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Abstract

The boundary eigenvalue problems for the adjoint of a symmetric relationS in a Hil-
bert space with finite, not necessarily equal, defect numbers, which are related to the selfad-
joint Hilbert space extensions ofS are characterized in terms of boundary coefficients and
the reproducing kernel Hilbert spaces they induce. © 2001 Elsevier Science Inc. All rights
reserved.
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1. Introduction

Let S be a densely defined symmetric operator in a Hilbert spaceH with de-
fect index(d+, d−), d = d+ + d− <∞ and letb : dom(S∗)→ Cd be a boundary
mapping forS with Gram matrixQ; for the definition, see Section 2. Consider the
following boundary eigenvalue problem: forh ∈H, find f ∈H such that

f ∈ dom(S∗), (S∗ − z)f = h, U(z)b(f ) = 0, (1.1)

whereU(z) is a holomorphic matrix function onC\R of sized± × d if z ∈ C±.
The aim of this paper is to describe the linearizationÃ of this problem. We call
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Ã a linearization of (1.1) if̃A is a selfadjoint extension ofS in a Hilbert spacẽH
containingH as a closed subspace and if for allz ∈ C\R andh ∈H, the unique
solution of (1.1) is given byf = P̃H(Ã− z)−1h, whereP̃H is the projection iñH
ontoH. Necessary and sufficient conditions onU(z) that (1.1) has such a lineari-
zation are given by (U1)–(U5) in Definition 3.1; see Theorem 5.4. These conditions
are well known; see, for example, [5,11,13,19,20,26]. In [19], linear relations are
avoided. The proofs in [11,20] are based on the theory of characteristic functions
of unitary colligations. Here we give another proof. We use the reproducing kernel
Hilbert spaceH(KU) with the nonnegative reproducing kernel

KU(z,w) = iU(z)Q
−1U(w)∗

z−w , z /= w.
This space consists of holomorphic vector functions onC\R. The operatorSU of
multiplication by the independent variable in this space is a closed simple symmetric
operator with defect index(ω−, ω+), d+ − ω+ = d− − ω− =: τ � 0; see Section
4. The linearizatioñA of (1.1) is a canonical selfadjoint extension of the symmetric
direct sum operatorS ⊕ SU in H̃ =H⊕H(KU) such that (in terms of graphs of
operators)

Ã ∩H2 = S0, Ã ∩H(KU)
2 = SU, (1.2)

whereS0 is a τ -dimensional symmetric extension ofS in H. The method yields a
formula forÃ (see Theorem 5.4):

Ã =
{{(

f

f1

)
,

(
S∗f
g1

)}
: f ∈ dom(S∗), {f1, g1} ∈ S∗U,

U0b(f ) = 0, B0b(f )+ �b1(f1, g1) = 0

}
,

where

(a) theτ × d matrixU0 andω × d matrixB0 have maximal rank and determine the
operatorS0 and its adjointS∗0 as follows

S0 =
{{f, S∗f }: f ∈ dom(S∗), U0b(f ) = 0, B0b(f ) = 0

}
,

S∗0 =
{{f, S∗f }: f ∈ dom(S∗), U0b(f ) = 0

}; (1.3)

(b) b1 is an arbitrary boundary mapping forSU in H(KU) with Gram matrixQ1;

(c) � is an invertibleω × ω matrix such thatQ1 + �(B0Q
−1B∗0)−1�∗ = 0.

The graph notation that we use here simplifies formulas like the ones in (1.2)
and (1.3), but also can hardly be avoided. For example,SU in H(KU) need not
be densely defined, and if it is not, its adjointS∗U is multivalued and the boundary
mappingb1 for SU is not a mapping on dom(S∗U), but on the graph ofS∗U, that is,
b1 : S∗U→ Cω, ω = ω+ + ω−. This permits us also to drop the assumption thatS is
densely defined, which opens the possibility for more general boundary conditions
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including integro-differential and interface conditions for the case thatSarises from
a differential expression. See, for example, [4,15,18,27].

The connection betweenU(z) and the formula for the linearizatioñA is surpris-
ingly simple. By multiplying the boundary eigenvalue conditionU(z)b(f ) = 0 from
the left by a suitable invertible (and even holomorphic) matrix functionA(z), this
condition can be row reduced to one of the form(

U0
U0(z)B0

)
b(f ) = 0,

whereU0 andB0 are as in the formula for the linearizatioñA andU0(z) is anω± ×
ω matrix valued function onC± with the same properties asU(z) and one more,
namely, that for allz ∈ C\R, theω × ω matrix(

U0(z)

U0(z)

)
is invertible; see Theorem 3.2. The reproducing kernel Hilbert spaces associated with
the kernelsKU(z,w) andKU0(z,w) are isomorphic and under the isomorphism the
operators of multiplication by the independent variable coincide. An essential tool
to obtain the description of the linearization of (1.1) is the characterization ofU0(z)

in terms of a boundary mapping forSU and a holomorphic basis of ker(S∗U − z); see
Proposition 4.2.

If U(z) is a polynomial and satisfies (U1)–(U5) the theory of Bezoutians can
be applied to yield an explicit formula for̃A. This is also possible when (U5) is
replaced by the condition that the kernelKU(z,w) has a finite number of negative
squares (then the extending spacẽH is a Pontryagin space containing the Hilbert
spaceH as a regular subspace). Our results in this case include and supplement
those of Russakowskii in [21–23], who was the first to use Bezoutians in this context.
They will be published in another paper. For an introduction to the linearization of
Sturm–Liouville eigenvalue problems with boundary conditions which depend holo-
morphically on the eigenvalue parameter, we refer to the lecture series in [10], where
further references can be found. The main results of this paper were presented by the
first author at the International Workshop on Operator Theory and Applications held
in Groningen, Netherlands, June 30–July 3, 1998.

2. Preliminaries

Recall that arelation from a setX to a setY is a subset of the Cartesian product
X × Y , and a relationF from X to Y is called afunction if {x, y} ∈ F , {x, z} ∈ F
impliesy = z. A linear relation T in a Hilbert space(H, 〈·, ·〉H) is a linear subset
of H2 =H⊕H; T is calledclosedif T is a closed subset ofH2. Theinverse

T −1 = {{f, g}: {g, f } ∈ T }
and theadjoint
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T ∗ = {{u, v} ∈H2: 〈g, u〉H − 〈f, v〉H = 0 ∀{f, g} ∈ T }
are also linear relations andT ∗ is always closed. A linear relationT is the graph of an
operator if and only if its multivalued partT (0) := {y ∈H: {0, y} ∈ T } is equal to
{0}; we often identify an operator with its graph; see, for example, (1.3) or (2.3). The
domaindom(T ), rangeran(T ) andkernelker(T ) of a linear relationT are defined
by

dom(T ) = {x ∈H: ∃y ∈H, {x, y} ∈ T },
ran(T ) = {y ∈H: ∃x ∈H, {x, y} ∈ T },
ker(T ) = {x ∈H: {x,0} ∈ T }.

ThesumT + S and thecompositionT S of two linear relationsT andSare defined
by

T + S = {{f, g + h}: {f, g} ∈ T , {f, h} ∈ S},
ST = {{f, h}: ∃g ∈H, {f, g} ∈ T , {g, h} ∈ S}.

Since we identify operators with graphs,

αI = {{x, αx}: x ∈H}, α ∈ C,

and hence

T + αI = {{f, g + αf }: {f, g} ∈ T },
αT = {{f, αg}: {f, g} ∈ T }.

ThenT ∩ αI = {{f, g} ∈ T : g = αf } is an operator with domain dom(T ∩ αI) =
ker(T − αI). We often identifyα with αI . Occasionally, we use the sum of two
linear relationsT andSas linear subsets ofH2:

T +̇S = {{f + h, g + k}: {f, g} ∈ T , {h, k} ∈ S},
and this sum is calleddirect if T ∩ S = {{0,0}} andorthogonalif T ⊥ S and then
we use the notationT ⊕ S. For a detailed account of linear relations we refer to the
recent book by Cross [6].

A linear relationT is calledsymmetricif T ⊂ T ∗ andselfadjointif T = T ∗. A
relationT is calledisometricif T −1 ⊂ T ∗ andunitary if T −1 = T ∗; in the first case
T is an ordinary isometric operator from dom(T ) to ran(T ) and in the second caseT
is a unitary operator onH. TheCayley transformwith respect toµ ∈ C\R

Cµ(T ) = {{g − µf, g − µf }: {f, g} ∈ T }
defines a bijection on the class of linear relations onH onto itself. Its inverse is
given by

Fµ(T ) = {{u− v,µu− µv}: {u, v} ∈ T }.
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The formulaV = Cµ(S) gives a one-to-one correspondence between all symmetric
relationsS in H and all isometric operatorsV, in this case dom(V ) = ran(S − µ)
and ran(V ) = ran(S − µ). The same formula gives a one-to-one correspondence be-
tween all selfadjoint relationsA in H and all unitary operatorsU, and the equality
A(0) = ker(U − I) implies that in this correspondenceA is multivalued if and only
if 1 is an eigenvalue ofU.

A symmetric relationS is calledsimpleif

H = span
{

ker(S∗ − z): z ∈ C\R}
, (2.1)

equivalently if⋂
z∈C\R

ran(S − z) = {0}. (2.2)

If S is simple, it is an operator. In general,S admits a unique decomposition into
a simple operator and a selfadjoint part: there exists a decomposition of the space
H =H1⊕H2 andS: S = S1⊕ S2, whereS1 is a simple symmetric operator in
H1 andS2 is a selfadjoint relation inH2. A selfadjoint relationA has a ‘rectangu-
lar’ structure:A can be written asA = A1⊕ A∞, whereA∞ := {{0, x} ∈H2: x ∈
A(0)} is a selfadjoint relation inH∞ = A(0) andA1 is a selfadjoint operator in
H1 =H�H∞. Thus, the resolvent(A− z)−1 = (A1− z)−1⊕ 0, z ∈ C\R, is a
bounded operator onH whose kernel equalsA(0) and we have

(A− z)−1 = (A1− z)−1PH1 :H→H1 ⊂H, (2.3)

wherePH1 is the orthogonal projection inH ontoH1.
The adjoint of a symmetric relationScan be decomposed as

S∗ = S+̇(S∗ ∩ zI)+̇(S∗ ∩ zI), direct sum inH2,

wherez ∈ C\R. The dimension dim(S∗ ∩ zI) is constant on each of the open half
planesC+ andC− and is denoted byd+, for z ∈ C+ andd−, for z ∈ C−. The num-
bersd+ andd− are called the upper and lower defect numbers ofS, the pair(d+, d−)
is called the defect index. In the sequel, we assumed = d+ + d− <∞.

A linear relationT̃ in a Hilbert spacẽH is called anextensionof a linear relation
S in a Hilbert spaceH if H is a closed subspace of̃H andS ⊂ T̃ . The space
H̃�H is called theexit space; if it is trivial T̃ is calledcanonical. A symmetric
relation always has selfadjoint extensions possibly with a nontrivial exit space (just
as an isometric operator always has unitary extensions).Shas canonical selfadjoint
extensions if and only ifd+ = d−.

A selfadjoint extensioñT of S is minimal if

H̃ = span
{
H, ran

(
(T̃ − z)−1

∣∣
H

)
: z ∈ C\R}

(2.4)

or, equivalently, the only subspace of̃H�H which is invariant under(T̃ − z)−1

for one, and hence for all,z ∈ C\R, is the trivial subspace.
A boundary mappingfor a closed symmetric relationS in H with defect in-

dex (d+, d−) is a surjective linear operatorb : S∗ → Cd with ker(b) = S. If b is
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a boundary mapping forS, then there is a uniqued × d matrix Q such that for all
{f, g}, {u, v} ∈ S∗,

〈g, u〉H − 〈f, v〉H = ib(u, v)∗Qb(f, g). (2.5)

Q is a selfadjoint and invertible matrix and hasd+ positive andd− negative eigen-
values. The matrixQ is called theGram matrixfor b, for if Q = (qjk)dj,k=1, then

qjk = [[b−1(ek), b
−1(ej )]], whereej ∈ Cd is thejth unit vector and

[[{f, g}, {u, v}]] := 1

i
(〈g, u〉H − 〈f, v〉H). (2.6)

Combining (2.5) and (2.6) we get

[[{f, g}, {u, v}]] = b(u, v)∗Qb(f, g), {f, g}, {u, v} ∈ S∗.
Note that ifb is a boundary mapping forSwith Gram matrixQ and ifB is an invert-
ibled × d matrix, thenBb is a boundary mapping forSwith Gram matrixB−∗QB−1.
For each selfadjoint and invertible matrixQ with d+ positive andd− negative eigen-
values there exists a boundary mapping forSwith Gram matrixQ.

