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Necessary and sufficient conditions and also simple sufficient conditions are given

for the self-adjoint operators associated with the second-order linear differential

expression

tðyÞ ¼
1

w
ð�ðpy0Þ0 þ qyÞ

on ½a; bÞ to have discrete spectrum. Here the coefficients of t are non-negative and
satisfy minimal smoothness conditions. These results follow from compact

embedding theorems from a weighted one-dimensional Sobolev space with norm

ð
R b
a ðpjf

0 jr þ qjf jrÞÞ1=r into a weighted Banach space with norm ð
R b
a wjf jsÞ1=s: # 2002
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1. INTRODUCTION

We will give a new set of conditions necessary and sufficient for the self-
adjoint operators associated with the second-order linear differential
expression

tðyÞ ¼
1

w
ð�ðpy0Þ0 þ qyÞ ð1Þ

to have a discrete spectrum on the interval ½a; bÞ; �15a5b4þ1: A
simplified version of these conditions also serves as a rather effective
criterion for a discrete spectrum which can be quite easy to verify.
It turns out to be no more difficult to present our results in terms of

embedding theorems between weighted spaces, from which the spectral
theory results then follow immediately. Thus, we will give first sufficient, and
then necessary and sufficient conditions for the identity map from the
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weighted Sobolev space W 1;r
p;qða; bÞ with norm

jjf jjp;q ¼
Z b

a
ðpjf 0jr þ qjf jrÞ

� �1=r
ð2Þ

into the weighted Banach space Lswða; bÞ with norm jjf jjw; s ¼ ð
R b
a wjf j

sÞ1=s to
be continuous. We also estimate its measure of non-compactness in terms of
a quantity depending on p; q; and w: Here 15r4s5þ1; 1r þ

1
r 0 ¼ 1 and

p; q; w are non-negative functions such that w > 0 a.e. and

w;p1�r 0
; q 2 L1loc½a; bÞ: ð3Þ

We recall that when r ¼ s ¼ 2; there is a minimal operator Tm associated
with t whose domain is the closure in the weighted Hilbert space L2wða; bÞ
of all compactly supported, locally absolutely continuous functions f for
which tðf Þ 2 L2wða; bÞ: We assume that the differential expression t is
singular at b: The hypotheses imply that it is otherwise regular. The
self-adjoint extensions of Tm are all bounded below, all have the same
essential spectrum, and have a discrete spectrum if and only if this essential
spectrum is empty. The property of having a discrete spectrum may
therefore be associated with Tm rather than with any particular self-
adjoint operator. For a discussion of differential operators with these
weak smoothness assumptions on the coefficients, see [12, Chapt. V]. For
details concerning the essential spectrum, see the classical treatment by
Glazman [6].
The connection between the embedding theorems and the spectral

theoretic results when r ¼ s ¼ 2 can be made in several ways. One is to
recall the definition of the Friedrichs extension, TF; of Tm in terms of
quadratic forms (see [9, VI.3] or [4, IV.2]) from which it is clear that ðTFf ;
f Þ ¼ jjf jjp;q for all f in the domain of TF: It is then clear that the essential
spectrum of TF is bounded away from the origin if and only if there is an
embedding, and Rellich’s theorem [16] (see also [12, Sect. 24.5]) states that
the essential spectrum is empty if and only if the set ff : ðTFf ; f Þ41g has
compact closure in L2wða; bÞ; that is, if and only if the embedding is compact.
(For a similar argument, see [4, IV.2.9 and remarks preceding VIII.4.1].)
Another route is to remember the ‘‘decomposition principle’’ that properties
of the essential spectrum depend only on the behavior of the Dirichlet
integral (2) for r ¼ 2 in arbitrarily small neighborhoods of the singular point
b (see [6, Sects. 7 and 10]) and to observe that the proofs of the principal
embedding theorems below (Theorems 4.1, 5.1 and 5.2) amount to
establishing the necessary inequalities.
Many authors have given sufficient conditions for the self-adjoint

operators associated with (1) to have discrete spectrum on ½a; bÞ under
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various restrictions on the coefficients. The earliest criterion, due to Weyl
[17] for the special case pðxÞ ¼ wðxÞ ¼ 1 on the interval ½a;þ1Þ; states that
the spectrum is discrete if qðxÞ ! þ1 as x ! þ1: See [8, 10, 15] for some
representative relatively recent work which considers the behavior of certain
averages of the coefficients on a family of compact subintervals. This more
recent work has the character of prescribing that qðxÞ grow large in some
suitable sense as x approaches the singular endpoint. (This means large
compared to wðxÞ if w is not identically equal to 1:) In this spirit, the
following simplified version of our conditions will be shown to be sufficient
for a discrete spectrum in Section 4, and will be shown there by example to
be quite effective in cases when discreteness arises from the rapid growth
of q:

Each self-adjoint extension of Tm has discrete spectrum if for each x 2
½a; bÞ there is a bounded interval IðxÞ centered at x such that

Z
IðxÞ

p�1 þ
Z
IðxÞ

q
� ��1

 !Z
IðxÞ

w ! 0 as x ! b:

In the special case pðxÞ ¼ wðxÞ ¼ 1; it turned out that a rather simple and
natural extension of the Weyl condition was, in fact, both necessary and
sufficient for a discrete spectrum. In this situation, Molchanov [11] (see also
[6, Sect. 28]) showed that the condition

for each y > 0;

Z xþy

x
q ! þ1 as x ! b ð4Þ

is necessary and sufficient for the self-adjoint extensions of Tm to have
discrete spectrum.
Much more recently, Oinarov and Otelbaev [13] have given necessary and

sufficient conditions for the self-adjoint operators associated with the
general second-order expression (1) to have discrete spectrum. This work is
also phrased in terms of necessary and sufficient conditions for the
embedding mentioned above and for it to be compact. Unfortunately, their
conditions are complex and rather difficult to verify in specific cases. They
are also, at least superficially, quite different in character from (4). The basic
idea is to use the coefficients p and q to define a family of intervals IðxÞ of
‘‘unit length’’ with IðxÞ centered at x in a suitable sense. The condition is
then, very roughly, that on such intervals I ; ð

