
RADOVI MATEMATI�CKIVol. 12 (2003), 37{79Continuous embeddings, ompletionsand omplementation in Krein spaesBranko �Curgus (USA) and Heinz Langer (Austria)Abstrat. Let the Krein spae �A; [ � ; � ℄A� be ontinuously embed-ded in the Krein spae �K; [ � ; � ℄K�. A unique self-adjoint operatorA in K an be assoiated with �A; [ � ; � ℄A� via the adjoint of theinlusion mapping of A in K. Then �A; [ � ; � ℄A� is a Krein spae om-pletion of R(A) equipped with an A-inner produt. In general thisompletion is not unique. If, additionally, the embedding of A inK is t-bounded then the operator A is de�nitizable in K and R(A)equipped with the A-inner produt has unique Krein spae omple-tion. The spetral funtion of A yields some information about theembedding of A in K. Appliations to the omplementation theoryof de Branges are given.1. Introdution1. Aording to de Branges [dB, p. 284℄ (see also [ADRS, Setion1.1.5℄), if t is a positive number, a Krein spae �A; [ � ; � ℄A� is t{boundedlyembedded in another Krein spae �K; [ � ; � ℄K� if A � K and[f; f ℄K � t [f; f ℄A; f 2 A; (1:1)and �A; [ � ; � ℄A� is ontinuously embedded in �K; [ � ; � ℄K� if A � K and theidentity mapping { : A ! K; {f := f; f 2 A;is ontinuous. If �A; [ � ; � ℄A� is ontinuously and t{boundedly embedded inthe Krein spae �K; [ � ; � ℄K�, then the bounded self{adjoint operator A := {{�2000 Mathematis Subjet Classif iation: Primary: 46C20, 47B50, 47B25; Seon-dary: 46C07.Key words and phrases: Krein spae ompletion, omplementation in Krein spaes,operator ranges, embedding of Krein spaes, de�nitizable operators.



Branko �Curgus and Heinz Langer38in K, whih we all the K-adjoint of the inlusion { of A in K, has theharateristi property that the operator tA � A2 is non-negative in theKrein spae K:t [Ax; x℄K � [Ax;Ax℄K � 0; x 2 K; or t A�A2 �K 0: (1:2)Fix a fundamental symmetry J in �K; [ � ; � ℄K� and denote by h � ; � iK theHilbert inner produt in K generated by J . As a main result of this notewe show in Setion 3 that if �A; [ � ; � ℄A� is ontinuously and t{boundedlyembedded in �K; [ � ; � ℄K� then(i) A is the range of the positive self{adjoint operator jAJ j1=2 in the Hilbertspae �K; h � ; � iK�,(ii) �A; [ � ; � ℄A� is the unique Krein spae ompletion of the inner produtspae �R(A); [ � ; � ℄A�, where the inner produt on the range R(A) of theoperator A is de�ned as follows:[Ax;Ay℄A := [Ax; y℄K; x; y 2 K: (1:3)The relation (1.2) means that the operator A is de�nitizable with the de�ni-tizing polynomial p(�) = t���2, see [L℄ and the next subsetion. ThereforeA has a spetral funtion with the possible ritial points 0 and t. Thisspetral funtion gives some more information about the embedding of Ain K, see Theorems 3.6 and 3.7.The embedding of A in K is alled ontrative if in (1.1) t = 1, that isif [f; f ℄K � [f; f ℄A; f 2 A;and isometri, if (1.1) spei�es to[f; f ℄K = [f; f ℄A; f 2 A:If the embedding of A in K is ontinuous and isometri, then A is a Kreinsubspae of K and the operator A is the orthogonal projetion onto A in K,and the last relation in (1.2) redues to A2 = A.In Setion 4, using the representation of the embedded subspae A asan operator range as in (i), alternative proofs for the existene, uniquenessand the properties of the omplementary subspae of a ontinuously andontratively embedded subspae of a Krein spae are given, omp. [dB,Theorem 2℄, [DR, Theorem 11℄ and [H, Theorem 5℄. The essential new fea-ture of omplementation in a Krein spae ompared with omplementationin a Hilbert spae is that the embedded spae A an be a degenerated sub-spae of the Krein spae K. We onlude Setion 4 with a detailed analysisof the orresponding extremal ase when A is even a neutral subspae of K.



Complementation in Krein spaes 39As a preparation for Setion 3, in Setion 2 we onsider a Krein spae�S; [ � ; � ℄S�, whih is only ontinuously but not neessarily t{boundedly em-bedded in a Hilbert or Krein spae. We prove in Theorems 2.3 and 2.15that a bounded self{adjoint operator S is the adjoint of the orrespondinginlusion operator if and only if �S; [ � ; � ℄S� is a Krein spae ompletion ofthe range R(S), equipped with the inner produt [ � ; � ℄S as in (1.3). It turnsout that �R(S); [ � ; � ℄S� has in general in�nitely many Krein spae omple-tions. In order to formulate in Theorem 2.7 a riterion for the uniquenessof this Krein spae ompletion we use a result of T. Hara [H, Theorem 6℄.For the onveniene of the reader in the Appendix we give a proof of thisuniqueness result, whih is partly lose to Hara's proof, but our proof yieldsin�nitely many Krein spae ompletions. In Theorem 2.8 we give neessaryand suÆient onditions under whih �S; [ � ; � ℄S� an be represented as anoperator range.2. Our terminology follows mainly that of the book [B℄ and of [L℄.In partiular, a fundamental deomposition of the Krein spae �K; [ � ; � ℄� isa representation of K as the diret and [ � ; � ℄{orthogonal sum of two of itssubspaes K+ and K�: K = K+ uK�; (1:4)suh that �K+; [ � ; � ℄� is a Hilbert and �K�; [ � ; � ℄� is an anti-Hilbert spae(whih means that �K�;�[ � ; � ℄� is a Hilbert spae). If the deomposition ofan element x 2 K aording to (1.4) is denoted by x = x+ + x�, then theinner produt hx; yi := [x+; y+℄� [x�; y�℄; x; y 2 K;is a Hilbert inner produt on K, and the operator J :Jx := x+ � x�; x; y 2 K;is alled the fundamental symmetry orresponding to the deomposition(1.4). If in some (and hene in all) fundamental deompositions one ofthe omponents K� is �nite{dimensional the Krein spae K is alled aPontryagin spae; if e.g. dimK� = � < +1, the Pontryagin spae K or itsinner produt are said to have negative index �.The bounded self-adjoint operator A in the Krein spae �K; [ � ; � ℄� isalled de�nitizable (positizable in [B℄) if there exists a polynomial p suhthat p(A) is a non-negative operator in K: [p(A)x; x℄ � 0; x 2 K; in this asep is alled a de�nitizing polynomial for A. An interval � � R is alled admis-sible for the de�nitizable operator A if there exists a de�nitizing polynomialp suh that the endpoints of � are not zeros of p. The spetral funtion ofthe de�nitizable operator A assoiates with eah admissible interval � for



Branko �Curgus and Heinz Langer40A a self{adjoint projetion E(�) in K, suh that the range E(�)K, alledthe spetral subspae of A at �, is invariant under A and it is the maximalsubspae L� with respet to the property�(AjL�) � �:The subspae �E(�)K; [ � ; � ℄� is a Hilbert spae if p > 0 on � and an anti{Hilbert spae if p < 0 on �. Later we use the fat that the elementsx 2 E(�)K are haraterized by the property that the funtion (A� z)�1x,whih is holomorphi on �(A), has an analyti ontinuation at least to C n�.A point � 2 �(A) is said to have finite negative index � if for eah suÆientlysmall admissible interval � ontaining � the inner produt [ � ; � ℄ has �nitenegative index � on E(�)K.Two Krein spaes �K; [ � ; � ℄K� and �L; [ � ; � ℄L� are alled isomorphi ifthere exists a ontinuous and ontinuously invertible linear bijetion T :K ! L suh that [Tx; Ty℄L = [x; y℄K; x; y 2 K;in this ase the mapping T is alled an isomorphism between K and L.2. Krein spae ompletions and ontinuous embeddings1. The Krein spae �K; [ � ; � ℄K� is said to be a Krein spae ompletionof the inner produt spae �L; [ � ; � ℄L� if L is a dense subspae of K and[x; y℄L = [x; y℄K for all x; y 2 L. An inner produt spae �L; [ � ; � ℄L� an havemore than one Krein spae ompletion. That is, there may exist two Kreinspaes �K1; [ � ; � ℄K1� and �K2; [ � ; � ℄K2� whih are Krein spae ompletionsof �L; [ � ; � ℄L� and suh that there is no isomorphism U : �K1; [ � ; � ℄K1� !�K2; [ � ; � ℄K2� with Ux = x for all x 2 L. Examples will ome up later andin the Appendix. We say that the inner produt spae �L; [ � ; � ℄L� has aunique Krein spae ompletion if any two Krein spae ompletions of L areisomorphi with an isomorphism whih ats as the identity on L.Speial Krein spae ompletions often arise as follows. The non-degenerated inner produt spae �L; [ � ; � ℄L� is said to have a Hilbert majo-rant ( � ; � )L if the latter is a positive de�nite inner produt on L, suh that�L; ( � ; � )L� is a Hilbert spae, and with a positive number  the relationj[x; y℄Lj � (x; x)1=2L (y; y)1=2L ; x; y 2 L;holds. The latter inequality implies that there exists a bounded self-adjointand injetive operator G in �L; ( � ; � )L� suh that[x; y℄L = (Gx; y)L; x; y 2 L: (2:1)



Complementation in Krein spaes 41The operator G is alled the Gram operator of [ � ; � ℄L in �L; ( � ; � )L�. Usingthe spetral funtion EG of G we introdue the spaesL+ := EG�(0;+1)�L; L� := EG�(�1; 0)�L:and onsider the pre{Hilbert spaes �L�; (jGj � ; � )L�. They are orthogo-nal to eah other with respet to all the inner produts [ � ; � ℄L; ( � ; � )L,and (jGj � ; � )L. Denoting the ompletions of these pre{Hilbert spaes by�G�; h � ; � i�� the spae G := G+ u G�equipped with the inner produt[x; y℄G := hx+; y+i+ � hx�; y�i�; x = x+ + x�; y = y+ + y�; x�; y� 2 G�;is a Krein spae ompletion of �L; [ � ; � ℄L�. The de�nition of this innerprodut is orret sine on L it oinides with the inner produt (2.1). Weall the spae �G; [ � ; � ℄G� the anonial Krein spae ompletion of �L; [ � ; � ℄L�with respet to the Hilbert majorant ( � ; � )H.It follows from [B, Theorem V.2.1℄ that the anonial Krein spae om-pletion of a non-degenerated inner produt spae �L; [ � ; � ℄L� with a Hilbertmajorant is uniquely determined, that is any two anonial Krein spaeompletions of L are isomorphi with an isomorphism whih ats as theidentity on L.Let the Krein spae �S; [ � ; � ℄S� be ontinuously embedded in the Hilbertspae �H; h � ; � iH�. Then the adjoint {� : H ! S, of the inlusion { of S in Hde�ned by h{f; xiH = [f; {�x℄S ; f 2 S; x 2 H;is also ontinuous. The operator {{� is a bounded self{adjoint operator inthe Hilbert spae H, alled the H{adjoint of the inlusion { of �S; [ � ; � ℄S� in�H; h � ; � iH�.Remark 2.1 Let the Krein spae �S; [ � ; � ℄S� be ontinuously embeddedin the Hilbert spae �H; h � ; � iH� and assume S = H. Then it is well knownthat the norm topologies on �S; [ � ; � ℄S� and �H; h � ; � iH� are equivalent, seee.g. [B, Theorem IV.6.4℄. If S is the H{adjoint of the inlusion of S in Hand Q is the Gram operator of [ � ; � ℄S in �H; h � ; � iH�, then for x; y 2 H = Swe have hx; yiH = h{x; yiH = [x; {�y℄S = [x; Sy℄S = hx;QSyiH;therefore S = Q�1.