The form[[·, ·]] from (2.6) defines an indefinite inner product onH2 with respect
to which the space(H2, [[·, ·]]) is a Krein space. The inner product[[·, ·]] appears
also in the definition of the adjoint of a linear relation. The extension theory outlined
here can be explained by the geometry of subspaces in Krein spaces; see Appendix
A. For the Krein space terminology which we use throughout the paper we refer to
the monographs of Azizov and Iokhvidov [1] and Bognar [2]. For similar symplectic
algebra formulations we refer to the book of Everitt and Markus [16]. The extension
theory in this paper is closely related to the extension theory in [17, Chapter 3]: there
S is a densely defined symmetric operator in a Hilbert spaceH with equal (finite or
infinite) defect numbersd±. A triple (H0,�1,�2) consisting of a Hilbert spaceH0
and mappings�j : dom(S∗)→H0 is called aboundary value spaceof S if (i) for
all f, h ∈ dom(S∗),

〈S∗f, h〉 − 〈f, S∗h〉 = 〈�1f,�2h〉H0 − 〈�2f,�1h〉H0

and (ii) the mapping(�1,�2)
T : dom(S∗)→H2

0 is surjective. The definition im-
plies that dom(S) = ker(�1,�2)

T. Hence, ifd0 = d+ = d− <∞ and if we identify
H0 with Cd0, then the mappingb = (�1,�2)

T is a boundary mapping with Gram
matrix

Q = i

(
0 −I
I 0

)
,

whereI denotes the identity matrix of appropriate size. Evidently, one can always
transform a given boundary mappingb as defined above into one of the types con-
sidered in [17]. In [17], dissipative extensions are considered; for some recent results,
see also [3]. The ‘boundary value space’ method is further developed in a series of
interesting papers by Derkach and Malamud, see, for example, [8,9], where further
references can be found. These papers are more focused on the description of the
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generalized resolvents ofS and Weyl functions with applications to moment and
other problems, than on the description of the boundary coefficients as presented
in this paper. Some of their results have been extended to the indefinite setting by
Derkach in, for example, [7].

3. Boundary coefficients

For a symmetric linear relationS in a Hilbert spaceH and boundary mapping
b for S the formulation of the boundary eigenvalue problem, that is, the analog of
problem (1.1) is admittedly somewhat artificial:

For h ∈H, find {f, g} ∈ S∗ such thatg − zf = h andU(z)b(f, g) = 0. With
U(z), z ∈ C\R, we associate the family of relations

T (z) = {{f, g} ∈ S∗: U(z)b(f, g) = 0}, z ∈ C\R.
Evidently,S ⊂ T (z) ⊂ S∗ for all z ∈ C\R. A linearizationÃ of the boundary eigen-
value problem is a selfadjoint extensioñA of Ssuch that

P̃H

(
Ã− z)−1∣∣

H
= (

T (z)− z)−1
, z ∈ C\R,

whereP̃H is the orthogonal projection iñH ontoH. Because of this formulãA is
also called a linearization ofT (z). As we shall show, ifU(z) satisfies (U1)–(U5)
in Definition 3.1, thenT (z) admits a linearization and the converse also holds. In
[11,14]T (z) is called a Straus extension ofS.

Definition 3.1 (Boundary coefficient). LetQ be an invertible selfadjointd × d matrix
with d+ positive andd− negative eigenvalues. AQ-boundary coefficientfunctionU
is a matrix valued function defined onC\R with the following properties:

(U1)U(z) is ad+ × d matrix if z ∈ C+ andU(z) is ad− × d matrix if z ∈ C−.

(U2)U(z) is holomorphic onC\R.
(U3) Each matrixU(z), z ∈ C\R, has maximal rank.

(U4)U(z)Q−1U(z)∗ = 0, z ∈ C\R.
(U5) The kernel

KU(z,w) = i
U(z)Q−1U(w)∗

z −w , z /= w, z,w ∈ C\R,
is nonnegative.

The kernel condition (U5) means that for any choice of the natural numbern and
λ1, . . . , λn ∈ C\R, the selfadjoint block matrix(KU(λj , λk))

n
j,k=1 is nonnegative.

In particular,

U(z)Q−1U(z)∗ � 0 if z ∈ C+ and U(z)Q−1U(z)∗ � 0 if z ∈ C−. (3.1)
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The kernel condition is used to describe the exit space of the linearization of the
family of extensions determined byU(z). In this section, we only make use of the
special cases (3.1).

A Q-boundary coefficientU(z) is said to beminimal if

(U3′) thed × d matrix

(
U(z)
U(z)

)
is invertible,z ∈ C\R.

Note that (U3′) implies (U3).
A boundary coefficientU(z) is said to berow reducedto a boundary coefficient

V(z) if

A(z)U(z) =V(z)

for some invertible matrix functionA(z) on C\R which is of sized± × d± for z ∈
C±. In the boundary eigenvalue problem in which the boundary coefficientU(z) ap-
pears, the variablez is the eigenvalue parameter. The following theorem says that any
boundary coefficient can be row reduced to a boundary coefficient whose top rows
are independent of the eigenvalue parameter and the remaining rows are essentially
determined by a minimal boundary coefficient. The theorem shows that in this case
A(z) can even be chosen holomorphic onC\R.

Theorem 3.2. Let Q be a selfadjoint invertibled × d matrix withd+ positive and
d− negative eigenvalues. LetU(z) be aQ-boundary coefficient function. There exist
a unique integerτ, 0 � τ � min{d+, d−}, and a holomorphic functionA(z) on
C\R whose values are invertible matrices of sized± × d± for z ∈ C± such that

A(z)U(z) =
(

I 0
0 U0(z)

)(
U0
B0

)
, (3.2)

whereI is theτ × τ identity matrix, and withω± := d± − τ, ω := d − 2τ = ω+ +
ω− the matricesU0, U0(z), andB0 have the following properties:

(I) U0 is a constantτ × d matrix of maximal rank;
(II) B0 is a constantω × d matrix such thatB0Q

−1B∗0 is invertible and hasω+
positive andω− negative eigenvalues;

(III) the equality(
U0
B0

)
Q−1

(
U0
B0

)∗
=

(
0 0
0 Q−1

0

)
(3.3)

holds withQ0 := (B0Q
−1B∗0)−1;

(IV) U0(z) is a minimalQ0-boundary coefficient of sizeω± × ω.

The right-hand side of (3.2) is called aminimal representationof U(z).
In the proof of the theorem we use the following well-known lemma whose short

proof we include for completeness.
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Lemma 3.3. LetH1 andH2 be Hilbert spaces and letK : �→L(H1,H2) be
a holomorphic(anti-holomorphic) contraction valued function defined on an open
connected set� ⊂ C. There exist decompositionsHj =H0

j ⊕H1
j , j = 1,2, such

thatK(z) has the matrix representation

K(z) =
(
K0(z) 0

0 V

)(
H0

1

H1
1

)
→

(
H0

2

H1
2

)
, (3.4)

in whichK0 : �→L(H0
1,H

0
2) is a holomorphic(anti-holomorphic) strict con-

traction valued function, V :H1
1→H1

2 is unitary and the subspaces

H1
1 = ker(I −K(z)∗K(z)), H1

2 = ker(I −K(z)K(z)∗)
are independent ofz.

Proof. Choose a pointz0 ∈ � and setH1
1 = ker(I −K(z0)

∗K(z0)). Forx ∈H1
1,

the functionf (z) = 〈K(z0)
∗K(z)x, x〉 is a holomorphic function inz ∈ � and

|f (z)| � ‖x‖2 = ‖K(z0)x‖2 = f (z0).

By the maximum modulus principlef (z) = f (z0) ∈ R for all z ∈ �, and hence

0 � ‖K(z)x −K(z0)x‖2
= ‖K(z)x‖2− ‖K(z0)x‖2
= ‖K(z)x‖2− ‖x‖2
� 0,

which implies thatK(z)|H1
1
= K(z0)|H1

1
andH1

1 = ker(I −K(z)∗K(z)) for all z ∈
�. Hence,V := K(z)|H1

1
is a unitary mapping fromH1

1 ontoH1
2 := VH1

1. The
equalities〈

K(z)H0
1, VH

1
1

〉
2 =

〈
K(z)H0

1,K(z)H
1
1

〉
2

= 〈
H0

1,K(z)
∗K(z)H1

1

〉
1

= 〈
H0

1,H
1
1

〉
1

= 0

imply thatK0(z) := K(z)|H0
1

mapsH0
1 intoH0

2 :=H2�H1
2. This proves the ma-

trix representation (3.4) forK(z).Moreover, ker(I −K0(z)
∗K0(z)) =H1

1 ∩H0
1 ={0}, and thereforeK0(z) is a strict contraction. The last equality in Lemma 3.3 fol-

lows from considering the operator

K(z)∗ =
(
K0(z)

∗ 0
0 V−1

)(
H0

2

H1
2

)
→

(
H0

1

H1
1

)
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in a similar way. In caseK is anti-holomorphic, the statement follows by considering
K̂ : �→L(H2,H1) defined byK̂(z) = K(z)∗. �

Proof of Theorem 3.2. In this proof, we considerCd equipped with the indefinite
inner product

[x, y] = y∗Q−1x, x, y ∈ Cd .

The space(Cd , [·, ·]) is a Krein space. LetCd = Q+[+̇]Q− be a fundamental de-
composition ofCd . For example,Q+ can be the subspace ofCd generated by the
eigenvectors ofQ corresponding to its positive eigenvalues andQ− the subspace
of Cd generated by the eigenvectors ofQ corresponding to its negative eigenvalues.
Whatever the choice of the fundamental decomposition we have that dim(Q±) = d±.
Denote byP+ andP− the orthogonal projections ontoQ+ andQ−. We consider the
subspaces

R(z) := ran(U(z)∗), z ∈ C\R.
For definiteness we assume that Im(z) > 0. The constructions for Im(z) < 0 are
similar. Forx = U(z)∗u, y = U(z)∗v, u, v ∈ Cd+, we have

[x, y] = (U(z)∗v)∗Q−1U(z)∗u = v∗U(z)Q−1U(z)∗u.
Since Im(z) > 0, Assumption (3.1) implies thatR(z) is a nonnegative subspace of
(Cd , [·, ·]). From dim(R(z)) = d+, it follows thatR(z) is a maximal nonnegative
subspace ofCd . Therefore, the operatorP+U(z)∗ is surjective, and hence invert-
ible. If K(z) is the operator from the Hilbert space(Q+, [·, ·]) to the Hilbert space
(Q−,−[·, ·]) defined by

K(z) = P−U(z)∗(P+U(z)∗)−1,

thenK(z) is a contraction and

R(z) = {(IQ+ +K(z))x+: x+ ∈ Q+}. (3.5)

The operatorK(z) is called theangular operatorof R(z); see [2]. SinceU(z) is
holomorphic,K(z) is anti-holomorphic. In particular, we have that fora ∈ Cd+ there
exists anx+ ∈ Q+ such that

U(z)∗a = (IQ+ +K(z))x+.
Solving forx+ ∈ Q+ we getx+ = P+U(z)∗a. Therefore,

U(z)∗a = (IQ+ +K(z))(P+U(z)∗)a for all a ∈ Cd+ . (3.6)

It follows from Lemma 3.3 with(H1, 〈·, ·〉1) = (Q+, [·, ·]) and(H2, 〈·, ·〉2) =
(Q−,−[·, ·]), that there exist decompositionsQ± = Q0±[+̇]Q1± such that

K(z) =
(
K0(z) 0

0 V

)(
Q0+
Q1+

)
→

(
Q0−
Q1−

)
,

whereK0(z) : Q0+ → Q0− is a strict contraction,K0(z) is anti-holomorphic andV :
Q1+ → Q1− is a unitary operator. Letτ = dim(Q1+) = dim(Q1−), ω± = d± − τ, and
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ω = ω+ + ω− = d − 2τ. Since the spaces are finite-dimensionalK0(z) is a uniform
contraction, that is,‖K0(z)‖ < 1. The subspaceQ0+[+]Q0− is a Krein subspace of
(Cd , [·, ·]) of dimensionω. The decompositionQ0+[+̇]Q0− is a fundamental decom-
position of this Krein space. We haveω+ = dim(Q0+) andω− = dim(Q0−).