R
I wÞ=ð

R
I qÞ should approach 0

as x ! b: However, in order to make the condition necessary as well as
sufficient, Oinarov and Otelbaev replace this simple quotient with a
complicated expression involving integrals over several linked intervals
and a supremum over the points t 2 I :
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One reason for this complication is that if the leading coefficient p
and the weight function w are also allowed to vary, then other
possible routes for discreteness of the spectrum (or compactness
of the embedding) appear}for instance, it is also possible for the
spectrum to be discrete even when q is comparable to w provided
pðxÞ increases sufficiently fast as x ! b: Thus a condition which is
necessary as well as sufficient must be flexible enough to take into account
rapid growth by either p or q or some combination of the two. Few of
the many published criteria for discrete spectrum have this dual
ability, although the well-known criterion of Friedrichs [5], for instance,
does have this character.
While our conditions have some similarity to that of Oinarov

and Otelbaev, they differ in two respects likely to make them easier to
apply in a specific situation. First, instead of prescribing a particular family
of intervals to use, considerable latitude is allowed in choosing a family.
Several examples illustrating this process are given in Sections 4 and 6.
Second, we are able to avoid the calculation of a supremum for each
individual interval. The combined effect is often to allow rather loose
estimates to suffice to demonstrate properties of the spectrum (or the
embedding).
The key ingredient in allowing a fairly free choice of intervals will be a

variant of the Besicovitch covering theorem [2]. This is developed in Section
2. In Section 3, we review briefly necessary information about the ball
measure of non-compactness of a map between Banach spaces. We establish
our first embedding theorems in Section 4 (Theorem 4.1 and Corollary 4.1)
and thus obtain as Corollary 4.2, a simple condition sufficient for a discrete
spectrum. More refined results on embeddings (Theorems 5.1 and 5.2 and
Corollary 5.2) and discreteness of spectrum (Corollaries 5.1 and 5.3) are
proved in Section 5. Two examples that illustrate their use are discussed in
Section 6.

2. THE BESICOVITCH COVERING THEOREM

We will need a variant of the Besicovitch covering theorem [2] (see also
[7]) for a family of bounded intervals contained in a not necessarily bounded
subset of the line and for which x does not necessarily lie near the center of
IðxÞ: We begin by stating a one-dimensional version of the theorem as it
appears in [7, Theorem 1.1, Remark 4].

Theorem 2.1. (Besicovitch [2]). There are fixed positive integers y and x
such that for any bounded subset A of R and any family fIðxÞ: x 2 Ag of closed

intervals with x in the middle third of IðxÞ; one can choose from fIðxÞ: x 2 Ag a
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sequence fIkg; possibly finite, such that

ðiÞ A �
S

k Ik ;

ðiiÞ no point of R is in more than y intervals of fIkg;

ðiiiÞ the sequence fIkg can be partitioned into x families of pairwise

disjoint intervals.

We will need to allow A to be unbounded, and also to loosen
the requirement that x lie in the middle third of IðxÞ: We deal
with these extensions one at a time, beginning with possibly un-
bounded A:

Theorem 2.2. Let A ¼ ½a; bÞ; �15a5b4þ1; be an interval in R: Let

fIðxÞ: x 2 Ag be any family of closed, bounded intervals with x in the middle

third of IðxÞ ¼ ½x�; xþ�: If b ¼ þ1; suppose that x� ! þ1 as x ! þ1: Then

there is a sequence fIkg; possibly finite, such that

ðiÞ A �
S

k Ik ;

ðiiÞ no point of R is in more than 3y intervals of fIkg;

ðiiiÞ the sequence fIkg can be partitioned into 2x families of pairwise

disjoint intervals.

Proof. We may assume that b ¼ þ1: Partition A into a family fAkg
of bounded intervals with common endpoints as follows. Set A1 ¼ ½a; aþ 1�:
If An ¼ ½an; bn� has been chosen, set xnþ1 ¼ supfx: x�4bþn g: Since x

� ! þ1
as x ! þ1; xnþ1 is finite. Set anþ1 ¼ bn; bnþ1 ¼ xnþ1 þ 1: It is then clear
that if x 2 Am; y 2 An; n5mþ 2; then IðxÞ \ IðyÞ ¼ |: From Theorem 2.1
we can select for each k a sequence fIk;ng of intervals covering Ak : The union
of these sequences covers A; and it is clear from the construction that if
x 2 Ak ; then x can lie in intervals from at most the three sequences fIk�1;ng;
fIk;ng; and fIkþ1;ng: This establishes (i) and (ii). Finally, since Ik;n \ Ikþ2;m ¼
|; the intervals from the sequences fIk;ng for k ¼ 1; 3; 5; . . . ; and for k ¼
2; 4; 6; . . . ; can each be partitioned into x families of pairwise disjoint
intervals. ]

Next, we wish to loosen somewhat the requirement that x lie in the middle
third of IðxÞ:

Definition 2.1. Let A be an interval in R: A family fIðxÞ: x 2 Ag of
bounded closed intervals IðxÞ ¼ ½x�; xþ� is centralizable if x�5x5xþ for each
x 2 A and if there is an increasing, continuous function f such that for each
x 2 A; f ðxÞ is in the middle third of the interval f ½IðxÞ�:
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Corollary 2.1. Let A ¼ ½a; bÞ;�15a5b4þ1; be an interval in R;
and let fIðxÞ: x 2 Ag be a centralizable family of closed, bounded intervals.

Then, the conclusion of Theorem 2.2 holds for fIðxÞ: x 2 Ag:

Proof. There is an increasing, continuous function f that transforms the
family fIðxÞ: x 2 Ag to a family fJ ðtÞ: t 2 Bg; B ¼ f ½A�; to which Theorem 2.2
applies. Thus, there is a subfamily fJkg with properties (i)–(iii) relative to B:
But f preserves all of the intersection properties of intervals. Thus, the
subfamily Ik ¼ f�1½Jk� also has properties (i)–(iii) relative to A: ]

Remark 2.1. Of course, a family is centralizable if x is in the middle third
of IðxÞ: Another possibility is that the change of variables t ¼

R x
a p

�1 acts on
the family IðxÞ ¼ ½x�; xþ� to produce a new family ½t�; tþ� with tþ � t ¼
t � t�; that is,

R x
x� p

�1 ¼
R xþ
x p�1:Here p�1 could be replaced by any positive

locally integrable function g defined on A: As yet another alternative, the
function f ðxÞ ¼ 1� 1=ð1þ

R x
a wÞ will be used for one of the examples in

Section 6.

3. MEASURES OF NON-COMPACTNESS

We list some definitions and results that will be needed below. For more
details see [4].

Definition 3.1. Let A be a bounded subset of a Banach space X : Then,

*ccðAÞ ¼ inffd > 0: A has a finite cover by balls of radius dg:

Remark 3.1. The closure of A is compact if and only if *ccðAÞ ¼ 0:

Remark 3.2. If X is infinite dimensional and B1 is the closed unit ball in
X ; then *ccðB1Þ ¼ 1: (Of course, if dim X5þ1; then *ccðAÞ ¼ 0 for all
bounded A:)

Definition 3.2. Let X and Y be Banach spaces, and let T : X ! Y be a
bounded linear map. Then,

*bbðT Þ ¼ *bbX ;Y ðT Þ

¼ supf *ccY ðT ½A�Þ: A bounded; *ccX ðAÞ ¼ 1g

¼ *ccY ðT ½B1�Þ:

Remark 3.3. The last equality in the definition is valid because T is a
linear map.



