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1 Introduction

We consider the eigenvalue problem

Lu = λru, (1)

where L is a symmetric elliptic operator and r is a locally integrable function
on Rn. If r is of constant sign then this problem leads to a selfadjoint
problem in the Hilbert space L2(|r|). In this note we are interested in the
case when r takes both positive and negative values on sets of positive
measure. Then the spectrum of the problem (1) is not necessarily real any
more. Moreover it is not apparent that the spectrum does not cover the
whole complex plane. Even when it is discrete there can be nonsimple
eigenvalues. For ordinary differential equations the related completeness
problem of the eigenfunctions has been studied extensively in recent years
see for example [3, 6] and the references quoted therein. The corresponding
question in the case of continuous spectrum has been addressed in [6].

∗Supported in part by Fond za znanstveni rad Hrvatske. This research has been
done while the author was visiting the Department of Mathematics, Western Washington
University.
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When n > 1 some special properties of the spectrum of (1) have been
considered in [1, 8, 9, 10, 11, 12]. In all of these papers the spectrum is dis-
crete. To ensure the discreteness of the spectrum the problem (1) had to be
considered on a bounded domain Ω with appropriate boundary conditions.

The important question of completeness of the eigenfunctions in the
space L2(Ω, |r|) has been recently considered in [19]. In that paper an
operator-theoretic approach has been used to give sufficient conditions for
the eigenvectors of the generalized selfadjoint eigenvalue problem Su = λTu
to form a Riesz basis. Applied to the problem (1) on the bounded domain Ω
with the weight function r bounded and bounded away from zero and satis-
fying certain smoothness conditions, these results imply that eigenfunctions
of (1) form a Riesz basis in L2(Ω, |r|). In case that r is not bounded away
from zero it is not simple to state explicit assumptions on r so that all the
abstract conditions for the Riesz property are satisfied. In [19] some of these
conditions on r are given explicitly and for the remaining ones it is shown
that they correspond to standard problems in the theory of function spaces
and interpolation theory.

In problem (1) the operator 1
rL is symmetric with respect to the form

[u|v] =
∫

uvr. Therefore, the space L2(|r|) endowed with this form is a
natural underlying space for this problem. This space is a Krein space.
See [2, 4, 17] for the definitions and properties of Krein spaces and linear
operators in them; for the convenience of the reader we give a short review
of basic notions at the end of the Introduction. The operator A associated
with the formal operator 1

rL is selfadjoint in the Krein space (L2(|r|), [ · | · ]).
Under certain conditions A is definitizable. Therefore the Krein-Langer
spectral theory of definitizable operators can be applied. This theory extends
the classical spectral theory for selfadjoint operators in a Hilbert space. In
particular it follows that the nonreal spectrum of A is symmetric with respect
to the real line and it consists of at most finitely many eigenvalues of finite
algebraic multiplicity. Furthermore, A has a spectral function. With the
exception of finitely many critical points this spectral function has properties
analogous to the properties of the spectral function of a selfadjoint operator
in a Hilbert space. The appearance of critical points is one of the most
interesting aspects of the theory and a lot of research has been devoted to
the analysis of such points. In particular the character of ∞ as a critical
point has been investigated in [5, 22]. In the case of an operator with
discrete spectrum the only possible nonisolated critical point is ∞. Let
∞ be a critical point of A. We show below that there exists a Riesz basis
consisting of eigenvectors and associated eigenvectors of A if and only if
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∞ is a regular critical point of A. This observation enables us to obtain
results about the Riesz property of eigenvectors from the results of [5]. In
particular, the results from [19] about the equation (1) on a bounded domain
Ω can also be deduced from operator-theoretic results in [5]. Since the Riesz
basis property is a particular case of the more general concept of regularity
of ∞ it turns out that the methods developed in [19] for the discrete case
can be applied to the case of continuous spectrum. This remark is essential
for our approach to the equation (1) in unbounded domains.

In Section 2 of this note we develop the operator-theoretic background for
our study of problem (1). We give several necessary and sufficient conditions
for ∞ not to be a singular critical point of a definitizable operator in a Krein
space. These results are reformulations of results from [5, 6, 19] adapted to
the problem under consideration.