Branko �Curgus and Heinz Langer42 Remark 2.2 With the above notation for the anonial Krein spaeompletion �G; [ � ; � ℄G� of �L; [ � ; � ℄L�we havehf; fiG = (jGjf; f)L � (f; f)L; f 2 L:Therefore the Hilbert spae �L; ( � ; � )L� is ontinuously embedded in theHilbert spae �G; h � ; � iG�. Let H := {{� be the G{adjoint of the inlusion { of�L; ( � ; � )L� in �G; h � ; � iG�. It follows from the relation(f;Hg)L = (f; {�g)L = h{f; giG = hf; giG = (jGjf; g)L = (f; jGjg)L; f; g 2 L ;that H is the ontinuous extension of jGj to G.For a bounded self{adjoint operator S in the Hilbert spae (H; h � ; � iH),on its range R(S) an inner produt ( � ; � )S is de�ned by the relation(u; v)S := hSx; yiH; where u = Sx; v = Sy; x; y 2 H: (2:2)The inner produt ( � ; � )S on R(S) is well de�ned by (2.2) sine hSx; yiH = 0whenever x or y belongs to kerS, and it is non{degenerate sine, by (2.2),(u; Sy)S = 0 for all y 2 H implies that u = 0.Theorem 2.3. Let the Krein spae �S; [ � ; � ℄S� be ontinuously embed-ded in the Hilbert spae �H; h � ; � iH� and let S be a bounded self{adjoint oper-ator in H. The operator S is the H{adjoint of the inlusion { of �S; [ � ; � ℄S�in �H; h � ; � iH� if and only if �S; [ � ; � ℄S� is a Krein spae ompletion of theinner produt spae �R(S); ( � ; � )S�.Proof. Suppose that S is the H-adjoint of {: S = {{�. Then R(S) =R({�) � S andhf; xiH = h{ f; xiH = [f; {�x℄S = [f; Sx℄S ; f 2 S; x 2 H: (2:3)It follows that R(S) is dense in S. Indeed, if for some f0 2 S it holds[f0; Sx℄S = 0 for all x 2 H, then, by (2.3), f0 = 0. From the de�nition of( � ; � )S and (2.3) for u = Sx; v = Sy, we have(u; v)S = (Sx; Sy)S = hSx; yiH = [Sx; Sy℄S = [u; v℄S ;therefore the inner produts ( � ; � )S and [ � ; � ℄S oinide on R(S). Thus(S; [ � ; � ℄S) is a Krein spae ompletion of (R(S); ( � ; � )S).Conversely, assume that (S; [ � ; � ℄S) is a Krein spae ompletion of theinner produt spae (R(S); ( � ; � )S). Then for all x 2 H and f 2 R(S) wehave [f; Sx℄S = (f; Sx)S = hf; xiH: (2:4)



Complementation in Krein spaes 43Sine for �xed x 2 H the funtionals [ � ; Sx℄S and h � ; xiH are ontinuous onS, we onlude that (2.4) holds for all f 2 S. Therefore,hSx; yiH = hx; SyiH = hx; { SyiH = [{�x; Sy℄S = h{{�x; yiH; x; y 2 H ;and, onsequently, {{� = S.2. Let T be a bounded non-negative operator in the Hilbert spae�H; h � ; � iH�. We equip the range R(T ) with the inner produt ( � ; � )T as in(2.2) (u; v)T = hTx; yiH; where u = Tx; v = Ty; x; y 2 H;it turns R(T ) into a pre{Hilbert spae �R(T ); ( � ; � )T �. The relationj(u; v)T j2 = jhTx; yiHj2 � hTx; xiHhTy; yiH= (u; u)T (v; v)T = kT 1=2xk2HkT 1=2yk2Himplies that the inner produt ( � ; � )T an be extended to R(T 1=2) by on-tinuity with respet to the norm kT 1=2 � kH. We denote this extension alsoby ( � ; � )T .Lemma 2.4. Let T be a bounded non{negative operator in the Hilbertspae �H; h � ; � iH�. Then the Hilbert spae ompletion of �R(T ); ( � ; � )T � isthe Hilbert spae �R(T 1=2); ( � ; � )T �, and the latter is ontinuously embeddedin �H; h � ; � iH�.Proof. For u = Tx; x 2 H, we havehu; uiH = hTx; TxiH � kTkhTx; xiH = kTk(u; u)T : (2:5)Therefore, if (un) ; un = Txn; n 2 N, is a Cauhy sequene in �R(T ); ( � ; � )T �,then both (un) and �T 1=2xn� are Cauhy sequenes in �H; h � ; � iH�, andif T 1=2xn ! y and un = Txn ! v in �H; h � ; � iH�; y; v 2 H, then v =T 1=2y and un ! v in �R(T 1=2); ( � ; � )T �. The inequality (2.5) shows that�R(T 1=2); ( � ; � )T � is ontinuously embedded in �H; h � ; � iH�.Corollary 2.5. If the Hilbert spae �T ; h � ; � iT � is ontinuously embed-ded in the Hilbert spae �H; h � ; � iH�, then �T ; h � ; � iT � = �R(T 1=2); ( � ; � )T �,where T denotes the H-adjoint of the inlusion of T in H.Proof. By Theorem 2.3, the Hilbert spae �T ; h � ; � iT � is a om-pletion of the pre{Hilbert spae �R(T ); ( � ; � )T �. Therefore T is a posi-tive operator in �H; h � ; � iH�. It follows from Lemma 2.4 that the Hilbert



Branko �Curgus and Heinz Langer44spae �R(T 1=2); ( � ; � )T � is also a ompletion of �R(T ); ( � ; � )T �. Sine both�R(T ); ( � ; � )T � and �R(T 1=2); ( � ; � )T � are ontinuously embedded in H andsine the ompletion of �R(T ); ( � ; � )T � ontained in �H; h � ; � iH� is unique,the equality in the orollary follows.Remark 2.6. In the notation of Lemma 2.4 we have�T 1=2x; T 1=2y�T = hPx; yiH; x; y 2 H;where P : H ! H is the orthogonal projetion onto the losure of R(T 1=2)in �H; h � ; � iH� .Now let S be a bounded self{adjoint operator in a Hilbert spae�H; h � ; � iH�, S = S+�S�, where S+ � 0 and S� > 0 are the non{negative andnegative parts of S, respetively. The inner produt spae �R(S); ( � ; � )S� isdeomposable with one fundamental deomposition beingR(S) = R(S+) +R(S�) ; (2:6)that is, this sum is diret and orthogonal with respet to ( � ; � )S and R(S+)is a positive, R(S�) is a negative subspae of �R(S); ( � ; � )S�. The positivede�nite inner produt orresponding to the deomposition (2.6) is ( � ; � )jSj,where jSj := S+ + S�; note that R(S) = R(jSj). The inner produt spae�R(S); ( � ; � )jSj� is a pre-Hilbert spae, its ompletion in �H; h � ; � iH� is theHilbert spae �R(jSj1=2); ( � ; � )jSj�. Sine for u = Sx; v = Sy; x; y 2 H; wehave j(u; v)S j2 = jhSx; yiHj2 � hjSjx; xiHhjSjy; yiH = (u; u)jSj(v; v)jSj ;the inner produt ( � ; � )S an also be extended by ontinuity to R(jSj1=2),and this extension is also denoted by ( � ; � )S : The inner produt spae�R(jSj1=2); ( � ; � )S� is a Krein spae whih is a Krein spae ompletion of�R(S); ( � ; � )S�. The topology of this Krein spae is the topology of theHilbert spae �R(jSj1=2); ( � ; � )jSj�. It follows from Lemma 2.4 that the Kreinspae �R(jSj1=2); ( � ; � )S� is ontinuously embedded in �H; h � ; � iH�.Theorem 2.7. Let S be a bounded self-adjoint operator in the Hilbertspae �H; h � ; � iH�. The following statements are equivalent.(a) For some " > 0 at least one of the intervals (�"; 0), (0; ") belongs to�(S).(b) The Krein spae �R(jSj1=2); ( � ; � )S� is the unique Krein spae whih isontinuously embedded in H and suh that the H{adjoint of its inlusionin �H; h � ; � iH� is the operator S.



Complementation in Krein spaes 45() The Krein spae �R(jSj1=2); ( � ; � )S� is the unique ontinuously in H em-bedded Krein spae ompletion of the inner produt spae �R(S); ( � ; � )S�.(d) The inner produt spae �R(S); ( � ; � )S� has a unique Krein spae om-pletion.Proof. Theorem 2.3 implies that (b) and () are equivalent. Clearly(d) implies (). To prove the equivalene of (a) and (d) note that the innerprodut spae �R(S); ( � ; � )S� has a Hilbert majorant. Indeed, (R(S); ( � ; � )S2)is a Hilbert spae sine R(S) = R((S2)1=2), and the inequalityj(x; x)S j � kSk(x; x)S2 ; x 2 R(jSj) = R(S);shows that ( � ; � )S is ontinuous on this Hilbert spae. Therefore Theo-rem 5.2 in the Appendix implies that (a) is equivalent to the ompletenessof at least one of the inner produt spaes �R(S+); ( � ; � )jSj�, �R(S�); ( � ; � )jSj�.Sine �R(S+); ( � ; � )jSj� ��R(S�); ( � ; � )jSj�, respetively � is omplete if andonly if for some " > 0 the interval (0; ") ((�"; 0), respetively) belongs to�(S), the equivalene of (a) and (d) follows.It is of interest to haraterize those Krein spaes �S; [ � ; � ℄S� whihare ontinuously embedded in the Hilbert spae �H; h � ; � iH� and for whih�S; [ � ; � ℄S� = �R(jSj1=2); ( � ; � )S� holds, where S is the H-adjoint of the ontin-uous inlusion of �S; [ � ; � ℄S� in �H; h � ; � iH�. We give two haraterizations;() is a modi�ation of [F, Theorem 3℄. Reall that, given a positive opera-tor bS in a Krein spae �S; [ � ; � ℄S� (that means �bSx; x�S > 0 for x 2 S; x 6= 0),zero is a regular ritial point of bS if for the spetral funtion EbS of bSthe projetions EbS(�); � an arbitrary admissible interval for bS, are uni-formly bounded; this is equivalent to the fat that for the spetral fun-tion EbS also the projetions EbS�(�1; 0)� and EbS�(0;+1)� exist and satisfyEbS�(�1; 0)�+EbS�(0;+1)� = I.Theorem 2.8. Let the Krein spae �S; [ � ; � ℄S� be ontinuously em-bedded in the Hilbert spae �H; h � ; � iH�, and let S be the H{adjoint of theinlusion of �S; [ � ; � ℄S� in �H; h � ; � iH�. The following statements are equiv-alent:(a) �S; [ � ; � ℄S� = �R(jSj1=2); ( � ; � )S�.(b) There exists a fundamental deomposition S = S+[u℄SS� of S suh thatS+ and S� are mutually orthogonal in �H; h � ; � iH�.() The operator bS := SjS : S ! S is a positive bounded operator in�S; [ � ; � ℄S� and 0 is not a singular ritial point of bS.Proof. Assume that (a) holds. Denote by ES the spetral funtion ofS and put H� = ES�(�1; 0)�, H+ = ES�[0;+1)�, and S� = SjH� . Then



Branko �Curgus and Heinz Langer46H = H�huiHH+, jSj = �S� u S+ and jSj1=2 = (�S�)1=2 u S1=2+ . Now de�neS� = R�(�S�)1=2� and S+ = R�S1=2+ �. It is lear from the onsiderationspreeding Theorem 2.7 that S = S�(u)SS+ is a fundamental deompositionof �S; [ � ; � ℄S� whih satis�es (b).Assume (b) and let S� be the losure of S� in �H; h � ; � iH� and let So bethe orthogonal omplement of S+ u S� in �H; [ � ; � ℄H�. The Hilbert spaes�S�;�[ � ; � ℄S� are ontinuously embedded in the Hilbert spaes �S�; h � ; � iH�.Therefore Corollary 2.5 implies that there exist bounded positive operatorsT� suh that �S�;�[ � ; � ℄S� = �R(T 1=2� ); ( � ; � )T��:Put S = �T� u T+ u 0 (the diret sum with respet to H = S+ u S� u So).Then �S; [ � ; � ℄S� = �S� + S+; [ � ; � ℄S� = �R(jSj1=2); ( � ; � )S�:Thus (a) holds and S is the H{adjoint of the inlusion of S in H. ClearlybS = �T���S� + T+��S+, and bS is a positive operator in �S; [ � ; � ℄S�. Fromthe onstrution of S it follows that the fundamental deomposition in (b)redues bS. Therefore () holds. Note that along the way we have alsoproved that (b) implies (a).It remains to prove that () implies (b). Assume that bS is a positivebounded operator in �S; [ � ; � ℄S� and that 0 is not a singular ritial pointof bS. Then there exists a fundamental deomposition S = S�[u℄SS+ of�S; [ � ; � ℄S� whih redues bS, that is bSS� � S�. For arbitrary x� 2 S� wehave hx+; x�iH = [x+; Sx�℄S = 0 ;and therefore S+ and S� are mutually orthogonal in �H; h � ; � iH�:The statements of Theorem 2.8 do not depend on the hoie of theinner produt on H. In order to prove this, a lemma is needed whih is aonsequene of the Closed Graph Theorem and the Heinz inequality, see[Kr, Theorem 7.1℄.Lemma 2.9 Let G and H be bounded self-adjoint operators in theHilbert spaes �G; h � ; � iG� and �H; h � ; � iH�, respetively. If F :�G; h � ; � iG� �!�H; h � ; � iH� is a bounded operator suh that FR(G) � R(H) and 0 � � � 1;then FR(jGj�) � R(jH j�) and alsoF : �R(jGj�); ( � ; � )jGj2�� �! �R(jH j�); ( � ; � )jHj2��is a bounded operator.