ĆURGUS AND READ532
Remark 3.4. *bbðT Þ4jjT jj:

Remark 3.5. T is compact if and only if *bbðT Þ ¼ 0:

Remark 3.6. If S is compact and T is bounded, *bbðS þ T Þ ¼ *bbðT Þ:

The last remark will be used in connection with the following theorem.
Although this result is well known, it is difficult to find a statement in this
form in the literature. Since the proof has several elements in common with
arguments from later sections, we sketch it briefly here. Here and
subsequently we will write r0 for the exponent conjugate to r; 1r þ

1
r0 ¼ 1:

Theorem 3.1. Let ½a; b� be a compact interval in R; let 15r5þ1; 14
s5þ1; and let p; q; w; be non-negative functions such that p1�r0 ; q;w 2
L1½a; b�;

R b
a q > 0; and w > 0 a.e. Then W 1;r

p;q ½a; b� is compactly embedded in

Lsw½a; b�:

Proof. For any f 2 W 1;r
p;q ½a; b�; if jf ðcÞj ¼ minfjf ðxÞj: x 2 ½a; b�g; then

jf ðcÞj
Z b

a
q

� �1=r
4

Z b

a
qjf jr

� �1=r
4jjf jjp; q:

Here jj � jjp;q denotes norm (2). Also, for any x; y 2 ½a; b�;

jf ðxÞ � f ðyÞj4
Z y

x
jf 0j

4
Z y

x
p1�r0

� �1=r0 Z y

x
pjf 0jr

� �1=r

4
Z y

x
p1�r0

� �1=r0
jjf jjp; q:

It follows that the functions in the unit ball of W 1;r
p;q ½a; b� are uniformly

bounded and (by a standard measure theory result) uniformly equicontin-
uous. The result then follows from Ascoli’s theorem. ]

4. AN UPPER BOUND AND A SUFFICIENT CONDITION

In this section, we establish an upper bound for *bbðEÞ; with E the identity
map E :W 1;r

p;q ½a; bÞ ! Lsw½a; bÞ; valid for 15r4s5þ1: Specialized to the
case r ¼ s ¼ 2; this yields in Corollary 4.2 a simple but surprisingly effective
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condition sufficient for discreteness of the spectrum of self-adjoint
extensions of Tm: We conclude with an example that illustrates its power.

Theorem 4.1. Let p; q; w be as in (3), and let 15r4s5þ1: Let a5
c5b and let fIðxÞ: x 2 ½c; bÞg; IðxÞ ¼ ½x�; xþ�; a5x�5x5xþ5b; be a

centralizable family of bounded intervals such that x� ! b as x ! b: For

x 2 ½c; bÞ define

Ur; sðxÞ ¼
Z
IðxÞ

w
� �1=s Z

IðxÞ
p1�r0

� �1=r0
þ
Z
IðxÞ

q
� ��1=r

" #
: ð5Þ

If Ur; s ¼ lim supx!b Ur; sðxÞ is finite, then the identity map E :W 1;r
p;q ½a; bÞ !

Lsw½a; bÞ is a continuous embedding, and *bbðEÞ4ð2xÞ1=rUr; s; where x is as in

Theorem 2.2.

Proof. Let wA denote the characteristic function of the set A: For any
a5t5b; we can write Eðf Þ ¼ Stðf Þ þ Ttðf Þ; where Stðf Þ :¼ fwða; tÞ; Ttðf Þ :¼
fw½t;bÞ: From Remarks 3.4 and 3.6 and Theorem 3.1, *bbðEÞ ¼ *bbðTtÞ4jjTtjj:
Thus it suffices to show that for any e > 0 there is t such that

Z b

t
jf jsw

� �1=s
4ð2xÞ1=rðUr; s þ eÞ

Z b

t
ðpjf 0jr þ qjf jrÞ

� �1=r
:

Given e; choose t 2 ½c; bÞ so that for x5t; Ur; sðxÞ5Ur; s þ e: For any such x;
any f supported on ðt; bÞ; and any y 2 IðxÞ; it follows as in the proof of
Theorem 3.1 that

jf ðyÞj4
Z
IðxÞ

p1�r0
� �1=r0

þ
Z
IðxÞ

q
� ��1=r

" # Z
IðxÞ

ðpjf 0jr þ qjf jrÞ
� �1=r

:

Since the right-hand side of this inequality is independent of y; computing
the norm of f in LswðIðxÞÞ yields

Z
IðxÞ

jf jsw
� �1=s

4ðUr; s þ eÞ
Z
IðxÞ

ðpjf 0jr þ qjf jrÞ
� �1=r

:

Now we must obtain a similar inequality on the interval ðt; bÞ: By
Theorem 2.2, there is a sequence fIkg chosen from the fIðxÞ: x 2 ½t; bÞg that
cover ½t; bÞ with the property that they can be partitioned into 2x families of
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pairwise disjoint intervals. Thus,

Z b

t
jf jsw4

X
k

Z
Ik

jf jsw5ðUr; s þ eÞs
X
k

Z
Ik

ðpjf 0jr þ qjf jrÞ
� �s=r

42xðUr; s þ eÞs
Z b

t
ðpjf 0jr þ qjf jrÞ

� �s=r

: ]

Remark 4.1. Clearly, Ur; sðxÞ in Theorem 4.1 depends on the choice of
family fIðxÞg: Indeed, we will see in the example at the end of this section
that the finiteness of Ur; s can depend on the choice of fIðxÞ: x 2 ½c; bÞg:

Corollary 4.1. Let p; q; w be as in (3) and let 15r4s5þ1:
Let a5c5b and let fIðxÞ: x 2 ½c; bÞg; IðxÞ ¼ ½x�; xþ�; a5x�5x5xþ5b;
be a centralizable family of bounded intervals such that x� ! b as x ! b:
Then,

Z
IðxÞ

w
� �1=s Z

IðxÞ
p1�r0

� �1=r0
þ
Z
IðxÞ

q
� ��1=r

" #
! 0

as x ! b; implies that W 1;r
p;q ½a; bÞ is compactly embedded in Lsw½a; bÞ:

Proof. This follows immediately from Remark 3.5. ]

Specializing to r ¼ s ¼ 2; we have the following spectral result.