In Section 3 we consider the equation (1) on an unbounded domain. In
the case of the weight function r being bounded and bounded away from
0, we give explicit conditions for nonsingularity of the critical point ∞ for
the operator A. Our results extend corresponding results from [19] with
the Riesz property of the basis replaced by the nonsingularity of the critical
point∞. If r is not bounded away from zero then we show that the approach
of [19] carries over to the case of unbounded domains. As in [19] some of the
assumptions on r are stated implicitly. This method indicates that results
from the theory of function spaces are relevant for a better understanding
of this problem.

Let K be a vector space and let [ · | · ] be an indefinite scalar product
on K. The pair (K, [ · | · ]) is a Krein space if there exists a direct sum
decomposition K = K+ +̇K− such that (K±,±[ · | · ]) are Hilbert spaces. For
such a decomposition the corresponding fundamental symmetry J is a linear
operator defined by J(x+ + x−) = x+− x−. Let (u|v) = [Ju|v] for u, v ∈ K.
Then the space (K, ( · | · )) is a Hilbert space. Its topology is independent
of the choice of K+ and K−. The definitions of symmetric, selfadjoint and
positive operators in a Krein space parallel those in a Hilbert space. A
selfadjoint operator A is definitizable if its resolvent set is nonempty and
there exists a nonzero polynomial p such that [p(A)u|u] ≥ 0 for all u in
the domain of p(A). A definitizable operator has a spectral function with
finitely many critical points in R∪{∞}; see [17]. A critical point α is regular
if the spectral function is bounded in a neighborhood of α. A critical point
is singular if it is not regular.
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2 Regularity of the critical point ∞
Let (H0, [ · | · ]) be a Krein space and A an operator with nonempty resolvent
set in H0. Let J be a fundamental symmetry on H0 and ( · | · ) the corre-
sponding Hilbert space scalar product and ‖ · ‖ the corresponding norm.

Let λ be a point in the resolvent set of A. Denote by H2(A) the space
D(A) with the norm ‖(A−λ) ·‖. Define the space H−2(A) as the completion
of H0 with respect to the norm ‖(A−λ)−1 · ‖. If B is another operator with
nonempty resolvent set in H0 such that D(B) = D(A), then H2(A) = H2(B)
and the corresponding norms on these spaces are equivalent. Analogously,
if the adjoints of A and B in [ · | · ] (or equivalently in ( · | · )) have the same
domain, then H−2(A) = H−2(B) and the corresponding norms on these
spaces are equivalent.

For s ∈ (0, 2), define Hs(A) by complex interpolation (see [18, 21]) be-
tween the Hilbert spaces H2(A) and H0(A):

Hs(A) = [H2(A), H0(A)]1−s/2 .

For s ∈ (−2, 0), define

Hs(A) = [H0(A), H−2(A)]−s/2 .

The spaces Hs, −2 ≤ s ≤ 2, and their norms do not depend either on J
or on λ. If there is no possibility of confusion we will write Hs instead of
Hs(A).

Assume additionally that A is selfadjoint in the Krein space (H0, [ · | · ]).
Then the operator JA is selfadjoint in the Hilbert space (H0, ( · | · )). Put
B = J(|JA|+ I). Then B is a positive selfadjoint operator with a bounded
inverse in (H0, [ · | · ]). The operators A and B clearly have the same domain.
Since they are also selfadjoint we have

H2(A) = H2(B) and H−2(A) = H−2(B)

and the corresponding norms are equivalent. Consequently

Hs(A) = Hs(B), −2 ≤ s ≤ 2.

The operator JB is boundedly invertible and positive in (H0, ( · | · )). By
definition of the interpolation spaces it follows that

Hs(A) = Hs(B) = Hs(JB) = D
(
(JB)s/2

)
, 0 ≤ s ≤ 2. (2)
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Similarly, since the adjoints of the operators A, B, BJ have the same do-
main, it follows that

H−s(A) = H−s(B) = H−s(BJ), 0 ≤ s ≤ 2. (3)

This space can be obtained as the completion of H0 with respect to the
norm ‖(BJ)−s/2 · ‖.

Next we characterize H1(B) and H−1(B) without referring to the fun-
damental symmetry J . Taking s = 1 in (2) we see that H1(B) is the
completion of D(B) with respect to the form [B · | · ]. Analogously, with
s = 1 in (3), we see that H−1(B) is the completion of H0 with respect to
the form [B−1 · | · ]. These characterizations hold for any operator B which
is positive in (H0, [ · | · ]) and has a bounded inverse.