Complementation in Krein spaes 47We shall use the following onsequene of this lemma. Let h � ; � iH andh � ; � i0H be two Hilbert inner produts on H and denote by G the orre-sponding Gram operator: hx; yi0H = hGx; yiH, x; y 2 H. If S is a boundedself-adjoint operator in �H; h � ; � iH� and S0 = SG, then the operator S0 isself{adjoint in �H; h � ; � i0H� and�R(jSj1=2); ( � ; � )S� = �R(jS0j1=2); ( � ; � )S0�: (2:7)This follows immediately from the equality R(S) = R(SG) and Lemma 2.9with F being hosen to be the identity operator from �H; h � ; � iH� to�H; h � ; � i0H�.The following orollary is an immediate onsequene of Theorem 2.8and (2.7).Corollary 2.10. Let the Krein spae �S; [ � ; � ℄S� be ontinuously em-bedded in the Hilbert spaes �H; h � ; � iH� and �H; h � ; � i0H� and denote theH{adjoints of these inlusions by S and S0. Then the following statementsare equivalent:(a) �S; [ � ; � ℄S� = �R(jSj1=2); ( � ; � )S�.(b) �S; [ � ; � ℄S� = �R(jS0j1=2); ( � ; � )S0�.() There exists a fundamental deomposition S = S 0+[u℄SS 0� of S suh thatS 0+ and S 0� are mutually orthogonal in �H; h � ; � i0H�.(d) The operator bS0 := S0jS : S ! S is a positive bounded operator in�S; [ � ; � ℄S� and 0 is not a singular ritial point of bS0.Remark 2.11. Obviously, eah statement in Corollary 2.10 is equiv-alent to eah statement in Theorem 2.8. In partiular, the statements ()in Theorem 2.8 and () in Corollary 2.10 are equivalent.3. In this subsetion we onsider a Krein spae �A; [ � ; � ℄A� whih isontinuously embedded in another Krein spae �K; [ � ; � ℄K�. If a fundamentalsymmetry J is hosen in K andhx; yiK := [Jx; y℄K; x; y 2 K;is the orresponding Hilbert inner produt on K, then we are in the situa-tion of the foregoing subsetion. The Hilbert spae �K; h � ; � iK� will also bedenoted by �H; h � ; � iH�. The adjoint {+ of the inlusion{ : �A; [ � ; � ℄A�! �K; [ � ; � ℄K�de�ned by [{f; x℄K = [f; {+x℄A; f 2 A; x 2 K;



Branko �Curgus and Heinz Langer48is a ontinuous mapping from K to A. The operator {{+ is a bounded self-adjoint operator in the Krein spae K, alled the K-adjoint of the inlusion{ of �A; [ � ; � ℄A� in �K; [ � ; � ℄K�. As before let {� be the adjoint of the inlusion{ : �A; [ � ; � ℄A�! �H; h � ; � iH�:Then, for f 2 A; x 2 K we have[f; {+x℄A = [{f; x℄K = h{f; JxiK = [f; {�Jx℄A;whih implies that {+ = {�J . Consequently, the operator A is the K-adjointof the inlusion { of �A; [ � ; � ℄A� in �K; [ � ; � ℄K� if and only if the operator AJis the H{adjoint of the inlusion { of �A; [ � ; � ℄A� in �H; h � ; � iH�.Remark 2.12. In Remark 2.2 it was shown that the Hilbert spae�L; ( � ; � )L� is ontinuously embedded in the Hilbert spae �G; h � ; � iG�.Therefore the Hilbert spae �L; ( � ; � )L� is ontinuously embedded in theKrein spae �G; [ � ; � ℄G�. Let L := {{+ be the K{adjoint of the orrespondinginlusion. It follows from(f; Lg)L = (f; {+g)L = [if; g℄G = (Gf; g)L = (f;Gg)L; f; g 2 L;that L is the ontinuous extension of G to G.Let A be a bounded self{adjoint operator in the Krein spae (K; [ � ; � ℄K),and set S := AJ . Then S is a bounded self{adjoint operator in (H; h � ; � iH)with R(A) = R(S). On the range R(A) we de�ne the inner produt [ � ; � ℄Aby the relation[u; v℄A := [Ax; y℄K; where u = Ax; v = Ay; x; y 2 K:Then [ � ; � ℄A oinides with ( � ; � )S on R(A) = R(S). Indeed, for u = Ax; v =Ay; we have[u; v℄A = [Ax; y℄K = [SJx; y℄K = hSJx; JyiK = (SJx; SJy)S = (u; v)S :Consequently the inner produt [ � ; � ℄A an be extended by ontinuity toR(jAJ j1=2). This extension is also denoted by [ � ; � ℄A, and it oinides with( � ; � )S. Sine �R(jAJ j1=2); [ � ; � ℄A� = �R(jSj1=2); ( � ; � )S�; (2:8)the inner produt spae �R(jAJ j1=2); [ � ; � ℄A� is a Krein spae and it is a Kreinspae ompletion of �R(A); [ � ; � ℄A�. Note that by Lemma 2.4 the Krein spae



Complementation in Krein spaes 49�R(jAJ j1=2); [ � ; � ℄A� is ontinuously embedded in �K; [ � ; � ℄K�. We summarizethese fats inTheorem 2.13. Let A be a bounded self{adjoint operator in the Kreinspae �K; [ � ; � ℄K�. Then �R(jAJ j1=2); [ � ; � ℄A� is ontinuously embedded in�K; h � ; � iK� and a Krein spae ompletion of �R(A); [ � ; � ℄A�.Lemma 2.9 implies that R(jAJ j1=2) does not depend on the hoie of J .Corollary 2.14. Let J1 and J2 be fundamental symmetries in theKrein spae �K; [ � ; � ℄K� and let A be a bounded self{adjoint operator in K.Then R�jAJ1j1=2� = R�jAJ2j1=2�:Proof. The orollary follows from the relation R(AJ1) = R(AJ2) andLemma 2.9, applied to the identity operator on R(AJ1) = R(AJ2).Theorem 2.15. Let the Krein spae �A; [ � ; � ℄A� be ontinuously em-bedded in the Krein spae �K; [ � ; � ℄K� and let A be a bounded self{adjointoperator in K. Then �A; [ � ; � ℄A� is a Krein spae ompletion of the innerprodut spae �R(A); [ � ; � ℄A� if and only if the operator A is the K{adjointof the inlusion of �A; [ � ; � ℄A� in �K; [ � ; � ℄K�; in this ase[f;Ay℄A = [f; y℄K; f 2 A; y 2 K: (2:9)Proof. Let J be a fundamental symmetry on K and S = AJ . Atthe beginning of this subsetion we remarked that the operator A is theK{adjoint of the inlusion { of �A; [ � ; � ℄A� in �K; [ � ; � ℄K� if and only if theoperator S is H{adjoint of the inlusion { of �A; [ � ; � ℄A� in �H; h � ; � iH� =�K; h � ; � iK�. By Theorem 2.3, S is H{adjoint of the inlusion { of �A; [ � ; � ℄A�in �H; h � ; � iH� if and only if �A; [ � ; � ℄A� is a Krein spae ompletion of theinner produt spae �R(S); ( � ; � )S�. Sine �R(S); ( � ; � )S� = �R(A); [ � ; � ℄A�,the equivalene in the theorem is proved.Sine �A; [ � ; � ℄A� is a Krein spae ompletion of �R(A); [ � ; � ℄A� we have[Av;Ay℄A = [Av;Ay℄A = [Av; y℄K; v; y 2 K:The extension of the last equality in the topology of �A; [ � ; � ℄A� yields (2.9).Corollary 2.16. Let the Krein spae �A; [ � ; � ℄A� be ontinuously em-bedded in the Krein spae �K; [ � ; � ℄K� and let A be the K{adjoint of theinlusion of A in K. Then A is dense in K if and only if 0 =2 �p(A); A = Kif and only if 0 2 �(A); in the latter ase the norm topologies on �A; [ � ; � ℄A�and �K; [ � ; � ℄K) oinide.



Branko �Curgus and Heinz Langer50 Proof. If 0 =2 �p(A), then R(A) is dense in K. By Theorem 2.15R(A) � A, and therefore A is dense in K. Assume that A is dense in K. ByTheorem 2.15 R(A) is dense in �A; [ � ; � ℄A�. Sine by assumption �A; [ � ; � ℄A�is ontinuously embedded in �K; [ � ; � ℄K�, R(A) is also dense in A in thetopology of �K; [ � ; � ℄K�. Therefore R(A) is dense in �K; [ � ; � ℄K�, and thus0 =2 �p(A). This proves the �rst statement.If 0 2 �(A), then K = R(A) = A. Conversely, if A = K then, sine�A; [ � ; � ℄A� is ontinuously embedded in the Hilbert spae �K; h � ; � iK�, Re-mark 2.1 implies that the operator S = AJ has bounded inverse. Con-sequently 0 2 �(A). The last statement is also an easy onsequene ofRemark 2.1.Corollary 2.17. Let the Krein spae �A; [ � ; � ℄A� be ontinuously em-bedded in the Krein spae �K; [ � ; � ℄K�. Assume that the subspae F is densein K, F � A, and [f; g℄A = [f; g℄K; f; g 2 F : (2:10)Then �A; [ � ; � ℄A� = �K; [ � ; � ℄K�.Proof. Let A be the K{adjoint of the inlusion of A in K. Combining(2.9) and (2.10) we get[f;Ag℄A = [f; g℄K = [f; g℄A; f; g 2 F :Sine F is dense in K the last relation yields A = I and then Theorem 2.15implies the laim.Remark 2.18. Let A be a bounded self{adjoint operator in the Kreinspae �K; [ � ; � ℄K�. It follows from Theorem 2.13 that �R(jAJ j1=2); [ � ; � ℄A� isontinuously embedded in K and a Krein spae ompletion of �R(A); [ � ; � ℄A�.Therefore Theorem 2.15 implies that the operator A is the K{adjoint of theinlusion { of �R(jAJ j1=2); [ � ; � ℄A� in �K; [ � ; � ℄K�.Remark 2.19. In the notation of Theorem 2.15, let A be the K{adjointof the inlusion of A in K. Then for f 2 A the relation0 = [f;Ax℄A = [f; x℄K; x 2 A ;implies that the range R�AjA� of the restrition of A to A is dense in�A; [ � ; � ℄A� if and only if �A; [ � ; � ℄K� is non{degenerate.Corollary 2.20. Let the Krein spae �A; [ � ; � ℄A� be ontinuously em-bedded in the Krein spae �K; [ � ; � ℄K� and let A be the K{adjoint of the inlu-sion of �A; [ � ; � ℄A� in �K; [ � ; � ℄K�. Then A is a non-negative (non-positive,