Now equality (3.5) becomes

R(z) = {
x0+ x1+K0(z)x0+ V x1: x0 ∈ Q0+, x1 ∈ Q1+

} = R0[+̇]R+(z),
where by (3.6),

R0 :=
{
x1+ V x1: x1 ∈ Q1+

} = U(z)∗(P+U(z)∗)−1Q1+
is a neutral subspace and

R+(z) :=
{
x0+K0(z)x0: x0 ∈ Q0+

} = U(z)∗(P+U(z)∗)−1Q0+
is a maximal uniformly positive subspace of(Q0+[+̇]Q0−, [·, ·]).

It follows from (U4) that the subspaces ran(U(z)∗) and ran(U(z)∗) are orthogonal
with respect to[·, ·]. The subspaceR(z) = ran(U(z)∗) is a maximal nonpositive
subspace of(Cd, [·, ·]). The angular operator forR(z) is given by

K(z) = K(z)∗ : (Q−,−[·, ·])→ (Q+, [·, ·]),
that is,R(z) = {x− +K(z)∗x−: x− ∈ Q−}. It follows that

R(z) = R0[+̇]R−(z),
whereR−(z) is a maximal uniformly negative subspace of(Q0+[+̇]Q0−, [·, ·]). Thus,

Q0+[+̇]Q0− = R+(z)[+̇]R−(z) (3.7)

and the right-hand side of (3.7) is a fundamental decomposition of(Q0+[+]Q0−, [·, ·]).
Moreover,

R0[⊥]Q0+[+̇]Q0−.

Select a basis of theω-dimensional spaceQ0+[+̇]Q0−. (Note thatQ0+[+̇]Q0− ⊂ Cd .)
Let the columns of thed × ωmatrixB∗0 be the vectors of this basis. The Gram matrix
B0Q

−1B∗0 of the columns ofB∗0 with respect to the indefinite inner product[·, ·] is
invertible and hasω+ positive andω− negative eigenvalues. Hence,B0 has property
(II). The Gram matrixB0B

∗
0 of the columns ofB∗0 with respect to the Euclidean inner

product is invertible and the matrixB∗0(B0B
∗
0)
−1B0 is the orthogonal projection with

respect to the Euclidean inner product ofCd ontoQ0+[+̇]Q0−.
Leta1, . . . , aτ be a basis of the subspaceQ1+. Then(IQ1+ + V )aj , j = 1,2, . . . , τ,

is a basis ofR0. Let the columns of thed × τ matrixU∗0 be thed × 1 vectors(IQ1+ +
V )aj , j = 1,2, . . . , τ . ThenU0 has property (I).

Property (III) now follows from the fact thatR0 is a neutral subspace of(Cd, [·, ·])
and orthogonal toQ0+[+̇]Q0− in [·, ·].

We now constructU0(z). Letb1, . . . , bω+ be a basis of the spaceQ0+. Then(IQ0+ +
K0(z))bj , j = 1,2, . . . , ω+, is a basis ofR+(z). Let the columns of thed × ω+
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matrixW1(z)
∗ be thed × 1 vectors(IQ0+ +K0(z))bj , j = 1,2, . . . , ω+. Since the

functionK0(z) is anti-holomorphic, the functionW1(z)
∗ is anti-holomorphic. Put

U0(z)
∗ = (B0B

∗
0)
−1B0W1(z)

∗.

Clearly,U0(z)
∗ is anω × ω+ matrix and the functionU0(z)

∗ is anti-holomorphic.
Since the columns of the matrixW1(z)

∗ belong toQ0+[+̇]Q0− we have

B∗0U0(z)
∗ = B∗0(B0B

∗
0)
−1B0W1(z)

∗ =W1(z)
∗.

Thus, the columns of the matrix(U∗0 B∗0U0(z)
∗) form an anti-holomorphic basis for

R(z) = ran(U(z)∗). Another anti-holomorphic basis of this space is formed by the
columns ofU(z)∗. Denote byA(z)∗ the ‘change of coordinates matrix’ between
these two basis ofR(z), that is, the matrix with the property

U(z)∗A(z)∗ = (
U∗0 B∗0U0(z)

∗).
By (3.6), we haveA(z)∗ = (P+U(z)∗)−1. Clearly,A(z) is a d+ × d+ invertible
matrix and the functionA(z) is holomorphic onC+. An analogous construction
leads to thed × ω− matrixW(z)∗ and to theω × ω− matrixU0(z)

∗ := B0W(z)∗
and finally to thed− × d− matrixA(z)∗ such that

U(z)∗A(z)∗ = (
U∗0 B∗0U0(z)

∗).
Thus,U(z) has the minimal representation (3.2).

It remains to show property (IV). Properties (U1) and (U2) follow from the con-
struction ofU0(z). Thed × ω matrix (B∗0U0(z)

∗ B∗0U0(z)
∗) consists of the basis

vectors ofR+(z) and ofR−(z). Since these two subspaces form a fundamental de-
composition ofQ0+[+̇]Q0− the columns of(B∗0U0(z)

∗ B∗0U0(z)
∗) are linearly in-

dependent. Thus, the matrixB∗0(U0(z)
∗ U0(z)

∗) has rankω and thereforeω × ω
matrixU0(z)

U0(z)

 is invertible, z ∈ C\R,

that is, (U3′) holds.
From (3.2) and (3.3) we obtain the equalities0 0

0 U0(z)Q
−1
0 U0(w)

∗

 =
 U0Q

−1U∗0 U0Q
−1B∗0U0(w)

∗

U0(z)B0Q
−1U∗0 U0(z)B0Q

−1B∗0U0(w)
∗



=
(

U0

U0(z)B0

)
Q−1

(
U0

U0(w)B0

)∗

=A(z)U(z)Q−1U(w)∗A(w)∗. (3.8)
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Properties (U4) and (U5) of U0(z) follow from (3.8) and from the corresponding
properties (U4) and (U5) of U(z). Thus,U0(z) is a minimalQ0-boundary coeffi-
cient. �

Lemma 3.4. Let S be a closed symmetric linear relation with defect(d+, d−), d =
d+ + d− <∞, let τ be an integer with0< τ < d, and let b be a boundary mapping
for S with Gram matrixQ. Equivalent are:
(a) For a closed linear relation T we haveS ⊂ T ⊂ S∗, anddim(T /S) = τ.
(b) There exists a(d − τ )× d matrixA of maximal rank such that

T = {{f, g} ∈ S∗: Ab(f, g) = 0}.
(c) There exists aτ × d matrixB of maximal rank such that

T ∗ = {{f, g} ∈ S∗: Bb(f, g) = 0}.
If (a)–(c) hold, thenBQ−1A∗ = 0 and the matricesA andB are determined uniquely
up to multiplication from the left by invertible matrices.

(d) If (a)–(c) hold and ifC is aτ × d matrix of maximal rank such thatCQ−1A∗ = 0
and

V = {{f, g} ∈ S∗: Cb(f, g) = 0},
thenT ∗ = V.

Proof. We use the same setting as in the proof of Theorem 3.2. We considerCd to be
equipped with the indefinite inner product[x, y] = y∗Q−1x, x, y ∈ Cd . The space
(Cd , [·, ·]) is a Krein space with signature(d+, d−). The mappingQb : S∗/S → Cd

is an isomorphism between the Krein spaces(S∗/S, [[·, ·]]) and(Cd, [·, ·]). For a ma-
trix M×M∗ we denote the adjoint ofM with respect to the Euclidean inner product.
For ad × r matrixM∗ whose columns are vectors inCd we have

x ∈ ker
(
MQ−1) ⇔ y∗MQ−1x = 0

(∀y ∈ Cd
)

⇔ x∗Q−1M∗y = 0 (∀y ∈ Cd)

⇔ x ∈ (ran(M∗))[⊥],

where[⊥] denotes the orthogonal complement in(Cd , [·, ·]). Thus,

ker
(
MQ−1) = (ran(M∗))[⊥]. (3.9)

If T = {{f, g} ∈ S∗: Mb(f, g) = 0}, and M has maximal rank, thenQb(T ) =
ker(MQ−1). Since Qb(T ∗) is the orthogonal complement of ker(MQ−1) in
(Cd , [·, ·]) equality (3.9) impliesQb(T ∗) = ran(M∗). Thus,

Qb(T ) = ker
(
MQ−1) if and only if Qb(T ∗) = ran(M∗). (3.10)

If (a) holds, then dim(Qb(T )) = τ and dim(Qb(T ∗)) = dim(Qb(T )[⊥]) = d − τ .
SetA∗ to be ad × (d − τ )matrix whose columns are basis vectors ofQb(T ∗). Then
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(3.10) withM = A implies that (b) holds. The implication (b)⇒ (a) follows from
the fact thatS = ker(b). The equivalence (a)⇔ (c) follows from the fact that (a) is
equivalent to

S ⊂ T ∗ ⊂ S∗ and dim(T ∗/S) = d − τ,
which follows from (3.10).

Now assume that (a)–(c) hold. It follows from (3.10) thatQb(T ∗) = ran(A∗) =
ker(BQ−1). Consequently,BQ−1A∗ = 0. The uniqueness statement aboutA andB
follows from (3.10).

Statement (d) follows from the fact that ker(B) = ran(Q−1A∗) = ker(C). �

Lemma 3.5. Let S be a closed symmetric linear relation with defect(d+, d−), d =
d+ + d− <∞, and let b be a boundary mapping for S with Gram matrixQ. Assume
that (a)–(c) in Lemma3.4 hold. Then T is symmetric if and only ifBQ−1B∗ = 0.
In this case, τ � min{d+, d−} and the defect index of T is(ω+, ω−), ω± = d± − τ.
The(d − τ )× d matrixA can be chosen to be of the form

A =
(

B
B0

)
,

whereB0 is anω × d matrix of maximal rank, ω = d − 2τ, such thatBQ−1B∗0 = 0
and B0Q

−1B∗0 is invertible. Thenb0 = B0b|T ∗ is a boundary mapping for T with
Gram matrixQ0 = (B0Q

−1B∗0)−1.

Proof. We use the notation and facts from the proof of Lemma 3.4. The relationT is
symmetric if and only ifQb(T ) ⊂ Qb(T ∗), and consequently,Qb(T ) = ran(B∗) ⊂
ker(BQ−1) = Qb(T ∗). The last inclusion is equivalent toBQ−1B∗ = 0. Hence,T is
symmetric if and only ifBQ−1B∗ = 0.

Assume thatT is symmetric. Then

ran(B∗) ⊂ Qb(T ∗) = ran(A∗) (3.11)

and the columns of the matrixA∗ can be chosen to be any basis vectors forQb(T ∗).
In particular, we can chooseA∗ to be of the form(B∗ B∗0), where the columns of
d × ωmatrixB∗0 are chosen to complete the basis ofQb(T ∗). It follows from Lemma
3.4 that

0= BQ−1A∗ = BQ−1
(

B
B0

)∗
= (BQ−1B∗ BQ−1B∗0).

In particular,BQ−1B∗0 = 0 or, equivalently,(ranB∗)[⊥](ranB∗0). Thus,Qb(T ∗) =
(ranB∗)[+̇](ranB∗0). SinceQb(T ∗)[⊥] = ran(B∗), we conclude that the inner prod-
uct [·, ·] is nondegenerate on ran(B∗0). This implies thatB0Q

−1B∗0 is invertible and
we putQ0 := (B0Q

−1B∗0)−1. Further,(ran(B∗0), [·, ·]) is a Krein space of dimen-
sion ω = d − 2τ and therefore(ran(B∗0)[⊥], [·, ·]) is a Krein space of dimension
2τ . Since it contains the neutralτ -dimensional subspace ran(B∗), the signature of
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(ran(B∗0)[⊥], [·, ·]) is (τ, τ ). The equalityCd = ran(B∗0)[⊥][+̇]ran(B∗0), implies that
the signature of(ran(B∗0), [·, ·]) is (ω+, ω−), ω± = d± − τ. This also implies that
the signature of the matrixQ0 is (ω+, ω−).

