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INDEFINITE STURM-LIOUVILLE OPERATORS

IN POLAR FORM

BRANKO ĆURGUS, VOLODYMYR DERKACH, AND CARSTEN TRUNK

Abstract. We consider the indefinite Sturm-Liouville differential expression

a(f) := −
1

w

(

1

r
f ′

)′

,

where a is defined on a finite or infinite open interval I with 0 ∈ I and the coef-
ficients r and w which are locally summable and such that r(x) and (sgnx)w(x)
are positive a.e. on I. With the differential expression a we associate a non-
negative self-adjoint operator A in the Krein space L2

w
(I) which is viewed as a

coupling of symmetric operators in Hilbert spaces related to the intersections
of I with the positive and the negative semi-axis. For the operator A we derive
conditions in terms of the coefficients w and r for the existence of a Riesz basis
consisting of generalized eigenfunctions of A and for the similarity of A to a
self-adjoint operator in a Hilbert space L2

|w|
(I). These results are obtained

as consequences of abstract results about the regularity of critical points of
nonnegative self-adjoint operators in Krein spaces which are couplings of two
symmetric operators acting in Hilbert spaces.
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1. Introduction

Let I = (b−, b+) be a finite or infinite interval such that −∞ ≤ b− < 0 < b+ ≤
+∞. We consider the indefinite Sturm-Liouville differential expression a on I that
is given in polar form

(
af
)
(x) := − 1

w(x)

d

dx

(
1

r(x)

d

dx
f(x)

)
, (1.1)

where the coefficients r and w are real functions on I satisfying the conditions

r, w ∈ L1
loc(I) and r(x), (sgnx)w(x) > 0 for a.a. x ∈ I. (1.2)

With the differential expression a we associate a closed linear operator A in the
weighted Hilbert space space L2

|w|(I). The operator A is not self-adjoint in L2
|w|(I)

but it is self-adjoint and nonnegative in the Krein space L2
w(I) which coincides with

L2
|w|(I) as a normed vector space and has indefinite inner product

[f, g]w :=

∫

I

f(x)g(x)w(x)dx,

see [22] for a similar setting.
We are interested in the following two properties of the differential operator A:

(Ri) Riesz basis property, that is, the existence of a Riesz basis of the Hilbert
space L2

|w|(I) which consists of eigenfunctions and generalized eigenfunc-

tions of A;
(Si) Similarity of A to a self-adjoint operator in the Hilbert space L2

|w|(I), that

is, the existence of a bounded and boundedly invertible operator T such
that T−1AT is self-adjoint in the Hilbert space L2

|w|(I).

Our results will be formulated in terms of the functions

W±(x) :=

∫ x

0

w±(ξ)dξ, R±(x) :=

∫ x

0

r±(ξ)dξ, x ∈ I±, (1.3)

where I− = (b−, 0), I+ = (0, b+), w− is the restriction of −w onto I− and w+ is
the restriction of w onto I+.

The first result of this kind was given by Beals in [5]. The first proof of the
existence of a weight w, with r = 1, for which A does not have the Riesz basis
property was given by Volkmer in [76]. The first characterization of the Riesz basis
property for the operator A was given by Parfenov [61] in the case when w is odd
and r = 1. Using Pyatkov’s approach via interpolation spaces [64, 65], Parfenov
proves that the Riesz basis property for the operator A holds if and only if the
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function W+ is positively increasing at 0+. Recall that a nondecreasing positive
function ϕ is called positively increasing at 0+ if there exists λ ∈ (0, 1) such that
lim supx↓0

(
ϕ(λx)/ϕ(x)

)
< 1; ψ is positively increasing at 0− if x 7→ −ψ(−x) is

positively increasing at 0+.
In [58] Kostenko used a different method to characterize the properties (Si) and

(Ri) for differential operator A with odd w and even r. In particular, it was shown
in [58] that the Riesz basis property for the operator A holds if and only if the
function W+ ◦R−1

+ is positively increasing at 0+.
One of the main results of this paper is the following theorem in which we give

a sufficient condition for the Riesz basis property, in the spirit of Parfenov’s and
Kostenko’s results, but without the assumptions that w is odd and r is even. We
also give a new kind of a characterization of the Riesz basis property whenW±◦R−1

±

are slowly varying functions. Recall that a measurable positive function ϕ is said
to be slowly varying at 0+ if for all λ > 0 we have limx↓0

(
ϕ(λx)/ϕ(x)

)
= 1; ψ is

slowly varying at 0− if x 7→ −ψ(−x) is slowly varying at 0+, for more about slowly
varying functions see Appendix A.

Theorem A. Let the differential expression a satisfy (1.2) and let W± and R±

be the functions defined in (1.3). Assume that the spectrum of the operator A
associated with the differential expression a in the Hilbert space L2

|w|(I) is discrete.

Then the eigenvalues of A accumulate on both sides of ∞ and the following two
statements hold.

(a) If either W+ ◦R−1
+ is positively increasing at 0+ or W− ◦R−1

− is positively
increasing at 0−, then the operator A has the Riesz basis property (Ri).

(b) If W+ ◦R−1
+ is slowly varying at 0+ and W− ◦R−1

− is slowly varying at 0−,
then the Riesz basis property (Ri) is equivalent to the condition

(
1 +

W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0. (1.4)

The main tool that we use in this paper is Langer’s spectral theory of definitizable
operators in Krein spaces, see [59]. Our differential operator A is a nonnegative self-
adjoint operator with a nonempty resolvent set in the Krein space L2

w(I). This is a
special kind of a definitizable operator that admits a spectral function E defined on
R \ {0} which behaves similarly to the spectral function of a self-adjoint operator
in a Hilbert space with a possible exception of two critical points 0 and ∞. A
critical point is called regular if Et is bounded in a neighbourhood of that point.
Otherwise, a critical point is called singular. By cs(A) ⊆ {0,∞} we denote the set
of singular critical points of A and by cr(A) ⊆ {0,∞} the set of regular critical
points of A.

In the case of discrete spectrum of the differential operator A, the Riesz basis
property of A is equivalent to the regularity of the critical point ∞, see [16, Propo-
sition 4.1]. This fact and the paper of Beals [5] were motivation for [16, 18, 33,
76, 8, 9, 34, 57, 15] to study definitizability and the regularity of the critical point
infinity for differential operators; see also a detailed survey by Fleige [35].

The regularity of both critical points of A is equivalent to A being similar to
self-adjoint operator in a Hilbert space. This fact was used by Ćurgus and Najman
in [17] to prove that the operator associated with (1.1) where w(x) = sgn(x), r = 1
and I = R is similar to a self-adjoint operator in the Hilbert space L2(R). This
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result was reproved and generalized by Krein space and other methods by several
authors, see [19, 20, 36, 48, 32, 49, 50, 52, 58].