The operators JB and BJ are positive selfadjoint operators in the Hil-
bert space (H0, ( · | · )). They are similar: J(JB)J = BJ. Consequently
J(JB)s = (BJ)sJ. It follows from (2) and (3) that

Hs(A) = Hs(B) = H1(J(JB)s) = H1((BJ)sJ), 0 ≤ s ≤ 2, (4)

and

H−s(A) = H−s(B) = H−1((BJ)sJ) = H−1(J(JB)s), 0 ≤ s ≤ 2. (5)

Next we give criteria for the regularity of ∞, as a critical point of A in terms
of the spaces Hs.

Theorem 2.1 Let A be a definitizable operator in the Krein space
(H0, [ · | · ]). Then the following statements are equivalent.

(i) ∞ is not a singular critical point of A.

(ii) There exist s ∈ (0, 2] and an operator Ws in H0 with the following
three properties.

(A) The operator Ws is positive and has a bounded and everywhere
defined inverse.

(B) The space Hs is invariant under Ws.

(C) The restriction of Ws to Hs is bounded in Hs.

(iii) There exist s ∈ (0, 2] and an operator Ws in H0 with the properties
(A), (B) and (C′), where:
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(C′) The operator Ws is bounded on H0.

(iv) For every s ∈ (0, 2] there exists an operator Ws in H0 which has the
properties (A), (B) and (C).

(v) For every s ∈ (0, 2] there exists an operator Ws in H0 which has the
properties (A), (B) and (C′).

(vi) There exists s ∈ (0, 2] such that

[Hs,H−s]1/2 = H0. (6)

(vii) For every s ∈ (0, 2] the interpolation equality (6) holds.

Proof Let B = J(|JA| + I). It follows from [5, Corollary 3.3] that (i) is
equivalent to

(i-1) ∞ is not a singular critical point of B.

By [5, Theorem 3.9] the statement (i-1) is equivalent to

(i-2) ∞ is not a singular critical point of J(JB)s/2 for all s ∈ (0, 2].

Next we fix s in (0, 2] and we apply [5, Theorem 2.5] to the operator
J(JB)s/2. In view of the equation (2) the equivalence of (vi), (ii) and (iii)
in [5, Theorem 2.5] translates to the equivalence of (i-2), (ii) and (iii) above.
Since s is arbitrary in (0, 2], it follows that (i) is also equivalent to (iv) and
(v) above.

Now we prove that (i) is equivalent to (vi) for s = 1 :

(vi-1) [H1(B),H−1(B)]1/2 = H0.

It is sufficient to prove the equivalence of (i-1) and (vi-1). Because of (3)
the Hilbert space H−1(B) is the completion of H0 with respect to the scalar
product [B−1 · | · ] = ( · | · )−1. Similarly the Hilbert space H1(B) is the
completion of D(B) with respect to the scalar product [B · | · ] = ( · | · )1.
The operator B, considered as an operator in H−1(B), is a densely defined
essentially selfadjoint operator (since ‖Bv‖−1 ≥ C‖v‖−1 for all v ∈ D(B)).
Its closure Be is a selfadjoint operator in H−1(B). Similarly we define a
selfadjoint operator Br in H1(B) as the closure in H1(B) of the restriction
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of B to D(B2). Then Br is a restriction of B and B is a restriction of Be.
It follows that |Br|1/2 is a restriction of |Be|1/2. Therefore,

‖|Be|1/2v‖2−1 = ‖Be|Be|−1/2v‖2−1 = ‖|Br|−1/2v‖21
= [B|Br|−1/2v||Br|−1/2v] = [B|Br|−1v|v]

(7)

for all v ∈ D(B). Also ‖Bev‖−1 = ‖v‖1 for all v ∈ D(B). It follows
that D(Be) = H1(B) and consequently [H1(B),H−1(B)]1/2 = D(|Be|1/2).
Therefore, (vi-1) is equivalent to the following condition:

(vi-2) The topology on D(B) induced by the positive definite scalar product
[B|Br|−1 · | · ] coincides with the strong topology inherited from H0.

The equivalence of (i-1) and (vi-2) has been shown in [5, Theorem 2.5
(iii),(v)]. This proves the equivalence of (i-1) and (vi-1).