Putb0 := B0b|T ∗ .SinceQb(T ∗) ⊃ ran(B∗0) and since theω × ωmatrixB0Q
−1B∗0

is invertible we conclude thatb0 : T ∗ → Cω is surjective. Consideringb0 as a map-
ping from theω + τ -dimensional spaceT ∗/S ontoCω we see that its kernel must be
τ -dimensional. SinceQb(T ) = ran(B∗) andB0Q

−1B∗ = 0,we haveT/S ⊂ ker(b0).
Now dim(T /S) = τ implies thatT = ker(b0). Thus,b0 is a boundary mapping forT .
SinceQb(T ∗) = ran(A∗) = ran((B∗ B∗0)), for {f, g}, {u, v} ∈ T ∗ there existx, y ∈
Cτ+ω such thatQb(f, g) = (B∗ B∗0)x andQb(u, v) = (U∗0 B∗0)y and we have

[[{f, g}, {u, v}]] = (b(u, v))∗Qb(f, g)

= y∗
(

B
B0

)
Q−1QQ−1

(
B
B0

)∗
x

= y∗
(

0 0
0 Q−1

0

)
x. (3.12)

We also calculate

(B0b(u, v))
∗Q0(B0b(f, g)) = y∗

(
B
B0

)
Q−1B∗0Q0B0Q

−1
(

B
B0

)∗
x

= y∗
(

BQ−1B∗0
Q−1

0

)
Q0

(
BQ−1B∗0

Q−1
0

)∗
x

= y∗
(

0
Q−1

0

)
Q0

(
0

Q−1
0

)∗
x

= y∗
(

0
I

) (
0 Q−1

0

)
x

= y∗
(

0 0
0 Q−1

0

)
x. (3.13)

Combining (3.12) and (3.13) we get

[[{f, g}, {u, v}]] = (B0b(u, v))
∗Q0(B0b(f, g)) for all {f, g}, {u, v} ∈ T ∗,

and therefore the Gram matrix of the boundary mappingb0 = B0b|T ∗ is Q0. Since
the signature of the matrixQ0 is (ω+, ω−), the defect index ofT is (ω+, ω−). �

Corollary 3.6. Let S be a closed symmetric linear relation with defect(d+, d−),
d = d+ + d− <∞, and let b be a boundary mapping for S with Gram matrixQ. Let
U(z) be aQ-boundary coefficient and assumeU(z) has the minimal representation
(3.2). Then:
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(a) The relationS0 := {{f, g} ∈ S∗: U0b(f, g) = 0, B0b(f, g) = 0} is a closed lin-
ear symmetric extension of S with defect index(ω+, ω−) anddim(S0/S) = τ.

(b) The mappingb0 := B0b|S∗0 is a boundary mapping forS0 with Gram matrix

Q0 = (B0Q
−1B∗0)−1.

(c) For all z ∈ C\R, we have {{f, g} ∈ S∗: U(z)b(f, g) = 0} = {{f, g} ∈ S∗0:
U0(z)b0(f, g) = 0}.

4. Representation of minimal boundary coefficient and reproducing
kernel Hilbert spaces

We begin with a lemma about the existence of a holomorphic basis of eigenfunc-
tions of the adjoint of a symmetric relation.

Lemma 4.1. Let S be a closed symmetric linear relation in a Hilbert spaceH with
defect index(d+, d−). There exists a holomorphic row vector function� : C± →
Hd± such that the components of�(z) constitute a basis forker(S∗ − z), z ∈ C\R.

Proof. Let Ã be any selfadjoint extension ofS in H̃. Let P̃H denote the orthogonal
projection inH̃ ontoH. Forµ ∈ C+ let

�(µ) = (φ1(µ), . . . , φd+(µ)),

�(µ) = (φ1(µ), . . . , φd−(µ))

be row vectors whose entries form a basis for ker(S∗ − µ) and ker(S∗ − µ). Define
for z ∈ C+,

�(z) = (
I + (z− µ)P̃H(Ã− z)−1)�(µ)

= ((
I + (z − µ)P̃H(Ã− z)−1)φ1(µ),

. . . ,
(
I + (z− µ)P̃H(Ã− z)−1)φd+(µ))

and forz ∈ C−,
�(z) = (

I + (z− µ)P̃H(Ã− z)−1)�(µ).
We show that�(z) has the desired properties. We restrict the proof toz ∈ C+; the
casez ∈ C− can be treated similarly. For arbitrary{u, v} ∈ S we have that〈(

I + (z− µ)P̃H(Ã− z)−1)φj (µ), v − zu〉
= 〈
φj (µ), v − zu

〉+ (z− µ)〈φj (µ), (Ã− z)−1(v − zu)〉
= 〈
φj (µ), v − zu

〉+ (z− µ)〈φj (µ), u〉
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= 〈φj (µ), v − µu〉
= 0

asv − µu ∈ ran(S − µ) = (ker(S∗ − µ))⊥. It follows that the components of the
vector(

I + (z − µ)P̃H(Ã− z)−1)�(µ)
are orthogonal to ran(S − z) = (ker(S∗ − z))⊥. This proves that the components of
�(z) belong to ker(S∗ − z). To show that they are linearly independent it suffices to
show that ifφ ∈ ker(S∗ − µ) and(

I + (z − µ)P̃H(Ã− z)−1)φ = 0, (4.1)

then φ = 0. If (4.1) holds, then there is ãh ∈ H̃�H such that(z− µ)(Ã−
z)−1φ = h̃− φ or, equivalently,{(z− µ)φ, h̃− φ} ∈ (Ã− z)−1 or {̃h− φ, zh̃−
µφ} ∈ Ã. FromÃ = Ã∗ we get

0= [[{̃h− φ, zh̃− µφ}, {̃h− φ, zh̃− µφ}]]
= 2 Im(z)‖h̃‖2+ 2 Im(µ)‖φ‖2.

As Im(z), Im(µ) > 0 we seeφ = 0. �

If, as in Lemma 4.1, the components of�(z) form a basis, we shall simply say
that�(z) is a basis; if additionally the components are holomorphic we call�(z) a
holomorphic basis. In the sequel, we also use the following notation. Ifz ∈ C± and
�(z) = (φ1(z), . . . , φd±(z)) is a basis for ker(S∗ − z), then�̂(z) stands for the basis
for S∗ ∩ zI given by

�̂(z) = ({φ1(z), zφ1(z)}, . . . , {φd±(z), zφd±(z)}
)

and, ifb is a boundary mapping forS, b(�̂(z)) is thed × d± matrix

b(�̂(z)) = (b(φ1(z), zφ1(z)), . . . , b(φd±(z), zφd±(z))).

If (H, 〈·, ·〉) is an inner product space and ifv = (v1, . . . , vm) andw = (w1, . . . , wn)

are vectors with entries inH, then〈v,w〉 stands for then×m matrix

〈v,w〉 =


〈v1, w1〉 〈v2, w1〉 · · · 〈vm,w1〉
〈v1, w2〉 〈v2, w2〉 · · · 〈vm,w2〉

...
...

...
...

〈v1, wn〉 〈v2, wn〉 · · · 〈vm,wn〉

.
In the following proposition, we construct minimal boundary coefficients from

a boundary mapping for a symmetric relationS and a holomorphic basis of
ker(S∗ − z).
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Proposition 4.2. Let S be a closed symmetric linear relation in a Hilbert spaceH
with defect index(d+, d−), d = d+ + d− <∞.
(a) Let�(z) be a holomorphic basis forker(S∗ − z), z ∈ C\R, and let b be a bound-

ary mapping for S with Gram matrixQ. Then the matrix valued functionU(z) :=
(Qb(�̂(z)))∗, z ∈ C\R, is a minimal(−Q)-boundary coefficient.

(b) Let �1(z) be another holomorphic basis forker(S∗ − z), z ∈ C\R, and let
b1 be another boundary mapping for S with Gram matrixQ1 and U1(z) :=
(Q1b1(�̂1(z)))

∗, z ∈ C\R. Then

U(z) =A(z)U1(z)A

for some invertible matrix functionA(z) of sized∓ × d∓ if z ∈ C± and a con-
stant invertibled × d matrixA such thatAQ−1A∗ = Q−1

1 .

Proof. (a) For z ∈ C± the row vector̂�(z) hasd∓ components which are vec-
tors fromS∗ ∩ zI. The mappingQb maps each component from̂�(z) to a d × 1
vector in Cd . Thus, Qb(�̂(z)) is a d × d∓ matrix andU(z) is a d∓ × d ma-
trix. This proves (U1). Since�̂(z) is holomorphic,̂�(z) is anti-holomorphic, and
consequentlyQb(�̂(z)) is also anti-holomorphic. Therefore,U(z) is holomorphic
and (U2) is proved. Since the vectors in̂�(z) and �̂(z) are linearly independent
and sinceQb is a bijection on(S∗ ∩ zI)+̇(S∗ ∩ zI) it follows that the matrix
(Qb(�̂(z)) Qb(�̂(z))) = (U(z)∗ U(z)∗) is invertible. Thus, the property (U3′)
holds. We calculateU(z)(−Q−1)U(w)∗:

U(z)
(−Q−1)U(w)∗ = b(�̂(z))∗Q(−Q−1)Qb(�̂(w))

= b(�̂(z))∗(−Q)b(�̂(w))

= −[[�̂(w), �̂(z)]]
= 1

i
(z−w)〈�(w),�(z)〉.

Thus,U has the property (U4) and

KU(z,w) = 〈�(w),�(z)〉, z /= w, z,w ∈ C\R. (4.2)

It follows that the block matrix(KU(λj , λk))
n
j,k=1 is Gram matrix of vectors in

�(λ1), . . . ,�(λn). Therefore, the functionU(z) has the property (U5).
(b) Let b andb1 be two boundary mappings forSwith Gram matricesQ andQ1

and let�(z) and�1(z) be holomorphic basis for ker(S∗ − z). Then there exist in-
vertible matricesA andA(z) such thatQb = A∗Q1b1, AQ−1A∗ = Q−1

1 and�(z) =
�1(z)A(z)∗. The linearity ofb1 implies thatQb(�̂(z)) = A∗Q1b1(�̂1(z)A(z)∗) =
A∗Q1b1(�̂1(z))A(z)∗ and therefore (b) is proved.�

To show that Proposition 4.2 has a converse we make use of the theory of repro-
ducing kernel Hilbert spaces. LetQ be ad × d invertible selfadjoint matrix withd+
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positive andd− negative eigenvalues. LetU(z) be aQ-boundary coefficient. With the
kernelKU(z,w) in (U5) we associate a reproducing kernel Hilbert spaceH(KU).

It is the completion of the linear space of the holomorphic functions

z #→
n∑
j=1

KU(z,wj )xj , z ∈ C\R, wj ∈ C±, xj ∈ Cd±,

j = 1, . . . , n, n ∈ N,

with respect to the inner product〈
n∑
j=1

KU(·, wj )xj ,
m∑
k=1

KU(·, uk)yk
〉
=

n∑
j=1

m∑
k=1

y∗kKU(uk,wj )xj .

This completion consists of column vector functionsf (z) which are holomorphic on
C\R, and are of sized± × 1 on C±. The inner product off (z) in H(KU) with a
functionz #→ KU(z,w)x reproduces the value off (z) at z = w in the directionx:

x∗f (w) = 〈f (·),KU(·, w)x〉.
By the continuity of the kernelKU(z,w) for any finite subsetF ⊂ C\R the linear
manifold

H◦F (KU) := span
{
z #→ KU(z,w)x (z ∈ C\R): w ∈ C±\F, x ∈ Cd±}

(4.3)

is dense inH(KU).