The questions of similarity of a differential operator to self-adjoint operator and
the existence of a Riesz basis consisting of its eigenfunctions arise in problems of
numerical computation of eigenvalues. For example, in [39, Subsection 4.1.2] the au-
thors study the differential expression (1.1) with w(x) = x3, r = 1 and I = [−1, 1].
To construct an efficient and accurate eigensolver for the associated differential op-
erator it was important that the operator is similar to a self-adjoint operator and
that its eigenfunctions form a Riesz basis of the Hilbert space L2

|w|[−1, 1]. This

offers a potential application of our results in numerical computation of eigenvalues
for differential operators with more general coefficients than considered in [39].

This paper is organized as follows. In Sections 2 and 3 we establish conditions for
the regularity of the critical points 0 and ∞ for a nonnegative self-adjoint operator
A with a nonempty resolvent set in an abstract Krein space K. We use a boundary
triple approach to extension theory developed in [55, 37, 26] and we construct A
as a coupling of two abstract symmetric operators A+ = B+ and A− = −B−,
where B+ and B− are nonnegative symmetric operators with defect numbers (1, 1)
acting in Hilbert spaces H+ and H− which form a fundamental decomposition for
K. The coupling method was developed for operators in Hilbert spaces in [25] and
it was used in [48], and also in [51, 49, 50, 58], to study the problem of similarity
of differential operators with indefinite weights to self-adjoint operators in Hilbert
spaces. When boundary triples

(
C,Γ+

0 ,Γ
+
1

)
and

(
C,Γ−

0 ,Γ
−
1

)
for the operators B+

and B− are fixed the coupling A of the operators A+ and A− relative to these
boundary triples is uniquely defined as a self-adjoint operator acting in the Krein
space K with the fundamental decomposition K = H+[+]H−, see Theorem 3.1.

We use the resolvent criterion of K. Veselić [75] to study regularity of critical
points of the coupling A in terms of the Weyl functionsm+ andm− of the operators
B+ and B−. It was shown in [51, 49] that the so-called D∞-property

max
{
Imm+(iy), Imm−(iy)

}
∣∣m+(iy) +m−(−iy)

∣∣ = O(1) as y → +∞

is necessary for ∞ 6∈ cs(A). In Theorem 3.10 we prove that D∞-property is also
sufficient for ∞ 6∈ cs(A) provided that the Weyl functions m+ and m− satisfy the
condition:

For some y0 > 0 Rem+(iy)Rem−(iy) > 0 for all y > y0. (1.5)

Moreover, in Theorem 3.13 we prove that under the assumption (1.5) the one-sided
condition

Imm+(iy) = O(Rem+(iy)) as y → +∞
is sufficient for ∞ 6∈ cs(A). In Theorem 3.11 and Theorem 3.14 we prove analogous
results for 0 6∈ cs(A).

In Section 4, the abstract results from Section 3 are adapted to indefinite Sturm-
Liouville operators. Let H± be the weighted spaces H± := L2

w±
(I±) and let B± be

nonnegative symmetric operators generated in H± by the differential expressions

b±(f) := − 1

w±

(
1

r±
f ′

)′

on I±. (1.6)

Using the above scheme we represent the operator A as a coupling of two symmetric
operators A+ := B+ and A− := −B−. Conditions for regularity of critical points
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0 and ∞ of the differential operator are formulated in terms of the functions (1.3).
We use the results of Bennewitz [7] and Kostenko [58] to reformulate one-sided
sufficient conditions for regularity of critical points ∞ or 0 from Theorem 3.13
in terms of the functions W± and R±. Specifically, in Theorem 4.13, we show
that if either W+ ◦ R−1

+ is positively increasing at 0+ or W− ◦ R−1
− is positively

increasing at 0−, then ∞ is a regular critical point for the operator A associated
with indefinite differential expression (1.1). In Theorem 4.17 we prove that in the
case of slowly varying functions W± ◦ R−1

± the condition ∞ ∈ cr(A) is equivalent
to the condition (1.4) in Theorem A. This result is obtained by combining the
characterization of the regularity of the critical point ∞ for the operator A from
Theorem 3.10 with the Atkinson asymptotic formula for the Weyl functions m+(iy)
and m−(iy) proved in [3] and [7]. Theorem A is a special case of Theorems 4.13
and 4.17.

To show the strength of our results, in Example 4.21 we present an indefinite
Sturm-Liouville operator A with a nonodd weight for which Theorem 4.17 guaran-
tees that ∞ is a regular critical point, but other known criteria for regularity such as
Volkmer’s condition from [76], Fleige’s condition from [15], Parfenov’s condition [62]
cannot be applied.

In Theorem 4.28 we give a list of sufficient conditions under which we have
0 /∈ cs(A) for the differential operator A. In particular, it is shown that in the case
when w+ ∈ L1(I+) and w− ∈ L1(I−) the following equivalence holds

0 6∈ cs(A) and kerA = kerA2 ⇔ W+(b+) +W−(b−) 6= 0. (1.7)

The proof of this theorem is based on abstract results from Theorems 3.11 and 3.14
and asymptotic formulas for the Weyl functions of the operators B+ and B− from
Lemmas 4.10 and 4.11.

In Theorem 4.34 we combine the regularity results for the points 0 and ∞ to
obtain new results about similarity of the operator A to a self-adjoint operator in
a Hilbert space. In the particular case when w+ ∈ L1(I+) and w− ∈ L1(I−) these
results take the folowing form

Theorem B. Let the differential expression a satisfy (1.2) and let W±, R± be the
functions defined in (1.3). Assume that w+ ∈ L1(I+), w− ∈ L1(I−) and one of the
equivalent conditions in (1.7) is satisfied. Then the following statements hold.

(i) If either W+ ◦R−1
+ is positively increasing at 0+ or W− ◦R−1

− is positively
increasing at 0−, then (Si) holds for A.

(ii) If W+ ◦R−1
+ is slowly varying at 0+ and W− ◦R−1

− is slowly varying at 0−,
then similarity property (Si) for A is equivalent to condition (1.4).

In Section 4 we systematically use results of Karamata theory, see for exam-
ple [56], about positively increasing and slowly varying functions which are pre-
sented and developed for our purposes in Appendix A. In particular, it is shown
that the condition for the function W± ◦R−1

± to be slowly varying is equivalent to
Atkinson condition (4.19), see Corollary A.8.

1.1. Notation. By C we denote the set of complex numbers and by R the set of
real numbers. By C+ (resp. C−) we denote the set of all z ∈ C with positive (resp.
negative) imaginary part. Similarly, R+ (resp. R−) stands for the set of all positive
(resp. negative) reals. For z ∈ C, z, Re z and Im z denote the complex conjugate,
real and imaginary part of z.
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All operators in this paper are closed densely defined linear operators. For such
an operator T , we use the common notation ρ(T ), dom(T ), ran(T ) and ker(T ) for
the resolvent set, the domain, the range and the null-space, respectively, of T .

