
POSITIVE DIFFERENTIAL OPERATORSIN KREIN SPACE L2(R )Branko �Curgus and Branko NajmanConsider the weighted eigenvalue problemLu = � (sgn x)u; (1)on the whole real line R where L = p(D) is a positive symmetric di�erential operator withconstant coe�cients. This problem is a model problem for a more general problem Lu = �wuwith L a di�erential operator and w a function taking both positive and negative values.Our starting point is the observation that the operator A = (sgn x)L is symmetricand positive with respect to the inde�nite inner product [u; v] = R u(x)v(x)sgn xdx: Thespace L2(R) with this inner product is a Krein space. Once we prove that the resolvent set�(A) is nonempty, H. Langer's spectral theory can be applied. This spectral theory showsthat the spectrum of A is real and its properties on bounded open intervals not containing0 are the same as the corresponding properties of a selfadjoint operator in a Hilbert space.In particular, A has a spectral function de�ned on open intervals in R with the endpointsdi�erent from 0 and 1: The positive (negative, respectively) spectral points are of positive(negative, resp.) type. Therefore 0 and 1 are the only possible critical points. A criticalpoint � is regular if the spectral function is bounded near �: In that case the spectral functioncan be extended to intervals with an endpoint �: A critical point is singular if it is not regular.If neither 0 nor 1 is a singular critical point, then A is similar to a selfadjoint operator inL2(R): We used this fact in [5] to prove that A is similar to a selfadjoint operator in the casep(t) = t2: In this paper we generalize this result to more general polynomials p: The resultsof this paper are used in the forthcoming paper [6] to extend the results of [5] to a class ofpartial di�erential operators. For example, in [6] for n > 1 we prove the following.The operator (sgn xn)� de�ned on H2(Rn) is similar to a selfadjoint operator in L2(Rn):The question of nonsingularity of the critical point 1 has been considered in [4].This question leads to the investigation of the domain of A: In the present case the operator



A is positive (not uniformly positive as in [4]) and this is why the critical point at 0 mayappear as a critical point of in�nite type. If the spectrum of A accumulates at 0 fromboth sides, then 0 is a critical point of A: To determine whether it is singular or regularwe are led to investigate the range of A: This question is harder than the investigation ofthe domain. In Section 1 we give a necessary and su�cient condition for R(B) = R(C)for multiplication operators B; C in L2(R): We also prove several stability theorems for theregularity of the critical points 0 and 1 of positive de�nitizable operators in a Krein space.As a consequence we get a stability theorem for the similarity to a selfadjoint operator ina Hilbert space. For related results in this direction see [7]. In Section 2 we consider thedi�erential operators with constant coe�cients in L2(R): We give a precise description ofthe spectrum of the operator A: Under some additional restrictions on p; we prove that Ais similar to a selfadjoint operator in L2(R): It follows from the general operator theory inKrein spaces that an operator which is positive in the Krein space (L2(R); [ � j � ]) and similarto a selfadjoint operator in the Hilbert space L2(R) has the half-range completeness property.We use this fact in Section 3 to show that our results in Section 2 give su�cient conditionsfor the half-range completeness property for the problem (1).The Sturm-Liouville problem with inde�nite weight has attracted considerableattention; we mention the references quoted in [3, 4] for a partial list. The problem ofnonsingularity of the critical points of de�nitizable operators in Krein spaces has been in-vestigated in [2, 7, 8, 10]. For di�erential operators with inde�nite weights the study of thisproblem has been motivated by the investigation of the half-range