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ON SINGULAR CRITICAL POINTS
OF POSITIVE OPERATORS IN KREIN SPACES

BRANKO ĆURGUS, AURELIAN GHEONDEA, AND HEINZ LANGER

(Communicated by David R. Larson)

Abstract. We give an example of a positive operator B in a Krein space
with the following properties: the nonzero spectrum of B consists of isolated
simple eigenvalues, the norms of the orthogonal spectral projections in the
Krein space onto the eigenspaces of B are uniformly bounded and the point
∞ is a singular critical point of B.

An operator A in the Krein space (K, [ · , · ]) is said to be positive if [Ax, x] > 0
for all nonzero x in the domain of A. A bounded positive operator A in the Krein
space (K, [ · , · ]) has a projection valued spectral function E with 0 being its only
possible critical point (see [1, Theorem IV.1.5] or [5, Section II.3.]). Recall that, by
[5, Proposition 5.6], the condition

‖E((−∞, α])‖ ≤ C− <∞ for all α < 0(1)

is equivalent to the existence of the limit limα↑0E((−∞, α]) in the strong operator
topology. Similarly,

‖E([β,∞))‖ ≤ C+ <∞ for all β > 0(2)

is equivalent to the existence of the limit limβ↓0E([β,+∞)) in the strong operator
topology. Since 0 is not an eigenvalue of a positive operator A, [5, Proposition 3.2]
implies that (1) and (2) are equivalent. Also, if 0 is a critical point, it is said to be
regular if one of the conditions (1) or (2) is fulfilled. If the critical point 0 is not
regular, it is called singular.

In the sequel the operator A considered will have a discrete spectrum outside 0.
Examples of bounded positive operators inK having 0 as a singular critical point can
be constructed as follows (see also the examples in [2, Section 1], [3], [4]). Consider
a sequence of two-dimensional Krein spaces Kn = C2 with fundamental symmetry

Jn =
(

1 0
0 −1

)
and positive operators An in Kn; denote by λ+

n (λ−n , respectively)

its positive (negative, respectively) eigenvalues and by P+
n (P−n , respectively) the

orthogonal (in Kn) projection onto the corresponding eigenspace.
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If An is chosen such that ‖An‖ ≤ C for all n, λ+
n ↓ 0, λ−n ↑ 0, ‖P±n ‖ → ∞ if

n → ∞, then A =
∞⊕
n=1

An is a bounded positive operator in K =
∞⊕
n=1

Kn having 0

as a singular critical point. Evidently,

σ(A) = {λ+
n , λ

−
n |n ∈ N} ∪ {0},

and ‖E({λ±n })‖ → ∞ if n→∞, that is, the eigenvectors f+
n , f

−
n of A corresponding

to λ+
n and λ−n , respectively, become arbitrarily close if n is large.

The question arises whether or not 0 can be a singular critical point of a positive
operator A in K with discrete spectrum {λ+

n , λ
−
n |n ∈ N} in C\{0} if the projections

E({λ±n }) are uniformly bounded. It is the aim of this note to show that the answer
is yes: We will construct a bounded positive operator A in a Krein space K, such
that the projections E({λ±n }) corresponding to the single eigenvalues are uniformly
bounded but, nevertheless,

‖E({λ±1 , . . . , λ±n })‖ −→ ∞, n −→∞ .

Our construction is based on the following two lemmas.

Lemma 1. Let Hn be an n-dimensional vector space with a positive definite scalar
product ( · , · ). Then there exist a basis fn1, . . . , fnn of Hn and a positive contraction
Sn in Hn such that

0 < 1 ≤ ‖fnk‖ ≤ 2, ‖S−1
n ‖ = n, (Snfnj, fnk) = δjk, j, k = 1, . . . , n .

Proof. Let en1, . . . , enn be an orthonormal basis of Hn, let Tn be the selfadjoint
transformation in Hn given by Tnen1 =

√
nen1, Tnenj = enj , j = 2, . . . , n, and

put Sn = T−2
n . Evidently, Sn is a positive selfadjoint contraction in Hn, and

minσ(Sn) = 1/n. Therefore ‖S−1
n ‖ = n. Let (uk1 . . . ukn), k = 1, . . . , n, be

an orthonormal basis of the n-dimensional space of row vectors with components
in C, such that u1j = 1/

√
n, j = 1, . . . , n. Then U = (ukj)nk,j=1 is a unitary matrix

with u1j = 1/
√
n, j = 1, . . . , n. Put

φnj =
n∑
k=1

ukjenk, j = 1, . . . , n .

Then φnj , j = 1, . . . , n, is an orthonormal basis of Hn and

‖Tnφnj‖2 = n
1
n

+
n∑
k=2

|ukj |2 = 1 + 1− 1
n
, j = 1, . . . , n .

Hence 1 ≤ ‖Tnφnj‖ ≤ 2. Let fnj = Tnφnj , j = 1, . . . , n. Then 1 ≤ ‖fnj‖ ≤ 2 and
(Snfnj , fnk) = (φnj , φnk) = δjk, j, k = 1, . . . n. The lemma is proved.