We use the asymptotic notation little-o, big-O and ∼ defined at +∞ as follows:
f(x) = o

(
g(x)

)
as x→ +∞ if and only if limx→+∞ f(x)/g(x) = 0; f(x) = O

(
g(x)

)

as x → +∞ if and only if there exist M,a ∈ R+ such that |f(x)| ≤ M |g(x)| for
all x ≥ a; f(x) ∼ g(x) as x → +∞ if and only if limx→+∞ f(x)/g(x) = 1. Similar
notation is used in the right and left neighborhood of 0 with analogous definitions.

2. Preliminaries

2.1. Definitizable operators in Krein spaces. A Krein space
(
K, [ · , · ]K

)
is

a complex vector space K with a sesquilinear form [ · , · ]K such that there exist
subspaces H+ and H− of K with

(
H+, [ · , · ]K

)
and

(
H−,−[ · , · ]K

)
being Hilbert

spaces and K = H+[+̇]H− is a direct and orthogonal sum; this direct orthogonal
sum is called a fundamental decomposition of a Krein space K. Let P+ and P−

be projections associated with the direct sum K = H++̇H−. The operator J :=
P+ − P− is called a fundamental symmetry of a Krein space. The space K with
the inner product 〈x, y〉K = [Jx, y]K, x, y ∈ K, is a Hilbert space. All topological
notions in a Krein space refer to the topology of the Hilbert space

(
K, 〈 · , · 〉K

)
. For

the general theory of Krein spaces and operators acting in them we refer to the
monographs [4, 11]. For a subspace L ⊂ K denote by κ+(L) (resp. κ−(L)) the least
upper bound of the dimensions of positive (resp. negative) subspaces of L.

Let A be a linear operator in a Krein space
(
K, [ · , · ]K

)
with a dense domain

domA. The adjoint of A with respect to the inner product [ · , · ]K is denoted by
A[∗]. The operator A is called symmetric in

(
K, [ · , · ]K

)
if A[∗] is an extension of

A and A is called self-adjoint in
(
K, [ · , · ]K

)
if A = A[∗]. The operator A is called

nonnegative in
(
K, [ · , · ]K

)
if [Af, f ]K ≥ 0 for all f ∈ domA.

According to [59] a self-adjoint operator A is called definitizable, if its resolvent
set ρ(A) is nonempty and there exists a real polynomial p such that p(A) is non-
negative. Such polynomial p is called definitizing polynomial of A. The non-real
spectrum of a definitizable operator consists of a finite set of points symmetric with
respect to R. A real number λ is said to be a critical point of A if p(λ) = 0 for
every definitizing polynomial p of A. Similarly, ∞ is a critical point of A, if at least
one of its definitizing polynomials p is of odd degree and the real spectrum of A is
neither bounded from below, nor bounded from above. The set of critical points of
A is denoted by c(A).

In particular, a self-adjoint nonnegative operator A with nonempty resolvent set
ρ(A) is definitizable with definitizing polynomial p(λ) = λ and the only possible
critical points of A are 0 and ∞.

A definitizable operator A admits a spectral function E, see [59, Theorem II.3.1],
defined on the semiringR generated by all intervals whose endpoints are not critical
points of A with E(∆) being self-adjoint projection in

(
K, [ · , · ]K

)
for every ∆ ∈ R.

Moreover,
(
E(∆)K, [ · , · ]K

)
is a Hilbert space whenever ∆ ⊂ {t ∈ R : p(t) > 0}. (2.1)

It follows from the properties of the spectral function E, see [59], that the restriction
of A to its spectral subspace E(∆)K in (2.1) is a self-adjoint operator in the Hilbert
space

(
E(∆)K, [ · , · ]K

)
. A similar statement holds for intervals in {t ∈ R : p(t) < 0}.
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However, if one of the endpoints of the interval approaches a critical point, it may
happen that the norms of the corresponding spectral projections are unbounded.
More precisely, a point α ∈ c(A) is called a regular critical point of A, if there exists
a neighbourhood G of α such that

the set of projections
{
E(∆) : ∆ ∈ R, ∆ ⊂ G \ {α}

}
is bounded.

The set of all regular critical points of A is denoted by cr(A). A critical point of
A which is not regular is called singular critical point of A. The set of all singular
critical points of A is denoted by cs(A). It is often difficult to decide whether a
critical point is singular or regular. A widely used characterization for ∞ 6∈ cs(A)
is from K. Veselić [75], see also [41, Corollaries 1.5 and 1.6], [2]. Due to the Uniform
Boundedness Principle it can be reformulated as follows.

Theorem 2.1. Let A be a definitizable operator in a Krein space (K, [ · , · ]K) and
α ∈ R. Then:

(a) ∞ 6∈ cs(A) if and only if there exists η0 > 0 such that for every f ∈ K
∫ η

η0

Re
[
(A− iy)−1f, f

]
K
dy = O(1) as η → +∞. (2.2)

(b) α 6∈ cs(A) and ker(A−α) = ker
(
(A−α)2

)
if and only if there exists η0 > 0

such that for every f ∈ K
∫ η0

η

Re
[
(A− α− iy)−1f, f

]
K
dy = O(1) as η → 0. (2.3)

Let us consider a nonnegative operator A in a Krein space
(
K, [ · , · ]K

)
. Then, as

mentioned above, the only possible critical points are 0 and ∞. Assume that (2.2)
holds. Then, by the proof of [40, Lemma 1] this implies that the set of projections
E((1, n)) and E((−n,−1)), n ∈ N, is bounded, which in turn implies ∞ 6∈ cs(A).
Moreover, it is easy to see that the new inner product defined for f, g ∈ (I −
E([−1, 1]))K via

〈f, g〉new := lim
n→∞

[(E(1, n))− E((−n,−1)f, g]

is a Hilbert space inner product and that the restriction of A to (I − E([−1, 1]))K
is self-adjoint in the corresponding Hilbert space. A similar reasoning using (2.3)
holds for the point zero. This implies the following well-known statement (see, e.g.
[59]).

Theorem 2.2. A nonnegative operator A in a Krein space has the similarity prop-
erty (Si) if and only if ρ(A) 6= ∅, ker(A) = ker(A2) and 0,∞ 6∈ cs(A).

2.2. Boundary triples and Weyl functions of symmetric operators. In this
subsection we will use S for a closed densely defined symmetric operator in the
Krein space

(
K, [ · , · ]K

)
. Let ρ̂(S) denote the set of points of regular type of S,

see [1], and let Nz denote the defect subspace of the operator S

Nz := ran(S − z)[⊥], z ∈ ρ̂(S).

The numbers n±(S) := dim(Nz) are constant for all z ∈ ρ̂(S) ∩ C± and are called
defect numbers of S.
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In what follows we assume that the operator S admits a self-adjoint extension S̃

in
(
K, [ · , · ]K

)
with a nonempty resolvent set ρ(S̃). Then for all z ∈ ρ(S̃) we have

dom(S[∗]) = dom(S̃)∔Nz direct sum in H. (2.4)

This implies, in particular, that the dimension dim(Nz) is constant for all z ∈ ρ(S̃)
and hence n+(S) = n−(S). Moreover, we assume everywhere in this paper that
n±(S) = 1. Notice that the coincidence of defect numbers of a symmetric operator

S in a Krein space does not imply the existence of self-adjoint extension S̃ of S,
see [70].