Lemma 4.3. Let Q andQ1 bed × d invertible selfadjoint matrices withd+ posi-
tive andd− negative eigenvalues. LetU be aQ-boundary coefficient, let U1 be a
Q1-boundary coefficient and assume that

U(z) =A(z)U1(z)A

for some invertible matrix functionA(z) of sized∓ × d∓ if z ∈ C± and a constant
invertible d × d matrix A such thatAQ−1A∗ = Q−1

1 . Then the operator of multi-
plicationA(·) : f (z) #→A(z)f (z) is an isomorphism fromH(KU) ontoH(KU1)

and under this isomorphism the operatorsSU andSU1 of multiplication by the inde-
pendent variable z coincide.

In particular, if U has a minimal representation(3.2),then the reproducing ker-
nel spacesH(KU) and H(KU0) are isomorphic and under the isomorphism the
operators of multiplication by the independent variable z coincide.

Proof. The kernels associated with the boundary coefficientsU andU1 are

KU(z,w) = iU(z)Q
−1U(w)∗

z−w , KU1(z,w) = i
U1(z)Q

−1
1 U1(w)

∗

z−w
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and so fromU(z) =A(z)U1(z)A andAQ−1A∗ = Q−1
1 we obtain

KU(z,w) = i
A(z)U1(z)AQ−1A∗U1(w)

∗A(w)∗

z− w =A(z)KU1(z,w)A(w)∗.

Hence, for allw ∈ C± andx ∈ Cd±, z ∈ C± andy ∈ Cd±,

〈KU(·, w)x,KU(·, z)y〉HU
= 〈KU1(·, w)A(w)∗x,KU1(·, z)A(z)∗y〉HU1

,

which implies that the linear operator which mapsKU(·, w)x toKU1(·, w)A(w)∗x
extends by continuity to an isometry fromH(KU) toH(KU1). We denote its adjoint
by W. Then forw ∈ C± andx ∈ Cd±,

x∗(Wh)(w) = 〈(Wh)(·),KU(·, w)x〉HU

= 〈h(·),KU1(·, w)A(w)∗x〉HU1

= x∗A(w)h(w)

and soW is the operator of multiplication byA(·) and is a partial isometry from
H(KU1) ontoH(KU). As A(z) is invertible,W is in fact a unitary operator. Evi-
dently, the operators of multiplication byz in H(KU) andH(KU1) are isomorphic
underW. �

Thus, to study the operatorSU of multiplication byz in H(KU) we may assume
without loss of generality thatU(z) is a minimalQ-boundary coefficient. The fol-
lowing theorem gives a representation of a minimal boundary coefficientU(z) in
terms of the operatorSU of multiplication by z in the reproducing kernel Hilbert
spaceH(KU).

Theorem 4.4. Let Q be ad × d invertible selfadjoint matrix withd+ positive and
d− negative eigenvalues. LetU(z) be a minimalQ-boundary coefficient.

(a) The operatorSU of multiplication by z in the reproducing kernel Hilbert space
H(KU) is a closed simple symmetric operator with defect index(d−, d+). Its
adjoint is given by

S∗U = span
{{KU(·, w)x,wKU(·, w)x}: w ∈ C±, x ∈ Cd±

}
. (4.4)

(b) There exist a boundary mappingb1 for SU with Gram matrix−Q and a holo-
morphic basis�1(z) for ker(S∗U − z), z ∈ C\R, such that

U(z) = (Qb1(�̂1(z)))
∗.

(c) Let b2 be an arbitrary boundary mapping forSU with Gram matrixQ2 and let
�2(z) be an arbitrary holomorphic basis forker(S∗U − z), z ∈ C\R. Then

U(z) =A(z)(Q2b2(�̂2(z)))
∗A

for some invertible matrix functionA(z) of sized∓ × d∓ if z ∈ C± and a con-
stant invertibled × d matrixA such thatAQ−1A∗ = −Q−1

2 .
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Proof. To prove (a) consider the linear manifold

T ◦max=
{ { n∑

j=1

KU(·, wj )xj ,
n∑
j=1

wjKU(·, wj )xj
}
:

n ∈ N, wj ∈ C±, xj ∈ Cd±
}

in the spaceH(KU)
2. The closure of this manifold inH(KU)

2 is the linear relation
Tmax. Consider the boundary form[[·, ·]] onT ◦max:[[{ n∑

j=1

KU(·, wj )xj ,
n∑
j=1

wjKU(·, wj )xj
}
,

{ m∑
k=1

KU(·, uk)yk,
m∑
k=1

ukKU(·, uk)yk
}]]

:= 1

i

(〈 n∑
j=1

wjKU(·, wj )xj ,
m∑
k=1

KU(·, uk)yk
〉

−
〈 n∑
j=1

KU(·, wj )xj ,
m∑
k=1

ukKU(·, uk)yk
〉)

= 1

i

n∑
j=1

m∑
k=1

(wjy
∗
kKU(uk,wj )xj − uky∗kKU(uk,wj )xj )

= 1

i

n∑
j=1

m∑
k=1

(wj − uk)y∗kKU(uk,wj )xj

= 1

i

n∑
j=1

m∑
k=1

(wj − uk)y∗k i
U(uk)Q

−1U(wj )
∗

uk −wj xj

= −
n∑
j=1

m∑
k=1

y∗kU(uk)Q−1U(wj )
∗xj

= −
( m∑
k=1

U(uk)
∗yk

)∗
Q−1

( n∑
j=1

U(wj )
∗xj

)
. (4.5)

Since the form[[·, ·]] is continuous onH(KU)
2 the subspace(T ◦max, [[·, ·]]) is a dense

subspace of the pseudo-Krein space(Tmax, [[·, ·]]). The isotropic part ofTmax is the
closureTmin of the following linear manifold:
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T ◦min :=
{{ n∑

j=1

KU(·, wj )xj ,
n∑
j=1

wjKU(·, wj )xj
}
:

n∑
j=1

U(wj )
∗xj = 0, n ∈ N, wj ∈ C±, xj ∈ Cd±

}
.

Since we assume thatU(z) is a minimal boundary coefficient it follows that the
mappingb◦ : T ◦max→ Cd defined by

b◦
{ n∑

j=1

KU(·, wj )xj ,
n∑
j=1

wjKU(·, wj )xj
} := n∑

j=1

U(wj )
∗xj

is onto. This mapping is continuous with respect to the topology ofH(KU)
2. Clearly,

ker(b◦) = T ◦min. Therefore, dim(T ◦max/T
◦
min) = d. Denote byb the extension ofb◦ to

Tmax by continuity. Then ker(b) = Tmin. The mappingb is a boundary mapping for
Tmax. It follows from (4.5) that Gram matrix ofb is−Q−1.

Letµ ∈ C+. Put

Mµ = span
{{KU(·, µ)x,µKU(·, µ)x}: x ∈ Cd−} ⊂ T ◦max∩ µI,

Mµ = span
{{KU(·, µ)x,µKU(·, µ)x}: x ∈ Cd+} ⊂ T ◦max∩ µI.

(4.6)

SinceU(z) is a minimal boundary coefficient we conclude that

dim(Mµ) = d− and dim(Mµ) = d+,
and

Mµ ∩Mµ = {0} and (Mµ[[+̇]]Mµ) ∩ T ◦min = {0}.
Since

d = d− + d+ = dim(Mµ[[+̇]]Mµ) � dim
(
T ◦max/T

◦
min

) = d,
we conclude that the following decomposition ofT ◦max holds:

T ◦max= T ◦min[[+̇]]Mµ[[+̇]]Mµ, direct sums inH2 .

Continuity of the inner product[[·, ·]] in the spaceH(KU)
2 implies that the same

decomposition will be true for the closures:

Tmax= Tmin[[+̇]]Mµ[[+̇]]Mµ, direct sums inH2. (4.7)

Evidently,Tmin is the isotropic part ofTmax. We now want to apply Proposition A.2
from Appendix A. We need to be specific about the fundamental symmetry of the
Krein space(H(KU)

2, [[·, ·]]) that induces the decomposition (4.7). That fundamen-
tal symmetry is

Jµ = 1

i Im(µ)

(−Re(µ) 1
−|µ|2 Re(µ)

)
. (4.8)
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We now have to prove that

JµTmax+Tmax=H(KU)
2. (4.9)

Using the notation introduced in (4.3), it is sufficient to prove that

Jµ
(
T ◦max

)+T ◦max=H◦{µ,µ}(KU)
2, (4.10)

since the closure of the left-/right-hand side of (4.10) is the left-/right-hand side of
(4.9). Letw, v ∈ (C\R)\{µ,µ} and leta andc be vectors of appropriate size. Put

a′ = 1

2(µ−w)(µ−w)a and c′ = − 1

2(µ− v)(µ− v)c.
A straightforward calculation shows that

(µ− µ)Jµ
(
w

(
KU(·, w)a′
wKU(·, w)a′

)
+

(
KU(·, v)c′
vKU(·, v)c′

))

+
(
(2µµ−w(µ+ µ))

(
KU(·, w)a′
wKU(·, w)a′

)

+((µ+ µ)− 2w)

(
KU(·, v)c′
vKU(·, v)c′

))

=
(
KU(·, w)a
KU(·, v)c

)
.

Taking linear combinations over allw, v ∈ (C\R)\{µ,µ} leads to (4.10).
Thus, we have proved thatT ∗max= Tmin. We now give another characterization of

Tmin. By the definition of the adjoint,{f, g} ∈H(KU)
2 belongs toT ∗max if and only

if for each{KU(·, w)a,wKU(·, w)a} ∈ Tmax we have

0= [[{f, g}, {KU(·, w)a,wKU(·, w)a}]]
= 1

i
(〈g,KU(·, w)a〉 − 〈f,wKU(·, w)a〉)

= 1

i
(a∗g(w) − a∗wf (w)). (4.11)

Since (4.11) holds for allw ∈ C± and for alla ∈ Cd± we conclude that{f, g} ∈
H(KU)

2 belongs toT ∗max if and only if g(z) = zf (z), z ∈ C±. Therefore, the oper-
ator of multiplication byz in H(KU) equalsTmin,

SU = Tmin.

Thus,SU is a closed and symmetric operator with defect index(d−, d+). SinceS∗U =
T ∗min = Tmax, (4.4) holds and consequentlySU is simple. This completes the proof of
part (a).

The proof of (b) follows. Putb1 = Q−1b, whereb is the boundary mapping
for SU with Gram matrix−Q−1 introduced in the proof of part (a). Thenb1 is a
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boundary mapping forSU with Gram matrix−Q. Note that for thejth basis vec-
tor ej of Cd∓ , j = 1, . . . , d∓, the vectorsKU(·, z)ej , j = 1, . . . , d∓, form a basis
of ker(S∗U − z), z ∈ C±. Let �1(z), z ∈ C±, be the vector whose components are
the vectorsKU(·, z)ej , j = 1, . . . , d∓. SinceU(z) is holomorphic onC±, �1(z) is
holomorphic there too. Using the above definitions we get

b1(�̂1(z)) = Q−1b(�̂1(z))

= Q−1(U(z)∗e1 · · · U(z)∗ed∓)

= Q−1U(z)∗.

This readily implies (b).
Part (c) follows from Proposition 4.2(b). The theorem is proved.�

Corollary 4.5. Let S be a closed simple symmetric operator in a Hilbert space
(H, 〈·, ·〉H) with defect index(d+, d−), d = d+ + d− <∞. Then there exist ad ×
d invertible matrixQ with d+ positive andd− negative eigenvalues and a minimal
(−Q)-boundary coefficientU(z) such that S is isomorphic to the operatorSU of
multiplication by the independent variable in the reproducing kernel Hilbert space
H(KU) and

S∗ = span
{{φ, zφ}: φ ∈ ker(S∗ − z), z ∈ C\R}

.

Proof. Assume thatS is a closed simple symmetric operator in a Hilbert
space(H, 〈·, ·〉H) with defect index(d+, d−), d = d+ + d− <∞. Let U(z) =
(Qb(�̂(z)))∗, whereb is a boundary mapping forS with Gram matrixQ and�(z)
is a holomorphic basis for ker(S∗ − z). By Proposition 4.2U(z) is a minimal
(−Q)-boundary coefficient. It follows that the kernel

KU(z,w) = −i
U(z)Q−1U(w)∗

z− w
is nonnegative. We show thatS in H is isomorphic to the operatorSU
of multiplication by the independent variable in the reproducing kernel space
(H(KU), 〈·, ·〉H(KU)). By Theorem 4.4 the defect index ofSU is equal to that of
S. Denote byU :H→H(KU) the linear operator

U(�(w)x) = KU(·, w)x, w ∈ C±, x ∈ Cd± .

