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Roots and polynomials as Homeomorphic spaces
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Abstract
We provide a unified, elementary, topological approach to the classical results stating the continuity

of the complex roots of a polynomial with respect to its coefficients, and the continuity of the coeffi-
cients with respect to the roots. In fact, endowing the space of monic polynomials of a fixed degree n

and the space of n roots with suitable topologies, we are able to formulate the classical theorems in
the form of a homeomorphism. Related topological facts are also considered.
� 2005 Elsevier GmbH. All rights reserved.
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1. Introduction

The roots of a polynomial depend continuously on its coefficients. This is probably the
best known and most used perturbation theorem and, clearly, it is a continuity statement (see
[3] for several historical references; also, see our final remarks in Section 6). Conversely, the
coefficients depend continuously on the roots. This is essentially due to Viète’s formulas;
see Theorem 4.3 below. However, this second result is often formulated separately from the
first, and there has been no unanimity as to the topology on the set of roots.
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In this note we provide a metric space setting in which both of these classical continuity
results can be stated as a unique homeomorphism (our main result will be Theorem 4.4)
between the corresponding metric spaces of roots and polynomials. This reveals more than
may be widely known about the similar topological structure of these spaces.

We only use very basic background knowledge of the topology of metric spaces for
example at the level of Rudin’s or Baum’s classical books [1,8]. Whenever we refer to a set
as a metric space we imply that a specific metric has been earlier defined on it. Each subset
of a metric space is considered a metric space with the induced metric. We use the standard
notation N for the set of positive integers, R for the set of real numbers, C for the set of
complex numbers, and i = √−1. Throughout this note n�2 is a fixed positive integer. We
study complex monic polynomials of order n and we consider all their complex roots. Since
monic polynomials of degree one are in an obvious one-to-one correspondence with their
unique root, the case n = 1 is a special, although trivial, case. Note that Theorem 5.2 and
Corollary 5.3 are not true in the case n = 1.

2. Metric-space preliminaries

Definition 2.1. Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y be a bijection.
If both f and f −1 are continuous then f is called a homeomorphism between X and Y .

Definition 2.2. A subset K of a metric space (X, dX) is said to be compact if for each
family {G�} of open subsets of X such that K ⊂ ⋃

�G� there exist finitely many indices
�1, . . . , �n such that

K ⊂ G�1
∪ · · · ∪ G�n

.

The following lemma gives a characterization of compactness in metric spaces in terms
of sequences. For its proof see [8, Exercise 26, p. 45].

Lemma 2.3. A subset K of a metric space (X, dX) is compact if and only if each sequence
in K has a subsequence which converges in K .

Our first theorem bears a strong resemblance to the classical result that states that a
continuous bijection from a compact space to a Hausdorff space has a continuous inverse
(see [1, Theorem 3.21] or [8, Theorem 4.17], for example).

Theorem 2.4. Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y be a bijection.
Suppose that the following three conditions are satisfied:

(a) Each bounded and closed subset of X is compact.
(b) f is continuous.
(c) f −1 maps each bounded set in Y into a bounded set in X.

Then f −1 is continuous (and so f is a homeomorphism).
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Proof. Let {yk} be a convergent sequence in (Y, dY ) with limit y. Since {yk} is bounded,
assumption (c) implies that the sequence {f −1(yk)} is bounded in X and thus it is contained
in a closed and bounded subset of X. Recall that in a metric space if a set is bounded,
that is, if it has a finite diameter, then its closure has the same diameter. Therefore, by (a)
and Lemma 2.3, {f −1(yk)} has a convergent subsequence. If {f −1(ymk

)} is an arbitrary
convergent subsequence of {f −1(yk)} with, say,

lim
k→∞ f −1(ymk

) = x,

the continuity of f (assumption (b)) implies that

lim
k→∞ ymk

= f (x) = lim
k→∞ yk = y.

Thus, each convergent subsequence of the bounded sequence {f −1(yk)} converges to the
same element f −1(y), and this implies that {f −1(yk)} converges to f −1(y). Since the
sequence {yk} was an arbitrary convergent sequence in Y , the theorem is proved. �

Proposition 2.5. If each bounded and closed subset of a metric space (X, dX) is compact,
then (X, dX) is complete.