Again by [5, Theorem 3.9] the statement (i-1) is equivalent to ∞ not
being a singular critical point of J(JB)s for arbitrary s in (0, 2]. By the
equivalence of (i-1) and (vi-1) applied to the operator J(JB)s and by (4) and
(5), it follows that (i-1) is equivalent to (6). Since s ∈ (0, 2] was arbitrary,
the equivalence of (i), (vi) and (vii) follows.

The following fact is well known; see [5, Theorem 2.5].

Lemma 2.2 Let A be a positive operator with a bounded inverse. Then the
statements (i) through (vii) are equivalent to:

(viii) The operator A is similar to a selfadjoint operator in the Hilbert space
(H0, ( · | · )).

Proposition 2.3 Let A be a definitizable operator with discrete spectrum.
Then the statements (i) through (vii) are equivalent to:

(ix) For any choice of bases in the algebraic eigenspaces of A the basis
vectors can be renormalized so that their union forms a Riesz basis in
the Krein space (H0, [ · | · ]).

Proof Let D be an open disc containing all nonreal eigenvalues and all
finite critical points of A. Then the spectral projection E(D) is selfadjoint
in the Krein space H0. Let H∞

0 = (I − E(D))H0. The orthogonal direct
sum H0 = E(D)H0 ⊕ H∞

0 reduces A. Since the spectrum of A is discrete,
the space E(D)H0 is finite-dimensional. Therefore, the eigenvectors and
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associated eigenvectors of A form a Riesz basis for E(D)H0. If the operator
A has a definitizing polynomial of even degree, then the restriction A∞
of A to H∞

0 is a selfadjoint operator in the Hilbert space (H∞
0 , | [ · | · ] |).

Consequently, (i) and (ix) are both satisfied. If all definitizing polynomials of
A are of odd degree, then the operator A∞ is a positive or negative operator
with discrete spectrum and bounded inverse. Also, ∞ is not a singular
critical point of A∞ if and only if ∞ is not a singular critical point of A.
Consequently, it is sufficient to prove the lemma for a positive operator A
with bounded inverse and discrete spectrum. By Lemma 2.2, (i) is equivalent
to (viii). The equivalence of (viii) and (ix) is a consequence of the definition
of a Riesz basis.

Remark 2.4 The equivalence of (vi1) and (ix), and a special case of the
implication (ii) ⇒ (vi-1) are proved in [19, Theorems 2.1 and 2.2].

Remark 2.5 The definition of A∞ in the proof of Proposition 2.3 does
not depend on the discreteness of the spectrum. Let A be a definitizable
operator such that ∞ is not a singular critical point of A. By Lemma 2.2,
the operator A∞ is similar to a selfadjoint operator in the Hilbert space
H∞

0 . Therefore, the operators µ(A∞− iµI)−1, for µ ∈ R \ {0} are uniformly
bounded. Since A−A∞ is bounded, there exist positive numbers C and µ0

such that iµ belongs to ρ(A) for |µ| > µ0, and the estimate

‖(A− iµI)−1‖ ≤ C

|µ|
, |µ| > µ0 (8)

holds.

Remark 2.6 For a definitizable operator A with discrete spectrum it is
always true that for any choice of bases in the algebraic eigenspaces of A the
basis vectors can be renormalized so that their union forms a Riesz basis in
the Hilbert space H1(A). In this case the form [A · | · ] has finite number of
negative squares and the construction described in [17, Example (c), pp. 11-
12] leads to a selfadjoint operator Â in the Pontryagin space (H1/ ker A, [A ·
| · ]) which has the same eigenstructure, except for the eigenvalue zero, as
the operator A. It is well known that a selfadjoint operator in a Pontryagin
space is a definitizable operator and ∞ is not its critical point.

In the next proposition we use the concept of relative compactness. For
its definition and properties see [16]. The following proposition is a conse-
quence of more general results of [14, Theorem 3.6]; see also [13, Theorem
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3] or [7, Section 2]. For the convenience of the reader we present a simple
proof of the result which will be used in this paper.

We say that a definitizable operator A is quasi-uniformly positive if there
exists a subspace M, M⊂ D(A), of finite codimension such that the form
[Ax|y], x, y ∈M, is uniformly positive.