Complementation in Krein spaes 51respetively) subspae of �K; [ � ; � ℄K� if and only if A2 is a non{negative (non{positive, respetively) operator in K; in partiular, A is a neutral subspaeof �K; [ � ; � ℄K� if and only if A2 = 0.Proof. By Theorem 2.15 R(A) is dense in �A; [ � ; � ℄A� and sine A isontinuously embedded in K, R(A) is also dense in A with respet to thenorm topology of �K; [ � ; � ℄K�. Therefore A is non{negative in �K; [ � ; � ℄K� ifand only if R(A) is non{negative in K, and this is equivalent to A2 �K 0.3. Continuous and t{bounded embeddings1. Reall that, for a positive number t, the Krein spae �A; [ � ; � ℄A� issaid to be t{boundedly (ontratively, isometrially, respetively) embeddedin the Krein spae �K; [ � ; � ℄K� if A � K and for all f 2 A we have[f; f ℄K � t [f; f ℄A � [f; f ℄K � [f; f ℄A; [f; f ℄K = [f; f ℄A; respetively �: (3:1)If �A; [ � ; � ℄A� is ontinuously and t{boundedly embedded in �K; [ � ; � ℄K� wedenote the K{adjoint of the inlusion of �A; [ � ; � ℄A� in �K; [ � ; � ℄K� again by A.Applying the inequality (3.1) to the element f = Ax; x 2 K, and observing(2.9), we obtain [A2x; x℄K = [Ax;Ax℄K � t [Ax; x℄K; x 2 K ;that is t A � A2 �K 0: (3:2)If �A; [ � ; � ℄A� is ontinuously and ontratively (isometrially, respetively)embedded in the Krein spae �K; [ � ; � ℄K�, the relation (3.2) beomesA � A2 �K 0 (A � A2 = 0; respetively):In the latter ase this means that A is the orthogonal projetion onto A inK. Theorem 3.1. Let �K; [ � ; � ℄K� be a Krein spae and let A be a boundedde�nitizable operator in K with the de�nitizing polynomialp(�) = t �� �2; (3:3)where t > 0. Then the Krein spae �R(jAJ j1=2); [ � ; � ℄A� is ontinuously andt{boundedly embedded in the Krein spae �K; [ � ; � ℄K�. Moreover, the map-ping A 7�! �R(jAJ j1=2); [ � ; � ℄A� (3:4)



Branko �Curgus and Heinz Langer52establishes a bijetive orrespondene between all bounded de�nitizable op-erators A in K with a de�nitizing polynomial (3.3) and all Krein spaes�A; [ � ; � ℄A� whih are ontinuously and t{boundedly embedded in the Kreinspae �K; [ � ; � ℄K�. The inverse of the mapping (3.4) maps eah Krein spae�A; [ � ; � ℄A�, whih is ontinuously and t{boundedly embedded in �K; [ � ; � ℄K�,to the K{adjoint A of the inlusion of �A; [ � ; � ℄A� in �K; [ � ; � ℄K�; in partiular�A; [ � ; � ℄A� = �R(jAJ j1=2); [ � ; � ℄A�: (3:5)Proof. By Theorem 2.13 the Krein spae �R(jAJ j1=2); [ � ; � ℄A� is ontinu-ously embedded in (K; [ � ; � ℄K). For f = Ax; x 2 K, the inequality tA�A2 �K 0yields [f; f ℄K = [Ax;Ax℄K � t [Ax; x℄K = t [f; f ℄A; (3:6)whih extends by ontinuity to R(jAJ j1=2). Thus �R(jAJ j1=2); [ � ; � ℄A� is on-tinuously and t{boundedly embedded in K, and the �rst statement of thetheorem is proved.Now let �A; [ � ; � ℄A� be a Krein spae whih is ontinuously and t{boundedly embedded in K; denote by A the K{adjoint of the inlusion of�A; [ � ; � ℄A) in �K; [ � ; � ℄K�. From Theorem 2.15 we onlude that �A; [ � ; � ℄A�is a Krein spae ompletion of the inner produt spae �R(A); [ � ; � ℄A�. Sine�A; [ � ; � ℄A� is t{boundedly embedded in K the onsiderations preeding The-orem 3.1 show that A is a bounded de�nitizable operator with the de�ni-tizing polynomial (3.3). To show that the image of A under the mapping(3.4) is �A; [ � ; � ℄A� we shall show that for some fundamental symmetry Jin K we have [�"; 0) � �(AJ) with an " > 0. Fix d, 0 < d < t, and onsiderthe intervals �0 := (�1; d℄ and �1 := (d;+1). The orresponding spetralsubspaes of A are denoted by K�0 and K�1 , respetively. They are Kreinspaes and their orthogonal sum is the Krein spae K. We hoose funda-mental symmetries J0 and J1 in K�0 and K�1 , respetively, and in K thefundamental symmetry J := J0uJ1. If the restritions of A to K�0 and K�1are denoted by A0 and A1, respetively, then A is the diret and orthogonalsum of A0 and A1. The operator A0 in the Krein spae K0 is non{negative,and hene also �(A0J0) is non{negative. Sine 0 belongs to �(A1) and henealso to �(A1J1), an interval of the form [�"; 0) belongs to �(AJ).Now Theorem 2.7 implies that the Krein spae �R(jAJ j1=2); [ � ; � ℄A� isthe unique ontinuously in H embedded Krein spae ompletion of theinner produt spae �R(A); [ � ; � ℄A�. Sine �A; [ � ; � ℄A� is also ontinuouslyembedded in K and a Krein spae ompletion of the inner produt spae�R(A); [ � ; � ℄A� we onlude that (3.5) holds.Corollary 3.2. If the Hilbert spae �A; ( � ; � )A� is ontinuously embed-ded in the Krein spae �K; [ � ; � ℄K�, then there exist a t > 0 and a unique



Complementation in Krein spaes 53non{negative bounded operator A in �K; [ � ; � ℄K� suh that �A; ( � ; � )A� is t{boundedly embedded in the Krein spae �K; [ � ; � ℄K� and�A; ( � ; � )A� = �R(AJ1=2); [ � ; � ℄A�:The mapping (3.4) establishes a bijetive orrespondene between all boun-ded non{negative operators A in �K; [ � ; � ℄K� and all Hilbert spaes �A; [ � ; � ℄A�whih are ontinuously embedded in K.Proof. Let J be a fundamental symmetry on �K; [ � ; � ℄K�, and denote byh � ; � iK the orresponding Hilbert spae inner produt. Sine the inlusion{ : A ! K is ontinuous, there exists a t > 0 suh that hx; xiK � t(x; x)A; x 2A. The relation [x; x℄K � j[x; x℄Kj � hx; xiK; x 2 K, implies that [x; x℄K �t(x; x)A; x 2 A, that is, �A; ( � ; � )A� is t{boundedly embedded in the Kreinspae �K; [ � ; � ℄K�. Now the Corollary 3.2 follows from Theorem 3.1.2. Let again the Krein spae �A; [ � ; � ℄A� be ontinuously and t{boundedly embedded in the Krein spae �K; [ � ; � ℄K� and let A be the K{adjoint of the orresponding inlusion. Then A is a de�nitizable operatorwith the de�nitizing polynomial p from (3.3). Hene A is determined byits spetral funtion E and two non-negative nilpotent operators N0; N1 inthe Krein spae K with the propertiesN20 = N21 = 0; N0N1 = 0; N0E(�) = 0 if 0 =2 �; N1E(�) = 0 if t =2 �;for all intervals � with endpoints di�erent from 0 and t. In fat with theintervals �0; �1 in the proof of Theorem 3.1 we haveA = Z 0�0 � dE� + N0 + N1 + Z 0�1 (�� t) dE� + t E(�1);the prime at the integrals indiates that they are improper at 0 and t inthe strong operator topology.Sine R(A) is ontained in A, the operator A maps also the spae�A; [ � ; � ℄A� into itself. Denote the restrition of A to A by bA. Then theoperator bA is ontinuous in A sine it is losed in A. Indeed, if fxn; bAxng !fu; vg; n ! +1, in A � A, then, sine A is ontinuously embedded in K,xn ! u and bAxn = Axn ! v in K, and hene v = Au.Lemma 3.3. The operator bA in the Krein spae �A; [ � ; � ℄A� is de�ni-tizable with the de�nitizing polynomial bp(�) = t� �.Proof. If f = Ax, then[(t�A)f; f ℄A = [A(t�A)x;Ax℄A = [A(t�A)x; x℄K � 0;



Branko �Curgus and Heinz Langer54and by ontinuity this relation extends to all elements f 2 A.For simpliity we formulate the following statements only for an admis-sible intervals �. They an be extended in an obvious way to �nite unionsof admissible intervals and also to more general (measurable) sets. Hav-ing in mind only the operators A and bA with the de�nitizing polynomialsp(�) = t� � �2 and bp(�) = t � �, an admissible interval for A ( bA, respe-tively) denotes here an interval � for whih 0 and t (t, respetively) are notboundary points of �. Further, the spetral subspae of A in K ( bA in A,respetively) orresponding to � is denoted by K� (A�, respetively).Lemma 3.4. If � is an admissible interval for A thenA� = K� \ A; (3:7)Proof. For g 2 A we havef := ( bA� z)g = (A� z)g 2 Aand hene ( bA� z)�1f = ( bA� z)�1f; z 2 �( bA) \ �(A); f 2 A: (3:8)If f 2 A� then f 2 A and, as a funtion of z, ( bA� z)�1z has a holomorphiontinuation outside �. Aording to (3.8) and beause of the ontinuityof the inlusion of A in K also the funtion (A � z)�1z has a holomorphiontinuation outside �, and hene f 2 K�. Conversely, if f 2 K� \ A then(3.8) implies that the funtion�( bA� z)�1f;Ay�A = �(A� z)�1f; y�Khas a holomorphi ontinuation outside �. Sine k( bA� z)�1fkA � CzkfkA,with onstants Cz whih an be hosen loally uniformly bounded withrespet to z outside �, also ( bA � z)�1f has a holomorphi ontinuation inA outside �, and hene f 2 A�.Aording to [L, Theorem 3.1℄, as an immediate onsequene of thede�nitizability of the operators A and bA we have the following



Complementation in Krein spaes 55Corollary 3.5. (a) Let � be an admissible interval for A. If � � (0; t)then �K�; [ � ; � ℄K� is a Hilbert spae; if � � R n (0; t), then �K�; [ � ; � ℄K�is an anti{Hilbert spae.(b) Let � be an admissible interval for bA. If � � (�1; t) then �A�; [ � ; � ℄A�is a Hilbert spae; if � � (t;+1), then �A�; [ � ; � ℄A� is an anti-Hilbertspae.Theorem 3.6. Suppose that the Krein spae �A; [ � ; � ℄A� is ontinuouslyand t{boundedly embedded in the Krein spae �K; [ � ; � ℄K�, and denote by Athe K{adjoint of the orresponding inlusion. If � is an admissible intervalfor A, then the following statements hold:(a) If 0 =2 � then A� = K� � R(A).(b) If � � (0;+1), then the Krein spaes �K�; [ � ; � ℄K� and �A�; [ � ; � ℄A� areisomorphi, if � � (�1; 0), then the Hilbert spaes �K�;�[ � ; � ℄K� and�A�; [ � ; � ℄A� are isomorphi.() The spae �A; [ � ; � ℄A� is a Pontryagin spae with negative index � ifand only if the total multipliity of the spetrum of A in (t;+1) andthe negative index of t as a spetral point of A in K are both �nite andtheir sum equals �; it is a Hilbert spae if and only if �(A) � (�1; t℄and �ker(t�A); [ � ; � ℄K� is a Hilbert spae.Proof. If 0 =2 � then K� � R(A) and the �rst laim of (a) follows from(3.7). To prove (b) let � � (0;+1). Then K� = A�, and if the restritionof A to K� is denoted by A1, we have �(A1) � (0;+1) and[x; y℄A = [A�11 x; y℄K; x; y 2 K�:By means of the Riesz-Dunford funtional alulus a bounded, boundedlyinvertible and self{adjoint operator A�1=21 : K� = A� ! K� an be de�nedin �K�; [ � ; � ℄K� suh that (A�1=21 )2 = A1, and the relation (3.9) beomes[x; y℄A = [A�1=21 x;A�1=21 y℄K; x; y 2 K� = A�:Therefore A�1=21 is an isomorphism between �A�; [ � ; � ℄A� and �K�; [ � ; � ℄K�.A similar reasoning, applied to a negative interval �, yields the seondstatement of (b).In the next theorem, under some additional assumptions on the operatorA we give a haraterization of A by means of the spetral funtion of A.Theorem 3.7. Suppose that the Krein spae �A; [ � ; � ℄A� is ontinuouslyand t{boundedly embedded in the Krein spae �K; [ � ; � ℄K�, and denote byA the K{adjoint of the orresponding inlusion. If �0 is an admissible



Branko �Curgus and Heinz Langer56interval for A suh that 0 2 �0, 1 =2 �0, and kerA is projetionally ompletein �K; [ � ; � ℄K�, thenA = �x 2 K : x[?℄K kerA; Z 0�0 1� d[E�x; x℄ < +1� :Proof. Denote by A0 the restrition of the operator A to the subspaeK�0 , and let J0 be a fundamental symmetry in K�0 . Sine kerA is proje-tionally omplete in �K; [ � ; � ℄K�, it follows from [�C, Proposition 3.1℄ thatR���A0J0��1=2� = �x 2 K�0 : x[?℄K kerA; Z 0�0 1� d[E�x; x℄ < +1� :The fat that the restrition of the operator A to KRn�0 has a boundedinverse implies R���AJ��1=2� = KRn�0[u℄KR���A0J0��1=2�:Denote by y the [ � ; � ℄K{orthogonal projetion of x onto K�0 . Then x 2R���AJ��1=2� if and only if y 2 R���A0J0��1=2�. Sine the integralsZ 0�0 1� d[E�x; x℄ and Z 0�0 1� d[E�y; y℄onverge simultaneously the theorem is proved.4. Continuous ontrative embeddings and omplementation1. Let the Krein spae �A; [ � ; � ℄A� be ontinuously and ontrativelyembedded in the Krein spae �K; [ � ; � ℄K�. Then the K{adjoint A of theinlusion of A in K is de�nitizable:A � A2 �K 0; (4:1)and, moreover, by Theorem 3.1 the mappingA 7�! �R(jAJ j1=2); [ � ; � ℄A�establishes a bijetive orrespondene between all bounded de�nitizableoperators in K satisfying (4.1) and all Krein spaes �A; [ � ; � ℄A�, whih areontinuously and ontratively embedded in the Krein spae �K; [ � ; � ℄K�. Weall the operator A the generalized projetion orresponding to the Kreinspae �A; [ � ; � ℄A� in �K; [ � ; � ℄K�.