Proof. Each Cauchy sequence in a metric space is bounded and thus contained in a closed
ball. Since by assumption a closed ball in (X, dX) is compact, each Cauchy sequence in
(X, dX) has a convergent subsequence. Consequently, each Cauchy sequence in (X, dX)

converges. �

We denote by Cn the set of all ordered n-tuples of complex numbers. We equip this space
with what is called the “supremum norm”

‖v‖∞ = max
1� j �n

|vj | for v = (v1, . . . , vn) ∈ Cn

and, for u, v ∈ Cn, u = (u1, . . . , un), v = (v1, . . . , vn), the corresponding metric

d∞(u, v) = max
1� j �n

|uj − vj | = ‖u − v‖∞.

The following proposition is well known and not difficult to prove.

Proposition 2.6 (Heine–Borel). (Cn, d∞) is a metric space. A subset of (Cn, d∞) is com-
pact if and only if it is bounded and closed.

The metric d∞ on Cn is chosen for convenience only. Clearly, it can be replaced with
any other equivalent metric.

Next, we prove a topological property of the space (Cn, d∞) which we shall need in
Section 5.

Definition 2.7. Let (X, dX) be a topological space. A subset S of X is pathwise con-
nected if for each u, v ∈ S there exists a continuous function � : [0, 1] → X such that
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�(0) = u, �(1) = v, and the range of � is a subset of S. The range of the function � is
called a path from u to v which is contained in S.

Lemma 2.8. Let D be the subset of Cn consisting of all n-tuples of distinct complex num-
bers. Then D is an open pathwise-connected subset of (Cn, d∞).

Proof. Given the continuous function f (z1, . . . , zn) = ∏
i 	=j (zi − zj ) between Cn and C,

we can write D = f −1(C\{0}), and since C\{0} is open in C, D must be open in Cn.
To prove that D is pathwise connected, we let v = (v1, . . . , vn) and w = (w1, . . . , wn)

be two points in D and construct a path from v to w which is contained in D.
First consider a special case.Assume that there exists k ∈ {1, . . . , n} such that vj =wj for

all j ∈ {1, . . . , n}\{k} and vk 	= wk . Since the numbers vk, wk, v1, . . . , vk−1, vk+1, . . . , vn

are mutually distinct, it is not difficult to construct a continuous function � : [0, 1] → C

such that �(0) = vk, �(1) = wk and none of the numbers v1, . . . , vk−1, vk+1, . . . , vn is in
the range of �. Consequently, the function

�(t) = (v1, . . . , vk−1, �(t), vk+1, . . . , vn), t ∈ [0, 1],
is a path from v to w which is contained in D.

Now consider the general case of arbitrary points v= (v1, . . . , vn) and w= (w1, . . . , wn)

in D. Let u = (u1, . . . , un) ∈ D be such that

{u1, . . . , un} ∩ {v1, . . . , vn, w1, . . . , wn} = ∅.

Consider the following sequence of points in D:

(v1, v2, v3, . . . , vn−1, vn), (u1, v2, v3, . . . , vn−1, vn),

(u1, u2, v3, . . . , vn−1, vn), . . . , (u1, u2, u3, . . . , un−1, vn),

(u1, u2, u3, . . . , un−1, un), (w1, u2, u3, . . . , un−1, un),

(w1, w2, u3, . . . , un−1, un), . . . , (w1, w2, w3, . . . , un−1, un),

(w1, w2, w3, . . . , wn−1, un), (w1, w2, w3, . . . , wn−1, wn).