completeness property,cf. [1, 3]. The regularity of the critical point 0 has been considered in [5].For de�nitions and basic results of the theory of de�nitizable operators see [9].1 Abstract ResultsIn this section we use the method of [2, Lemma 1.8, Corollary 3.3 and Theorem 3.9] toinvestigate the regularity of the critical points 0 and 1 of a positive de�nitizable operatorA in the Krein space (K; [ � j � ]):The following two lemmas are restatements of [2, Theorem 3.9 and Corollary 3.3]in terms of the critical point 0:We prove the �rst. The proof of the second one is analogous.LEMMA 1.1 Let A = JP be a positive de�nitizable operator in the Krein space (K; [ � j � ])such that 0 is not an eigenvalue of P: Assume that � > 0 and the operator JP � is de�nitizable.Then the following statement are equivalent:(a) The point 0 is not a singular critical point of the operator JP:(b) The point 0 is not a singular critical point of the operator JP �:



PROOF The point 0 is not a singular critical point of JP if and only if it is not a singularcritical point of the operator PJ which is similar to JP: Further, 0 is not a singular criticalpoint of PJ if and only if 1 is not a singular critical point of the operator JP�1: It followsfrom [2, Theorem 3.9] that 1 is not a singular critical point of JP�1 if and only if1 is nota singular critical point of JP��: Clearly, 1 is not a singular critical point of JP�� if andonly if 0 is not a singular critical point of P �J: Because of the similarity of the operators, 0is not a singular critical point of P �J if and only if 0 is not a singular critical point of JP �:This sequence of equivalent statements proves the lemma. 2It follows from [2, Lemma 1.8] that the operator JP�� is de�nitizable for � = 2mwith m being a positive integer.LEMMA 1.2 Let A and B be de�nitizable operators in the Krein space K such that 0is neither an eigenvalue of A nor of B: Assume that R(A) = R(B): Then the followingstatements are equivalent.(a) The point 0 is not a singular critical point of A:(b) The point 0 is not a singular critical point of B:Let � be a measure on R; g and h nonnegative �-measurable functions on R: Denoteby Mg the operator of multiplication by g in L2(R; �): We will repeatedly use the followingresult, which gives necessary and su�cient conditions for the equality of the domains andthe ranges of Mg and Mh.LEMMA 1.3 Let g and h be nonnegative measurable functions on R:(a) The following statements are equivalent:(i) D(Mg) = D(Mh)(ii) The functions h1+g and g1+h are essentially bounded.(b) The following statements are equivalent:(i) R(Mg) = R(Mh):(ii) There exists a constant C � 0 such thatg � Ch(1 + g) �-a.e. and h � Cg(1 + h) �-a.e. : (2)PROOF The statement (a) is evident.(b) For a �-measurable function f denote the set fx 2 Rjf(x) = 0g by Nf : Note thateach of the conditions (a) and (b) implies that Ng = Nh = N: Therefore N (Mg) = N (Mh)consists of functions f 2 L2(R; �) with the support contained in N: LetG(x) = H(x) = 0 (x 2 N) ; G(x) = 1g(x) ; H(x) = 1h(x) (x 2 R nN) :



It follows from (a) that the condition (ii) is equivalent to D(MG) = D(MH): Since D(MG) =R(Mg)�N (Mg); we conclude that (i) and (ii) are equivalent. 2A polynomial p is nonnegative if p(x) � 0 for all x 2 R:EXAMPLE 1 Let h be a nonnegative polynomial of degree 2k in one variable. If g(t) = t2k;then h and g satisfy the conditions of Lemma 1.3 (a).EXAMPLE 2 Let h be a nonnegative polynomial. Then h(t) = ag(t)~h(t); where a > 0;~h is a positive polynomial without real roots and g(t) = (t � r1)2k1 � � � (t � rm)2km: Then hand g satisfy the condition (ii) of Lemma 1.3 (b).THEOREM 1.4 Let S be a selfadjoint operator in the Hilbert space (K; ( � j � )) such thatJS2 is a de�nitizable operator in the Krein space (K; [ � j � ]): Let � > 0 and let h be a non-negative continuous function. Assume that the operators J jSj� and Jh(S) are de�nitizable.(a) Assume that the functions g(t) = jtj� and h satisfy the conditions of Lemma 1.3 (a).Then the following statements are equivalent.