From (4.2)

〈�(w)x,�(z)y〉H = y∗KU(z,w)x = 〈KU(·, w)x,KU(·, z)y〉H(KU).

Hence,U is isometric. AsSis simple, dom(S∗) is dense inH and as the kernel func-
tionsKU(·, w)x are total inH(KU) the range ofU is dense inH(KU). Therefore,
the closure ofU is a unitary operator which we also denote byU. Using Theorem
4.4 we conclude:
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S ⊂ U−1SUU ⊂ U−1S∗UU

= span
{{�(w)x,w�(w)x}: w ∈ C±, x ∈ Cd±} ⊂ S∗.

Since dim(S∗/S) = dim(S∗U/SU) = d, we haveS = U−1SUU and the formula for
S∗ holds. �

5. Linearization of the boundary eigenvalue problem

Theorem 5.1. For j = 0,1, letSj be a closed symmetric relation in a Hilbert space
(Hj , 〈·, ·〉j ) with defect index(ω+j , ω

−
j ), ωj = ω+j + ω−j <∞, and letbj : S∗j →

Cωj be a boundary mapping forSj with Gram matrixQj .

(a) S0⊕ S1 has a canonical selfadjoint extensioñA in the Hilbert spacẽH =H0⊕
H1 such thatÃ ∩H2

j = Sj , j = 0,1, if and only if

ω+0 = ω−1 and ω−0 = ω+1 . (5.1)

(b) Assume that(5.1)holds and setω = ω0 = ω1. The formula

Ã =
{{(

f0
f1

)
,

(
g0
g1

)}
: {f0, g0} ∈ S∗0, {f1, g1} ∈ S∗1,

b0(f0, g0)+ �b1(f1, g1) = 0

}
(5.2)

gives a one-to-one correspondence between all canonical selfadjoint extensions
Ã of S0⊕ S1 in H0⊕H1 with Ã ∩H2

j = Sj , j = 0,1, and allω × ω invert-
ible matrices� with Q1+ �∗Q0� = 0.

Proof. Letµ ∈ C+. Then the Cayley transform

V = Cµ(S) = {{g − µf, g − µf }: {f, g} ∈ S}
gives a one-to-one correspondence between all selfadjoint relationsS in a Hilbert
space and all unitary operatorsV and also a one-to-one correspondence between all
symmetric relationsSand all isometric operatorsV,

V : dom(V ) = ran(S − µ) → ran(V ) = ran(S − µ).
The inverse is given by

S = Fµ(V ) =
{{u− v,µu− µv}: {u, v} ∈ V }

.

Clearly,Cµ(H2
j ) = Fµ(H2

j ) =H2
j , j = 0,1.
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Recall that a symmetric relation has a canonical selfadjoint extension if and only if
its defect numbers are equal. In the case ofS0⊕ S1, a canonical selfadjoint extension
Ã of S0⊕ S1 exists if and only if

ω+0 + ω+1 = ω−0 + ω−1 . (5.3)

If (5.3) holds andVj = Cµ(Sj ), j = 0,1, the formula

Ũ = Cµ(Ã)

=


V0 0 0 0

0 V00 V01 0

0 V10 V11 0

0 0 0 V1

 :


ran(S0 − µ)
ker(S∗0 − µ)
ker(S∗1 − µ)
ran(S1 − µ)

→


ran(S0− µ)
ker(S∗0 − µ)
ker(S∗1 − µ)
ran(S1− µ)

 (5.4)

gives a one-to-one correspondence between all canonical selfadjoint extensionsÃ of
S0⊕ S1 and all unitary operators

U =
(
V00 V01
V10 V11

)
:
(

ker(S∗0 − µ)
ker(S∗1 − µ)

)
→

(
ker(S∗0 − µ)
ker(S∗1 − µ)

)
. (5.5)

Since the Cayley transform of an intersection of linear relations is the intersection
of the corresponding Cayley transforms we have thatÃ ∩H2

j = Sj if and only if

Ũ ∩H2
j = Vj , j = 0,1. Since, for example,

Ũ ∩H2
0 =

{{(
f0
ϕ0

)
,

(
V0f0
V00ϕ0

)}
:

f0 ∈ dom(V0), ϕ0 ∈ ker(S∗0 − µ), V10ϕ0 = 0

}
,

we conclude that̃A ∩H2
0 = S0 if and only if ker(V10) = {0}. Analogously,Ã ∩

H2
1 = S1 if and only if ker(V01) = {0}.
We now prove (a). If̃A with the desired properties exists, the injectivity ofV10

andV01 imply

ω−0 � ω+1 , ω−1 � ω+0 .
By (5.3) equalities prevail. Conversely, if (5.1) holds, bijectionsV10 andV01 exist
and withV00= 0 andV11= 0 they give rise to a unitary mapping̃U of the form
(5.4). The inverse Cayley transform̃A = Fµ(Ũ) now has the desired properties.

We proceed with the proof of (b). Assume thatÃ is a canonical selfadjoint exten-
sion ofS0⊕ S1 in H̃ =H0⊕H1 such that̃A ∩H2

j = Sj , j = 0,1. Applying the
inverse Cayley transformation to both sides of the second equality in (5.4) we obtain

Ã = S0⊕ S1+̇N, direct sum iñH
2
, (5.6)

where, in terms of the operatorU given in (5.5),
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N =
{ {

(I − U)
(
ϕ0
ϕ1

)
, (µ− µU)

(
ϕ0
ϕ1

)}
:

ϕ0 ∈ ker(S∗0 − µ), ϕ1 ∈ ker(S∗1 − µ)
}
.

The elements inN are of the form{(
f0
f1

)
,

(
g0
g1

)}
with

f0 = ϕ0− V00ϕ0− V01ϕ1,

g0 = µϕ0− µV00ϕ0− µV01ϕ1,

f1 = ϕ1− V10ϕ0− V11ϕ1,

g1 = µϕ1− µV10ϕ0− µV11ϕ1,

(5.7)

whereϕ0 ∈ ker(S∗0 − µ), ϕ1 ∈ ker(S∗1 − µ). The mapping(
ϕ0
ϕ1

)
#→ {f0, g0}

is a bijection from ker(S∗0 − µ)⊕ ker(S∗1 − µ) onto (S0 ∩ µI)+̇(S0 ∩ µI), direct
sum inH2

0. The injectivity follows from the facts that the last sum is direct and that
V01 is invertible. The surjectivity follows from the fact that{ϕ0, µϕ0} is the pro-
jection of{f0, g0} ∈ (S0 ∩ µI)+̇(S0 ∩ µI) ontoS0 ∩ µI andϕ1 = V −1

01 (f0− ϕ0+
V00ϕ0). Similarly, the mapping(

ϕ0
ϕ1

)
#→ {f1, g1}

is a bijection from ker(S∗0 − µ)⊕ ker(S∗1 − µ) onto (S1 ∩ µI)+̇(S1 ∩ µI), direct
sum inH2

1. Hence, the four equalities in (5.7) define a bijection

Υ : {f0, g0} #→ {f1, g1}
from (S0 ∩ µI)+̇(S0 ∩ µI) onto (S1 ∩ µI)+̇(S1 ∩ µI), andN is the graph of this
bijection:

N =
{{(

f0
f1

)
,

(
g0
g1

)}
:

{f0, g0} ∈ (S0 ∩ µI)+̇(S0 ∩ µI), {f1, g1} = Υ (f0, g0)

}
. (5.8)

SinceN is a restriction of a selfadjoint relation we haveN ⊂ N∗ and therefore any
two elements
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f0
f1

)
,

(
g0
g1

)}
,

{(
f ′0
f ′1

)
,

(
g′0
g′1

)}
∈ N

satisfy the identity

〈g0, f
′
0〉0− 〈f0, g

′
0〉0 = −(〈g1, f

′
1〉1 − 〈f1, g

′
1〉1).

Hence, if forj = 0,1, we provide(Sj ∩ µI)+̇(Sj ∩ µI) with the indefinite inner
product

[[{fj , gj }, {f ′j , g′j }]]j :=
1

i
(〈gj , f ′j 〉j − 〈fj , g′j 〉j ),

the mapping

Υ : ((S0 ∩ µI)+̇(S0 ∩ µI), [[·, ·]]0
)→ (

(S0 ∩ µI)+̇(S0 ∩ µI), [[·, ·]]1
)

(5.9)

satisfies

[[Υ (f0, g0), Υ (f
′
0, g
′
0)]]1 = −[[{f0, g0}, {f ′0, g′0}]]0

for all {f0, g0}, {f ′0, g′0} ∈ (S0 ∩ µI)+̇(S0 ∩ µI), that is,Υ ∗Υ = −I . As Ã is sel-
fadjoint inH̃, by (5.6)

Ã∗ = Ã = (S∗0 ⊕ S∗1) ∩N∗. (5.10)

In this formulaN∗ is the adjoint ofN in H̃ andS∗j stands for the adjoint ofSj in
Hj , j = 0,1.

Let

{α01, β01}, . . . , {α0ω, β0ω}
be a basis for(S0 ∩ µI)+̇(S0 ∩ µI) and set

Υ (α0r , β0r ) = {α1r , β1r }, r = 1,2, . . . , ω. (5.11)

Then

{α11, β11}, . . . , {α1ω, β1ω}
is a basis for(S1 ∩ µI)+̇(S1 ∩ µI). For j = 0,1, let �j be theω × ω matrix of
which the rth column vector is the column vectorbj (αjr , βjr ). Evidently, �j is
invertible and

(�∗jQj�j )rs = bj (αjr , βjr )∗Qj bj (αjs , βjs)
= [[{αjs, βjs}, {αjr , βjr }]]j , r = 1, . . . , ω.

These equalities and (5.11) imply thatΥ ∗Υ = −I is equivalent to

�∗0Q0�0 = −�∗1Q1�1.

Finally, (5.10) implies
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Ã =
{{(

f0
f1

)
,

(
g0
g1

)}
: {f0, g0} ∈ S∗0, {f1, g1} ∈ S∗1,

[[{f0, g0}, {α0r , β0r }]]0+ [[{f1, g1}, Υ (α0r , β0r )]]1 = 0, r = 1, . . . , ω

}

=
{{(

f0
f1

)
,

(
g0
g1

)}
: {f0, g0} ∈ S∗0, {f1, g1} ∈ S∗1,

�∗0Q0b0(f0, g0)+ �∗1Q1b1(f1, g1} = 0

}
.

Thus, if we set� = Q−1
0 �−∗0 �∗1Q1, then

Q1+ �∗Q0� = 0 (5.12)

and

Ã =
{ {(

f0
f1

)
,

(
g0
g1

)}
: {f0, g0} ∈ S∗0, {f1, g1} ∈ S∗1,

b0(f0, g0)+ �b1(f1, g1} = 0

}
. (5.13)

Conversely, if we assume that (5.2) holds, Lemma 3.4(d) implies that the adjoint of
Ã is given by

Ã∗ =
{ {(

f0
f1

)
,

(
g0
g1

)}
: {f0, g0} ∈ S∗0, {f1, g1} ∈ S∗1,

Q−1
1 �∗Q0b0(f0, g0)− b1(f1, g1} = 0

}
.

Since we assume thatQ1 + �∗Q0� = 0 it follows thatÃ∗ = Ã. The invertibility of
� implies thatÃ ∩H2

j = Sj , j = 0,1. Thus,Ã defined by (5.2) has all the proper-
ties stated in the theorem.�

Lemma 5.2. Let S be a symmetric relation in a Hilbert spaceH and let Ã be a
selfadjoint extension of S iñH. LetH̃ =H⊕H1 and setS1 = Ã ∩H2

1. ThenÃ
is a minimal extension of S if and only ifS1 is simple.

Proof. Let S1 = Sr + Ss, whereSr is selfadjoint in a subspaceHr ⊂H1 and
Ss is a simple symmetric operator inHs =H1�Hr . Then Sr ⊂ Ã, hence
(Sr − z)−1 ⊂ (Ã− z)−1 and therefore, since both are operators,
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(Sr − z)−1 = (
(Ã− z)−1)|Hr , z ∈ ρ(Ã) ∩ ρ(Sr).