The special case considered above applies to each of the 2n pairs of consecutive points
in this sequence. It follows that for each of these pairs there exists a path contained in D
which connects them. Since each two consecutive pairs contains a point in common, these
2n paths connect to a path connecting v and w which is clearly contained in D. As v and w
were arbitrary points in D this proves that D is pathwise connected. �

We denote by Pn,1 the set of all monic complex polynomials of degree n. Let

f (z) = zn + an−1z
n−1 + · · · + a0, g(z) = zn + bn−1z

n−1 + · · · + b0, z ∈ C

be in Pn,1. Define a metric on Pn,1 by

dP(f, g) := max{|a0 − b0|, . . . , |an−1 − bn−1|}. (2.1)

Proposition 2.9. (Pn,1, dP) is a metric space. A subset of the metric space (Pn,1, dP) is
compact if and only if it is bounded and closed.
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Proof. The function

(v1, . . . , vn) �−→ p, where p(z) = zn + vnz
n−1 + · · · + v1,

and (v1, . . . , vn) ∈ Cn,

is a distance-preserving bijection between the spaces (Cn, d∞) and (Pn,1, dP). Therefore
the proposition follows from Proposition 2.6. �

3. The metric space of roots

At the end of Section 2, we introduced the metric space (Pn,1, dP) of all monic poly-
nomials of degree n. Now we define the space of sets of roots of these polynomials. Since
roots can occur with finite multiplicities, instead of the set of roots of a polynomial we
consider the multiset of roots, that is, we allow elements to occur with multiplicities.
Denote byZn the family of all multisets of complex numbers with n elements. For multisets
U = {u1, . . . , un} and V = {v1, . . . , vn} in Zn, define

dF (U, V ) := min
�∈�n

max
1� j �n

|uj − v�(j)|, (3.1)

where �n is the set of all permutations of {1, . . . , n}. The function dF , which is a metric by
the proposition below, is analogous to the Fréchet metric defined for curves in [2, Chapter 6].
Instead of curves here we have multisets and a function f :{1, . . . , n} → C is a parameteriza-
tion of the multiset {f (k):1�k�n}. If we denote byU andV all possible parameterizations
of multisets U and V , respectively, then definition (3.1) can be rewritten as

dF (U, V ) = min
f ∈U,g∈V

max
1�k �n

|f (k) − g(k)|.

Proposition 3.1. The function dF : Zn × Zn → [0, ∞) is a metric on Zn.

Proof. Let U, V, W ∈ Zn. We need to prove the following three properties of dF :

dF (U, V ) = 0 ⇐⇒ U = V , (3.2)

dF (U, V ) = dF (V, U), (3.3)

dF (U, V )�dF (U, W) + dF (W, V ). (3.4)

Proving (3.2) is a simple exercise. The definition of dF can be rewritten as

dF (U, V ) = min
�,�∈�n

max
1� j �n

|u�(j) − v�(j)|. (3.5)

Since the last expression is symmetric in U and V , this shows that dF (U, V ) = dF (V, U)

and thus (3.3) holds.
To prove (3.4) note that the triangle inequality for complex numbers yields

|uj − v�(j)|� |uj − w�(j)| + |w�(j) − v�(j)| (3.6)
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for arbitrary j ∈ {1, . . . , n} and arbitrary �, � ∈ �n. Keeping � and � fixed and taking
maximums with respect to j ∈ {1, . . . , n} in (3.6) we obtain

max
1� j �n

|uj − v�(j)|� max
1� l �n

|ul − w�(l)| + max
1�k �n

|w�(k) − v�(k)|. (3.7)

Keeping � ∈ �n fixed and taking the minimums of both sides in (3.7) with respect to � ∈ �n

we obtained

dF (U, V )� max
1� l �n

|ul − w�(l)| + dF (W, V )

and so (3.4) follows by taking the minimum of the right-hand side with respect to
� ∈ �n. �

Next, we explore the relationship between the space (Zn, dF ) and the more familiar
space (Cn, d∞). First we define two functions P and K .

Define P : Cn → Zn by

P((v1, . . . , vn)) := {v1, . . . , vn}, (v1, . . . , vn) ∈ Cn. (3.8)

Here an n-tuple is simply mapped to the multiset of its elements (once again, with multi-
plicities preserved). By the definitions of dF and d∞ it follows that

dF (P (v), P (w))�‖v − w‖∞ = d∞(v, w) for all v, w ∈ Cn. (3.9)

ThusP : Cn → Zn is a contraction (and therefore a continuous function) between (Cn, d∞)

and (Zn, dF ).
Clearly P is onto, but not one-to-one. For each V ∈ Zn the set

P −1(V ) := {v ∈ Cn : P(v) = V }
has between 1 and n! elements, depending on the multiplicities of the elements in V . Note
that for distinct V and W in Zn the sets P −1(V ) and P −1(W) are disjoint.