Definition 2.3. Let Γ0 and Γ1 be linear mappings from dom(S[∗]) to C such that

(i) the mapping Γ : f →
(
Γ0f
Γ1f

)
from dom(S[∗]) to C2 is surjective;

(ii) the abstract Green’s identity
[
S[∗]f, g

]
K
−
[
f, S[∗]g

]
K
= (Γ1f)(Γ0g) − (Γ0f)(Γ1g) (2.5)

holds for all f , g ∈ dom(S[∗]).

Then the triple
(
C,Γ0,Γ1

)
is called a boundary triple for S+, see [37, 26, 23] for

much more general setting.

It follows from (2.5) that the extensions S0, S1 of S defined as restrictions of S+

to the domains

dom(S0) := ker(Γ0), and dom(S1) := ker(Γ1)

are self-adjoint extensions of S.

Given a self-adjoint extension S̃ of S with nonempty ρ(S̃) one can always choose

a boundary triple
(
C,Γ0,Γ1

)
for S such that S0 = S̃, see [24, Proposition 2.2]. In

this case for every z ∈ ρ(S0) the decomposition (2.4) holds with S̃ = S0 and the
mapping Γ0|Nz

: Nz → C is invertible for every z ∈ ρ(S0). A vector-valued function
γ(z) defined on ρ(S0) with values in Nz is called the γ-field of S, associated with
the boundary triple

(
C,Γ0,Γ1

)
if

Γ0γ(z) = 1 for all z ∈ ρ(S0).

Notice, that γ(z) satisfies the equality, see [24, Proposition 2.2],

γ(z) = (S0 − z0)(S0 − z)−1γ(z0), z, z0 ∈ ρ(S0) (2.6)

and hence the vector-valued function γ(z) is holomorphic on ρ(S0).

Definition 2.4. The function M(z) defined by the equality

M(z)Γ0fz = Γ1fz, fz ∈ Nz , z ∈ ρ(S0),

is called the abstract Weyl function of S, corresponding to the boundary triple(
C,Γ0,Γ1

)
.

The notion of the abstract Weyl function was introduced in [26] for a Hilbert
space symmetric operator and in [23] for a Krein space symmetric operator.

Clearly, M(z) = Γ1γ(z) for z ∈ ρ(S0), and hence M(z) is well defined. It follows
from (2.5) and (2.6) that the Weyl function M(z) satisfies the identity

M(z)−M(w) = (z − w) [γ(z), γ(w)]K, z, w ∈ ρ(S0). (2.7)
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With w = z the identity (2.7) yields that the Weyl function M satisfies the sym-
metry condition

M(z) =M(z), z ∈ ρ(S0). (2.8)

In the case when
(
H, 〈 · , · 〉H

)
is a Hilbert space we will use the notation B for

a closed densely defined symmetric operator in the Hilbert space H with defect
numbers (1, 1). Let

(
C,Γ0,Γ1

)
be a boundary triple for B〈∗〉. We will use the

notations m(z) and γB(z) for the abstract Weyl function and for the γ-field of B
corresponding to the boundary triple

(
C,Γ0,Γ1

)
. It follows from (2.7) and (2.8)

that m is a Nevanlinna function, see [45], i.e. m is holomorphic at least on C \ R
and satisfies the following two conditions

m(z) = m(z) and Imm(z) ≥ 0, z ∈ C+.

Since the operator B is densely defined the following two conditions hold (see [27,
Theorem 7.36])

lim
y↑+∞

y−1m(iy) = 0, lim
y↑+∞

y Imm(iy) = +∞. (2.9)

Assume that the operators B and its self-adjoint extension B0 with the domain
domB0 = kerΓ0 are nonnegative. Then the Weyl function m is holomorphic on
R−. A Nevanlinna function m with the above property which, in addition, takes
nonnegative values for all z ∈ R− is called a Stieltjes function. The class of all
Stieltjes functions is denoted by S.

A Stieltjes function m admits the integral representation, [45],

m(z) = a+

∫ +∞

0

dσ(t)

t− z
(2.10)

with a ≥ 0 and with a non-decreasing function σ(t), such that
∫ +∞

0
dσ(t)
1+t converges

Notice, that for the Stieltjes function m with the integral representation (2.10) the
latter condition in (2.9) is equivalent to

∫ +∞

0

dσ(t) = +∞. (2.11)

The following statement is immediate from (2.10) and (2.11).

Proposition 2.5. Let m ∈ S and (2.9) hold. Then Rem(iy) > 0 for all y ∈ R+.

2.3. Real operators. Recall the notions of real operator and real vector valued
function with respect to some conjugation, see [30, Section III.5] and [26, 55].

Definition 2.6. An involution jK on a Krein space
(
K, [ · , · ]K

)
is called a conju-

gation on K if

[jKf, jKg]K = [g, f ]K for all f, g ∈ K. (2.12)

A closed operator T in a Krein space K is called real, if

jK dom(T ) = dom(T ) and jKT = T jK.

Every conjugation is an anti-linear operator, see [73, Section IX.2], i.e.

jK(λf + µg) = λjKf + µjKg for all f, g ∈ K, λ, µ ∈ C.

If T is real and densely defined then its adjoint T [∗] is also a real operator in K.
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A vector f in K is called real with respect to the conjugation jK, if jKf = f . An
arbitrary vector f ∈ K can be decomposed into the sum

f = fR + if I , where fR =
1

2
(f + jKf) and f I =

1

2i
(f − jKf) are real.

(2.13)
Let j be the standard conjugation in C, jz = z for all z ∈ C. A scalar function

m(z) is called real, if its domain of holomorphy hm is symmetric with respect to

R and m(z) = m(z) for all z ∈ hm. Similarly, a vector valued function γ(z) with
domain of holomorphy hγ = hγ and values in K, γ : hγ → K, is called real, if

γ(z) = jKγ(z) for all z ∈ hγ . (2.14)

Let a symmetric operator S be real in K with the conjugation jK. A boundary
triple

(
C,Γ0,Γ1

)
for S[∗] is called real, if

jΓ0 = Γ0jK and jΓ1 = Γ1jK.

Every real symmetric operator S admits a real boundary triple
(
C,Γ0,Γ1

)
and the

corresponding Weyl function M and the γ-field γ are real, see [55] for the case of a
Hilbert space K.