Hence,Hr ⊥H andHr are invariant under(Ã− z)−1. The minimality ofÃ im-
plies thatHr = {0}, that isS1 is simple. Conversely, assume thatS1 is simple and
let

Hr = H̃� span
{
H, ran

(
(Ã− z)−1|H

)
: z ∈ C\R}

.

Then 〈
(Ã− z)−1Hr ,H

〉 = 〈
Hr , (Ã− z)−1H

〉 = {0},
〈
(Ã− z)−1Hr , (Ã−w)−1H

〉 = 〈
Hr ,

(Ã− z)−1− (Ã−w)−1

z−w H

〉
= {0}, w /= z,

and, by continuity, lettingw→ z,〈
(Ã− z)−1Hr , (Ã− z)−1H

〉 = {0},
and henceHr is invariant under(Ã− z)−1. It follows that

Ã ∩H2
r =

{{
(Ã− z)−1u, u+ z(Ã− z)−1u

}
: u ∈Hr

}
is a selfadjoint operator which is a part ofS1. SinceS1 is simpleHr = {0} and (2.4)
is true. �

Theorem 5.3. Let S be a closed symmetric relation in a Hilbert space(H, 〈·, ·〉H)
with defect index(d+, d−), d = d+ + d− <∞. Let Ã be a minimal selfadjoint ex-
tension of S iñH. LetH̃ =H⊕H1 and setS1 = Ã ∩H2

1. Let b be a boundary
mapping for S with Gram matrixQ.

(a) There exists aQ-boundary coefficientW such that for eachz ∈ C\R we have

P̃H(Ã− z)−1
∣∣
H
= (

T (z)− z)−1
,

with

T (z) := {{f, g} ∈ S∗: W(z)b(f, g) = 0
}
.

(b) LetU be aQ-boundary coefficient with a minimal representation(3.2)and such
that for eachz ∈ C\R we have

P̃H(Ã− z)−1
∣∣
H
= (

T (z)− z)−1
,

with

T (z) = {{f, g} ∈ S∗: U(z)b(f, g) = 0
}
.

ThenÃ ∩H2 = {{f, g} ∈ S∗: U0b(f, g) = 0, B0b(f, g) = 0} and the opera-
tor S1 is isomorphic to the operatorSU of multiplication by the independent
variable inH(KU).
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(c) For j = 1,2, let Ãj be a minimal selfadjoint extension of S in a Hilbert space

H̃j and denote bỹPjH the orthogonal projection iñHj ontoH. The extensions
Ãj , j = 1,2, are isomorphic under an isomorphism that when restricted to the
spaceH acts as the identity operator onH if and only if

P̃ 1
H(Ã1− z)−1

∣∣
H
= P̃ 2

H(Ã2− z)−1
∣∣
H
.

Proof. Let Ã be a minimal selfadjoint extension ofS in the Hilbert spacẽH. Put
H1 = H̃�H, S0 = Ã ∩H2 andS1 = Ã ∩H2

1. By Lemma 5.2S1 is a simple
closed symmetric operator inH1. Let b1 be a fixed boundary mapping forS1 with
Gram matrixQ1 and let7(z) be a fixed holomorphic basis of ker(S∗1 − z). The
relationS0 is a closed symmetric extension ofS. Put dim(S0/S) = τ . By Lemma 3.5
there exist aτ × d matrixW0 and, withω = d − 2τ , anω × d matrixC0 of maximal
ranks such that

W0Q
−1

(
W0
C0

)∗
= 0,

such thatC0Q
−1C∗0 is invertible and

S∗0 =
{{f, g} ∈ S∗: W0b(f, g) = 0

}
. (5.14)

The defect index ofS0 is (ω+, ω−), ω± = d± − τ andc0 := C0b|S∗0 is a boundary

mapping forS0 with Gram matrixP0 := (C0Q
−1C∗0)−1. The operator̃A is a canon-

ical selfadjoint extension ofS0⊕ S1 in H̃ =H⊕H1 such thatS0 = Ã ∩H2 and
S1 = Ã ∩H2

1. By Theorem 5.1(a) the defect index of the operatorS1 is (ω−, ω+)
and by Theorem 5.1(b)

Ã =
{ {(

f0
f1

)
,

(
g0
g1

)}
: {f0, g0} ∈ S∗0, {f1, g1} ∈ S∗1,

c0(f0, g0)+ �b1(f1, g1) = 0

}
, (5.15)

where� is a unique invertibleω × ω matrix withQ1 + �∗P0� = 0.
Put

V(z) := (
Q1b1(7̂(z))

)∗ and W0(z) :=V(z)�−1, z ∈ C\R.
By Proposition 4.2V(z) is a minimal(−Q1)-boundary coefficient. It follows that
W0(z) is a minimalP0-boundary coefficient. Indeed, the properties (U1), (U2) and
(U3′) follow from the corresponding properties ofV(z). To show the properties
(U4) and (U5) we use the definition ofW0(z) andP0 = −�−∗Q1�−1 to calculate

W0(z)P
−1
0 W0(w)

∗ =V(z)�−1(− �−∗Q1�
−1)−1(

V(w)�−1)∗
= −V(z)�−1�Q−1

1 �∗�−∗V(w)∗

= −V(z)Q1V(w)∗. (5.16)
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SinceV(z) is a minimal(−Q1)-boundary coefficient it follows from (5.16) that
W0(z) has properties (U4) and (U5). Thus,W0(z) is a minimalP0-boundary coef-
ficient.

Put

W(z) =
(

W0
W0(z)C0

)
.

Since(
W0

W0(z)C0

)
Q−1

(
W0

W0(w)C0

)∗
=

(
0 0
0 W0(z)P

−1
0 W(w)∗

)
it follows thatW(z) is aQ-boundary coefficient.

We now show thatW(z) has the desired property. It follows from (5.15) that for
z ∈ C\R,

P̃H(Ã− z)−1|H =
{ {g0− zf0, f0}:
{f0, g0} ∈ S∗0, c0(f0, g0)+ �b1(f1, g1) = 0

for some{f1, g1} ∈ S∗1 ∩ zI
}
. (5.17)

The condition on{f0, g0} ∈ S∗1 appearing in (5.17), namely,

c0(f0, g0)+ �b1(f1, g1) = 0 for some{f1, g1} ∈ S∗1 ∩ zI, (5.18)

is equivalent to

Q1�
−1c0(f0, g0) ∈ ran

(
Q1b1

(
�̂(z)

)) = ran(V(z)∗) = ran(�∗W0(z)
∗)

or, equivalently,

P0c0(f0, g0) = −�−∗Q1�
−1c0(f0, g0) ∈ ran(W0(z)

∗). (5.19)

Since theP0-boundary coefficientW0(z) satisfies (U4), (5.19) is equivalent to
W0(z)c0(f0, g0) = 0. Setting

T (z) := {{f0, g0} ∈ S∗0: W0(z)c0(f0, g0) = 0
}
, (5.20)

we conclude that

P̃H(Ã− z)−1
∣∣
H
= (T (z)− z)−1.

The definitions ofc0 andW, and (5.14) imply that

T (z) = {{f0, g0} ∈ S∗: W(z)b(f0, g0) = 0
}
.

This proves (a).
To prove (b) note that, sinceW0(z) is a minimalP0-boundary coefficient, defini-

tion (5.20) implies that

T (z) ∩ T (z) = Ã ∩H2 for all z ∈ C\R.
This was also observed in, for example, [12].
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Let U(z) be aQ-boundary coefficient with a minimal representation (3.2) de-
scribed in Theorem 3.2 and such that

T (z) = {{f0, g0} ∈ S∗: U(z)b(f0, g0) = 0
}
.

The properties of the minimal representation (3.2) clearly imply that

T (z) = {{f0, g0} ∈ S∗: U0b(f0, g0) = 0, U0(z)B0b(f0, g0) = 0
}
.

Since the matrix(
U0(z)

U0(z)

)
is invertible, for arbitraryz ∈ C\R we have

S0=Ã ∩H2

=T (z) ∩ T (z)
={{f, g} ∈ S∗: U0b(f, g) = 0, U0(z)B0b(f, g) = 0, U0(z)B0b(f, g) = 0

}
={{f, g} ∈ S∗: U0b(f, g) = 0, B0b(f, g) = 0

}
.

SinceU andW areQ-boundary coefficients and since for eachz ∈ C± we have

T (z)={{f0, g0} ∈ S∗: W(z)b(f0, g0) = 0
}

={{f0, g0} ∈ S∗: U(z)b(f0, g0) = 0
}
,

that is, kerW(z) = kerU(z), we conclude that there exists an invertibled± × d±
matrixA(z) such thatU(z) =A(z)W(z). Lemma 4.3 implies that there is an iso-
morphism fromH(KU) ontoH(KW) and under this isomorphism the operatorsSU
andSW of multiplication by the independent variablez coincide. Note that the con-
struction ofW, Lemma 4.3 and the proof of Corollary 4.5 imply that the operators
SW andS1 are isomorphic. The combination of the last two statements completes the
proof of (b).

Statement (c) follows from the theorem that minimal selfadjoint linearizations
of the same Straus family are unitarily equivalent (see [11, Theorem 3.3] and [14,
Proposition 3.1]). For the reader’s convenience we sketch the proof of this result.
AssumeÃj in the Hilbert spacẽHj , j = 1,2, are minimal selfadjoint extensions of
S in H, such that

P̃ 1
H(Ã1− z)−1

∣∣
H
= (T (z)− z)−1 = P̃ 2

H(Ã2− z)−1
∣∣
H
, z ∈ C\R.

We show there is an isomorphismW from H̃1 ontoH̃2 such thatW |H acts as the
identity onH andW intertwinesÃ1 andÃ2:

Ã2 =
{{Wf,Wg}: {f, g} ∈ Ã1

}
.
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Chooseµ ∈ C\R. Using the resolvent identity, we obtain forf, g ∈H andz,w ∈
C\R, 〈(

I + (z− µ)(Ã1− z)−1)f, (I + (w − µ)(Ã1−w)−1)g〉
H̃1

= 〈f, g〉 + (z− µ)(z− µ)
z−w

〈
(T (z)− z)−1f, g

〉
− (w − µ)(w − µ)

z−w
〈
f, (T (w)−w)−1g

〉
= 〈(

I + (z− µ)(Ã2− z)−1)f, (I + (w − µ)(Ã2−w)−1)g〉
H̃2
.

This shows that the relation

span
{{(

I + (z− µ)(Ã1− z)−1)f, (I + (z − µ)(Ã2− z)−1)f }:

f ∈H, z ∈ C\R}
in H̃1× H̃2 is isometric and has a dense domain and dense range, becauseÃ1 and
Ã2 are minimal extensions. Hence, its closure is the graph of a unitary operatorW
from H̃1 ontoH̃2 with the property

W
[(
I + (z− µ)(Ã1− z)−1)f ] = (

I + (z− µ)(Ã2− z)−1)f,
f ∈H, z ∈ C\R.

In particular,Wf = f for f ∈H (setz = µ) and

W
[
(Ã1− z)−1f

] = (Ã2− z)−1f, f ∈H, z ∈ C\R.
These equalities and the resolvent identity imply for allf ∈H and allz,w ∈ C\R,

W
[
(Ã1−w)−1(I + (z− µ)(Ã1− z)−1)f ]
= (Ã2−w)−1[(I + (z− µ)(Ã2− z)−1)f ]
= (Ã2−w)−1W

[(
I + (z− µ)(Ã1− z)−1)f ]

and so, by continuity,W [(Ã1− w)−1h] = (Ã2−w)−1Wh for all h ∈ H̃1. From

Ãj =
{{
(Ãj − z)−1h, h + z(Ãj − z)−1h

}
: h ∈ H̃j

}
, j = 1,2

(here the set on the right-hand side is independent ofz ∈ C\R), it follows that W
intertwinesÃ1 andÃ2. �

In the following theorem, we consider the following boundary eigenvalue prob-
lem.

Forh ∈H find {f, g} ∈ S∗ with g − zf = h and U(z)b(f, g) = 0. (5.21)
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By definition, a linearization of this problem is a selfadjoint extensionÃ of S in H̃
such that the unique solution of (5.21) for eachz ∈ C\R is given by

f = P̃H(Ã− z)−1h, g = h+ zf.