Complementation in Krein spaes 57If �A; [ � ; � ℄A� is ontinuously and isometrially embedded in �K; [ � ; � ℄K�then A2 = A and A is the orthogonal projetion onto A in K. There is an-other \extremal" ase, namely A2 = 0; A �K 0. This ase will be onsideredin more detail at the end of this setion.If the operator A satis�es the relation (4.1) also the operator B := I�Adoes: B �B2 = (I �A)� (I �A)2 = A�A2 �K 0:Therefore also B is the K{adjoint of the inlusion of the Krein spae�R(jBJ j1=2); [ � ; � ℄B� = �B; [ � ; � ℄B�in �K; [ � ; � ℄K�, whih is ontinuously and ontratively embedded in K.As we show in Theorem 4.2 below, the two Krein spaes �A; [ � ; � ℄A� and�B; [ � ; � ℄B� are omplementary in the sense of the following de�nition ofL. de Branges.De�nition 4.1. If the Krein spaes �A; [ � ; � ℄A� and �B; [ � ; � ℄B� areontinuously embedded in the Krein spae �K; [ � ; � ℄K�, they are said to beomplementary in �K; [ � ; � ℄K�, or �B; [ � ; � ℄B� is said to be omplementary to�A; [ � ; � ℄A�, if(i)  = a+ b with a 2 A; b 2 B implies[; ℄K � [a; a℄A + [b; b℄B: (4:2)(ii) Eah element  2 K admits some deomposition  = a+ b; a 2 A; b 2 B,for whih the equality sign in (4.2) holds: [; ℄K = [a; a℄A + [b; b℄B:The deomposition in (ii) is alled a minimal deomposition of  2 K, andthe spae �A\B; [ � ; � ℄A+ [ � ; � ℄B� is alled the overlapping spae of the om-plementary spaes A and B.The relation (4.2) with b = 0 or a = 0 implies that omplementary Kreinspaes �A; [ � ; � ℄A� and �B; [ � ; � ℄B� are ontratively embedded in �K; [ � ; � ℄K�.Below we show that to eah Krein spae �A; [ � ; � ℄A�, ontinuously and on-tratively embedded in the Krein spae �K; [ � ; � ℄K�, there orresponds aunique Krein spae �B; [ � ; � ℄B� whih is also ontinuously and ontrativelyembedded in the Krein spae �K; [ � ; � ℄K� and omplementary to �A; [ � ; � ℄A�,and the omplementary spae of �B; [ � ; � ℄B� is �A; [ � ; � ℄A�.Theorem 4.2. Let the Krein spae �A; [ � ; � ℄A� be ontinuously andontratively embedded in the Krein spae �K; [ � ; � ℄K�. Let A be the orre-sponding generalized projetion; hene A = �R(jAJ j1=2); [ � ; � ℄A�. If B = I�A,



Branko �Curgus and Heinz Langer58then the Krein spae �R(jBJ j1=2); [ � ; � ℄B� = �B; [ � ; � ℄B� is the unique omple-mentary spae to �A; [ � ; � ℄A� in �K; [ � ; � ℄K�, and eah element  2 K has theunique minimal deomposition  = a+ b with a = A and b = B.Proof. Let A be the generalized projetion for �A; [ � ; � ℄A�, that is A isa self{adjoint operator in the Krein spae �K; [ � ; � ℄K� suh that�R(jAJ j1=2); [ � ; � ℄A� = �A; [ � ; � ℄A�and A�A2 �K 0. Set B = I �A. Then AB = A(I �A) = BA is also a non{negative operator in �K; [ � ; � ℄K�, therefore �R(AB); [ � ; � ℄AB� is a pre{Hilbertspae. Its ompletion is the Hilbert spae �R((ABJ)1=2); [ � ; � ℄AB�. It followsfrom Lemma 2.9 that the mappingsA : �R(jBJ j1=2); [ � ; � ℄B�! �R((ABJ)1=2); [ � ; � ℄AB� (4:3)and B : �R(jAJ j1=2); [ � ; � ℄A�! �R((BAJ)1=2); [ � ; � ℄BA� (4:4)are bounded.To prove that the Krein spae �R(jBJ j1=2); [ � ; � ℄B� is a omplementaryspae to �A; [ � ; � ℄A� note that for x; y 2 K we have[Ax+By;Ax+By℄K � [Ax;Ax℄A � [By;By℄B= [Ax;Ax +By℄K + [By;Ax+By℄K � [Ax; x℄K � [By; y℄K= [y � x;AB(x� y)℄K= �[AB(x � y); AB(x� y)℄AB � 0: (4:5)Sine R(A) is dense in R(jAJ j1=2) and R(B) is dense in R(jBJ j1=2); for givena 2 R(jAJ j1=2) and b 2 R(jBJ j1=2) there exist sequenes (xn) and (yn) inK suh that Axn ! a (n ! +1) in R(jAJ j1=2) and Byn ! b (n ! +1)in R(jBJ j1=2). It follows from the boundedness of A and B in (4.3) and(4.4) that BAxn ! Ba and AByn ! Ab (n! +1) in �R((ABJ)1=2); [ � ; � ℄AB�.This, together with (4.5), implies[a+ b; a+ b℄K � [a; a℄A � [b; b℄B = �[Ba�Ab;Ba�Ab℄AB � 0 (4:6)for all a 2 R(jAJ j1=2) and b 2 R(jBJ j1=2), and the inequality (4.2) is proved.It is lear that with a = A and b = B in (4.2) the equality sign holdsfor arbitrary  2 K. Therefore the Krein spae �R(jBJ j1=2); [ � ; � ℄B� is aomplementary spae to �R(jAJ j1=2); [ � ; � ℄A�.



Complementation in Krein spaes 59It remains to show that the minimal deomposition  = a + b of anelement  2 K is unique. The relation (4.6) implies that[; ℄K = [a; a℄A + [b; b℄B;  = a+ b; a 2 R(jAJ j1=2); b 2 R(jBJ j1=2) (4:7)is equivalent to [Ab � Ba;Ab � Ba℄AB = 0. Sine the inner produt [ � ; � ℄ABis positive de�nite, we have Ab = Ba. Therefore,A = Aa+Ab = Aa+Ba = a; B = Ba+Bb = Ab+Bb = b;and, onsequently, a and b are uniquely determined by (4.7).The uniqueness of the omplementary subspae will be proved in The-orem 4.4 below.2. In Theorem 4.4 we give another haraterization of the omple-mentary spae whih implies its uniqueness. Our proof is di�erent fromthe proofs in [DB℄ and [DR℄. It is based on the following variation of aharaterization of operator ranges due to �Smul0jan [�S℄ (see also [FW℄).Lemma 4.3. Let �H; h � ; � iH� be a Hilbert spae and let S be a boundedoperator in H. Then y 2 R(S) if and only ifsup�2jhx; yiHj � hS�x; S�xiH : x 2 H	< +1:Proof. A simple alulation shows thatsup�2jhx; yiHj � hS�x; S�xiH : x 2 H	= sup�2jhx; yiHj � hS�x; S�xiH : x 62 ker(S�)	= sup�2tjhx; yiHj � t2hS�x; S�xiH : t > 0; x 62 ker(S�)	= sup� jhx; yiHj2hS�x; S�xiH : x 62 ker(S�)� :Now the lemma follows from [�S, Lemma 3℄.Theorem 4.4. Let �A; [ � ; � ℄A� be a Krein spae whih is ontinuouslyand ontratively embedded in the Krein spae �K; [ � ; � ℄K�, and let A bethe orresponding generalized projetion. Then the omplementary spae�B; [ � ; � ℄B� to �A; [ � ; � ℄A� in �K; [ � ; � ℄K� is uniquely determined: It is the setof all b 2 K suh that�(b) := supn[b+ a; b+ a℄K � [a; a℄A : a 2 Ao < +1



Branko �Curgus and Heinz Langer60with inner produt given by the relation�b1; b2�B := 14��(b1 + b2)� �(b1 � b2) + i �(b1 + i b2)� i �(b1 � i b2)�;where i = p�1.Proof. Denote by B the set of all elements b 2 K suh that �(b) < +1.First we prove that B = R(jBJ j1=2), where B = I � A. Sine R(A) is densein (A; [ � ; � ℄A) we have�(b) = sup�[b+Ax; b+Ax℄K � [Ax;Ax℄A : x 2 K	:For all x 2 K,[b+Ax; b+Ax℄K � [Ax;Ax℄A = [b; b℄K + 2 [Ax; b℄K � [A(I �A)x; x℄K;therefore �(b) = [b; b℄K + sup�2 [Ax; b℄K � [A(I �A)x; x℄K : x 2 K	= [b; b℄K + sup�2j[Ax; b℄Kj � [ABx; x℄K : x 2 K	= [b; b℄K + sup�2jhx;AbiKj � hABJx; xiK : x 2 K	: (4:8)By Lemma 4.3 the last supremum is �nite if and only if Ab 2 R�(ABJ)1=2�.(Note that the operator ABJ is positive in the Hilbert spae �K; h � ; � iK�:)We have Ab 2 R�(ABJ)1=2� if and only if b 2 R(jBJ j1=2). Indeed, (4.3)implies that if b 2 R(jBJ j1=2), then Ab 2 R�(ABJ)1=2�. Conversely, if Ab 2R�(ABJ)1=2�, then, by Theorem 2.9, Ab 2 R(jBJ j1=2). Therefore, b = Ab +Bb 2 R(jBJ j1=2). Hene, the supremum in (4.8) is �nite if and only ifb 2 R(jBJ j1=2). This yields B = R(jBJ j1=2) = R�j(I �A)J j1=2�.It follows from (4.8) and Lemma 4.3 that �(b) = [b; b℄K+ [Ab;Ab℄AB ; b 2R(jBJ j1=2) = B. This and (4.3) imply that � : R(jBJ j1=2)! R is a ontinuousfuntion. It is not diÆult to see that �(b) = [b; b℄B for all b 2 R(B). SineR(B) is dense in R(jBJ j1=2); we have �(b) = [b; b℄B for all b 2 R(jBJ j1=2).Let the Krein spae (C; [ � ; � ℄C) be omplementary to�A; [ � ; � ℄A� = �R(jAJ j1=2); [ � ; � ℄A�:Then C � B = R(jBJ j1=2) and[b; b℄C � �(b) = [b; b℄B for all b 2 B:If  = a+ b, a 2 A, b 2 C and if [; ℄K = [a; a℄A + [b; b℄C, then[a; a℄A + [b; b℄B � [; ℄K = [a; a℄A + [b; b℄C � [a; a℄A + [b; b℄B:



Complementation in Krein spaes 61Hene [b; b℄B = [b; b℄C = [; ℄K� [a; a℄A. Now the relation (4.6) implies b = Band a = A. Sine  2 K was arbitrary, it follows that R(B) � C andthat [ � ; � ℄C oinides with [ � ; � ℄B on R(B). Sine �C; [ � ; � ℄C� is ontinuouslyembedded in �R(jBJ j1=2); [ � ; � ℄B� we an apply Corollary 2.17 with F =R(B); A = C and K = R(jBJ j1=2) to onlude C = R(jBJ j1=2).Theorem 4.5. Let Krein spaes �A; [ � ; � ℄A� and �B; [ � ; � ℄B� be ontin-uously and ontratively embedded in the Krein spae �K; [ � ; � ℄K�. Supposethat A and B are omplementary to eah other in the Krein spae K andlet A and B = I �A be the orresponding generalized projetions. Then forthe overlapping spae we have�A\ B; [ � ; � ℄A + [ � ; � ℄B� = �R�(ABJ)1=2�; [ � ; � ℄AB�:In partiular, the spae �A \ B; [ � ; � ℄A + [ � ; � ℄B� is a Hilbert spae and theintersetion of the sets of non{positive vetors of �A; [ � ; � ℄A� and �B; [ � ; � ℄B�is f0g.Proof. Let u 2 R�jAJ j1=2� \ R�jBJ j1=2�. Then there exist sequenes(xn); (yn) in K, suh that for n! +1Byn ! u in �R(jBJ j1=2); [ � ; � ℄B�; Axn ! u in �R(jAJ j1=2); [ � ; � ℄A�:By (4.3) and (4.4), it follows that for n! +1AByn ! Au and BAxn ! Bu in �R((ABJ)1=2); [ � ; � ℄AB�:Thus, Au;Bu 2 R�(ABJ)1=2� and, onsequently, u = Au+Bu 2 R�(ABJ)1=2�.It follows that R�jAJ j1=2� \ R�jBJ j1=2� � R�(ABJ)1=2�:To prove the onverse inlusion note that, sine the identity mappingon K maps R(ABJ) into R(AJ), Lemma 2.9 impliesR�(ABJ)1=2� � R�jAJ j1=2�; R�(ABJ)1=2� � R�jBJ j1=2�:Hene R�(ABJ)1=2� is the overlapping subspae of the omplementaryspaes (R(jAJ j1=2); [ � ; � ℄A) and (R(jBJ j1=2); [ � ; � ℄B). For u = ABx; v = ABywe have[u; v℄A + [u; v℄B = [ABx;By℄K + [ABx;Ay℄K = [ABx; y℄K = [u; v℄AB : (4:9)



Branko �Curgus and Heinz Langer62By Lemma 2.9, the topology on R�(ABJ)1=2� is stronger than the topologieson R�jAJ j1=2� and R�jBJ j1=2�, therefore the equality (4.9) extends by on-tinuity to R�(ABJ)1=2�. Further, sine �R�(ABJ)1=2�; [ � ; � ℄AB� is a Hilbertspae, also �A \ B; [ � ; � ℄A + [ � ; � ℄B� is a Hilbert spae. If x 2 A \ B is anon{positive vetor in both �A; [ � ; � ℄A� and �B; [ � ; � ℄B�, then we have0 � [x; x℄A + [x; x℄B � 0;and, sine �A \ B; [ � ; � ℄A + [ � ; � ℄B� is a Hilbert spae, x = 0.Corollary 4.6. Let Krein spaes �A; [ � ; � ℄A� and �B; [ � ; � ℄B� be om-plementary in the Krein spae �K; [ � ; � ℄K� and let A and B = I � A be theorresponding generalized projetions. Let B = B�[u℄BB+ be a fundamentaldeomposition of B.(a) The sum K = A+ B is diret if and only if A is a projetion, that is, ifand only if A = A2.(b) If 0 2 �(A), then the norm topologies of �A; [ � ; � ℄A� and �K; [ � ; � ℄K) o-inide, and on B� they are equivalent to the Hilbert spae topology of�B�;�[ � ; � ℄B�.() If � is an admissible interval for A and B and if 0; 1 =2 � then A� =B� = K�; in partiular, A\ B ontains all suh subspaes K�.Proof. To prove (a) assume that the sum K = A + B is diret. The-orem 4.5 implies that AB = 0 and onsequently A = A2. The onverse islear.Let h � ; � iA and h � ; � iK be Hilbert spae inner produts on �A; [ � ; � ℄A�and �K; [ � ; � ℄K�, respetively. Assume that 0 2 �(A). Sine by Corollary 2.16the norm topologies on �A; [ � ; � ℄A� and �K; [ � ; � ℄K� are equivalent, there exist1; 2 > 0 suh that1 hx; xiK � hx; xiA � 2 hx; xiK; x 2 K: (4:10)The assumption 0 2 �(A) implies that A = K. Therefore B� � B = A \ Band by Theorem 4.5 0 � �[x; x℄B � [x; x℄A; x 2 B�: (4:11)Clearly [x; x℄A � hx; xiA; x 2 A: (4:12)Sine the Krein spae �B; [ � ; � ℄B� is ontinuously embedded in �K; h � ; � iK�,the Hilbert spae �B�;�[ � ; � ℄B� is also ontinuously embedded in �K; h � ; � iK�.Therefore there exist 3 > 0 suh thathx; xiK � �3 [x; x℄B ; x 2 B�: (4:13)



Complementation in Krein spaes 63Combining the inequalities (4.13), (4.11), (4.12) and (4.10) we gethx; xiK � �3 [x; x℄B � 3 [x; x℄A � 3 hx; xiA � 32 hx; xiK; x 2 B�:This proves the statement about �B�;�[ � ; � ℄B�.The laim () follows immediately from Theorem 3.6.3. In the next theorem we suppose that the embedded subspae A isa neutral subspae of K. The representations of the elements of K and theoperators in K that we use bellow refer to the hosen anonial deompo-sition.Theorem 4.7. Let the Krein spae �A; [ � ; � ℄A� be ontinuously andontratively embedded in the Krein spae �K; [ � ; � ℄K� with the orrespond-ing generalized projetion A and denote by �B; [ � ; � ℄B� the orrespondingomplementary spae. Let K = K+[u℄KK� be a fundamental deompositionof K. The following statements are equivalent:(a) A is a neutral subspae of �K; [ � ; � ℄K�.(b) A2 = 0.() There exists a bounded operator Q : �K+; [ � ; � ℄K� ! �K�;�[ � ; � ℄K� suhthat A = � jQj �Q�Q �jQ�j� :(d) There exist a Hilbert spae �L; h � ; � iL�, whih is ontinuously embeddedin �K+; [ � ; � ℄K�, and an isometry U : �L; [ � ; � ℄K� ! �K�;�[ � ; � ℄K� suhthat A = �� x+Ux+� : x+ 2 L� ;and �� x+Ux+� ;� y+Uy+��A = [x+; y+℄L; x+; y+ 2 L:(e) B = K, and A is a neutral subspae of �B; [ � ; � ℄B�.Proof. (a) , (b) follows from Corollary 2.20.(b)) (). Sine A is a generalized projetion we have A�A2 �K 0, hene, by(b), A �K 0. With the hosen fundamental deomposition K = K+[u℄KK�the orresponding fundamental symmetry is J = � 1 00 �1�, and we writethe self{adjoint operator A asA = �P �Q�Q R �



Branko �Curgus and Heinz Langer64with P; R; Q, being bounded operators in or between the orrespondingHilbert spaes �K+; [ � ; � ℄K� and �K�;�[ � ; � ℄K�, P and R being self{adjoint.The relation A2 = 0 is equivalent toP 2 = Q�Q; QP = �RQ; R2 = QQ�;and the non{negativity of A in the Krein spae �K; [ � ; � ℄K� implies P �0; R � 0. This yields the following representation for A:A = � jQj �Q�Q �jQ�j�and () is proved.() ) (d). Let �L; h � ; � iL� = �R�jQj1=2�; ( � ; � )jQj�. There exists an isometryU : �R(jQj); [ � ; � ℄K�! �K�;�[ � ; � ℄K�suh that Q = U jQj; Q� = jQjU�1 and jQ�j = U jQjU�1. ThenA = 0� jQj �jQjU�1U jQj �U jQjU�11A = � IU � jQj ( I �U�1 ) ;AJ = 0� jQj jQjU�1U jQj U jQjU�11A = � IU � jQj ( I U�1 ) :Sine U is a ontinuous mapping it an be extended to the losure of R(jQj)in �K+; [ � ; � ℄K�, and therefore also to the smaller subspae L = R�jQj1=2�.This extension is still an isometry, and we denote it by U as well:U : �L; [ � ; � ℄K�! �K�;�[ � ; � ℄K�:It is easily alulated that(AJ)1=2 = � IU � jQj1=2 ( I U�1 ) : (4:14)The vetor y 2 K belongs to R�(AJ)1=2� if and only if there exists an x 2 Ksuh that (AJ)1=2x = y. By (4.14) this is equivalent toy = 0� jQj1=2�x+ + U�1x��U jQj1=2�x+ + U�1x��1A :



Complementation in Krein spaes 65Sine A = R�(AJ)1=2� this proves the �rst equality in (d). SimilarlyAJx = 0� jQj �x+ + U�1x��U jQj �x+ + U�1x��1A :Let Ax = � jQju+U jQju+� and Ay = � jQjv+U jQjv+� with u+; v+ 2 K+. Then[Ax;Ay℄A = (AJJx;AJJy)AJ = hAJJx; JyiK = �� jQju+U jQju+� ;� y+� y���K= �jQju+; y+�K + �U jQju+; y��K = �jQju+; y+ + U�1y��K= �jQju+; v+�K = �jQju+; jQjv+�jQj = �jQju+; jQjv+�L:This shows that�� x+Ux+� ;� y+Uy+��A = �x+; y+�L; x+; y+ 2 L; (4:15)holds on a dense subspae of �A; [ � ; � ℄A�. The equality (4.15) implies thatthe restrition P+jA of the orthogonal projetion P+ : K ! K+ is an isometrybetween dense subspaes of the Hilbert spaes �A; [ � ; � ℄A� and �L; [ � ; � ℄L�.It follows that P+��A maps �A; [ � ; � ℄A� isometrially onto �L; [ � ; � ℄L�, whihproves (d).(d) ) (a) is lear, hene we have proved that the statements from (a) to(d) are equivalent.(b) ) (e). If (b) holds then the generalized projetion B = I � A has theproperty 0 2 �(B) and hene R(B) = B = K. The inner produt [ � ; � ℄B isgiven by [x; y℄B = �(I �A)�1x; y�K = [(I +A)x; y℄K; x; y 2 K:Applying this to the elements in R(A) we get[Ax;Ay℄B = [(I +A)Ax;Ay℄K = [Ax;Ay℄K = [A2x; y℄K = 0; x; y 2 K;whih implies the seond statement in (e).(e) ) (b). Sine B = K, by Corollary 4.6, B is invertible, and therefore[x; y℄B = �B�1x; y�K; x; y 2 K:



Branko �Curgus and Heinz Langer66Sine R(A) � A is a neutral subspae of �B; [ � ; � ℄B� we have0 = [Ax;Ay℄B = �B�1Ax;Ay�K = �B�1A2x; y�K x; y 2 K:Consequently B�1A2 = 0 and therefore A2 = 0.Remark 4.8. In Theorem 4.7 the spae �A; [ � ; � ℄A� is a Hilbert spae.Clearly A\B = A and the inner produt on the overlapping spae oinideswith [ � ; � ℄A. Namely we have AB = A(I �A) = A and[x; y℄A = [x; y℄AB = [x+; y+℄L; x; y 2 A:5. Appendix: Uniqueness of Krein spae ompletionsAs mentioned in the introdution, in this setion we prove a slightlyextended version of a result of T. Hara [H, Theorems 5 and 6℄ about theuniqueness of the Krein spae ompletion of an inde�nite inner produtspae with a Hilbert majorant.Lemma 5.1. If �L; [ � ; � ℄L� is a non{degenerate inner produt spae and[ � ; � ℄L has a Hilbert majorant ( � ; � )L, then an equivalent Hilbert inner prod-ut ( � ; � )0L an be hosen in L suh that the spetrum of the orrespondingGram operator G0 onsists outside zero of isolated eigenvalues only.Proof. Let G be the Gram operator for the inner produt [ � ; � ℄L, anddenote by E its spetral funtion: G = R kGk�kGk � dE�. Note that G is injetiveand onsider the funtion'(�) := 8>>>>>>><>>>>>>>:
�1 if � 2 (�1;�1℄;� 1n+1 if � 2 �� 1n ;� 1n+1�; n 2 N;1n+1 if � 2 � 1n+1 ; 1n�; n 2 N;1 if � 2 [1;+1):Then 1 � �'(�) � max�kGk; 2	 if � 2 ��kGk; kGk� n f0g:De�ne on L the positive de�nite inner produt(x; y)0L := Z kGk�kGk �'(�) d(E�x; y)L:



Complementation in Krein spaes 67With �+0 := �1; kGk�; �+n := � 1n+1 ; 1n�; ��n := �� 1n ;� 1n+1�; n 2 N, and ��0 :=��kGk;�1� we obtain:hx; yiL = (Gx; y)L = Z kGk�kGk '(�) �'(�) d(E�x; y)L= Z�+0 � d(E�x; y)L + +1Xn=1 1n+ 1 Z�+n �'(�) d(E�x; y)L� Z��0 � d(E�x; y)L � +1Xn=1 1n+ 1 Z��n �'(�) d(E�x; y)L= (G0x; y)0L;where the operator G0 is de�ned by the relationG0x := � 1n+ 1 x if x 2 E(��n )L; n 2 N:Thus, the spetrum of G0 is ontained in ��(n+ 1)�1 : n 2 N	 [ f0g.Theorem 5.2. Let �L; [ � ; � ℄L� be a deomposable non{degenerate innerprodut spae. If for one and hene for all fundamental deompositionsL = L+[u℄LL� at least one of the spaes �L�;�[ � ; � ℄L� is a Hilbert spae,then �L; [ � ; � ℄L� has a unique Krein spae ompletion. Conversely, if [ � ; � ℄Lhas a Hilbert majorant and �L; [ � ; � ℄L� has a unique Krein spae ompletion,then at least one of the spaes �L�;�[ � ; � ℄L� is a Hilbert spae.Proof. It was proved in [B, Theorem IV.7.2℄ that if L = L+[u℄LL� andL0 = L0+[u℄LL0� are two fundamental deompositions, then �L�;�[ � ; � ℄L� isa Hilbert spae if and only if �L0�;�[ � ; � ℄L� is a Hilbert spae. Assume thatL = L+[u℄LL� is a fundamental deomposition of �L; [ � ; � ℄L� and that forexample �L+; [ � ; � ℄L� is a Hilbert spae. Let �K1; [ � ; � ℄K1� and �K2; [ � ; � ℄K2� betwo Krein spae ompletions of �L; [ � ; � ℄L�. Then �L+; [ � ; � ℄L� is a uniformlypositive subspae of both �K1; [ � ; � ℄K1� and �K2; [ � ; � ℄K2). Denote by Pj theorthogonal projetion onto L+ in �Kj ; [ � ; � ℄Kj� and set (1� Pj)Kj =: Lj ; j =1; 2. Then L� � Lj ; j = 1; 2, and for x = x+ + x�; x� 2 L�, we have(1� Pj)x = x�; j = 1; 2. Sine for arbitrary u 2 Lj and �xn� � L, suh thatxn ! u in Kj , it follows that xn;� = (1 � Pj)xn ! (1 � Pj)u = u, n ! +1,the subspae L� is dense in Lj ; j = 1; 2. Consequently, �L1; [ � ; � ℄K1� and�L2; [ � ; � ℄K2� are isometrially isomorphi anti{Hilbert spaes, ontainingboth L� as a dense subspae. Thus they an be identi�ed; denote thisspae by �L�; [ � ; � ℄��. Finally, the spae L := L+ u L�, equipped with theinner produt [x; y℄L := [x+; y+℄L � [x�; y�℄�;



Branko �Curgus and Heinz Langer68where x = x+ + x�; y = y+ + y�; x+; y+ 2 L+; x�; y� 2 L�;is the unique Krein spae ompletion of �L; [ � ; � ℄L�.It remains to show that if �L; [ � ; � ℄L� has a Hilbert majorant ( � ; � )Land for a fundamental deomposition L = L+[u℄LL� both omponents�L+; [ � ; � ℄L�, �L�;�[ � ; � ℄L� are not omplete then �L; [ � ; � ℄L� has more thanone Krein spae ompletion. For this we give two proofs in items (I) and(II) below. In (I) we onstrut a pair of di�erent Krein spae ompletionsin a straightforward way, the onstrution in (II) uses operator ranges andis therefore more related to the onsiderations in the �rst setions of thispaper; besides, it supplies an in�nite family of Krein spae ompletions.We begin with the preliminaries whih are ommon to both onstru-tions. Denote the Gram operator of the inde�nite inner produt [ � ; � ℄L onL with respet to the Hilbert majorant ( � ; � )L by G:[x; y℄L = (Gx; y)L; x; y 2 L:It is easy to see that the omponent �L+; [ � ; � ℄L� ��L�;�[ � ; � ℄L�, respetively�is not omplete if and only if zero is an aumulation point of �(G) fromthe right (left, respetively). Thus, sine both omponents are supposedto be non-omplete, zero is an aumulation point of �(G) from both sides.Aording to Lemma 5.1, without loss of generality we an also supposethat the spetrum of G onsists outside zero of isolated eigenvalues only,hene it onsists of two sequenes of eigenvalues �+n and ���n , n 2 N, suhthat ���1 < ���2 < � � � < 0 < � � � < �+2 < �+1 ; limn!+1 ��n = limn!+1�+n = 0:In eah of the eigenspaes orresponding to ���n we hoose an eigenvetore�n ; n 2 N, suh that (e�n ; e�n )L = 1. Instead of L onsider the subspaeL0 := span�e+n ; e�n : n 2 N	 ; the losure in the topology of �L; ( � ; � )L�;equipped with the Hilbert inner produt ( � ; � )L and with the inde�nite innerprodut [ � ; � ℄L. If �L0; [ � ; � ℄L� has more than one Krein spae ompletionthen the same is true for �L; [ � ; � ℄L�. Therefore without loss of generalitywe an suppose that L = L0.(I) Set Ln := spanfe+n ; e�n g and Hn := C 2 , n 2 N. All 2 � 2{matries in thisproof relate to the standard basis onsisting of the vetors � 10� ; � 01� of



Complementation in Krein spaes 69Hn. We introdue a positive de�nite inner produt ( � ; � )Hn on Hn by theGram matrix bAn := � 1 00 ��+n ��n ��1�and the operator bGn on Hn by the matrixbGn := ��+n � ��n 1�+n��n 0� :The operator bGn is self{adjoint with respet to the positive de�nite innerprodut ( � ; � )Hn on Hn. Indeed, an easy alulation shows thatbSn := bAn bGn = ��+n � ��n 11 0� : (5:1)It is lear that the eigenvalues of the operator bGn are ���n and �+n . Astraightforward alulation gives that the orresponding eigenvetors, nor-malized with respet to ( � ; � )Hn , are��n =s ��n�+n + ��n ��1�+n � ; �+n =s �+n�+n + ��n � 1��n � ;respetively. The linear mapping Un de�ned, throughUn : e�n 7�! ��n ; (5:2)is an isomorphism between the (2{dimensional) Hilbert spaes �Ln; ( � ; � )L�and �Hn; ( � ; � )Hn�. The de�nitions of ( � ; � )Hn , bGn, and Un imply that[u; v℄L = �Unv��� bAn bGn Unu�; u; v 2 Ln: (5:3)De�ne the Hilbert spae �H; ( � ; � )H� as follows: H � `2,x = ��n�n2N 2 H () ��2n�1�n2N 2 `2 and  �2np�+n ��n !n2N 2 `2;and (x; y)H := +1Xn=1 ��2n�1 �2n�1 + 1�+n��n �2n �2n� ;here and in the rest of the proof we usex = ��n�n2N; y = ��n�n2N 2 H:



Branko �Curgus and Heinz Langer70It follows from (5.1) that the formula[x; y℄H := +1Xn=1���+n � ��n ��2n�1�2n�1 + �2n�2n�1 + �2n�1�2n� (5:4)de�nes an inde�nite inner produt on H. SineL = +1Mn=1Ln; in�nite diret sum in �L; ( � ; � )L�;H = +1Mn=1Hn; in�nite diret sum in �H; ( � ; � )H�;it follows from (5.2) that the Hilbert spaes �L; ( � ; � )L� and �H; ( � ; � )H� areisomorphi, the isomorphism being established by the mappingU := +1Mn=1Un:Further, the relations (5.1), (5.3) and (5.4) yield[u; v℄L = [Uu;Uv℄H; u; v 2 L:Consequently, the inde�nite inner produt spaes �L; [ � ; � ℄L� and �H; [ � ; � ℄H�,and also the Hilbert spaes �L; ( � ; � )L� and �H; ( � ; � )H�, an be identi�ed.Therefore the inner produt spae �L; [ � ; � ℄L� has a unique Krein spaeompletion if and only if �H; [ � ; � ℄H� has a unique Krein spae ompletion.To omplete the proof we shall show that �H; [ � ; � ℄H� has at least two Kreinspae ompletions.First onsider the usual `2{inner produt on H:(x; y)2 := +1Xn=1 �n�n;and denote by k � k2 the orresponding norm. The inde�nite inner produt[ � ; � ℄H is ontinuous with respet to this norm sine it learly follows from(5.4) that [x; y℄H � �2kGk+ 1�kxk2 kyk2; x; y 2 H:Sine H ontains all �nite sequenes, its ompletion with respet to thenorm k � k2 is �`2; ( � ; � )2�. As the formula in (5.4) is valid for all elements in`2, the extension by ontinuity of [ � ; � ℄H onto the entire spae `2 is also givenby (5.4). Thus �`2; [ � ; � ℄H� is a non{degenerate inner produt spae with



Complementation in Krein spaes 71the Hilbert majorant ( � ; � )2. It follows from (5.1) that the Gram operatorin �`2; ( � ; � )2� of this inner produt isbS := +1Mn=1 bSn; in�nite diret sum in �`2; ( � ; � )2�:The eigenvalues of the operators bSn are12 ��+n � ��n �q4 + ��+n � ��n �2� ; n 2 N;onsequently, they are 6= 0 and aumulate only at �1 and 1, yielding that bSis a bounded and boundedly invertible self{adjoint operator in �`2; ( � ; � )2�.Therefore �`2; [ � ; � ℄H� is a Krein spae whih is a Krein spae ompletion of�H; [ � ; � ℄H�.Note also thatbA := +1Mn=1 bAn; in�nite diret sum in �`2; ( � ; � )2�;is an unbounded uniformly positive operator in �`2; ( � ; � )2�, H = D� bA1=2�and �x; y�H = � bA1=2x; bA1=2y�2; x; y 2 H:To omplete the proof we shall show that the anonial Krein spaeompletion of �H; [ � ; � ℄H� di�ers from `2. The operatorbG = +1Mn=1 bGn; in�nite diret sum in �H; ( � ; � )H�;is the Gram operator of the inde�nite inner produt [ � ; � ℄H in the Hilbertspae �H; ( � ; � )H�. Sine the deomposition topology of �H; [ � ; � ℄H� is givenby the inner produt (j bGj � ; � )H to alulate the anonial Krein spaeompletion of the inner produt spae �H; [ � ; � ℄H� we need to study theoperator j bGj in the Hilbert spae �H; ( � ; � )H�. First observe that the sub-spae F(� H) onsisting of all �nite sequenes is dense in �H; (j bGj � ; � )H�.Therefore the ompletion of �H; (j bGj � ; � )H� oinides with the ompletionof �F ; (j bGj � ; � )H�. A straightforward alulation shows that the matrixrepresentation j bGjn of the restrition of j bGj to Hn isj bGjn = j bGnj = 1�+n + ��n 0� (�+n )2 + (��n )2 �+n � ��n�+n��n ��+n � ��n � 2�+n��n 1A :



Branko �Curgus and Heinz Langer72Sine the operator j bGj has the same eigenvetors as bG, the subspaesHn; n 2N, are mutually orthogonal with respet to (j bGj � ; � )H. The restrition of(j bGj � ; � )H to Hn; n 2 N, is given by the positive operator bBn := bAn j bGjnwhose matrix representation isbBn = 1�+n + ��n 0� (�+n )2 + (��n )2 �+n � ��n�+n � ��n 2 1A ; n 2 N: (5:5)The operator bB de�ned bybB := +1Mn=1 bBn; in�nite diret sum in �`2; ( � ; � )2�;is a positive self{adjoint operator in �`2; ( � ; � )2�. As eah matrix in (5.5)has determinant 1, its eigenvalues are positive numbers whih are reiproalto eah other. Sine the traes of the matries in (5.5) are unbounded asn ! +1, we onlude that the eigenvalues of the operator bB aumulateat 0 and +1. Therefore bB is not bounded and it does not have a boundedinverse. Consequently for the ompletion �B; ( � ; � )B� of the pre{Hilbertspae �D( bB); ( bB � ; � )2� we have that neither B � `2 nor `2 � B, see Re-mark 5.4. Clearly F is dense in �D( bB); ( bB � ; � )2�. Therefore the ompletionof �F ; ( bB � ; � )2� is also B. By the de�nitions above we have�F ; (j bGj � ; � )H� = �F ; ( bB � ; � )2�:Thus the anonial Krein spae ompletion of �H; [ � ; � ℄H� is �B; [ � ; � ℄H�. Sin-e neither B � `2 nor `2 � B, we have onstruted two di�erent Krein spaeompletions.(II) Let the Krein spae �K; [ � ; � ℄K� be the anonial Krein spae ompletionof �L; [ � ; � ℄L�. By Remark 2.12 the Hilbert spae �L; ( � ; � )L� is ontinuouslyembedded in �K; [ � ; � ℄K� and the K{adjoint T : K ! K of the orrespondinginlusion is the extension to K by ontinuity of the Gram operator G : L !L. Therefore the eigenvalues and the eigenvetors of T oinide with theeigenvalues ��n and the orresponding eigenvetors e�n ; n 2 N, of G. Wenormalize these eigenvetors:!�n := 1p��n e�n ; n 2 N;then �!�n ; !�n �K = �1; n 2 N.



