. \tag{1.16} \quad \boxed{\texttt{eq-defBx}}$$

Notice the similarity of the definition in (1.16) to the definition (1.6) of the operator $L_{\mathcal{C}}^{\mathcal{B}}$ in Example 1.8. Taking \mathcal{B} to be the standard basis of \mathbb{F}^m and taking \mathcal{C} to me the *m*-tuple given by B, we have $L_{\mathcal{C}}^{\mathcal{B}}(\mathbf{x}) = B\mathbf{x}$.

Let $T: \mathcal{V} \to \mathcal{W}$ be a linear operator. Our next goal is to connect T in a natural way to a certain $n \times m$ matrix B. That "natural way" is suggested by following diagram:



We seek an $n \times m$ matrix B such that the action of T between \mathcal{V} and \mathcal{W} is in some sense replicated by the action of B between \mathbb{F}^m and \mathbb{F}^n . Precisely, we seek B such that

$$C_{\mathcal{C}}(Tv) = B(C_{\mathcal{B}}(v)) \qquad \forall v \in \mathcal{V}.$$
(1.17) eq-cdB

In English: multiplying the vector of coordinates of v by B we get exactly the coordinates of Tv.

Using the basis vectors $v_1, \ldots, v_n \in \mathcal{B}$ in (1.17) we see that the matrix

$$B = \begin{bmatrix} C_{\mathcal{C}}(Tv_1) & \cdots & C_{\mathcal{C}}(Tv_m) \end{bmatrix}$$
(1.18) [eq-defB]

has the desired property (1.17).

For an arbitrary $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ the formula (1.18) associates the matrix $B \in \mathbb{F}^{n \times m}$ with T. In other words (1.18) defines a function from $\mathcal{L}(\mathcal{V}, \mathcal{W})$ to $\mathbb{F}^{n \times m}$.

th-MatR

Theorem 1.15. Let \mathcal{V} and \mathcal{W} be finite dimensional vector spaces over \mathbb{F} , $m = \dim \mathcal{V}, n = \dim \mathcal{W}, \text{ let } \mathcal{B} = \{v_1, \ldots, v_m\}$ be a basis for \mathcal{V} and let $\mathcal{C} = \{w_1, \ldots, w_n\}$ be a basis for \mathcal{W} . The function

$$M_{\mathcal{C}}^{\mathcal{B}}: \mathcal{L}(\mathcal{V}, \mathcal{W}) \to \mathbb{F}^{n \times m}$$

LINEAR OPERATORS

defined by

$$M_{\mathcal{C}}^{\mathcal{B}}(T) = \begin{bmatrix} C_{\mathcal{C}}(Tv_1) & \cdots & C_{\mathcal{C}}(Tv_m) \end{bmatrix}, \qquad T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$$
(1.19) eq-defM

is an isomorphism.

Proof. It is easy to verify that $M_{\mathcal{C}}^{\mathcal{B}}$ is a linear operator. Since the definition of $M_{\mathcal{C}}^{\mathcal{B}}(T)$ coincides with (1.18), equality (1.17) yields

$$C_{\mathcal{C}}(Tv) = \left(M_{\mathcal{C}}^{\mathcal{B}}(T)\right)C_{\mathcal{B}}(v). \tag{1.20} \quad \text{eq-cdMBC}$$

The most direct way to prove that $M_{\mathcal{C}}^{\mathcal{B}}$ is an isomorphism is to construct its inverse. The inverse is suggested by the diagram (1.21).

Define

$$N_{\mathcal{C}}^{\mathcal{B}}: \mathbb{F}^{n \times m} \to \mathcal{L}(\mathcal{V}, \mathcal{W})$$

by

 $(N_{\mathcal{C}}^{\mathcal{B}}(B))(v) = (C_{\mathcal{C}})^{-1} (B(C_{\mathcal{B}}(v))), \qquad B \in \mathbb{F}^{n \times m}.$ (1.22)eq-defN