3. Regularity of critical points of couplings in Krein spaces

3.1. Couplings of symmetric operators in Krein spaces. In this section we
consider two Krein spaces

(
K+, [ · , · ]K+

)
and

(
K−, [ · , · ]K−

)
. Let their direct sum

K = K+[+̇]K−

be endowed with the natural inner product

[f+ + f−, g+ + g−]K := [f+, g+]K+ + [f−, g−]K−
, f±, g± ∈ K±. (3.1)

Consider two closed symmetric densely defined operators A+ and A− with defect
numbers (1, 1) acting in the Krein spaces

(
K+, [ · , · ]K+

)
and

(
K−, [ · , · ]K−

)
. Let(

C,Γ±
0 ,Γ

±
1

)
be a boundary triple for A

[∗]
± . Let M± and γA±

be the corresponding
Weyl function and the γ-field. By A±,0 we denote the self-adjoint extension of A±

which is defined on

dom(A±,0) = ker(Γ±
0 ) by A±,0 = A

[∗]
±

∣∣
ker(Γ±

0 )
.

Then the functions M± are defined and holomorphic on ρ(A±,0). Assume that

ρ(A+,0) ∩ ρ(A−,0) 6= ∅. (3.2)

The following theorem is an indefinite version of a result from [25] which is, in
this form, presented in [14, 29].

Theorem 3.1. Let A± be closed symmetric densely defined operators with defect
numbers (1, 1) in the Krein spaces K±. Let

(
C,Γ±

0 ,Γ
±
1

)
be boundary triples for

A
[∗]
± which satisfy (3.2). Let M± and γA±

be the Weyl functions and the γ-fields

of A± corresponding to the boundary triples
(
C,Γ±

0 ,Γ
±
1

)
, and let S and A be the

restrictions of A
[∗]
+ [+]A

[∗]
− to the domains

dom(S) =

{(
f+
f−

)
:

Γ+
0 (f+) = Γ−

0 (f−) = 0,
Γ+
1 (f+) + Γ−

1 (f−) = 0,
f± ∈ dom

(
A

[∗]
±

)}
, (3.3)
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dom(A) =

{(
f+
f−

)
:

Γ+
0 (f+) = Γ−

0 (f−),
Γ+
1 (f+) + Γ−

1 (f−) = 0,
f± ∈ dom

(
A

[∗]
±

)}
. (3.4)

Then the following statements hold:

(a) The operator S is symmetric with defect numbers (1, 1) and A is a self-
adjoint extension of S.

(b) The adjoint S+ of S is the restriction of A+
+[+]A+

− to the domain

dom(S+) =

{(
f+
f−

)
: Γ+

0 (f+) = Γ−
0 (f−), f± ∈ dom

(
A

[∗]
±

)}
.

and a boundary triple
(
C,Γ0,Γ1

)
for S[∗] is given by

Γ0f = Γ+
0 f+, Γ1f = Γ+

1 f+ + Γ−
1 f−, f =

(
f+
f−

)
∈ dom

(
S[∗]

)
. (3.5)

(c) The Weyl function and the γ-field of S relative to the boundary triple(
C,Γ0,Γ1

)
are

M(z) =M+(z) +M−(z), γ(z) =

(
γA+(z)
γA−

(z)

)
, z ∈ C \ R. (3.6)

(d) If z ∈ ρ(A+,0) ∩ ρ(A−,0) then z ∈ ρ(A) if and only if M+(z) +M−(z) 6= 0.
(e) The resolvent of the operator A is given by

(
A− z

)−1
f =

(
A0 − z

)−1
f − [f, γ(z)]K

M+(z) +M−(z)
γ(z), z ∈ ρ(A) ∩ ρ(A0), (3.7)

where A0 = A+,0[+]A−,0 and f ∈ K.

Definition 3.2. The operator A defined in Theorem 3.1(a) is called the coupling
of the operators A+ and A− in the Krein space

(
K, [ · , · ]K

)
relative to the triples(

C,Γ+
0 ,Γ

+
1

)
and

(
C,Γ−

0 ,Γ
−
1

)
and A0 = A+,0[+]A−,0 is called the decoupled opera-

tor.

The next statement was proved in [58, Lemma 5.4]. For the convenience of the
reader we present here a proof based on Theorem 3.1.

Lemma 3.3. Let (H, 〈 · , · 〉H) be a Hilbert space with a conjugation jH, let B be a
closed densely defined real symmetric operator in H with defect numbers (1, 1), let(
C,Γ0,Γ1

)
be a real boundary triple for B〈∗〉, let m and γB be the corresponding

Weyl function and the γ-field for B and define

ĥ(z) =
〈
h, γB(z)

〉
H
, h ∈ H, z ∈ C \ R. (3.8)

Then the following inequality holds for all real h ∈ H:
∫ ∞

0

∣∣Im ĥ(iy)2
∣∣

Imm(iy)
dy ≤ 2π‖h‖2H, (3.9)

Proof. Let K+ and K− be two copies of the Hilbert space H and let us set A+ := B

and A− := −B. Notice that
(
C,Γ0,Γ1

)
is a boundary triple for A

[∗]
+ ,
(
C,Γ0,−Γ1

)

is a boundary triple for A+
− and the corresponding Weyl functions M+(z), M−(z)

and the γ−fields γA+(z) and γA−
(z) take the form

M+(z) = m(z), M−(z) = −m(−z), γA+(z) = γB(z), γA−
(z) = γB(−z).

Let A be the coupling of A+, A− acting in the Hilbert space K = K+⊕K− = H⊕H,
let A0 = B0 ⊕ (−B0) be the decoupled operator as defined in Definition 3.2, B0
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being the restriction of B〈∗〉 to ker Γ0 and let us denote by 〈·, ·〉K the scalar product
in K = K+ ⊕ K− = H ⊕ H. Applying Theorem 3.1 to the operators A+ and A−

one obtains from (3.7) for vector f = h⊕ 0, h ∈ H the equality

〈
(A− iy)−1f, f

〉
K
=
〈
(A0 − iy)−1f, f

〉
K
− ĥ(iy)ĥ(−iy)
m(iy)−m(−iy) (3.10)

Since A and A0 are self-adjoint operators in the Hilbert space K = H ⊕ H, an
application of the functional calculus yields

∫ ∞

0

∣∣Re
〈
(A− iy)−1f, f

〉
K

∣∣ dy ≤ π

2
‖f‖2K, (3.11)

∫ ∞

0

∣∣Re
〈
(A0 − iy)−1f, f

〉
K

∣∣ dy ≤ π

2
‖f‖2K. (3.12)

for all f ∈ K. Since the boundary triple
(
C,Γ0,Γ1

)
is real, γB is real as well. If, in

addition, h is real, then

jHh = h, jHγB(iy) = γB(−iy) for all y ∈ R+

and by (3.8) and Definition 2.6

ĥ(−iy) =
〈
γB(iy), h

〉
H

=
〈
jHh, jHγB(iy)

〉
H

=
〈
h, γB(−iy)

〉
H

= ĥ(iy). (3.13)

By (3.10), (3.11), (3.12) and (3.13)

∫ ∞

0

∣∣∣∣∣Re
ĥ(iy)2

m(iy)−m(−iy)

∣∣∣∣∣ dy ≤ π‖f‖2H = π‖h‖2H.