Complementation in Krein spaes 73Let �K; h � ; � iK� be the Hilbert spae ompletion of �L; (jGj � ; � )L�. ByRemark 2.2 the Hilbert spae �L; ( � ; � )L� is ontinuously embedded in�K; h � ; � iK� and the H{adjoint T1 : K ! K of the orresponding inlusionis the extension to K by ontinuity of the operator jGj : L ! L. Then theextension to K of the signum of G is the fundamental symmetry onnetingthe inner produts [ � ; � ℄K and h � ; � iK. We denote this fundamental symme-try by J . Clearly J ommutes with T and onsequently T is a self{adjointoperator in the Hilbert spae �K; h � ; � iK�. In this spae, jT j = JT = T1. Itfollows from Corollary 2.5 that�L; ( � ; � )L� = �R(jT j1=2); ( � ; � )jT j�:The eigenvetors !�n ; n 2 N, are also the eigenvetors of jT j orresponding tothe eigenvalues ��n ; n 2 N. Thus these vetors form an orthonormal systemof vetors in the Hilbert spae �K; h � ; � iK�.Earlier in this proof, without loss of generality, we assumed thatL = span�!�n : n 2 N	 ; the losure in the topology of �L; ( � ; � )L�:This assumption implies thatK = span�!�n : n 2 N	 ; the losure in the topology of �K; h � ; � iK�:Let K = K+ [u℄KK� be the fundamental deomposition orrespondingto the fundamental symmetry J . ThenK� = span�!�n : n 2 N	; the losure in the topology of �K; h � ; � iK�:Let Kn = spanf!+n ; !�n g. ThenK = K+ [u℄KK� = +1Mn=1 Kn:Here and in the rest of the proof the in�nite diret sums are onsidered inthe topology of �K; h � ; � iK�. The matrix ��+n 00 ��n � is the representationof the restrition jT jn of jT j to Kn with respet to the basis f!+n ; !�n g. Thenthe equality jT j = +1Mn=1 jT jnholds.Let f�ngn2N be a sequene with the following properties:�n > 0; n 2 N; limn!+1�n = 0; supn2N ��n�n < +1: (5:6)



Branko �Curgus and Heinz Langer74De�ne the operators Sn and Qn on Kn by their matrix representations withrespet to the basis f!+n ; !�n g:Sn = 1p�n 0�p1 + �n �11 �p1 + �n1Aand Qn = 1p�n 0�p1 + �n �1�1 p1 + �n1A : (5:7)Setting �n := p1 + �n + p�n, the eigenvalues and the orresponding nor-malized in �Kn; h � ; � iK� eigenvetors of the operator Sn are�1 with ��n = p22 4p1 + �n � 1p�n !+n +p�n !�n� ;1 with �+n = p22 4p1 + �n �p�n !+n + 1p�n !�n� :The eigenvalues and the orresponding normalized in �Kn; h � ; � iK� eigenve-tors of the operator Qn arep�n1 +p1 + �n with  �n = 1p2 �!+n + !�n �;1 +p1 + �np�n with  +n = 1p2 �!+n � !�n �:Put S := +1Mn=1 Sn and Q := +1Mn=1 Qn: (5:8)The operator Q is a positive self{adjoint operator in the Hilbert spae�K; h � ; � iK�. The assumptions (5.6) imply that the eigenvalues of Q forman unbounded sequene whih also aumulates at 0. Therefore Q is un-bounded and its inverse is also unbounded. Clearly, S = JQ. ConsequentlyS is a positive self{adjoint operator in the Krein spae �K; [ � ; � ℄K�. It isalso neither bounded nor it has a bounded inverse. It is important to notethat S is idempotent, that is, S = S�1. Put M = D(S) = D(Q). Here D(�)denotes the domain of an operator.Next we prove that L � M. Sine L = R�jT j1=2� and M = D(Q), thiswill be aomplished by proving that the operator QjT j1=2 is bounded in�K; h � ; � iK�. The boundedness of QjT j1=2 is equivalent to the boundedness



Complementation in Krein spaes 75of �QjT j1=2��QjT j1=2, where � denotes the adjoint in �K; h � ; � iK�. Consider�rst the operators �Qn(jT jn)1=2��Qn(jT jn)1=2; n 2 N;whose matrix representation with respet to the basis f!+n ; !�n g is2�n 0� �+n �q�+n��n (1 + �n)�q�+n��n (1 + �n) ��n 1A+��+n 00 ��n � : (5:9)The eigenvalues of the �rst matrix in (5.9) are�+n + ��n�n �s��+n + ��n�n �2 + 4�+n��n�n ; n 2 N: (5:10)The assumptions (5.6) about the sequene (�n) imply that the sequenesin (5.10) are bounded. Sine these sequenes represent all the eigenvaluesof the self{adjoint in �K; h � ; � iK� operator �QjT j1=2��QjT j1=2 � jT j and sinethe orresponding normalized eigenvetors form an orthonormal basis for�K; h � ; � iK�, we onlude that �QjT j1=2��QjT j1=2 � jT j is bounded. Conse-quently �QjT j1=2��QjT j1=2, and therefore QjT j1=2, is bounded in �K; h � ; � iK�.It follows that R�jT j1=2� = L �M = D(Q).De�ne a positive de�nite inner produt on M by(x; y)M = hQx; yiK; x; y 2M:With this inner produt M is a pre-Hilbert spae. PutM+ = ker(1� S) and M� = ker(1 + S):Sine S is a losed operator the subspaesM� are losed in �K; h � ; � iK� andM =M+[u℄KM�: (5:11)Let x; y 2 M and let x = x+ + x�; y = y+ + y� be the deompositions withrespet to (5.11). Now we alulate(x; y)M = hQx; yiK = [Sx; y℄K = [Sx+; y+℄K + [Sx�; y�℄K= [x+; y+℄K � [x�; y�℄K:Therefore the topology of �M; ( � ; � )M� is a deomposition topology on�M; [ � ; � ℄K�. Sine the operator Q is invertible and sine the elements �n ; n 2 N, form a omplete set in �K; h � ; � iK�, it follows that the (�nite)



Branko �Curgus and Heinz Langer76linear ombinations of the eigenvetors  �n ; n 2 N, of Q, and therefore alsothe linear ombinations of the elements !�n ; n 2 N, form a dense subspaeof �M; ( � ; � )M�. Consequently, the subspae L, whih ontains all the lin-ear ombinations of !�n ; n 2 N, is dense in �M; ( � ; � )M�. Sine Q is neitherbounded nor has it a bounded inverse for any ompletion �Q; h � ; � iQ� of�M; ( � ; � )M� we have that neither Q � K nor K � Q. Therefore the om-pletion �Q; h � ; � iQ� of �M; ( � ; � )M� gives rise to the Krein spae ompletion�Q; [ � ; � ℄K� of �M; [ � ; � ℄K� whih is di�erent from �K; [ � ; � ℄K�. Sine L is densein �M; ( � ; � )M� we have onstruted two di�erent Krein spae ompletionsof �L; [ � ; � ℄K�. In fat, by hoosing di�erent sequenes �n; n 2 N, we getin�nitely many di�erent Krein spae ompletions for �L; [ � ; � ℄L�.Remark 5.3. Let (�n); (�0n) be two sequenes of real numbers suhthat �n > 0; n 2 N; supn2N �n < +1; supn2N ��n�n < +1; (5:12)and that the same relations hold for �0n instead of �n. Then the onditionsupn2N �n�0n < +1; supn2N �0n�n < +1 (5:13)is neessary and suÆient for the two sequenes (�n) and (�0n) to generatethe same Krein spae ompletion �Q; [ � ; � ℄K� of �L; [ � ; � ℄L� in the onstru-tion (II) of the above proof.Indeed, let Q be the positive self{adjoint operator de�ned by (5.7) and(5.8). The eigenvalues of Q are�f(�n); 1f(�n) : n 2 N� where f(t) = pt1 +p1 + t ; t > 0:Clearly, limt!+1 f(t)=1; limt!0+ f(t)=0: The Hilbert spae ompletion �Q; h � ; � iQ�of �D(Q); hQ � ; � iK� is isomorphi to the spae bQ � C N de�ned by(�n)n2N 2 bQ () �pf(�n) �2n�1�n2N 2 `2 and  �2npf(�n)!n2N2 `2; (5:14)with the inner produthx; yibQ := +1Xn=1�f(�n) �2n�1 �2n�1 + 1f(�n) �2n �2n�:



Complementation in Krein spaes 77Sine limt!0 f(t)=pt = 1, from the de�nition (5.14) we have(�n)n2N 2 bQ () � 4p�n �2n�1�n2N 2 `2 and � �2n4p�n�n2N2 `2; (5:15)and, beause of (5.13) and (5.14), the inlusions on the right hand side areequivalent to � 4p�0n �2n�1�n2N 2 `2 and  �2n4p�0n!n2N2 `2:By (5.12) and (5.13), the ompletion �Q; [ � ; � ℄K� oinides with �K; [ � ; � ℄K�if and only if inf��n : n 2 N	 > 0, in partiular, if �n = 1.Remark 5.4. In part (I) of the proof of Theorem 5.2 we obtainedtwo di�erent Krein spae ompletions, among them being the anonialone. In part (II) of the proof we obtained the anonial ompletion anda whole lass of non{anonial ompletions. However, the non{anonialompletion of part (I) is not among the non{anonial ompletions of part(II).To see this we desribe the anonial Krein spae ompletion �B; [ � ; � ℄H�of �H; [ � ; � ℄H� as in (I). The eigenvalues of the positive self{adjoint operatorbB in �`2; ( � ; � )2� are �n; 1�n ; n 2 N; where�n := 2 + ���n �2 + ��+n �2 +r4� 8�+n ��n + ����n �2 + ��+n �2�22���n + �+n � :Note that �n!+1; n!+1. The ompletion �B; h � ; � iH� of �D( bB); ( bB � ; � )2�is isomorphi to the spae bB � C N de�ned by(�n)n2N 2 bB () �p�n �2n�1�n2N 2 `2 and � �2np�n�n2N2 `2: (5:16)Sine limn!+1 �n���n + �+n � = 2, the relation (5.16) is equivalent to(�n)n2N 2 bB ()  �2n�1p��n + �+n !n2N2 `2 and �p��n + �+n �2n�n2N 2 `2: (5:17)Comparing (5.17) and (5.15) we onlude that we would need to hoose�n = ���n + �+n �2 to obtain the non{anonial ompletion of part (I). Butthis hoie violates (5.6).
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Complementation in Krein spaes 79Neprekidna ulaganja, upotpunjenja i komplementarnostu Kreinovim prostorimauBranko �Curgus i Heinz LangerSadr�zajNeka je Kreinov prostor �A; [ � ; � ℄A� neprekidno ulo�zen u Kreinov pros-tor �K; [ � ; � ℄K�. Koriste�i operator koji je adjungiran operatoru ulaganjaprostora A u prostor K, jedinstven hermitski operator A u K je pridru�zenprostoru �A; [ � ; � ℄A�. Tada je Kreinov prostor �A; [ � ; � ℄A� upotpunjenje pros-tora R(A) snabdjevenog sa A{salarnim produktom. Op�enito ovo upot-punjenje nije jedinstveno odred-eno. Ako je ulaganje prostora A u prostorK jo�s i t{neprekidno, onda je operator A de�nitizabilan u K i prostor R(A)snabdjeven sa A{salarnim produktom ima jedinstveno upotpunjenje doKreinovog prostora. U ovom slu�aju spektralna funkija operatora A dajeodred-ene informaije o ulaganju prostora A u K. Rezulatati su primjenjenina de Branges{ovu teoriju komplementiranja.