Lemma 2. Let (H, ( · , · )) be a separable Hilbert space and let P be a positive,
bounded and boundedly invertible operator in H. Let φj , j ∈ N, be a Riesz ba-
sis of H such that (Pφj , φk) = δjk, j, k ∈ N, and let λj ∈ C, j ∈ N, be a
bounded sequence. Define the operator A in H by Aφj = λjφj , j ∈ N. Then,
A can be extended by continuity to a bounded linear operator in H such that ‖A‖ ≤√
‖P‖‖P−1‖ sup{|λj |, j ∈ N}.

Proof. For a bounded and boundedly invertible positive operator P we have

‖P−1‖−1(x, x) ≤ (Px, x) ≤ ‖P‖(x, x), x ∈ H .(3)
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Since the vectors φj , j ∈ N, are orthonormal with respect to the inner product
(P ·, ·), it follows that

(PAx,Ax) ≤ (sup{|λj |, j ∈ N})2(Px, x), x ∈ H .(4)

Combining (3) and (4) we get

‖Ax‖2 = (Ax,Ax) ≤ ‖P−1‖(PAx,Ax) ≤ ‖P−1‖(sup{|λj |, j ∈ N})2(Px, x)

≤ ‖P−1‖‖P‖(sup{|λj |, j ∈ N})2‖x‖2

and the lemma follows.

Theorem. There exist a Krein space (K, [ · , · ]) and a bounded positive operator A
in K with the following properties:

(a) The nonzero spectrum of A consists of isolated simple eigenvalues.
(b) The point 0 is a singular critical point of A.
(c) The norms of the orthogonal projections in the Krein space (K, [ · , · ]) onto

the eigenspaces of A are uniformly bounded.

Proof. With the notation as in Lemma 1, choose H+
n = H−n = Hn. Let Kn =

H+
n ⊕H−n be the direct sum of the Hilbert spaces (H±n , ( · , · )). The positive definite

inner product on Kn is also denoted by ( · , · ). All norms in Kn correspond to this
inner product. Endow Kn = H+

n ⊕ H−n with the indefinite inner product [ · , · ]
given by the fundamental symmetry Jn =

(
In 0
0 −In

)
. Consider the operator

K+
n = (In−Sn)1/2 acting fromH+

n intoH−n as an angular operator in Kn. Here Sn is
the operator constructed in Lemma 1. Let L+

n be the graph ofK+
n inKn = H+

n⊕H−n .
Then L+

n is an n-dimensional maximal positive subspace in Kn. It is spanned by

the vectors f+
nk =

(
fnk

K+
n fnk

)
, k = 1, . . . , n, and

[f+
nk,f

+
nj ] = (fnk, fnj)− (K+

n fnk,K
+
n fnj) = (Snfnk, fnj) = δkj ,(5)

‖f+
nk‖2 = ‖fnk‖2 + ‖K+

n fnk‖2 ≤ 2‖fnk‖2 ≤ 8 .(6)

Denote by L−n the orthogonal complement of L+
n in the Krein space Kn. Then L−n is

a maximal negative subspace of Kn. The operator K−n = (In − Sn)1/2, acting from
H−n into H+

n , is the angular operator of L−n . The subspace L−n is spanned by the

vectors f−nk =
(
K−n fnk
fnk

)
, k = 1, . . . , n. This follows from the linear independence

of fn1, . . . , fnn and the relation

[f+
nj ,f

−
nk] = (fnj ,K−n fnk)− (K+

n fnj , fnk)

= (fnj , (I − Sn)1/2fnk)− ((I − Sn)1/2fnj , fnk) = 0 .
(7)

The decomposition Kn = L+
n [+̇]L−n is a fundamental decomposition of (Kn, [ · , · ]).

Solving a corresponding system of vector equations we find that the orthogonal
(fundamental) projections Q±n of the Krein space Kn onto L±n are given by

Q+
n =

(
In
K+
n

)
S−1
n

(
In −K−n

)
, Q−n =

(
K−n
In

)
S−1
n

(
−K+

n In
)
.

From Lemma 1 it follows that ‖S−1
n ‖ = n. This and the above matrix representa-

tions of Q±n imply that

n ≤ ‖Q±n ‖ ≤ 2n .(8)
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Consequently, for any f ∈ Kn we have

‖Q±n f‖ ≤ 2n‖f‖ .
It follows from (5) that the vectors f+

n1, . . . ,f
+
nn form an orthonormal basis in

the Hilbert space (L+
n , [ · , · ]). Denote by

P+
nk =

[ · ,f+
nk]

[f+
nk,f

+
nk]
f+
nk, k = 1, . . . , n ,

the orthogonal projection in the Krein space Kn onto the subspace spanned by the
vector f+

nk, k = 1, . . . , n. Then, by (5) and (6),

1 ≤ ‖P+
nk‖ =

‖f+
nk‖2

[f+
nk,f

+
nk]
≤ 8, k = 1, . . . , n .(9)