Using the equality m(iy)−m(−iy) = 2i Imm(iy) one obtains for all real h ∈ H:

∫ ∞

0

∣∣Im ĥ(iy)2
∣∣

2 Imm(iy)
dy =

∫ ∞

0

∣∣∣∣∣Re
ĥ(iy)2

m(iy)−m(−iy)

∣∣∣∣∣ dy ≤ π‖h‖2H.

This proves (3.9). �

In the following lemma we apply Theorem 3.1 to two real symmetric operators
B+ and B− acting in Hilbert spaces H+ and H− and obtain estimates for a family
of weighted L2-norms of “generalized Fourier transforms”

f̂±(z) =
〈
f±, γB±

(z)
〉
H±

, f± ∈ H±, z ∈ C \ R. (3.14)

Lemma 3.4. Let H± be Hilbert spaces with conjugations jH±
, let B± be closed

densely defined real symmetric operators in H± with defect numbers (1, 1), let(
C,Γ±

0 ,Γ
±
1

)
be real boundary triples for B

〈∗〉
± , and let m± and γB±

be the corre-
sponding Weyl functions and the γ-fields for B±. Then the following inequalities
hold for all real f± ∈ H±:

∫ +∞

0

∣∣∣f̂±(iy)
∣∣∣
2
∣∣Re
(
m+(iy) +m−(iy)

)∣∣
|m+(iy) +m−(iy)|2

dy ≤ 5π‖f±‖2H±
, (3.15)

Proof. 1. In this step we prove that for all real f± ∈ H± we have
∫ +∞

0

∣∣∣Re f̂±(iy)2
∣∣∣ |Re(m+(iy) +m−(iy))|

|m+(iy) +m−(iy)|2
dy ≤ 3π‖f±‖2H±

. (3.16)
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Applying Theorem 3.1 to the operators A+ := B+ and A− := B− in Hilbert spaces
K+ = H+, K− := H− and taking f = f+ ⊕ f−, f± ∈ H±, one obtains the equality

〈
(A− iy)−1f, f

〉
=
〈
(A0 − iy)−1f, f

〉
− (f̂+(iy) + f̂−(iy))(f̂+(−iy) + f̂−(−iy))

m+(iy) +m−(iy)

whereA is the coupling of A+ andA− defined by (3.4), A0 is the decoupled operator,
as defined in Definition 3.2. Since A and A0 are self-adjoint operators in the Hilbert
space H := H+⊕H− one obtains from (3.11), (3.12) and (3.13) for all real f± ∈ H±

∫ +∞

0

∣∣∣∣∣Re
(
f̂+(iy) + f̂−(iy)

)2

m+(iy) +m−(iy)

∣∣∣∣∣ dy ≤ π‖f‖2H. (3.17)

Set
u±(iy) := Rem±(iy), v±(iy) := Imm±(iy), (3.18)

U(iy) := Re
(
(f̂+(iy) + f̂−(iy))

2
)
, V (iy) := Im

(
(f̂+(iy) + f̂−(iy))

2
)
.

Then inequality (3.17) can be rewritten as
∫ +∞

0

∣∣U(iy)
(
u+(iy) + u−(iy)

)
+ V (iy)(v+(iy) + v−(iy))

∣∣
|m+(iy) +m−(iy)|2

dy ≤ π‖f‖2H.

In particular, setting subsequently f− = 0 or f+ = 0, one obtains

∫ +∞

0

∣∣∣Re
(
f̂±(iy)

2
)(
u+(iy) + u−(iy)

)
+ Im

(
f̂±(iy)

2
)(
v+(iy) + v−(iy)

)∣∣∣
|m+(iy) +m−(iy)|2

dy

≤ π‖f±‖2H±
. (3.19)

By (3.9) for every real f± ∈ H±

∫ +∞

0

∣∣∣Im
(
f̂±(iy)

2
)(
v+(iy) + v−(iy)

)∣∣∣
|m+(iy) +m−(iy)|2

dy ≤
∫ +∞

0

∣∣∣Im
(
f̂±(iy)

2
)∣∣∣

Imm±(iy)
dy ≤ 2π‖f±‖2H±

(3.20)
and thus (3.19) and (3.20) imply for every real f± ∈ H±

∫ +∞

0

∣∣∣Re
(
f̂±(iy)

2
)∣∣∣ |u+(iy) + u−(iy)|

|m+(iy) +m−(iy)|2
dy ≤ 3π‖f±‖2H±

,

which proves (3.16).
2. To prove (3.15) we notice that from

|u+(iy) + u−(iy)|
|m+(iy) +m−(iy)|

≤ 1

and (3.9) we obtain

∫ +∞

0

∣∣∣Im
(
f̂±(iy)

2
)∣∣∣ |u+(iy) + u−(iy)|

|m+(iy) +m−(iy)|2
dy ≤

∫ +∞

0

∣∣∣Im
(
f̂±(iy)

2
)∣∣∣

|m+(iy) +m−(iy)|
dy

≤
∫ +∞

0

∣∣∣Im
(
f̂±(iy)

2
)∣∣∣

Imm±(iy)
dy

≤ 2π‖f±‖2H±
,

(3.21)

for all real f± ∈ H±. Now (3.15) follows from (3.16) and (3.21). �
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Remark 3.5. It follows from (3.13) that the inequalities (3.9) in Lemma 3.3 and

(3.15) in Lemma 3.4 remain in force when we substitute f̂±(iy) by f̂±(−iy) for all
real f± ∈ H±:

∫ +∞

0

∣∣∣Im
(
f̂±(−iy)2

)∣∣∣
Imm±(iy)

dy ≤ 2π‖f±‖2H±
,

∫ +∞

0

∣∣∣f̂±(−iy)
∣∣∣
2 |Re(m+(iy) +m−(iy))|

|m+(iy) +m−(iy)|2
dy ≤ 5π‖f±‖2H±

.

3.2. Veselić condition and coupling. In the rest of this section we make the
following general assumptions:

(A1)
(
H±, 〈 · , · 〉H±

)
are Hilbert spaces with conjugations jH±

and
(
K±, [ · , · ]K±

)

are Krein spaces defined by

K+ = H+, [ · , · ]K+ = 〈 · , · 〉H+ , K− = H−, [ · , · ]K−
= −〈 · , · 〉H−

.

(A2)
(
K, [ · , · ]K

)
is a Krein space with the fundamental decomposition K :=

K+[+]K− and the inner product (3.1).
(A3) B± are real closed nonnegative symmetric densely defined operators with

defect indices (1, 1) in the Hilbert spaces
(
H±, 〈 · , · 〉H±

)
and let A+ and

A− be symmetric operators in the Krein spaces K+ and K−, respectively:

A+ := B+, A− := −B−.

(A4)
(
C,Γ±

0 ,Γ
±
1

)
are real boundary triples for B

〈∗〉
± and m±(z) and γB±

(z) are
the corresponding Weyl functions and the γ−fields.

(A5) A is the coupling of the operatorsA+ and A− in the Krein space
(
K, [ · , · ]K

)

relative to the triples
(
C,Γ+

0 ,Γ
+
1

)
and

(
C,Γ−

0 ,Γ
−
1

)
.