(i) The point 1 is not a singular critical point of JS2:(ii) The point 1 is not a singular critical point of Jh(S):(b) Assume that 0 is not an eigenvalue of S and that the functions g(t) = jtj� and h satisfythe condition (2). Then the following statements are equivalent.(i) The point 0 is not a singular critical point of JS2:(ii) The point 0 is not a singular critical point of Jh(S):PROOF We prove (b). The proof of (a) is similar. Lemma 1.1 implies that 0 is not asingular critical point of JS2 if and only if it is not a singular critical point of J jSj�:It follows from Lemma 1.3 (b) that for any Borel measure � the multiplicationoperatorsMg andMh in L2(R; �) have the same range. The Spectral Theorem, see [11, The-orem 7.18], implies R(jSj�) = R(h(S)): Therefore, R(J jSj�) = R(Jh(S)): The conclusionfollows from Lemma 1.2. 2COROLLARY 1.5 Let S be a selfadjoint operator in the Hilbert space (K; ( � j � )) such that0 is not an eigenvalue of S and such that JS2 is a de�nitizable operator in the Krein space(K; [ � j � ]): Let � and � be positive numbers and let h be a nonnegative continuous function.Let g1(t) = jtj� and g2(t) = jtj�: Assume that the functions g1 and h satisfy the conditionsof Lemma 1.3 (a) and that the functions g2 and h satisfy the condition (2). Assume thatthe operators J jSj�; J jSj� and Jh(S) are de�nitizable. Then the following statements areequivalent.(i) The operator JS2 is similar to a selfadjoint operator in (K; ( � j � )):(ii) The operator Jh(S) is similar to a selfadjoint operator in (K; ( � j � )):



2 Di�erential Operators with Constant Coe�cientsIn this section we apply the results from Section 1 to a class of positive ordinary di�erentialoperators with constant coe�cients.In the following, a root of multiplicity m of a polynomial is counted as m roots.Denote by C + (respectively C �) the set of all complex numbers z such that Im z > 0(respectively Im z < 0).We consider an even order polynomialp(z) = a0z2n + a1z2n�1 + � � �+ a2n�1z + a2n : (3)with real coe�cients aj.For the reader's convenience we give a proof of the following lemma.LEMMA 2.1 Let p be a polynomial of degree 2n with real coe�cients. Let � be a complexnumber.(a) If � is nonreal, then the polynomial equationp(z)� � = 0 (4)has exactly n solutions in C + and exactly n solutions in C � :(b) If � is real, then the equation (4) has at most n solutions in C + :PROOF (a) Let n+(�) be the number of solutions of (4) in C + : Since (4) has no realsolutions, it follows that n+(�) is constant for � 2 C + : Note that the equation a0z2n = �has exactly n solutions with positive imaginary parts, an application of Rouche's theoremshows that n+(�) = n for j�j su�ciently large.The claim (b) is evident. 2Denote D = �i ddx : We consider the spectral problemp(D)f(x) = �(sgn x)f(x); x 2 R; (5)For a polynomial q of degree k; q(D) denotes the constant coe�cient di�erential operator inthe Hilbert space L2(R) de�ned on the Sobolev space Hk(R):Let J be the multiplication operator de�ned by(Jf)(x) = (sgn x)f(x); x 2 R :Then the problem (5) can be written in terms of operators asp(D)f = �Jf; f 2 H2n(R) ; (6)



or, equivalently, Jp(D)f = �f; f 2 H2n(R) : (7)It is natural to study the problem (7) in the Krein space K = L2(R) with the scalar product[f; g] = RR f(x)g(x)sgn x dx. The multiplication operator J is a fundamental symmetry onK and the corresponding positive de�nite scalar product is the standard scalar product inL2(R): Since p has real coe�cients the operator p(D) is selfadjoint in the Hilbert spaceL2(R): Therefore, the operator Jp(D) is selfadjoint in the Krein space K: A selfadjointoperator in a Krein space may have empty resolvent set. In the next theorem we show thatthis is not the case for the operator Jp(D):THEOREM 2.2 Let p be an even order polynomial with real coe�cients. Let A = Jp(D):(a) The spectrum of the operator A is real.(b) The operator A has no eigenvalues. Its residual spectrum is empty.