Further, the operator

Jn1 := Q+
n −Q−n

is a fundamental symmetry in (Kn, [ · , · ]). In particular, the inner product

(x,y)1 := [Jn1x,y], x,y ∈ Kn,
is positive definite. Therefore, the operator JnJn1 is positive and invertible in
the Hilbert space (Kn, ( · , · )). Note also that Jn1 = J−1

n1 . It follows from (8) that
‖Jn1‖ = ‖J−1

n1 ‖ ≤ ‖Q+
n ‖+ ‖Q−n ‖ ≤ 4n. Consequently,

‖JnJn1‖ = ‖(JnJn1)−1‖ ≤ 4n .(10)

The vectors f+
nj ,f

−
nk, j, k = 1, . . . , n, are orthonormal in (Kn, ( · , · )1). This follows

from (5), (7) and the relation

(f+
nj ,f

−
nk)1 = [(Q+

n −Q−n )f+
nj ,f

−
nk] = [Q+

nf
+
nj ,f

−
nk] = [f+

nj ,f
−
nk] = 0 .

Now we can apply Lemma 2 to the vectors f+
nj , f

−
nk, j, k = 1, . . . , n, and the

positive operator JnJn1: For given λ±1 , . . . , λ
±
n ∈ C define an operator An by

Anf
±
nj = λ±njf

±
nj , j = 1, . . . , n,

and then extend it by linearity to Kn. It follows from Lemma 2 and (10) that

‖An‖ ≤ 4nmax{|λ±j |, j = 1, . . . , n} ≤ 4C.(11)

Let K be the Krein space which is the direct orthogonal sum of the Krein spaces
Kn, n ∈ N,

K :=
∞⊕
n=1

Kn .

The vectors f±nj , j = 1, . . . , n, n ∈ N, constructed above are considered as elements
of K and the Krein spaces Kn, n ∈ N, are considered as mutually orthogonal
subspaces of K. The vectors f±nj , j = 1, . . . , n, form a basis for Kn. Let λ±nj , j =
1, . . . , n, be distinct real numbers such that ±λ±nj > 0, j = 1, . . . , n, and such that
there exists a constant C with

nmax{|λ±nj |, j = 1, . . . , n} ≤ C(12)

for all n ∈ N.
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Put

A :=
∞⊕
n=1

An .

Then A is a positive operator in the Krein space (K, [ · , · ]), and from (11) and (12)
we get ‖A‖ ≤ 4C. Since the linear span of the vectors f±nj , j = 1, . . . , n, n ∈ N,
is dense in K, it follows from the spectral theorem (see [1, Theorem IV.1.5] or [5,
Theorem 3.1]) that the nonzero spectrum of A consists of the simple eigenvalues
λ±nj , j = 1, . . . , n, n ∈ N. Consequently, the left-hand side of the inequality (8)
implies that 0 is a singular critical point of A and the right-hand side of the in-
equality (9) implies that the norms of the orthogonal projections in (K, [ · , · ]) onto
the eigenspaces of A are uniformly bounded by 8. The theorem is proved.

Remark. We can arrange the numbers λ+
nj , j = 1, . . . , n, n ∈ N, in a lower tri-

angular table. Also, we can put the sequence { 1
m , m ∈ N} in a lower triangular

table by ending each row with a triangular number n(n+1)
2 in the denominator. A

comparison of these two tables leads to

λ±nj := ±
(
n(n− 1)

2
+ j

)−1

, j = 1, . . . , n, n ∈ N .(13)

In this way we get

{
λ±nj , j = 1, . . . , n, n ∈ N

}
=
{
± 1
m
, m ∈ N

}
.

The numbers λ±nj in (13) satisfy (12) with C = 2. The proof of the Theorem implies
that the nonzero spectrum of the operator A, which was constructed by means of
the numbers λ±nj from (13), consists of the simple eigenvalues ± 1

m , m ∈ N.

If we consider the inverse B = A−1 of the operator A from the previous theorem
and with the specific choice of numbers λ±nj as in the Remark, we get:

Corollary. There exist a Krein space (K, [ · , · ]) and an unbounded positive operator
B in K with the following properties:

(a) The nonzero spectrum of B consists of isolated simple eigenvalues.
(b) The point ∞ is a singular critical point of B.
(c) For each positive number µ we have

‖E([a, b))‖ ≤ 8bµc whenever b − a < µ ,

where E is the spectral function of B and bµc denotes the largest integer
smaller than µ.

Proof. Let A be the operator defined in the proof of the Theorem with the specific
choice of the numbers ±λnj as in the Remark. Then B = A−1 is a positive operator
with a nonempty resolvent set (see e.g. [5, Proposition 3.1]), and σ(B) = Z \ {0}.
Let µ > 0 be arbitrary and let 0 < b − a < µ. Then the interval [a, b) contains at
most bµc eigenvalues of B. Therefore, ‖E([a, b))‖ ≤ 8bµc.
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