By B±,0 we denote the self-adjoint extension of B± which is defined on

dom(B±,0) = ker(Γ±
0 ) by B±,0 = B

〈∗〉
±

∣∣
ker(Γ±

0 )
.

Clearly,
(
C,Γ±

0 ,Γ
±
1

)
are also boundary triples for A

[∗]
± . The Weyl functions M±(z)

and the γ-fields γA±
(z) of the operators A± corresponding to

(
C,Γ±

0 ,Γ
±
1

)
are con-

nected with the Weyl functions m±(z) and the γ-fields γB±
(z) of the operators B±

by the equalities

M±(z) = m±(±z), γA±
(z) = γB±

(±z), z ∈ ρ(B±,0).

In the next lemma we reformulate the Veselić condition from Theorem 2.1 for
the coupling A of two nonnegative operators as defined in Definition 3.2, cf. [29]
and [14].

Lemma 3.6. Let conditions (A1) through (A5) be satisfied. Then the following
statements hold:

(i) The coupling A is definitizable and ∞ ∈ c(A).
(ii) ∞ ∈ cr(A) if and only if there exists η0 > 0 such that for all real f± ∈ H±

∫ η

η0

Re

(
f̂+(iy) + f̂−(−iy)

)2

m+(iy) +m−(−iy)
dy = O(1) as η → +∞. (3.22)
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(iii) 0 6∈ cs(A) and kerA = kerA2 if and only if there is η0 > 0 such that for all
real f± ∈ H±

∫ η0

η

Re

(
f̂+(iy) + f̂−(−iy)

)2

m+(iy) +m−(−iy)
dy = O(1) as η ↓ 0. (3.23)

Proof. (i) Sincem+,m− ∈ S, by Proposition 2.5 we have Re
(
m+(iy)+m−(−iy)

)
>

0 for all y ∈ R+. Then, by Theorem 3.1(d) for the operator A from Definition 3.2
we have ρ(A) 6= ∅.

The operator A0 = B+,0 ⊕ (−B−,0) is definitizable, and ∞ ∈ c(A0) as, by
assumptions, B±,0 are unbounded. Since the resolvent (A − z)−1 of A is a one-
dimensional perturbation of the resolvent (A0−z)−1, see (3.7), the claim (i) follows
from [42, Theorem 1].

(ii) Applying Theorem 3.1 to the operators A+ = B+ and A− = −B− in the
inner product spaces (K±, [ · , · ]K±

) = (H±,±〈 · , · 〉H±
) one obtains the equality

[(
A− z

)−1
f, f

]
K
=
[(
A0 − z

)−1
f, f

]
K
−
[
f, γ(z)

]
K

[
γ(z), f

]
K

m+(z) +m+(−z)
,

where A0 = B+,0 ⊕ (−B−,0), z ∈ ρ(A) ∩ ρ(A0). Since A0 is a self-adjoint operator
in H Theorem 2.1 and (3.12) imply that the condition ∞ 6∈ cs(A) is equivalent to

∫ η

η0

Re

[
f, γ(−iy)

]
K

[
γ(iy), f

]
K

m+(iy) +m−(−iy)
dy = O(1) η → +∞ for all f ∈ K. (3.24)

Decompose f ∈ K into its “real” and “imaginary” part, f = fR + if I , where fR

and f I are real, see (2.13). Since the vector valued functions γB±
(z) are real, it

follows from (2.12) and (2.14) that
[
γ(iy), fR

]
K
=
[
fR, γ(−iy)

]
K
,
[
γ(iy), f I

]
K
=
[
f I , γ(−iy)

]
K

and hence[
f, γ(−iy)

]
K

[
γ(iy), f

]
K
=
[
fR + if I , γ(−iy)

]
K

[
γ(iy), fR + if I

]
K

=
[
fR, γ(−iy)

]2
K
+
[
f I , γ(−iy)

]2
K
.

Therefore, ∞ 6∈ cs(A) if and only if (3.24) hold for all real f ∈ K. Since
[
f, γ(−iy)

]
K
=
〈
f+, γB+(−iy)

〉
H+

−
〈
f−, γB−

(iy)
〉
H−

= f̂+(iy)− f̂−(−iy), (3.25)

condition (3.24) takes the form

∫ η

η0

Re

(
f̂+(iy)− f̂−(−iy)

)2

m+(iy) +m−(−iy)
dy = O(1) as η → +∞,

which reduces to (3.22) when we substitute f− with −f−.
(iii) By Theorem 2.1 and (3.12) we have that the conjunction 0 6∈ cs(A) and

kerA = kerA2 is equivalent to
∫ η0

η

Re

[
f, γ(−iy)

]
K

[
γ(iy), f

]
K

m+(iy) +m−(−iy)
dy = O(1) as η ↓ 0 for all f ∈ K. (3.26)

The reasoning in the proof of item (ii) shows that the preceding equivalence is
preserved if f in (3.26) is restricted to be real, which in view of (3.25) yields
(3.23). �
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Remark 3.7. The coupling A in Lemma 3.6 is not necessary non-negative, so it
may have other critical points α distinct from 0. A criterion for α 6∈ cs(A) can
be derived from Lemma 3.6 (iii) by using the shift A → A − αI. However, we
do not pursue this case here, since the main object of this paper, the operator
A in Section 5 associated with the indefinite Sturm-Liouville expression (1.1) is
non-negative.

3.3. D-properties and conditions for regularity.

Definition 3.8. A pair of Nevanlinna functions m+ and m− is said to have the
D∞-property (resp. D0-property) if

max
{
Imm+(iy), Imm−(iy)

}
∣∣m+(iy) +m−(−iy)

∣∣ = O(1) as y → +∞ (resp. y ↓ 0). (3.27)

Lemma 3.9. Assume that a pair m+ and m− has the D∞-property (resp. D0-
property). Then

m+(iy) +m−(iy)

m+(iy) +m−(iy)
= O(1) as y → +∞ (resp. y ↓ 0). (3.28)

If, in addition, there exists y0 > 0 such that

Rem+(iy)Rem−(iy) > 0 for all y > y0 (resp. 0 < y < y0), (3.29)

then

m+(iy)−m−(iy)

m+(iy) +m−(iy)
= O(1) as y → +∞ (resp. y ↓ 0). (3.30)

Proof. Assume that the pair m+ and m− has D∞-property. To prove (3.28) we use
the notation u±(iy) and v±(iy) introduced in (3.18). With this notation we have

∣∣m+(iy) +m−(iy)
∣∣2 =

(
u+(iy) + u−(iy)

)2
+
(
v+(iy) + v−(iy)

)2

and
|u+(iy) + u−(iy)|
|m+(iy) +m−(iy)|

< 1 for all y > 0.

By the D∞-property

v+(iy) + v−(iy)

|m+(iy) +m−(iy)|
= O(1) as y → +∞.