To define a partial inverse of P let K be a subset of Cn with the property that for each
V ∈ Zn the set K ∩ P −1(V ) has exactly one element. (In Example 3.5 below we give
a specific example of a set K with this property.) This assumption is equivalent to the
requirement that the restriction

P |K : K → Zn

of P onto K is a bijection. In this way to each V = {v1, . . . , vn} ∈ Zn we associate
a unique n-tuple (v1, . . . , vn) ∈ Cn that has exactly the elements of V as coordinates.
Now define the function K : Zn → Cn by

K := (P |K)−1. (3.10)

As an immediate consequence of the definitions we conclude that P ◦ K is the identity
on Zn.
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Let O ∈ Zn be the multiset consisting of n zeros. By the definitions of dF and K it
follows that

dF (V, O) = ‖K(V )‖∞ for all V ∈ Zn. (3.11)

Proposition 3.2. Let {Vk} be a sequence in (Zn, dF ). The following statements are
equivalent.

(a) The sequence {Vk} is bounded in (Zn, dF ).
(b) The set

⋃∞
k=1Vk of complex numbers is bounded in C.

(c) The sequence {K(Vk)} is bounded in (Cn, d∞).

Proof. Let {Vk} be a bounded sequence in (Zn, dF ). Since {Vk} is bounded there exists
M > 0 such that

dF (O, Vk) < M for all k ∈ N. (3.12)

By (3.11) (b) follows trivially, and just as trivially (b) implies (c). If (c) holds, then (3.11)
implies that the sequence {dF (Vk, O)} is bounded, and thus (a) follows just as easily. �

In a similar way (3.11) can be used to prove the following proposition.

Proposition 3.3. The function K : Zn → Cn maps each bounded set in (Zn, dF ) to a
bounded set in (Cn, d∞).

The continuity of K is discussed in Section 5 (see, in particular, Corollary 5.3).

Theorem 3.4. A subset of the metric space (Zn, dF ) is compact if and only if it is bounded
and closed.

Proof. LetV be an arbitrary bounded and closed subset ofZn. To prove thatV is compact
we shall prove that an arbitrary sequence {Vk} in V has a convergent subsequence. By
Proposition 3.2 the sequence {K(Vk)} is bounded in (Cn, d∞). By the Bolzano–Weierstrass
Theorem there exists a subsequence {Vmk

} of {Vk} such that {K(Vmk
)} converges, say, to

the n-tuple w = (w1, . . . , wn), in (Cn, d∞). Since P : Cn → Zn is continuous and P ◦ K

is the identity on Zn, it follows that {Vmk
} converges to P(w) in (Zn, dF ). Since V is

closed P(w) ∈ V, and thus V is compact by Lemma 2.3. Since the converse is true in each
metric space the theorem is proved. �

In the next two examples we use the notion of lexicographic ordering in C. Let a, b, c, d ∈
R. For two complex numbers a + ib and c + id the lexicographic ordering a + ib�c + id

is defined by

a + ib�c + id ⇐⇒ [(a < c) ∨ (a = c ∧ b�d)].

Example 3.5. Let Ln be the subset of Cn defined by

Ln := {(z1, . . . , zn) ∈ Cn : z1�z2� · · · �zn}.
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Since � is a total order on C, for each V ∈ Zn the set P −1(V )∩Ln has exactly one element.
Note that the setLn is not closed in (Cn, d∞). To show this consider the sequence {(−1/k+
i, 1/k − i)}∞k=1 in L2 which converges to (i, −i) in (C2, d∞). Clearly (i, −i) /∈L2. Thus
L2 is not closed.

Example 3.6. Define the function L : Zn → Cn by L := (P |Ln
)−1, where Ln was

defined in Example 3.5. Thus L(V ) = (v1, . . . , vn), where v1�v2� · · · �vn and V =
{v1, . . . , vn}. We remark that the operator L is not continuous. To show this we use the
same sequence as in Example 3.5 and note that

dF (P ((−1/k + i, 1/k − i)), P ((−i, i))) = 1/k → 0 (k → ∞).