Corollary 4.2. Let p; q; w be as in (3), and let 15r4s5þ1:
Let a5c5b and let fIðxÞ: x 2 ½c; bÞg; IðxÞ ¼ ½x�; xþ�; a5x�5x5xþ5b;
be a centralizable family of bounded intervals such that x� ! b as x ! b:
Then,

U2 ¼ lim sup
x!b

Z
IðxÞ

p�1
� �

þ
Z
IðxÞ

q
� ��1

" #Z
IðxÞ

w5þ1;

implies that the essential spectrum of Tm is contained in ½ð8xU2Þ�1;þ1Þ: If

Z
IðxÞ

p�1
� �

þ
Z
IðxÞ

q
� ��1

" #Z
IðxÞ

w ! 0; ð6Þ

then each self-adjoint extension of Tm has discrete spectrum.

Proof. Note that 1
2
U2;24U4U2;2: ]
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Remark 4.2. Note that unlike Molchanov’s discrete spectrum criterion
or any of the results in [8, 10, 15], there is a single family of intervals rather
than a parametrized collection of families where the parameter must be
allowed to approach 0: (However, it is easy to see that a family satisfying (6)
can be chosen if Molchanov’s condition (4) is satisfied, so that Corollary 4.2
contains the sufficiency part of his criterion.) A second difference, organizing
the intervals according to their ‘‘centers’’ rather than their left endpoint, will
be discussed in connection with the following example.

Example 4.1. Consider the differential expression on ½0;þ1Þ with
p ¼ 1 and q and w defined on ½n; nþ 1Þ for n ¼ 0; 1; . . . ; by

qðxÞ ¼
n; n4x5nþ 1� ðnþ 1Þ�2;

ðnþ 1Þ4; nþ 1� ðnþ 1Þ�24x5nþ 1;

(

wðxÞ ¼
n4�e; n4x5nþ n�2;

1; nþ n�24x5nþ 1:

(

Here it is approximately true that qðxÞ=wðxÞ ! þ1 as x ! þ1; but the
intervals where q and w are large are adjacent rather than identical, so it is
not quite true. It will be clear from the construction to follow that we could
actually separate the intervals where q and w are large, say by setting qðxÞ ¼
ðnþ 1Þ4 on

nþ 1� ðk þ 1Þðnþ 1Þ�24x5nþ 1� kðnþ 1Þ�2;

without disturbing the discreteness of the spectrum.
To choose the family fIðxÞg that demonstrates this, if n4x4nþ n�2;

n51; choose IðxÞ to be centered at x with left endpoint x� ¼ n� n�2: Then,
ð
R
I wÞ=ð

R
I qÞ � n�e;

R
I p

�1
R
I w ¼ jI j

R
I w � 2n�e: (Here and in what follows

jI j denotes the length of the interval I :) If nþ n�25x5nþ 1; choose IðxÞ to
be centered at x with length at most

ffiffiffi
n

p
and contained in the interval where

wðxÞ ¼ 1: Then ð
R
I wÞ=ð

R
I qÞ4n�1;

R
I p

�1
R
I w4n�1: Thus, it follows from

Corollary 4.2 that each self-adjoint extension of Tm has discrete spectrum.

Remark 4.3. Note that the ease of use of Corollary 4.2 derives in part
from the possibility of choosing each interval IðxÞ individually, without
reference to the intervals at other points. We will have to compromise this
independence somewhat in the next section to obtain more refined criteria.

Example 4.2. To demonstrate that the finiteness of U2;2 depends on the
choice of fIðxÞg; consider the family fJ ðxÞg defined for Example 4.1 so that x
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is the center of J ðxÞ; and so that jJ ðxÞj
R
J ðxÞ q ¼ 1 for each x: Then,

U 2
2;2ðxÞ ¼

Z
J ðxÞ

w jJ ðxÞj1=2 þ
Z
J ðxÞ

q
� ��1=2

" #2

¼ 4jJ ðxÞj
Z
J ðxÞ

w:

Let xn ¼ nþ 1=2
ffiffiffi
n

p
for each n: Then J ðxnÞ ¼ ½n; nþ 1=

ffiffiffi
n

p
�; and

R
J ðxnÞ

w5
n2�e so that

jJnðxÞj
Z
JnðxÞ

w5n3=2�e ! þ1 as n ! þ1:

Remark 4.4. It appears that Example 4.1 is not covered by any of the
results in [8, 10] or [15]. The crucial difference is that although each of these
results also considers averaged behavior on a family of intervals, the families
of intervals are organized by their left endpoints x rather than by their
centers as here. This means that on an interval with left endpoint satisfying
n4x4nþ n�2; there is no way to ‘‘see’’ the nearby interval where q is large.

Remark 4.5. It should, however, be pointed out that condition (6) is not
necessary for the self-adjoint extensions of Tm to have a discrete spectrum,
even when p ¼ 1: In particular, condition (6) cannot be satisfied in Example
6.2 (to be given in Section 6) although the expression there will be shown to
have discrete spectrum.

5. NECESSARY AND SUFFICIENT CONDITIONS

We begin by presenting in Theorem 5.1 a more refined upper bound
for *bbðEÞ when r4s; defined in terms of a more complicated cousin Vr; s of
Ur; s; and a criterion (Corollary 5.1) for discreteness of the spectrum that
follows from it. We will, however, have to restrict the allowable families
fIðxÞg of intervals somewhat. We will then see that by further restricting
fIðxÞg; Vr; s can also be used to give a lower bound for *bbðEÞ; that is we will
have c1Vr; s4 *bbðEÞ4c2Vr; s (Theorem 5.2). Finally, usingV2;2; we construct
a necessary and sufficient condition for the self-adjoint extensions of Tm to
have discrete spectrum (Corollary 5.3). In Section 6, two examples will be
given to illustrate the flexibility and relative ease of use of the criteria of this
section.
To make the notation slightly less cumbersome in the next theorem and in

what follows, we abbreviate ðx�Þþ to x�þ; ðxþÞ� to xþ�; and so forth.



DISCRETENESS OF THE SPECTRUM 537
Theorem 5.1. Let p; q;w be as in (3), and let 15r4s5þ1: Let a5c
5b and let fIðxÞ: x 2 ½c; bÞg; IðxÞ ¼ ½x�; xþ�; be a centralizable family of

bounded intervals such that

(a) a5x�5x5xþ5b for each x 2 ½c; bÞ;

(b) x/x� and x/xþ; x 2 ½c; bÞ; are non-decreasing functions of x;

(c) the intervals fðx�; x�þÞ: x 2 ½c; bÞg and fðxþ�; xþÞ: x 2 ½c; bÞg each

cover ½c; bÞ;

(d) x� ! b as x ! b:

Choose c1 2 ½c; bÞ so that c� �
1 5c: For x5c1 define

Vr; sðxÞ ¼
Z x

x�
w

� �1=s Z
Iðx�Þ

p1�r0
� �1=r0

þ
Z
Iðx�Þ

q
� ��1=r

" #

þ
Z xþ

x
w

 !1=s Z
IðxþÞ

p1�r0
� �1=r0

þ
Z
IðxþÞ

q
� ��1=r

" #
:

If Vr; s ¼ lim supx!b Vr; sðxÞ is finite, then the identity map E :W 1;r
p;q ½a; bÞ !