Proposition 2.7 Let A be a quasi-uniformly positive operator in the Krein
space (H0, [ · | · ]). Assume that ∞ is not a singular critical point of A. Let
V be a symmetric operator which is relatively compact with respect to A.
Then the operator A + V is also a quasi-uniformly positive operator and ∞
is not a singular critical point of A + V . Moreover, the essential spectrum
of A + V coincides with the essential spectrum of A.

Proof Let J be a fundamental symmetry on (H0, [ · | · ]) and let ( · | · ) =
[J · | · ] be the corresponding Hilbert space scalar product. The operator V is
A-compact if and only if the operator JV is JA-compact. This equivalence
follows from the identity

JV (JA− λI)−1 − JV (A− λI)−1J

= λJV (A− λI)−1(J − I)(JA− λI)−1

= λJV (JA− λI)−1(J − I)(A− λI)−1J

which holds for every λ ∈ ρ(JA) ∩ ρ(A). The operator JA + JV is a
selfadjoint operator in the Hilbert space (H0, ( · | · )) and consequently A+V
is selfadjoint in (H0, [ · | · ]).

Since an A-compact operator is A-bounded with the relative bound zero,
for any a > 0 there exists b > 0 such that

‖V x‖ ≤ a‖Ax‖+ b‖x‖ , x ∈ D(A). (9)

It follows from the inequalities (8) and (9) that, for |µ| > µ0 and x ∈ H0,

‖V (A− iµI)−1x‖ ≤ a‖A(A− iµI)−1x‖+ b‖(A− iµI)−1x‖
= a‖I + iµ(A− iµI)−1x‖+ b‖(A− iµI)−1x‖

≤
[
a(1 + C) +

b

|µ|

]
‖x‖.

Consequently, we have ‖V (A− iµI)−1‖ < 1 if we choose a sufficiently small
and |µ| sufficiently large. Since

A + V − iµI =
[
I + V (A− iµI)−1

]
(A− iµI),

9



it follows that iµ ∈ ρ(A + V ) when |µ| is sufficiently large. In particular,
ρ(A + V ) is nonempty.

Since A is quasi-uniformly positive, the essential spectrum of JA is
strictly positive. As the operator JV is JA-compact, it follows that the
essential spectrum of the operator J(A + V ) is also strictly positive. There-
fore, the form [(A+V )x|y], x, y ∈ D(A), is uniformly positive on a subspace
of finite codimension. By [17, (c) on page 11], the operator A + V is defini-
tizable. Hence A + V is a quasi-uniformly positive operator.

As D(A + V ) = D(A), it follows from [5, Corollary 3.3] that ∞ is not a
singular critical point of A + V .

The essential spectrum of a definitizable operator A in a Krein space
consists of those points in the spectrum of A which are not isolated eigen-
values of finite algebraic multiplicity. The last statement follows from [16,
Theorem IV.5.35].

3 Applications to differential operators

3.1 We apply the above results to the spectral problem

(−∆ + 1)u = λ r u in Ω = Rn, (10)

with a real weight function r which changes sign in Ω. This is the simplest
elliptic eigenvalue problem with indefinite weight function in which contin-
uous spectrum occurs. Such problems do not seem to be studied in the
literature. We assume that the weight function r is measurable and there
exist positive numbers m and M such that m ≤ |r| ≤ M almost everywhere
on Rn. Furthermore, we assume that the sets

Ω+ = {x ∈ Rn : r(x) > 0 } and Ω− = {x ∈ Rn : r(x) < 0 }

are unions of finitely many domains with sufficiently smooth boundaries. Let
H0 = L2(Rn) and let [u|v] =

∫
u v r. Then (H0, [ · | · ]) is a Krein space. Let

χ+ and χ− be the operators of multiplication by the characteristic functions
of Ω+ and Ω−, respectively. Then J = χ+−χ− is a fundamental symmetry
on this Krein space. The corresponding Hilbert space is the weighted Hilbert
space L2(Rn, |r|). Its norm is equivalent to the usual L2 norm. With the
problem (10) we associate the operator

A =
1
r

(−∆ + 1)
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with domain D(A) = H2(Rn). The operator A is boundedly invertible in
L2(Rn) as a product of boundedly invertible operators. Clearly,

[Au|u] ≥
∫
|u|2 ≥ 1

M

∫
|u|2|r| for all u ∈ D(A). (11)