Remark 3.7. With a different total order on C, for example,

z�w ⇐⇒ [(|z| < |w|) ∨ (|z| = |w| ∧ arg(z)� arg(w))],

the reader can create examples similar to Examples 3.5 and 3.6 (with the same negative
conclusions).

The multiplicities of roots play an important role in the classical statement of the conti-
nuity of roots of polynomials. The following proposition clarifies the relation between the
metric dF and the multiplicity of the elements in a particular multiset in Zn.

Proposition 3.8. Let V ∈ Zn be arbitrary. Let v1, . . . , vk be all the distinct elements of V

and let m1, . . . , mk be their respective multiplicities as elements of V , so that m1 + · · · +
mk = n. Put

�(V ) :=
{ 1

2 min{|vj − vl |, j 	= l, j, l ∈ {1, . . . , k}} for k > 1,

1 for k = 1.

Then for eachU ∈ Zn, such thatdF (V, U) < �(V )we have that each diskD(vj , �(V )), j=
1, . . . , k, in the complex plane contains exactly mj elements of U counted according to their
multiplicities in U .

Proof. Let U ∈ Zn be such that dF (V, U) < �(V ). Without loss of generality, let us
consider the situation around v1. Let � ∈ �n be such that �(1) = 1 and v�(j) = v�(1) =
v1, j =1, . . . , m1. By the definition of dF (V, U), see also (3.5), there exists a permutation
� ∈ �n such that

max
1� j �m1

|v�(1) − u�(j)| < �(V ).

Therefore all the elements u�(j), j = 1, . . . , m1, of U lie in the disk D(v1, �(V )). Clearly,
a similar statement holds for all the other vj and since the disks D(vj , �(V )), j =1, . . . , k,
are disjoint by the definition of �(V ), the proposition is proved. �
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4. Continuity

In this section we prove that the function Z : Pn,1 → Zn which assigns to each
polynomial p ∈ Pn,1 the multiset of its roots Z(p) ∈ Zn is a homeomorphism between
the corresponding metric spaces.

The next theorem is the classical Cauchy inequality. Cauchy’s result is restated in terms
of the metrics introduced above to emphasize its topological meaning. We reproduce the
simple proof of this fact as found in Marden’s book [3, Theorem 27.2].

Theorem 4.1 (Cauchy’s Inequality). Define en ∈ Pn,1 by en(z) := zn, z ∈ C, and for any
p ∈ Pn,1 let Z(p) ∈ Zn be the multiset of the roots of p. Then for an arbitrary polynomial
p ∈ Pn,1 we have

dF (O, Z(p)) < 1 + dP(en, p). (4.1)

(Recall that by O ∈ Zn we denote the multiset of n zeros.)

Proof. Let p(z) = zn + an−1z
n−1 + · · · + a1z + a0 ∈ Pn,1 and let Z(p) = {z1, . . . , zn} be

the roots of p. The theorem claims that the following inequality holds:

max
1� j �n

|zj | < 1 + max
0� j �n−1

|aj |. (4.2)

Let c := max{|aj | : 0�j �n−1}=dP(en, p). First notice that if any root satisfies |zk|�1,
then the inequality

|zk| < 1 + max{|aj | : 0�j �n − 1}
is trivially satisfied. Now let z ∈ C, |z| > 1. We have

|p(z)|� |z|n −
n−1∑
j=0

|aj ||z|j

� |z|n
⎛
⎝1 − c

n∑
j=1

|z|−j

⎞
⎠

> |z|n
⎛
⎝1 − c

∞∑
j=1

|z|−j

⎞
⎠

> |z|n
(

1 − c

|z| − 1

)
= |z|n |z| − (1 + c)

|z| − 1
.