Lsw½a; bÞ is a continuous embedding, and *bbðEÞ4KVr; s: In particular, if Vr; s ¼
0 then W 1;r

p;q ½a; bÞ is compactly embedded in Lsw½a; bÞ:

Proof. It will be convenient for the proof to adopt the notation

jjf jjp;q;I ¼
Z
I
ðpjf 0jr þ qjf jrÞ

� �1=r
:

As in the proof of Theorem 4.1, it suffices to show that for e > 0 there is
a5c5b such that for f supported in ðc; bÞ;

Z b

c
jf jsw

� �1=s
4KðVr; s þ eÞjjf jjp;q;ðc;bÞ:

Given e > 0; choose x05c1 so that Vr; sðxÞ5Vr; s þ e for x > x0: Fix x 2
½x0; bÞ: By the argument in the proof of Theorem 3.1 applied to the interval
Iðx�Þ and the point t ¼ x�;

jf ðx�Þj4
Z
Iðx�Þ

p1�r0
� �1=r0

þ
Z
Iðx�Þ

q
� ��1=r

" #
jjf jjp;q;Iðx�Þ: ð7Þ

We assert first that for any z with x�5z5x; there is y so that ½x�; z� �
Iðy�Þ and ½z; x� � ½y�; y� � IðyÞ: Indeed, for x�4z4x�þ we can take y ¼ x:
Suppose that x�þ5x: Then, the assumption that the intervals fðu�; u�þÞ: u 2
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½c; bÞg cover ½c; bÞ implies that there is a finite collection fðu�j ; u
�þ
j Þ: j ¼

1; . . . ; ng that covers ½x�þ; x�: We may assume x5u15 � � �5un and then x�

5u�1 5 � � �5u�n and x�þ5u�þ
1 5 � � �5u�þ

n : (If any of the inequalities are not
strict, the corresponding interval can simply be omitted.) Thus for any z with
x�þ5z5x; z 2 ðu�k ; u

�þ
k Þ for some k: For this k; ½z; x� � ½u�k ; uk�: Also u�k 5x

implies u� �
k 4x�: Thus ½x�; z� � ½u� �

k ; u�þ
k � ¼ Iðu�k Þ and we can take y ¼ uk :

Now for any z with x�5z5x and the corresponding y selected as above,
we have

Z z

x�
p1�r0

� �1=r0 Z x

z
w

� �1=s
4

Z
Iðy�Þ

p1�r0
� �1=r0 Z y

y�
w

� �1=s
4Vr; sðyÞ5Vr; s þ e:

Thus by the generalized Hardy inequality (see [3] or [14, Theorem 1.3.4]),
using the fact that f � f ðx�Þ vanishes at x� and that r4s;

Z x

x�
jf � f ðx�Þjsw

� �1=s
4K0ðVr; s þ eÞ

Z x

x�
pjf 0jr

� �1=r
: ð8Þ

Now, using (7) and (8),

Z x

x�
jf jsw

� �1=s

4jf ðx�Þj
Z x

x�
w

� �1=s
þ
Z x

x�
jf � f ðx�Þjsw

� �1=s

4
Z x

x�
w

� �1=s Z
Iðx�Þ

p1�r0
� �1=r0

þ
Z
Iðx�Þ

q
� ��1=r

" #
jjf jjp;q;Iðx�Þ

þ K0ðVr; s þ eÞjjf jjp;q;½x� ; x�
4K0ðVr; s þ eÞðjjf jjp;q;Iðx�Þ þ jjf jjp;q;½x� ; x�Þ:

Similarly,

Z xþ

x
jf jsw

 !1=s

4K0ðVr; s þ eÞðjjf jjp;q;IðxþÞ þ jjf jjp;q;½x; xþ�Þ;

so that

Z
IðxÞ

jf jsw
� �1=s
42K0ðVr; s þ eÞðjjf jjp;q;Iðx�Þ þ jjf jjp;q;IðxþÞ þ jjf jjp;q;½x� ; xþ�Þ:
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Now by Theorem 2.2 there is a subfamily fIðxÞg covering ðc; bÞ which can
be partitioned into 2x families of pairwise disjoint intervals. We assert that
each of the corresponding families fIðx�k Þg; fIðx

þ
k Þg where IðxkÞ ¼ ½x�k ; x

þ
k �

can be partitioned into 4x families of pairwise disjoint intervals. Assuming
for the moment that this is true, we have

Z b

c
jf jsw

� �1=s
4
Xþ1

k¼1

Z
Iðxk Þ

jf jsw
� �1=s

48xK0ðVr; s þ eÞ
Z b

c
ðpjf 0jr þ qjf jrÞ

� �1=r
;

and the theorem will be proved with K ¼ 8xK0:
To establish the claim, let fIðynÞg be one of the subfamilies of pairwise

disjoint intervals obtained from fIðxkÞg; ordered so that y15y25 � � � : It
suffices to show that for any n; Iðy�

n Þ \ Iðy�
nþ2Þ ¼ | and Iðyþ

n Þ \ Iðyþ
nþ2Þ ¼ |;

since then the families fIðy�
2nÞg; fIðy�

2nþ1Þg; fIðyþ
2nÞg; and fIðyþ

2nþ1Þg will
consist of pairwise disjoint intervals. We show Iðy�

n Þ \ Iðy�
nþ2Þ ¼ |; that is,

y�þ
n 5y� �

nþ2 by exploiting the non-decreasing property of x
� and xþ: Since

y�
n 5yn; y�þ

n 4yþ
n : Since Iðynþ1Þ \ Iðynþ2Þ ¼ |; ynþ15y�

nþ2: Thus, y
�þ
n 4yþ

n
5y�

nþ14y� �
nþ2 : The argument that y

þþ
n 5yþ�

nþ2 is similar. ]

Remark 5.1. If a centralizable family fIðxÞ: x 2 ½c; bÞg; IðxÞ ¼ ½x�; xþ�; of
bounded intervals satisfies assumption (b) of Theorem 5.1 and if the
functions x/x� and x/xþ; x 2 ½c; bÞ; are continuous functions of x; then
assumption (c) of Theorem 5.1 is trivially satisfied.