Theorem 5.4. Let S be a closed symmetric linear relation in a Hilbert spaceH
with defect index(d+, d−), d = d+ + d− <∞, and let b be a boundary mapping
for S with Gram matrixQ. Let U be aQ-boundary coefficient and assume that it
has a minimal representation(3.2). LetSU be the operator of multiplication by the
independent variable in the reproducing kernel Hilbert spaceH(KU).

(a) There exists a boundary mappingbU for SU such that

Ã :=
{ {(

f

f1

)
,

(
g

g1

)}
: {f, g} ∈ S∗, {f1, g1} ∈ S∗U,

U0b(f, g) = 0, B0b(f, g)+ bU(f1, g1) = 0

}
is a minimal linearization of the boundary eigenvalue problem(5.21). The matrix
−(B0Q

−1B∗0)−1 is Gram matrix ofbU.

(b) If b2 is an arbitrary boundary mapping forSU with Gram matrixQ2, then there
exists a uniqueω × ω matrix� such thatQ2 + �∗(B0Q

−1B∗0)−1� = 0 and

Ã =
{ {(

f

f1

)
,

(
g

g1

)}
: {f, g} ∈ S∗, {f1, g1} ∈ S∗U,

U0b(f, g) = 0, B0b(f, g)+ �b2(f1, g1) = 0

}
.

(c) Any minimal linearization of(5.21) is isomorphic toÃ, under an isomorphism
that when restricted to the spaceH acts as the identity operator onH.

Proof. Let S be a closed symmetric linear relation with the defect index(d+, d−)
and letd = d+ + d−. Let b : S∗ → Cd be a boundary mapping forS with Gram
matrixQ. LetU(z) be aQ-boundary coefficient with a minimal representation (3.2)
described in Theorem 3.2. Further on in this proof we use the notation and results
of Theorem 3.2. LetS∗0 := {{f, g} ∈ S∗: U0b(f, g) = 0}. Then Lemma 3.5 implies
thatS0 = {{f, g} ∈ S∗: U0b(f, g) = 0, B0b(f, g) = 0}, S0 is a closed linear sym-
metric extension ofS with defect index(ω+, ω−) and dim(S0/S) = τ . Note that
B0b|S∗0 is a boundary mapping forS0 with Gram matrix(B0Q

−1B∗0)−1. By Theorem
4.4(b) we can choose a boundary mappingbU for the operatorSU with Gram matrix
−(B0Q

−1B∗0)−1 and a holomorphic basis�(z) for ker(S∗U − z), z ∈ C\R, in such a
way that

U0(z) =
(− (

B0Q
−1B∗0

)−1
bU(�̂(z))

)∗
.

We now can definẽA as given in the theorem:
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Ã :=
{ {(

f

f1

)
,

(
g

g1

)}
: {f, g} ∈ S∗, {f1, g1} ∈ S∗U,

U0b(f, g) = 0, B0b(f, g)+ bU(f1, g1) = 0

}
.

It follows from Theorem 5.1(b) that̃A is a canonical selfadjoint extension ofS0⊕ SU
in H⊕H(KU) such that̃A ∩H2 = S0 andÃ ∩H(KU)

2 = SU. Thus,Ã is an ex-
tension ofS. Since by Theorem 4.4(a) the operatorSU is simple, Lemma 5.2 implies
thatÃ is a minimal selfadjoint extension ofS. As in the proof of part (a) of Theorem
5.3 we have

P̃H(Ã− z)−1
∣∣
H
= {{g − zf, f }: {f, g} ∈ S∗, U0b(f, g) = 0

B0b(f, g)+ bU(f1, g1) = 0

for some{f1, g1} ∈ S∗U ∩ zI
}
.

Because of the special choice of the boundary mappingbU and a holomorphic basis
�(z) for ker(S∗U − z), as in the proof of the part (a) of Theorem 5.3, we conclude
that

B0b(f, g)+ bU(f1, g1) = 0 for some{f1, g1} ∈ S∗U ∩ zI (5.22)

is equivalent toU0(z)B0b(f, g) = 0. Letting

T (z) := {{f, g} ∈ S∗: U0b(f, g) = 0, U0(z)B0b(f, g) = 0
}
,

again as in the proof of (a) in Theorem 5.3, we conclude that

P̃H(Ã− z)−1
∣∣
H
= (T (z)− z)−1.

Theorem 3.2 yields that

T (z) = {{f, g} ∈ S∗: U(z)b(f, g) = 0
}
.

Thus,Ã is a linearization of the boundary eigenvalue problem (5.21). This proves
(a).

We now prove (b). Letb2 be an arbitrary boundary mapping forSU with
Gram matrix Q2. Since the operator̃A is a canonical selfadjoint extension of
S0⊕ SU, Theorem 5.1(b) applied to the boundary mappingsb0, with Gram matrix
(B0Q

−1B∗0)−1, andb2 implies that there exists a uniqueω × ω matrix � such that
Q2+ �∗(B0Q

−1B∗0)−1� = 0 and

Ã=
{{(

f0
f1

)
,

(
g0
g1

)}
: {f0, g0} ∈ S∗0, {f1, g1} ∈ S∗U,

b0(f0, g0)+ �b2(f1, g1) = 0

}
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=
{{(

f

f1

)
,

(
g

g1

)}
: {f, g} ∈ S∗, {f1, g1} ∈ S∗U,

U0b(f, g) = 0, B0b(f, g)+ �b2(f1, g1) = 0

}
.

Statement (c) follows from Theorem 5.3(c).�

Appendix A. Extension theory in a Krein space environment

In this section, we study neutral subspaces of a Krein space(K, [·, ·]). The dis-
cussion at the beginning of Section 3 shows that the neutral subspaces of a Krein
space are surrogate symmetric relations in a Hilbert space. In this section, we use
Krein space terminology and notation. For similar results in symplectic language;
see [16]; Table 1 is the dictionary.

First we describe a special Krein space in which the extension theory can be
formulated using Krein space geometry. This idea goes back at least to Šmuĺan
[24]. Let (H, 〈·, ·〉) be a Hilbert space. Then the Cartesian productH2 endowed
with the indefinite product

[[{x, y}, {u, v}]] = 1

i
(〈y, u〉 − 〈x, v〉)

is a Krein space. Let Im(µ) > 0. Then for arbitrary{x,µx} ∈ µI we have

[[{x,µx}, {x,µx}]] = 1

i
(〈µx, x〉 − 〈x,µx〉) = 2Im(µ)〈x, x〉.

Thus,µI is a uniformly positive subspace of(H2, [[·, ·]]). Similarly, µI is a uni-
formly negative subspace of(H2, [[·, ·]]). The subspacesµI andµI are mutually
orthogonal in(H2, [[·, ·]]) and a simple calculation shows thatH2 = µI [+̇]µI is
a fundamental decomposition of(H2, [[·, ·]]). The fundamental symmetryJµ corre-
sponding to this decomposition is given by (4.8). A linear relation is a closed sub-
space ofH2. The adjointS∗ of a linear relationSin H is the orthogonal complement
of S in (H2, [[·, ·]]): S∗ = S[[⊥]]. A relation S is symmetric if and only ifS is a
neutral subspace of(H2, [[·, ·]]), that is, ifS ⊂ S[[⊥]]. von Neumann’s formula is the
following result about neutral subspaces of a general Krein space(K, [·, ·]).
Table 1

Relations in a Hilbert spaceH Subspaces of a Krein spaceH2

Adjoint Orthogonal complement
Symmetric Neutral
Selfadjoint Equal to its orthogonal complement
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Proposition A.1 (Generalized von Neumann’s formula).Let K =K+[+̇]K− be
an arbitrary fundamental decomposition of a Krein space(K, [·, ·]). Let S be a
closed neutral subspace of(K, [·, ·]). Then

S[⊥] =S[+̇](S[⊥] ∩K+)[+̇](S[⊥] ∩K−). (A.1)

Proof. Let J be the fundamental symmetry corresponding toK =K+[+̇]K−,
let P± = 1

2(I ± J ) be the orthogonal projection ontoK± and let〈x, y〉 = [Jx, y],
x, y ∈K, be the corresponding Hilbert space inner product. For an arbitrary sub-
spaceL of K it is straightforward to verify thatJL+L = P+L[+̇]P−L.
SinceS is a neutral subspace we have that[P+x, P+y] = −[P−x, P−y] and there-
fore 〈x, y〉 = ±2[P±x, P±y] = 2〈P±x, P±y〉 for all x, y ∈S. Thus, 1√

2
P±|S is

a unitary operator from(S, 〈·, ·〉) to (P±(S),±[·, ·]). Consequently,P±(S) is a
closed subspace ofK±. Denote byT± the orthogonal complement ofP±(S) in
(K±,±[·, ·]). Since 0= [P±(S),T±] = [S,T±], it follows thatT± ⊂S[⊥].
Moreover,T± =S[⊥] ∩K±. Indeed,⊂ is clear and ifx ∈S[⊥] ∩K±, then
[P±(S), x] = [S, x] = 0, which impliesx ∈T±. Thus, (A.1) can be restated as

S[⊥] =S[+̇]T+[+̇]T−. (A.2)

Clearly,T+[+̇]T− = (P+(S)[+̇]P−(S))[⊥] = (JS+̇S)[⊥]. Therefore, (A.2) is
equivalent toS =S[⊥] ∩ (JS+̇S). As S is neutral,S ⊂S[⊥] and therefore
S ⊂S[⊥] ∩ (JS+̇S). SinceS[⊥] = (JS)〈⊥〉, we haveJS ∩S[⊥] = {0}, and
thereforeS[⊥] ∩ (JS+̇S) =S. This proves Proposition A.1.�

The next proposition is an alternative way of stating von Neumann’s formula in
which an emphasis is given to orthogonal complements of neutral subspaces.

Proposition A.2. Let (K, [·, ·]) be a Krein space. LetL be a closed subspace of
(K, [·, ·]) and letL0 :=L ∩L[⊥] be its isotropic part. ThenL[⊥] is a neutral
subspace ofK if and only if there exists a fundamental symmetry J ofK with the
corresponding fundamental decompositionK =K+[+̇]K− such that

L =L0[+̇](L ∩K+)[+̇](L ∩K−) and JL+L =K. (A.3)

If (A.3) holds for one fundamental decomposition, then it holds for every fundamen-
tal decomposition.

Proof. Assume thatL[⊥] is a neutral subspace. ThenL[⊥] =L0 and Proposi-
tion A.1 implies that the first equality in (A.3) holds for an arbitrary fundamental
decompositionJ. It follows from the proof of Proposition A.1 thatJL0+̇L0 =
P+L0[+̇]P−L0 is the orthogonal complement in(K, [·, ·]) of the regular subspace
(L ∩K+)[+̇](L ∩K−), which corresponds toT+[+̇]T− in Proposition A.1.
Therefore,

(JL0+̇L0)[+̇](L ∩K+)[+̇](L ∩K−) =K. (A.4)
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SinceL0 ⊂L we haveJL+L = (JL0+̇L0)[+̇](L ∩K+)[+̇](L ∩K−) =
K.

Now assume that (A.3) holds for a fundamental symmetryJ of K and the
corresponding fundamental decompositionK =K+[+̇]K−. Clearly, (A.3) im-
plies (A.4). LetL′ denote the orthogonal complement ofL0 in the Krein space
(JL0+̇L0, [·, ·]). Then (A.4) yields

L
[⊥]
0 =L′[+̇](L ∩K+)[+̇](L ∩K−). (A.5)

SinceL0 is a maximal neutral subspace ofJL0+̇L0, it follows thatL′ =L0.

Consequently, (A.5) and (A.3) implyL[⊥]0 =L. Therefore,L[⊥] =L0 is a neutral
subspace of(K, [·, ·]). �

It follows from von Neumann’s formula (A.1) that the factor spaceS[⊥]/S is
a Krein space. SinceS ∩K± = {0}, the Krein spaceS[⊥]/S can be identified
with (S[⊥] ∩K+)[+̇](S[⊥] ∩K−). Consequently, the numbers dim(S[⊥] ∩K+)
and dim(S[⊥] ∩K−) do not depend on the choice of the fundamental decomposition
K+[+̇]K−.
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