Therefore, if we actually have |z| > 1 + c, then |p(z)| > 0 and z cannot be one of the roots
of p. This means that all roots of p must satisfy inequality (4.2). �

As an immediate consequence we have

Corollary 4.2. The function Z : Pn,1 → Zn maps each bounded set in (Pn,1, dP) into a
bounded set in (Zn, dF ).
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As we did above, we denote by �n the set of all permutations of {1, . . . , n}. In the
following theorem and in Section 5 we shall use the notation:

u� := (u�(1), . . . , u�(n)), for � ∈ �n, u = (u1, . . . , un) ∈ Cn. (4.3)

Theorem 4.3. The function � : Zn → Pn,1 defined by

�({z1, . . . , zn}) :=
n∏

j=1

(z − zj ),

is a continuous function between (Zn, dF ) and (Pn,1, dP).

Proof. Let {z1, . . . , zn} ∈ Zn be the roots of p(z)=zn+an−1z
n−1+· · ·+a1z+a0 ∈ Pn,1.

By Viète’s formulas,

a0 = (−1)nz1z2 · · · zn =: 	1(z1, . . . , zn)

a1 = (−1)n−1
n∑

k=1

∏
j 	=k

zj =: 	2(z1, . . . , zn)

... = ... =: ...

an−1 = −(z1 + z2 + · · · + zn) =: 	n(z1, . . . , zn).

As a linear combination of products of continuous functions, each function 	k:Cn → C,

k = 1, . . . , n, is continuous. Also note that each function 	k is symmetric, that is

	k(u) = 	k(u�), for all u ∈ Cn, � ∈ �n, k ∈ {1, . . . , n}.
(In fact each 	k is a constant multiple of an elementary symmetric polynomial.)

Consider the function 
 : Cn → Cn defined by


(v) = (	1(v), . . . ,	n(v)), v ∈ Cn.

The function 
 : Cn → Cn is continuous and symmetric, since each of its components
	k is continuous and symmetric. Therefore for each � > 0 and each v ∈ Cn there exists
�(�, v) > 0 such that

w ∈ Cn, d∞(v, w) < �(�, v) �⇒ d∞(
(v), 
(w)) < �.

Also


(u) = 
(u�) for all u ∈ Cn, � ∈ �n.

The last two displayed relations yield

w ∈ Cn, min
�∈�n

d∞(v, w�) < �(�, v) �⇒ d∞(
(v), 
(w)) < �. (4.4)

Let K : Zn → Cn be the function defined in (3.10) and let V, W ∈ Zn. By the definition
of dF and (4.3) we have

dF (V, W) = min
�∈�n

d∞(K(V ), K(W)�).
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With this observation, (4.4) yields

W ∈ Zn, dF (V, W) < �(�, K(V ))

�⇒ d∞(
(K(V )), 
(K(W))) < �. (4.5)

The definitions of � and 
 and the proof of Proposition 2.9 imply that

d∞(
(K(V )), 
(K(W))) = dP(�(V ), �(W)), V , W ∈ Zn. (4.6)

Substituting (4.6) into (4.5) we obtain that for each � > 0 and each V ∈ Zn there exists
�(�, K(V )) > 0 such that

W ∈ Zn, dF (V, W) < �(�, K(V )) �⇒ dP(�(V ), �(W)) < �.

This proves the continuity of �. �

Now, we can prove that the space of roots and the space of polynomials are homeomorphic.

Theorem 4.4. The function Z : Pn,1 → Zn which associates with each polynomial p ∈
Pn,1 the multiset of its roots Z(p) ∈ Zn is a homeomorphism between (Pn,1, dP) and
(Zn, dF ).

Proof. Clearly the functions Z and � are each other’s inverse, and so � : Zn → Pn,1 is a
bijection. Let us verify the assumptions of Theorem 2.4:

(a) By Theorem 3.4, each bounded and closed subset of the metric space (Zn, dF ) is
compact.

(b) By Theorem 4.3, � is continuous.
(c) By Corollary 4.2, the function �−1 = Z maps bounded subsets of Pn,1 into bounded

subsets of Zn.

Thus Theorem 2.4 applies and we conclude that �−1 = Z is continuous. Consequently,
Z is a homeomorphism and the theorem is proved. �

5. Roots in Cn

In Section 3, we introduced a bijection K between Zn and a subset K of Cn such that
for each V ∈ Zn the n-tuple K(V ) and the multiset V have the same elements, counting
multiplicities. Example 3.6 offers a specific bijection L between Zn and a subset Ln of Cn.
This bijection turns out not to be continuous. Since the space Cn is more familiar than Zn,
it would be desirable to have a bijection K : Zn → K ⊂ Cn which is a homeomorphism
between (Zn, dF ) and (K, d∞). In this section, we prove that this is not possible.