Next we prove that

$$N_{\mathcal{C}}^{\mathcal{B}} \circ M_{\mathcal{C}}^{\mathcal{B}} = I_{\mathcal{L}(\mathcal{V},\mathcal{W})}$$
 and $M_{\mathcal{C}}^{\mathcal{B}} \circ N_{\mathcal{C}}^{\mathcal{B}} = I_{\mathbb{F}^{n \times m}}.$

First for arbitrary $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ and arbitrary $v \in \mathcal{V}$ we calculate

$$\begin{pmatrix} \left(N_{\mathcal{C}}^{\mathcal{B}} \circ M_{\mathcal{C}}^{\mathcal{B}}\right)(T) \end{pmatrix}(v) = (C_{\mathcal{C}})^{-1} \begin{pmatrix} \left(M_{\mathcal{C}}^{\mathcal{B}}(T)\right)(C_{\mathcal{B}}(v)) \end{pmatrix} & \text{by (1.22)} \\ = (C_{\mathcal{C}})^{-1} \begin{pmatrix} C_{\mathcal{C}}(Tv) \end{pmatrix} & \text{by (1.20)} \\ = Tv. \end{cases}$$

Thus $(N_{\mathcal{C}}^{\mathcal{B}} \circ M_{\mathcal{C}}^{\mathcal{B}})(T) = T$ and thus, since $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ was arbitrary, $N_{\mathcal{C}}^{\mathcal{B}} \circ M_{\mathcal{C}}^{\mathcal{B}} = I_{\mathcal{L}(\mathcal{V}, \mathcal{W})}$. Let now $B \in \mathbb{F}^{n \times m}$ be arbitrary and calculate

$$\begin{pmatrix} M_{\mathcal{C}}^{\mathcal{B}} \circ N_{\mathcal{C}}^{\mathcal{B}} \end{pmatrix} (B) = M_{\mathcal{C}}^{\mathcal{B}} (N_{\mathcal{C}}^{\mathcal{B}}(B)) = \begin{bmatrix} C_{\mathcal{C}} ((N_{\mathcal{C}}^{\mathcal{B}}(B))(v_{1})) \cdots C_{\mathcal{C}} ((N_{\mathcal{C}}^{\mathcal{B}}(B))(v_{m})) \end{bmatrix} \text{ by (1.19)} = \begin{bmatrix} B(C_{\mathcal{B}}(v_{1})) \cdots B(C_{\mathcal{B}}(v_{m})) \end{bmatrix} \text{ by (1.22)} = B \begin{bmatrix} C_{\mathcal{B}}(v_{1}) \cdots C_{\mathcal{B}}(v_{m}) \end{bmatrix} \text{ matrix mult.} = B I_{m} \\ = B.$$

Thus $(M_{\mathcal{C}}^{\mathcal{B}} \circ N_{\mathcal{C}}^{\mathcal{B}})(B) = B$ for all $B \in \mathbb{F}^{n \times m}$, proving that $M_{\mathcal{C}}^{\mathcal{B}} \circ N_{\mathcal{C}}^{\mathcal{B}} = I_{\mathbb{F}^{n \times m}}$.

9

This completes the proof that $M_{\mathcal{C}}^{\mathcal{B}}$ is a bijection. Since it is linear, $M_{\mathcal{C}}^{\mathcal{B}}$ is an isomorphism.

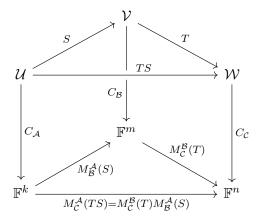
th-MTS

Theorem 1.16. Let \mathcal{U} , \mathcal{V} and \mathcal{W} be finite dimensional vector spaces over \mathbb{F} , $k = \dim \mathcal{U}$, $m = \dim \mathcal{V}$, $n = \dim \mathcal{W}$, let \mathcal{A} be a basis for \mathcal{U} , let \mathcal{B} be a basis for \mathcal{V} , and let \mathcal{C} be a basis for \mathcal{W} . Let $S \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ and $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$. Let $M_{\mathcal{B}}^{\mathcal{A}}(S) \in \mathbb{F}^{m \times k}$, $M_{\mathcal{C}}^{\mathcal{B}}(T) \in \mathbb{F}^{n \times m}$ and $M_{\mathcal{C}}^{\mathcal{A}}(TS) \in \mathbb{F}^{n \times k}$ be as defined in Theorem 1.15. Then

$$M_{\mathcal{C}}^{\mathcal{A}}(TS) = M_{\mathcal{C}}^{\mathcal{B}}(T)M_{\mathcal{B}}^{\mathcal{A}}(S)$$

Proof. Let $\mathcal{A} = \{u, \ldots, u_k\}$ and calculate

The following diagram illustrates the content of Theorem 1.16.