Remark 5.2. If a family fIðxÞ: x 2 ½c; bÞg; IðxÞ ¼ ½x�; xþ�; of bounded
intervals satisfies assumption (b) of Theorem 5.1 and x ¼ ðx� þ xþÞ=2 for all
x 2 ½c; bÞ; then it is not difficult to see that the functions x/x� and x/xþ;
x 2 ðc; bÞ; are continuous functions of x:

Corollary 5.1. Let p; q;w be as in (3) and let fIðxÞ: x 2 ½c; bÞg; IðxÞ ¼
½x�; xþ�; be as in Theorem 5.1. If

lim sup
x!b

Z
Iðx�Þ

p�1 þ
Z
Iðx�Þ

q
� ��1

" #Z x

x�
w

 

þ
Z
IðxþÞ

p�1 þ
Z
IðxþÞ

q
� ��1

" #Z xþ

x
w

!
ð9Þ

is finite, then the essential spectrum of Tm is bounded away from 0: If (9) is 0;
then each self-adjoint extension of Tm has discrete spectrum.
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Proof. The corollary follows from the following inequality:

1

2
ðV2;2ðxÞÞ

24
Z
Iðx�Þ

p�1 þ
Z
Iðx�Þ

q
� ��1

" #Z x

x�
w

þ
Z
IðxþÞ

p�1 þ
Z
IðxþÞ

q
� ��1

" #Z xþ

x
w

4ðV2;2ðxÞÞ
2: ]

Definition 5.1. A centralizable family fIðxÞ: x 2 ½c; bÞg; with IðxÞ ¼
½x�; xþ�; of bounded intervals is p-centralizable if in addition to assumptions
(a)–(d) of Theorem 5.1, for all x 2 ðc; bÞ it satisfies

g1

Z x

x�
p1�r04

Z xþ

x
p1�r04g2

Z x

x�
p1�r0 ð10Þ

and

d14
Z
IðxÞ

p1�r0
� �1=r0 Z

IðxÞ
q

� �1=r
4d2 ð11Þ

with some positive constants g1; g2; d1; d2:

Remark 5.3. The restriction in Section 2 that f ðxÞ lie in the middle third
of f ½IðxÞ� can be loosened to the requirement that for some y51; f ðxÞ lie in
the ‘‘middle y’’ of f ½IðxÞ�: Thus, (10) is really the requirement that fIðxÞg be
centralizable by the function f ¼ p1�r0 :

Remark 5.4. The significance of (10) and (11), as we see in the following
lemma, is that they allow us to estimate

R
p1�r0 and

R
q on the intervals Iðx�Þ

and IðxþÞ in terms of their value on IðxÞ:

Remark 5.5. Conditions (10) and (11) represent a relaxed form of the
specification of intervals in [13] where g1 ¼ g2 ¼ 1 and d1 ¼ d2: We are
motivated here by the desire to have a condition which is easier to achieve in
practice.

It will be convenient for the next several proofs to adopt the notation
P ða;bÞ ¼

R b
a p1�r0 and P ðIðxÞÞ ¼ P ðx�; xþÞ:

Lemma 5.1. Let p and q be as in (3), 15r5þ1; and let

fIðxÞ: x 2 ½c; bÞg; IðxÞ ¼ ½x�; xþ�; be a p-centralizable family of bounded
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intervals. Then,

max

Z
Iðx�Þ

p1�r0 ;

Z
IðxþÞ

p1�r0
� �

4Z
Z
IðxÞ

p1�r0

and Z
IðxÞ

q4mmin
Z
Iðx�Þ

q;
Z
IðxþÞ

q
� �

;

where Z ¼ maxf1þ g�11 ; 1þ g2g; m ¼ d2
d1
maxfð1þ g2Þ

�1; g1ð1þ g1Þ
�1g:

Proof. Since x�þ4xþ we have ½x�; x�þ� � ½x�; xþ� ¼ IðxÞ: Thus P ðx�;
x�þÞ4P ðx�; xþÞ: Thus from (10), P ðIðx�ÞÞ4ð1þ g�11 ÞP ðIðxÞÞ: Similarly,
P ðIðxþÞÞ4ð1þ g2ÞP ðIðxÞÞ: Also,Z

IðxÞ
q4d2P ðIðxÞÞ

�14
d2g1
1þ g1

P ðIðx�ÞÞ�1

4
d2
d1

� �r g1
1þ g1

� �1�rZ
Iðx�Þ

q:

Similarly,
R
IðxÞ q4d2P ðIðxÞÞ

�14ðd2d1 Þ
rð1þ g1Þ

r�1 R
IðxþÞ q: ]

We are now ready to identify *bbðEÞ with Vr; s as defined via a p-
centralizable family of intervals.

Theorem 5.2. Let p; q;w be as in (3), and let 15r4s5þ1: Let fIðxÞ:
x 2 ½c; bÞg; a5c5b; IðxÞ ¼ ½x�; xþ�; be a p-centralizable family of bounded

intervals. Choose c1 2 ½c; bÞ so that c� �
1 5c: For x5c1 define

Vr; sðxÞ ¼
Z x

x�
w

� �1=s Z
Iðx�Þ

p1�r0
� �1=r0

þ
Z
Iðx�Þ

q
� ��1=r

" #

þ
Z xþ

x
w

 !1=s Z
IðxþÞ

p1�r0
� �1=r0

þ
Z
IðxþÞ

q
� ��1=r

" #
: ð12Þ

Then, Vr; s ¼ lim supx!b Vr; sðxÞ is finite if and only if the identity map E :
W 1;r

p;q ½a; bÞ ! Lsw½a; bÞ is a continuous embedding, and in that case kVr; s4
*bbðEÞ4KVr; s: Here k; K depend only on g1; g2; d1; d2; r; s:

Proof. This follows from Theorem 5.1 except for the assertion that E
being a continuous embedding implies Vr; s5þ1; and that then kVr; s4
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*bbðEÞ: Denote the first term in (12) by V L
r; sðxÞ with limit superiorV

L
r; s and the

second term by V R
r; sðxÞ with limit superior VR

r; s: It will be convenient to
bound these separately.
Let fxng be any sequence in ðc1; bÞ such that xn ! b and such that xþn 5

x� �
nþ1 for each n:Define a sequence ffng of functions with disjoint supports as
follows:

fnðtÞ ¼

P ðx� �
n ; tÞ

P ðx� �
n ; x�n Þ

1=r ; x� �
n 4t4x�n ;

P ðx� �
n ; x�n Þ

1=r0 ; x�n 4t4xn;

P ðt; xþn Þ
P ðx� �

n ; x�n Þ
1=r0

P ðxn; xþn Þ
; xn4t4xþn ;

0 otherwise:

8>>>>>><
>>>>>>:

Note that

P ðx� �
n ; x�n Þ

1=r0 5ð1þ g�12 Þ1=r
0
P ðIðx�n ÞÞ

1=r0

5ð1þ g�12 Þ1=r
0
d1

Z
Iðx�n Þ

q

 !�1=r

;

so that

ð1þ d1ÞP ðx� �
n ; x�n Þ

1=r0

5d1ð1þ g�12 Þ1=r
0

Z
Iðx�n Þ

p1�r0

 !�1=r0

þ
Z
Iðx�n Þ

q

 !�1=r
2
4

3
5:

Thus,

Z b

a
jfnjsw

� �1=s
5

Z xn

x�n

jfnjsw

 !1=s

¼
Z xn

x�n

w

 !1=s

P ðx� �
n ; x�n Þ

1=r0

5
d1ð1þ g�12 Þ1=r

0

1þ d1

Z xn

x�n

w

 !1=s

�
Z
Iðx�n Þ

p1�r0

 !�1=r0

þ
Z
Iðx�n Þ

q

 !�1=r
2
4

3
5

¼
d1

d1 þ 1
ð1þ g�12 Þ1=r

0
V L
r; sðxnÞ:
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On the other hand, we have

Z x�n

x� �
n

p1�r0 4
Z
Iðx�n Þ

p1�r04Z
Z
IðxnÞ

p1�r0

4Zð1þ g�11 Þ
Z xþn

xn

p1�r0 :

Thus,

Z b

a
pjf 0

nj
r ¼

1

P ðx� �
n ; x�n Þ

Z x�n

x� �
n

p1�r0 þ
P ðx� �

n ; x�n Þ
r=r0

P ðxn; xþn Þ
r

Z xþn

xn

p1�r0

¼ 1þ
P ðx� �

n ; x�n Þ
P ðxn; xþn Þ

� �1�r

4 1þ ½Zð1þ g�11 Þ�1�r:

Finally, from Lemma 5.1,Z b

a
qjfnjr 4P ðx� �

n ; x�n Þ
r=r0
Z xþn

x� �
n

q4P ðx� �
n ; x�n Þ

r=r0
Z
Iðx�Þ

qþ
Z
IðxÞ

q
� �

4ð1þ mÞP ðIðx�n ÞÞ
r=r0
Z
Iðx�Þ

q4ð1þ mÞdr2:

Thus, we have constants k1; k2 depending only on the constants in
Definition 5.1, r; and s such that for each n;

jjfnjjw5k1V L
r; sðxnÞ and jjfnjjp;q4k2:

Thus if E is bounded,

V L
r; sðxnÞ4k�11 jjEðfnÞjjw4ðk2=k1ÞjjEjj:

Since these estimates hold for any sequence fxng as described above, VL
r; s

4ðk2=k1ÞjjEjj: A similar argument, using the sequence gn defined by

gnðtÞ ¼

P ðx�n ; tÞ
P ðxþn ; x

þþ
n Þ1=r

0

P ðx�n ; xnÞ
; x�n 4t4xn;

P ðxþn ; x
þþ
n Þ1=r

0
; xn4t4xþn ;

P ðt; xþþ
n Þ

P ðxþn ; x
þþ
n Þ1=r

; xþn 4t4xþþ
n ;

0 otherwise

8>>>>>><
>>>>>>:

yields a similar estimate for VR
r; s: Thus, Vr; s5þ1 if E is bounded.
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To show that kVr; s4 *bbðEÞ; let e > 0 be given, and suppose that the
sequence fxng has the additional property that Vr; sðxnÞ > Vr; s � e: Passing to
a subsequence if necessary, we may assume that, say, V L

r; sðxnÞ > ðVr; s � eÞ=2:
Since E is linear,

*bbðEÞ5
*ccLðffngÞ
*ccW ðffngÞ

5k�12 *ccLðffngÞ;

where *ccL denotes the quantity *cc from Definition 3.1 acting in Lsw½a; bÞ and
*ccW denotes *cc acting in W 1;r

p;q ½a; bÞ: Since the functions ffng have pairwise
disjoint supports and jjfnjjw5k1V L

r; sðxnÞ > ðk1=2ÞðVr; s � eÞ;

jjfn � fmjjw > 21=sðk1=2ÞðVr; s � eÞ when m=n:

It follows that ffng cannot be covered by finitely many balls of radius less
than half the quantity on the right, that is, *bbðEÞ > kðVr; s � eÞ with k ¼
2ð1�2sÞ=sk1=k2: Since e is arbitrary, the proof is complete. ]

Corollary 5.2. Let p; q;w be as in (3), and let 15r4s5þ1: Then,
W 1;r

p;q ½a; bÞ is compactly embedded in Lsw½a; bÞ if and only if for some (and thus

for every) p-centralizable family of intervals fIðxÞg it is the case that Vr; s ¼
lim supx!b Vr; sðxÞ ¼ 0:

Specializing to r ¼ s ¼ 2 and replacing Vr; sðxÞ by an equivalent quantity
without fractional exponents, we obtain our characterization of discreteness
of the spectrum of a second-order differential operator.

Corollary 5.3. Let p; q;w be defined on A ¼ ½a; bÞ as in (3) and assume

that t from (1) is singular at b: Then each self-adjoint extension of Tm has

discrete spectrum if and only if there is a p-centralizable family fIðxÞ: x 2
½c; bÞg; a5c5b; of closed, bounded intervals IðxÞ ¼ ½x�; xþ� such that

Z
Iðx�Þ

p�1 þ
Z
Iðx�Þ

q
� ��1

" #Z x

x�
w

þ
Z
IðxþÞ

p�1 þ
Z
IðxþÞ

q
� ��1

" #Z xþ

x
w ! 0 ð13Þ

as x ! b:

Remark 5.6. It should be pointed out that by Corollary 5.1 one can
demonstrate discreteness of the spectrum using a family fIðxÞg that is merely
centralizable, and that, in fact, it often suffices to use the simpler setting
described in Corollary 4.2.
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6. TWO EXAMPLES

We conclude with two examples that illustrate the versatility of the
criteria.