Theorem 5.1. Let P be defined by (3.8). Let K be a subset of Cn with the property that for
each V ∈ Zn the set K∩ P −1(V ) has exactly one element. Let K : Zn → Cn be defined
by K = (P |K)−1. Then K is continuous if and only if its range K is closed in (Cn, d∞).
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Proof. Assume that K is continuous. Let {uk} be a Cauchy sequence in K. Since the
function P satisfies (3.9), the sequence {P(uk)} is Cauchy in Zn. As Znis complete by
Theorem 3.4 and Proposition 2.5, this sequence is convergent, say, to V in (Zn, dF ). Since
K is continuous the sequence {uk} = {K(P (uk))} converges to K(V ) ∈ K. Thus, K is
closed in (C, d∞).

To prove the converse assume that K is closed. Then the function P |K : K → Zn

satisfies all the assumptions of Theorem 2.4 (recall that K is equipped with the metric
d∞). Assumption (a) in Theorem 2.4 is satisfied since each bounded and closed subset
of K is bounded and closed in (Cn, d∞) and therefore compact in Cn and consequently
compact in K. Assumption (b) in Theorem 2.4 follows from (3.9), and (c) follows from
Proposition 3.3. �

Theorem 5.2. Let K be as in Theorem 5.1. Then K is not closed in (Cn, d∞).

Proof. Let D be the set of all points u = (u1, . . . , un) ∈ Cn such that uk 	= uj whenever
k 	= j . For a point w in Cn and r > 0 let

B(w, r) = {v ∈ Cn : d∞(w, v) < r}

be the open ball centered at w and with radius r . Also, define �∗
n to be the set of all

permutations of {1, . . . , n} minus the identity permutation.
By contradiction, suppose that K is closed in (Cn, d∞). Let u ∈ K ∩ D, that is, all the

coordinates of u ∈ K are mutually distinct. By the definition of K, for every � ∈ �∗
n we

have that u� ∈ Cn\K. Since Cn\K is open, there exists an r� > 0 such that the entire open
ball B(u�, r�) is contained in Cn\K. Now we put

r := min{r� : � ∈ �∗
n}

and prove that the ball B(u, r) is entirely contained inK. To observe this, pick a v ∈ B(u, r).
Then, by our choice of r it follows that v� is contained in B(u�, r�) (and thus v� /∈K) for
all � ∈ �∗

n. Since our construction of K requires that some permutation of the coordinates
of v be contained in K, and the only one we have left is v itself, we conclude that v ∈ K.
So, B(u, r) ⊂ K, as claimed. We have thus proved that all the points in K∩D (i.e., those
with n distinct coordinates) are interior points of K.

Now let � ∈ �∗
n. Since u ∈ K ∩ D, we have u� ∈ D\K. By Lemma 2.8, D is pathwise

connected. Therefore, there exists a continuous function � : [0, 1] → D such that �(0)=u
and �(1) = u�. Let

a := sup{t ∈ [0, 1] : �(t) ∈ K}. (5.1)

This supremum exists since �(0) = u ∈ K so the set on the right-hand side of (5.1) is
not empty. As we assume that K is closed, �(a) ∈ K. Therefore a < 1. The range of
� is a subset of D, and thus �(a) ∈ K ∩ D and consequently �(a) must be an interior
point of K. Since � is continuous this contradicts the definition of a. Thus K cannot be
closed. �
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An immediate consequence of the previous two theorems is as follows:

Corollary 5.3. The operator K defined in Theorem 5.1 is not continuous.

Example 5.4. Let Ln, L, and Z be as in Examples 3.5, 3.6 and Theorem 4.4. Then the
function L ◦ Z : Pn,1 → Ln ⊂ Cn is not continuous. For simplicity, we consider n = 2.
The sequence of polynomials

z2 + 1 + 2i/k − 1/k2, k ∈ N,

converges to z2 + 1 in (P2,1, dP), but the sequence of lexicographically ordered pairs
of their roots (−1/k + i, 1/k − i), k ∈ N, does not converge in (C2, d∞) to the pair of
lexicographically ordered roots (−i, i) of z2 + 1.