Therefore, A is a uniformly positive selfadjoint operator in the Krein space
(H0, [ · | · ]). Note that Hs = H2s(Rn). We apply Theorem 2.1 to A. We will
show that the operator J satisfies the assumption (ii) from that theorem. It
is known that under our assumptions on Ω+ and Ω− the operators χ+ and
χ− map the space Hs(Rn) continuously into itself for s < 1

2 ; see [18] or [21,
Lemma and Remark 1 in Section 2.10.2], noting that Hs

2(Rn) = W s
2 (Rn) in

the notation of [21]. Therefore, J satisfies all the properties required for Ws

in (ii) and (iii) for s < 1
4 . Consequently, ∞ is not a singular critical point

of A. It follows from the equivalence of (i) and (viii) that A is similar to a
selfadjoint operator in L2(Rn). Therefore, the spectral function of A has all
the pertinent properties of the spectral function of a selfadjoint operator in
a Hilbert space. This fact is useful in the construction of the eigenfunction
expansion associated with problem (10). Also, it follows that the initial
value problem

i r
∂ u

∂ t
= (−∆ + 1)u

u(0) = u0

is well posed in L2(Rn) for −∞ < t < ∞. This is a consequence of the fact
that iA generates a bounded C0 group of operators.

It follows from (11) that the spectrum of negative (respectively, positive)
type of A is contained in (−∞,− 1

M ] (respectively, in [ 1
M ,+∞)); for the

definitions see [17, page 36]. Also, the resolvent set of A contains all nonreal
numbers and the interval (− 1

M , 1
M ).

3.2 In the previous example we could have considered more general elliptic
operators, weight functions and domains. Instead of Rn, Ω can be a domain
with sufficiently smooth boundary. In that case appropriate boundary con-
ditions must be introduced. The restrictions on the sets Ω+ and Ω− were
used only to ensure that the operators χ+ and χ− map Hs(Ω) into itself
for sufficiently small s. The cited references show that this is true for more
general Ω+ and Ω− allowing a more general weight function r. The operator
(−∆ + 1) may be replaced by a symmetric elliptic operator L of order 2m
satisfying the following conditions.
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(α) The Dirichlet form of L is defined on a closed subspace of Hm(Ω)
defined by boundary conditions in the usual way.

(β) The Dirichlet form of L has a finite number of negative squares.

(γ) The associated operator in L2(Ω) has a bounded inverse.

These conditions represent an implicit restriction on the coefficients of the
operator. The conditions (β) and (γ) ensure that the associated operator
A is definitizable (see [17]). The condition (α) is used in order to prove
that the condition (ii) of Theorem 2.1 is satisfied for sufficiently small s.
For Ω 6= Rn this follows from the results of Grisvard and Seeley (see [21,
Theorem in Section 4.3.3]) in the same way as it was done in [19]. In this
more general situation it is no longer true that A is similar to a selfadjoint
operator in a Hilbert space. However, ∞ is not a singular critical point of A.
Consequently the corresponding initial value problem for the operator iA is
again well posed in L2(Rn) for −∞ < t < ∞. The corresponding C0-group
is not necessarily bounded.

If Ω is bounded then the spectrum of A is discrete and the equivalence of
(i) and (ix) from Proposition 2.3 implies that there is a Riesz basis for L2(Ω)
consisting of eigenvectors and associated eigenvectors of the corresponding
eigenvalue problem. This result was proved in [19, 3.1].

Assume that L has k negative eigenvalues, counted according to their
multiplicities. It follows from [6, Corollary 1.6] that A + V has at least k
eigenvalues λ, counted according to their algebraic multiplicities, for each of
which there exists an eigenfunction u ∈ L2(Rn) such that λ

∫
|u|2 r ≤ 0. All

the finite critical points, if there are any, are included among these points.
Each such point has finite rank of indefiniteness; see [15, page 64]. Studying
the regularity of such critical points is simpler than studying the regularity
of ∞, which has infinite rank of indefiniteness.

For additional spectral properties of A + V see [6, Section 1.3].