(c) The continuous spectrum of A is given by�c(A) = (�1;�mp] [ [mp;+1); where mp = minfp(x) : x 2 Rg : (8)PROOF (a) Let � be an arbitrary nonreal complex number. We have to prove that theoperator A � �I has a bounded inverse. Since the operators J and p(D) are closed, it issu�cient to prove that p(D)� �J is a bijection of H2n(R) onto L2(R): Let g 2 L2(R): Thespecial restriction of p(D) de�ned in L2(R�) with the domain consisting of all functions f inH2n(R�) such that f (j)(0) = 0; j = 0; : : : ; n� 1; is selfadjoint in the Hilbert space L2(R�):Therefore, the boundary value problems(p(D)y)(x)� � y(x) = g(x); x 2 R� ; y 2 H2n(R�)y(j)(0) = 0; j = 0; : : : ; n� 1have unique solutions y� in H2n(R�):Now consider the homogeneous equationp(D)y � � y = 0; y 2 H2n(R+): (9)In order to �nd the fundamental set of solutions of (9) we have to solve the polynomialequation p(�iz) � � = 0: Since � is nonreal, we can apply Lemma 2.1 (a) and concludethat this equation has n roots z+j ; j = 1; : : : ; n; with negative real parts. These roots in thestandard way lead to n linearly independent solutions  +j ; j = 1; : : : ; n of (9) which are inH2n(R+):To �nd the fundamental set of solutions of the homogeneous equationp(D)y + � y = 0; y 2 H2n(R�): (10)



we have to �nd the roots of p(�iz)+ � = 0 with positive real parts. By Lemma 2.1 (a) thereare n such roots; denote them by z�j ; j = 1; : : : ; n: These roots in the standard way lead to nlinearly independent solutions  �j ; j = 1; : : : ; n of (10) which are in H2n(R�): Since the setfz+j ; j = 1; : : : ; ng is disjoint from the set fz�j ; j = 1; : : : ; ng; the set f +j ;  �j ; j = 1; : : : ; ngis linearly independent and moreover it is a basis of solutions of the homogeneous equationq(D)y = 0; where q(t) = nYj=1(t + iz+j )(t+ iz�j ): Therefore the Wronskian of f +j ;  �j ; j =1; : : : ; ng does not have zeros.Every solution f 2 H2n(R) of the equationp(D)f � �Jf = g (11)must satisfy f(x) = 8>>>><>>>>: y�(x) + nXj=1 c�j  �j (x); x 2 R�y+(x) + nXj=1 c+j  +j (x); x 2 R+for some complex numbers c�j ; c+j ; j = 1; : : : ; n: The continuity of f (j); j = 0; 1; : : : ; 2n � 1at 0 leads to a system of 2n linear equations in c�j ; c+j ; j = 1; : : : ; n: The determinant ofthis system is the Wronskian of the functions  +j ;  �j ; j = 1; : : : ; n evaluated at 0: Since thisdeterminant is not 0; the system has unique solution. Therefore, the equation (11) has aunique solution, i.e., p(D)� �J is bijection of H2n(R) onto L2(R): Consequently, � is in theresolvent set of A:(b) Let � 2 R and let y 2 H2n(R) be a solution of the equationp(D)y � �Jy = 0 :The restriction y+ (y�, resp.) of y to R+( R� , resp.) satis�es the equation (9) ((10),respectively). Applying Lemma 2.1 (b) and arguing as in the proof of (a), we concludethat the equation (9)((10), respectively), has k+ � n (k� � n; resp.) linearly independentsolutions  +j ; j = 1; : : : ; k+ ( �j ; j = 1; : : : ; k�; resp.). Moreover, the Wronskian off +1 ; : : :  +k+;  �1 ; : : : ;  �k�gis nowhere 0: Since y+ (y�, resp.) is a linear combination of  +j ; j = 1; : : : ; k+ ( �j ; j =1; : : : ; k�; respectively) the continuity of y(m) form = 0; 1; : : : ; k++k��1 at 0 implies y+ = 0and y� = 0: Hence y = 0: Since A is selfadjoint in K it cannot have real numbers in residualspectrum.(c) We use I. M. Glazman's decomposition method. De�ne A� in L2(R�) by D(A�) =H2n(R�) \ Hn0 (R�) and A�y = �p(D)y; y 2 D(A�): The operator A� (A+; respectively)is a selfadjoint operator in L2(R�) (L2(R+); resp.). The continuous spectrum of A� (A+;