Example 6.1. Consider a one-term expression tðyÞ ¼ �w�1ðpy0Þ0

on ½0;þ1Þ: Here q ¼ 0: It is known that if p�1 2 L1ð0;þ1Þ; then the
self-adjoint operators associated with t have discrete spectrum if and
only if

Z x

0

w
Z þ1

x
p�1 ! 0 as x ! b:

This is a special case of Theorem 4.1 in [1] for 2nth order equations with
matrix coefficients. The proof there is based on oscillation theory. We will
use Corollary 5.1 to show that this condition suffices when w =2 L1ð0;þ1Þ:
(Otherwise the expression is regular, and it is clear that the spectrum is
discrete.) We may assume that q ¼ w; since this just shifts the entire
spectrum to the right by one unit.
Let x0 > 0 be such that 1þ

R x0
0
w ¼ 2: For each x > x0 set IðxÞ ¼ ½x�; xþ�;

where

1þ
Z x�

0

w ¼
1

2
1þ

Z x

0

w
� �

; 1þ
Z xþ

0

w ¼ 1þ
Z x

0

w
� �2

:

Note that x�� is defined for all x > 0 for which
R x
0 w > 3: The function f ðxÞ ¼

1� 1=ð1þ
R x��

0 wÞ maps ½x0;þ1Þ onto ½1=2; 1Þ: It is not difficult to verify
that f ðxÞ is in the middle third of the interval ½f ðx�Þ; f ðxþÞ� for all x5x0:
Thus, fIðxÞ: x 2 ½x0;þ1Þg is a centralizable family, although it may not be
p-centralizable. We verify that the limit superior in (9) is 0 so that we can
apply Corollary 5.1.
Given e > 0; choose X so that for x5X ;

1þ
Z x� �

0

w
� �Z þ1

x� �
p�1 þ

1

2
þ
Z x�

0

w
� ��1

5e:

Now
R x
x� w ¼ ð1þ

R x
0 wÞ � ð1þ

R x�
0 wÞ ¼ 1þ

R x�
0 w ¼ 2ð1þ

R x� �

0 wÞ; so for x
5X ;

Z x

x�
w
Z
Iðx�Þ

p�142 1þ
Z x� �

0

w
� �Z þ1

x� �
p�152e:
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Similarly,
R xþ
x w41þ

R xþ
0 w ¼ 2ð1þ

R xþ�

0 wÞ; so

Z xþ

x
w
Z
IðxþÞ

p�142 1þ
Z xþ�

0

w

 !Z þ1

xþ�
p�152e:

Since q ¼ w;

Z
Iðx�Þ

q ¼
Z x�þ

x� �
w

¼ 1þ
Z x�

0

w
� �2

�
1

2
1þ

Z x�

0

w
� �

¼ 1þ
Z x�

0

w
� �

1

2
þ
Z x�

0

w
� �

:

Thus,

Z
Iðx�Þ

q
� ��1Z x

x�
w ¼

Z
Iðx�Þ

q
� ��1

1þ
Z x�

0

w
� �

¼
1

2
þ
Z x�

0

w
� ��1

5e:

By a similar calculation, ð
R
IðxþÞ qÞ

�1 R xþ
x w4ð1

2
þ
R xþ
0 wÞ�15e: Thus, (13)

holds and the spectrum is discrete.

Example 6.2. We consider an expression on ½0;þ1Þ where p ¼ 1
and for which q=w ! þ1 for the most part, but such that q ¼ w on a
sequence of intervals of length 2: That the expression has discrete spectrum
is thus because of the growth of q in some places, and because of the
relatively large size of p; compared to q and w in others. Specifically, for
n ¼ 1; 2; . . . ; define

qðxÞ ¼
ðnþ 1Þðx� n2Þn if n2 � 14x5n2 þ 1;

x otherwise;

(

wðxÞ ¼
qðxÞ if n2 � 14x5n2 þ 1;

1 otherwise:

(

Note first that Corollary 4.2 cannot be used here, since for x ¼ n2; if
I ¼ IðxÞ � ½n2 � 1; n2 þ 1�; then

R
I w ¼

R
I q; while if not, then jI j

R
I w51:

Thus, for any family fIðxÞg; U51:
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We use instead Corollary 5.3 with IðxÞ the interval centered at x defined as
follows:

(i) ifðn� 1Þ2 þ 1þ 1
2ðn�1Þ4x4n2 � 1� 1

2n
; then

IðxÞ ¼ ½x� fnðxÞ; xþ fnðxÞ�; where fn is the linear function equal to
1

2ðn�1Þ
when x ¼ ðn� 1Þ2 þ 1þ 1

2ðn�1Þ and equal to
1
2n when x ¼ n2 � 1� 1

2n ;

(ii) if n2 � 1� 1
2n4x4n2 �

1

2
; say x ¼ n2 � 1

2 �
a
2 ð1þ

1
nÞ for some 04a

41; then IðxÞ ¼ ½n2 � 1� a
n ; n

2 � a�;

(iii) if n2 � 1
2
4x4n2; then IðxÞ ¼ ½n2 � 1; 2x� n2 þ 1�;

(iv) if n24x4n2 þ 1
2
; then IðxÞ ¼ ½2x� ðn2 þ 1Þ; n2 þ 1�;

(v) if n2 þ 1
2
4x4n2 þ 1þ 1

2n ; x ¼ n2 þ 1
2
þ a

2
ð1þ 1

nÞ; then IðxÞ ¼ ½n2 þ
a; n2 þ 1þ a

n �:

We will verify (13) in case (ii). The argument for (v) is parallel, and that
for the other parts similar but much easier. Suppose first that x4n2 � 1; that
is, 15a5 n

nþ1 : Then with I denoting any one of IðxÞ; Iðx�Þ; IðxþÞ; it is easy to
see that jI j42

n ;
R
I q5

n
2
(just considering the part of I that lies outside

½n2 � 1; n2 þ 1�), and
R
I w42: Thus (13) is Oðn�1Þ for n2 � 1� 1

2n4x4n2 � 1:
Next, suppose n2 � 14x4n2 � 1

2
; that is, n

nþ15a50: Then x�4n2 � 1 and
the estimates just made apply to the left half of (13), so that again it is
Oðn�1Þ:
For the second term in (13), suppose first a51� ðnþ 1Þ�1=2: Then

jIðxþÞj43ðnþ 1Þ�1=2: For large values of n; xþ�4n2 � 1� 1
2n ; so considering

the part of IðxþÞ lying outside of ½n2 � 1; n2 þ 1�;
R
IðxþÞ q5

n
3
: Since

R xþ
x w41;

the second term in (13) is Oðn�1=2Þ for these values of a:
Finally, suppose a51� ðnþ 1Þ�1=2: Then x5n2 � 1þ 1

4
ffiffiffiffiffiffi
nþ1

p : Thus,

Z xþ

x
w4

Z n2

x
w ¼ ðn2 � xÞnþ14 1�

1

4
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
 !nþ1

4exp �

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
4

 !
:

Since n2 � 1 2 IðxþÞ;

Z
IðxþÞ

q5
Z x

n2�1
q ¼ 1�

Z n2

x
w51� exp �

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
4

 !
:

Also jIðxþÞj42: Thus for these values of a; the second term in (13) is

Oðe�
ffiffiffiffiffiffi
nþ1

p
=4Þ: This completes the verification for (ii).
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