2. Problems

Problem 2.1. Let \mathcal{V} and \mathcal{W} be vector spaces over a scalar field \mathbb{F} . Let \mathcal{S} be a subspace of the direct product vector space $\mathcal{V} \times \mathcal{W}$, let \mathcal{G} be a subspace of \mathcal{V} and let \mathcal{H} be a subspace of \mathcal{W} . Then

$$\mathcal{S}(\mathcal{G}) = \left\{ w \in \mathcal{W} : \exists v \in \mathcal{G} \text{ such that } (v, w) \in \mathcal{S} \right\}$$

is a subspace of \mathcal{W} and

$$\mathcal{S}^{-1}(\mathcal{H}) = \left\{ v \in \mathcal{V} : \exists w \in \mathcal{H} \text{ such that } (v, w) \in \mathcal{S} \right\}$$

is a subspace of \mathcal{V} .

10

Problem 2.2. Let \mathcal{V} and \mathcal{W} be finite-dimensional vector spaces over a scalar field \mathbb{F} . Let \mathcal{S} be a subspace of the direct product vector space $\mathcal{V} \times \mathcal{W}$. The following four sets are subspaces

dom
$$S = \{v \in V : \exists w \in W \text{ such that } (v, w) \in S\},\$$

ran $S = \{w \in W : \exists v \in V \text{ such that } (v, w) \in S\},\$
nul $S = \{v \in V : (v, 0_W) \in S\},\$
mul $S = \{w \in W : (0_V, w) \in S\}.$

and the following equality holds:

 $\dim \operatorname{dom} \mathcal{S} + \dim \operatorname{mul} \mathcal{S} = \dim \operatorname{ran} \mathcal{S} + \dim \operatorname{nul} \mathcal{S}.$

Hint: The following equivalence holds. For all $v \in \mathcal{V}$ and all $w \in \mathcal{W}$ we have:

$$(v,w) \in \mathcal{S} \quad \Leftrightarrow \quad (v+x,w+y) \in \mathcal{S} \quad \forall x \in \operatorname{nul} \mathcal{S} \text{ and } \forall y \in \operatorname{nul} \mathcal{S}.$$

Problem 2.3. Let \mathcal{V} and \mathcal{W} be finite-dimensional vector spaces over a scalar field \mathbb{F} and recall that $\mathcal{V} \times \mathcal{W}$ and $\mathcal{W} \times \mathcal{V}$ are the direct product vector spaces. Prove that the function

$$R: \mathcal{V} \times \mathcal{W} \to \mathcal{W} \times \mathcal{V}$$

defined by

$$R(v, w) = (w, v)$$
 for all $(v, w) \in \mathcal{V} \times \mathcal{W}$

is an isomorphism.

Problem 2.4. Let \mathcal{V} and \mathcal{W} be finite-dimensional vector spaces over a scalar field \mathbb{F} and recall that $\mathcal{V} \times \mathcal{W}$ and $\mathcal{W} \times \mathcal{V}$ are the direct product vector spaces. Let \mathcal{T} be a subset of $\mathcal{V} \times \mathcal{W}$. Then \mathcal{T} is an isomorphism between \mathcal{V} and \mathcal{W} if and only if the set

$$\{(w,v)\in\mathcal{W}\times\mathcal{V}\,:\,(v,w)\in\mathcal{T}\}=R\mathcal{T}$$

is an isomorphism between \mathcal{W} and \mathcal{V} . (Use Problem 2.3 and Propositions 1.3 and 1.4 to prove this equivalence.)

pb-rev