Remark 5.5. A metric space setting for Theorem 4.4 is also provided in [4] and parts of
our proof are similar to the proofs in [4]. In [4], the authors consider two metric spaces:
the space of all monic polynomials of degree n and the space of their roots considered as
ordered n-tuples of complex numbers (ordered lexicographically as explained in Example
3.5) and equipped with the d∞ metric. Example 5.4 points out the difficulty with this setting
(which invalidates the argument in [4]). Moreover, Corollary 5.3 and Theorem 4.4 imply
that it is not possible to identify the roots of monic polynomials with unique n-tuples and
equip such a set with the d∞ metric and have a homeomorphism between such a space of
roots and the space of polynomials. This indicates that the metric dF is the natural metric
on the roots.

6. Final remarks

We conclude with some historical remarks. In 1939, Ostrowski [5] published his own
form of the perturbation theorem for polynomial roots. We quote it from [6, Appendix A].

Theorem 6.1. Consider two polynomials:

f (x) = a0x
n + · · · + an, a0 = 1,

g(x) = b0x
n + · · · + bn, b0 = 1.

Let the n roots of f (x) be x1, . . . , xn, and those of g(x), be y1, . . . , yn. Put

 = 2�, � = max
�>0

(|a�|1/�, |b�|1/�).

Introduce the expression

ε = n

√√√√ n∑
�=1

|b� − a�| n−�.

The roots x� and y� can be ordered in such a way that we have

|x� − y�| < (2n − 1) ε(� = 1, . . . , n).
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We can see that Ostrowski’s statement was quite “ready” for the language of the metric
dF , as it essentially contains the definition we give of dF in Section 3. To show an alternate
presentation of the classical perturbation theorem (although this time without the kind of
numerical estimate that Ostrowski wished to obtain), here is the one given in [3]:

Theorem 6.2. Let

f (z) = a0 + a1z + · · · + anz
n = an

p∏
j=1

(z − zj )
mj , an 	= 0,

F(z) = (a0 + ε0) + (a1 + ε1)z + · · · + (an−1 + εn−1)z
n−1 + anz

n

and let

0 < rk < min |zk − zj |, j = 1, 2, . . . , k − 1, k + 1, . . . , p.

Then there exists a positive number ε such that, if |εi |�ε for i = 0, . . . , n − 1, then F(z)

has precisely mk zeros in the circle Ck with center zk and radius rk .

As a last quote, here is a version of the continuity theorem from the recent major survey of
the theory of polynomials by Rahman and Schmeisser [7, Theorem 1.3.1 and Supplement]:

Theorem 6.3. Let

f (z) =
n∑

�=0

a�z
� =

k∏
j=1

(z − zj )
mj (m1 + · · · + mk = n)

be a monic polynomial of degreenwith distinct zeros z1, . . . , zk of multiplicitiesm1, . . . , mk .
Then, given a positive ε < min1� i � j �k|zi − zj |/2, there exists a � > 0 so that any monic
polynomial g(z) = ∑n

�=0b�z
� whose coefficients satisfy |b� − a�| < �, for � = 1, . . . , n − 1,

has exactly mj zeros in the disk

D(zj , ε) (j = 1, . . . , k).

Further, if we let

A := max{1, 2|a�|1/(n−�) : � = 0, . . . , n − 1}
and let the zeros of f be denoted by �1, . . . , �n, where an m-fold zero is now listed m times,
then, for sufficiently small � > 0, there exists a numbering of the zeros of g as �1, . . . ,�n

such that max1���n|�� − ��|�4A�1/n.

To conclude: in every case known to us, the classical perturbation theorem has been
presented as a continuity result (in a more or less convoluted way) and it has been proved by
many authors using a variety of techniques (mostly from complex function theory, or trying
to obtain useful numerical estimates). We hope that our topological presentation, and the
emphasis on the homeomorphic relation between roots and polynomials, may have added
to the understanding of this elegant, age-old result.
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