respectively) is (�1;�mp] ([mp;+1); resp.). The operator A��A+ is selfadjoint in L2(R)and its continuous spectrum is the union of the continuous spectra of A� and A+: Theoperators A and A� � A+ have the same continuous spectrum. Therefore, by (b), �(A) =�c(A) = �c(A�) [ �c(A+): 2THEOREM 2.3 Let p be a nonnegative polynomial. Let A = Jp(D):(a) The operator A is a positive de�nitizable operator.(b) The point 1 is a regular critical point of A:(c) The point 0 is a critical point of A if and only if 0 2 �(A); or equivalently, if and onlyif mp = minfp(x)jx 2 Rg = 0:PROOF (a) The de�nitizability of the positive operator A follows from Theorem 2.2.The positivity of A and the equality (8) imply the statement (c) and the fact that1 is a critical point of Jp(D):Since the operators A = Jp(D) and JD2n are de�nitizable the operator D satis�esall the assumptions for S in Theorem 1.4 (a). By [5], 1 is not a singular critical point ofJD2: By Example 1 the functions h = p and g(t) = t2n satisfy the conditions of Lemma 1.3(a). Therefore we can apply Theorem 1.4 (a) to conclude that 1 is not a singular criticalpoint of A: 2It follows from Theorem 2.3 that A is similar to a selfadjoint operator in L2(R)if mp > 0: The same is true if mp = 0 and 0 is a regular critical point of A: In the nexttheorem we give a su�cient condition for p under which 0 is a regular critical point of A:Let a be an arbitrary real number. Denote by V (a) the multiplication operator onL2(R) de�ned by (V (a)f)(x) = eiaxf(x); x 2 R: Simple calculations show that the followingproposition holds.PROPOSITION 2.4 The operators JD2n and J(D + aI)2n are similar:V (a)�1JD2nV (a) = J(D + aI)2n:THEOREM 2.5 Let p be a nonnegative polynomial with exactly one real root. Then 0 isa regular critical point of A = Jp(D): The operator A is similar to a selfadjoint operator inL2(R):PROOF Let a be the single real root of p: By Proposition 2.4 the operators JD2 andJ(D�aI)2 are similar. Therefore the operator J(D�aI)2 is similar to a selfadjoint operatorin L2(R): Put S = D � aI and q(x) = p(x+ a):Then q satis�es all the assumptions for h in Corollary 1.5 and Jq(S) = Jp(D):Since JS2 is similar to a selfadjoint operator in L2(R); Corollary 1.5 implies that Jq(S) =Jp(D) is similar to a selfadjoint operator in L2(R): 2



3 Half-range CompletenessLet A be a positive operator in the Krein space K = (L2(R); [ � j � ]): Assume that A has anonempty resolvent set. Let K� be the set of all functions f in L2(R) which vanish on theset R� : Then K = K+ � K� is a fundamental decomposition of K:Assume that neither 0 nor1 are singular critical points of A: Let E be the spectralfunction of A: Then the operator A is a selfadjoint operator in the Hilbert space (K; [(E(R+)�E(R�)) � ; � ]); see [9, Theorem 5.7]. The corresponding fundamental decomposition is K =L+ �L�; where L� = E(R�)K: This fundamental decomposition reduces A: Let P� be theorthogonal projection in K to K�: Then the restrictionT� := P�jL� : L� �! K�is a bounded and boundedly invertible bijection of L� onto K�: Let f� 2 K�: Then T�1� f� 2L�: Therefore T�1� f� = ZR� dE(t)T�1� f� :Since P� is continuous we getf� = ZR� dP�E(t)T�1� f� = ZR� dF�(t)f� ;where F�({) = P�E({)T�1� ; for { an open interval in R� : Then F� is a projection valuedmeasure on R� :We have proved that the elements f� from K� can be represented as integrals overR� with respect to the measure F�(�)f� which is obtained by orthogonally projecting thespectral measure E(�)T�1� f� onto K�: This is exactly the continuous analogue of the familiarconcept of half-range completeness property in the discrete spectrum case; see [1].This property holds in particular for the operators from Theorem 2.5.References[1] Beals, R.: Inde�nite Sturm-Liouville problems and half-range completeness. J. Di�er-ential Equations 56 (1985), 391-407.[2] �Curgus, B.: On the regularity of the critical point in�nity of de�nitizable operators.Integral Equations Operator Theory 8 (1985), 462-488.[3] �Curgus, B., Langer, H.: A Krein space approach to symmetric ordinary di�erentialoperators with an inde�nite weight function. J. Di�erential Equations 79 (1989), 31-61.[4] �Curgus, B., Najman, B.: A Krein space approach to elliptic eigenvalue problems withinde�nite weights. Di�erential and Integral Equations 7 (1994), 1241-1252.
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