3.3 Here we show that the condition (γ) above can be relaxed to allow 0
to be an isolated eigenvalue of L. To this end we again consider a model
example and omit various straightforward generalizations. The equation is

(−∆ + 1 + q)u = λ r u in Ω = Rn, (12)

where r is as above and where q is relatively compact with respect to −∆; see
[20] for sufficient conditions. As a consequence the operator L = −∆+1+ q
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is defined on D(L) = H2(Rn). Its spectrum in (−∞, 1) consists of at most
finitely many eigenvalues of finite multiplicity. Assume that 0 is an (isolated)
eigenvalue of L. Thus L satisfies the assumptions (α) and (β) above. Let
A = 1

r (−∆ + 1) and V = q
r . As in the proof of Proposition 2.7, the fact

that q is relatively compact with respect to −∆ implies that V is relatively
compact with respect to A. It follows from Proposition 2.7 that the operator
A+V is a definitizable operator in (H0, [ · | · ]) and that ∞ is not its singular
critical point. The essential spectrum of A + V coincides with the essential
spectrum of A. Therefore the spectrum of A+V in (− 1

M , 1
M ) has finite total

multiplicity.
From the previous considerations it follows that the operator A + V has

the same properties as the operator described at the end of the subsection
3.2.

The operator −∆ + 1 can again be replaced by a more general elliptic
operator and Rn by a more general domain Ω.

3.4 In this subsection we indicate how the assumptions on r might be
relaxed. We consider first the problem

−∆u = λru in Ω = Rn. (13)

Assume that the real weight function r is locally integrable, almost every-
where different from zero. Then C∞

0 (Rn) is dense in H0 := L2(Rn, |r|). In-
deed, assume that u ∈ H0 is orthogonal to C∞

0 (Rn) in H0. Let v = |r|1/2u.
Then v ∈ L2(Rn) and

∫
|r|1/2vφ =

∫
uφ|r| = 0 for all φ ∈ C∞

0 (Rn). Since
|r|1/2 ∈ L2

loc(R
n), it follows that z = v|r|1/2 ∈ L1

loc(R
n). Therefore,∫

zφ = 0 for all φ ∈ C∞
0 (Rn), implying that z = 0. Since z = u|r| and

r 6= 0 almost everywhere, it follows that u = 0 almost everywhere.
In order to define a definitizable operator in H0 associated with problem

(13), we impose the following two additional conditions on r. We assume
that there exists C > 0 such that∫

|u|2|r| ≤ C

∫
|∇u|2 for all u ∈ C∞

0 (Rn). (14)

We also assume that

g(u, v) :=
∫
∇u∇v , u, v ∈ C∞

0 (Rn) is a closable form in H0 . (15)

Using the assumption (14) we close the form g and denote the the closure also
by g. By the representation theorem (see [16, Theorem VI.2.1]) assumption

13



(15) implies the existence of a nonnegative selfadjoint operator G in the
Hilbert space H0 such that g(u, v) =

∫
Gu v |r| for u ∈ D(G) and v ∈

C∞
0 (Rn). It follows from assumption (14) that the operator G is bounded

from below by 1/C. Consequently, the operator G−1 is bounded on H0.
Note that Gu = − 1

|r|∆u whenever |r|−1/2∆u ∈ L2(Rn).
The form [u|v] =

∫
uvr induces a Krein space structure on H0. The

multiplication operator Ju = (sgn r)u is a fundamental symmetry on H0.
Let A = JG. Then A is a positive selfadjoint operator in the Krein space
H0. Since it has a bounded inverse G−1J , it is a definitizable operator.

As in the preceding subsections we can replace Rn by a more general
domain Ω and a more general Dirichlet form g. In that case the assumptions
(14) and (15) must be changed accordingly.

Remark 3.1 Assumption (14) corresponds to the embedding assumption
H1 ⊂ H0 from [19]. Note that the other embedding assumption H1 ⊂ E
from [19] is sufficient to prove the closability of the form (Lu|v) in H0.
Therefore, the above construction gives a definitizable operator in H0 under
the conditions of [19].

It remains to give sufficient conditions on r for ∞ not to be a singular
critical point of A. To this end we may apply Theorem 2.1 with Ws = J,
as in subsection 3.1. A way to verify the condition (iii) of Theorem 2.1 is
given in [19, Lemma 3.1]. The proof there does not use the boundedness of
Ω. Since our basic assumptions (14) and (15) of this subsection are implicit,
we are not providing a detailed study of this problem at this point.

As noted in [19] the condition (iii) of Theorem 2.1 is a problem in inter-
polation theory of function spaces. We already used a result of this theory
in subsection 3.1 for special r. To our knowledge the theory is not yet
sufficiently developed to provide sufficient conditions in the case of general
weight functions.
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