Hence (3.28) holds.
To prove (3.30), assume further that there exists y0 > 0 such that (3.29) holds

for all y > y0. Then (3.29) yields

|Rem±(iy)|
|m+(iy) +m−(iy)|

<
|Rem±(iy)|

|Rem+(iy) + Rem−(iy)|
≤ 1 for all y > y0,

which, together with (3.27), imply (3.30).
To prove the claims involving the D0-property we notice that if the pair m+(z)

and m−(z) has the D0-property, then the pair m+(−1/z) and m−(−1/z) has the
D∞-property and we apply already proven statements to the functions m+(−1/z)
and m−(−1/z). �
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As was shown in [51] and [49] the D∞-property (D0-property, respectively) is
necessary for the condition ∞ 6∈ cs(A) (0 6∈ cs(A), respectively).

In the next theorem we show that the D∞-property becomes also sufficient for
∞ 6∈ cs(A) if it is supplemented by the assumption (3.29).

Theorem 3.10. Let conditions (A1) through (A5) be satisfied and assume that
there exists y0 > 0 such that

Rem+(iy)Rem−(iy) > 0 for all y > y0. (3.31)

Then the coupling A is definitizable in the Krein space
(
K, [ · , · ]K

)
, ∞ ∈ c(A) and

the following equivalence holds:

∞ ∈ cr(A) ⇔ the pair m+ and m− has D∞-property.

Proof. The definitizability of A and ∞ ∈ c(A) follow from item (i) in Lemma 3.6.
The necessity of the condition that the pair m+ and m− has D∞-property for

∞ 6∈ cs(A) was proved in [51] and [49].
To prove sufficiency, assume that the pair m+ and m− has D∞-property. We

use Lemma 3.6(ii) to prove ∞ ∈ cr(A). The integral in (3.22) can be rewritten as
the sum I1(f+, f−) + I2(f+, f−) of two integrals

I1(f+, f−) =

∫ η

η0

Re
(
(f̂+(iy) + f̂−(−iy))2

)(
u+(iy) + u−(iy)

)
∣∣∣m+(iy) +m−(iy)

∣∣∣
2 dy,

I2(f+, f−) =

∫ η

η0

Im
(
(f̂+(iy) + f̂−(−iy))2

)(
v+(iy)− v−(iy)

)
∣∣∣m+(iy) +m−(iy)

∣∣∣
2 dy,

where we use the notation introduced in (3.18).
We will prove that both of these integrals are bounded as η → +∞. By

Lemma 3.9 there exist y1, C1 > 0 such that
∣∣∣∣∣
m+(iy) +m−(iy)

m+(iy) +m−(iy)

∣∣∣∣∣ ≤ C1 for all y > y1. (3.32)

It follows from (3.32) and (3.15) that for all η ≥ η0 > y1 we have
∫ η

η0

∣∣∣f̂±(iy)
∣∣∣
2 |u+(iy) + u−(iy)|∣∣∣m+(iy) +m−(iy)

∣∣∣
2 dy ≤ C2

1

∫ η

η0

∣∣∣f̂±(iy)
∣∣∣
2 |u+(iy) + u−(iy)|
|m+(iy) +m−(iy)|2

dy

< 5πC2
1‖f±‖2.

This proves that
∣∣I1(f+, f−)

∣∣ < 10πC2
1

(
‖f+‖2H+

+ ‖f−‖2H−

)
(3.33)

for all real f± ∈ H± and for all η ≥ η0 > y1.
It follows from (3.30) that there exist y2, C2 > 0 such that

∣∣∣∣∣
m+(iy)−m−(iy)

m+(iy) +m−(iy)

∣∣∣∣∣ ≤ C2 for all y > y2.
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The preceding inequality yields that for all real f± ∈ H± and for all η ≥ η0 > y2
we have

∣∣I2(f+, f−)
∣∣ ≤ C2

2

∫ η

η0

∣∣∣Im
(
(f̂+(iy) + f̂−(−iy))2

)∣∣∣ |v+(iy)− v−(iy)|
∣∣m+(iy)−m−(iy)

∣∣2 dy

≤ C2
2

∫ η

η0

∣∣∣Im
(
(f̂+(iy) + f̂−(−iy))2

)∣∣∣
Im
(
m+(iy)−m−(iy)

) dy, (3.34)

where for the second inequality we used that
∣∣∣m+(iy)−m−(iy)

∣∣∣ ≥ v+(iy) + v−(iy) ≥ |v+(iy)− v−(iy)| for all y > 0.

Next we prove the inequality

∫ η

η0

∣∣Im
(
(f̂+(iy) + f̂−(−iy))2

)∣∣
Im
(
m+(iy)−m−(iy)

) dy ≤ 2π
(
‖f+‖2H+

+ ‖f−‖2H−

)
(3.35)

for all real f± ∈ H± and for all η > η0 > y2. This inequality will be deduced from
(3.9) in Lemma 3.3 applied to the symmetric operator S defined in Theorem 3.1
with the following specific setting.

The Krein space
(
K+, [ · , · ]K+

)
is the Hilbert spaces

(
H+, 〈 · , · 〉H+

)
, the Krein

space
(
K−, [ · , · ]K−

)
is the Hilbert spaces

(
H−, 〈 · , · 〉H−

)
, the symmetric operator

A+ is given by A+ = B+ and the symmetric operator A− is given by A− = −B−.
Notice that in this part of the proof the spaces K+ and K− differ from those in
(A1). The operator A± is a closed symmetric densely defined operator with defect
numbers (1, 1) in the Hilbert space

(
K±, [ · , · ]K±

)
. Furthermore,

(
C,Γ+

0 ,Γ
+
1

)
is

a boundary triple for A
〈∗〉
+ (the adjoint in the Hilbert space K+ = H+) with the

corresponding Weyl function and the γ−field given by

z 7→ m+(z), z 7→ γB+(z), z ∈ C \ R,

while
(
C,Γ−

0 ,−Γ−
1

)
is a boundary triple for A

〈∗〉
− (the adjoint in the Hilbert space

K− = H−) with the corresponding Weyl function and the γ−field given by

z 7→ −m−(−z), z 7→ γB−
(−z), z ∈ C \ R.

The operator S defined in Theorem 3.1 on the domain (3.3) is a real densely defined
symmetric operator with defect numbers (1, 1) acting in a Hilbert space K, [ · , · ]K
which is the direct sum, K = H+ ⊕H−, of the Hilbert spaces

(
H+, 〈 · , · 〉H+

)
and(

H−, 〈 · , · 〉H−

)
. A real boundary triple for S〈∗〉 is the boundary triple

(
C,Γ0,Γ1

)

given in (3.5). The corresponding Weyl function M(z) and the γ-field γ(z) are
given by

M(z) = m+(z)−m−(−z), γ(z) =

(
γB+(z)
γB−

(−z)

)
, z ∈ C \ R,

see (3.6). For f =

(
f+
f−

)
∈ K = H+ ⊕H−, from (3.14), we obtain

f̂(iy) =
[
f, γ(−iy)

]
K
=
〈
f+, γB+(−iy)

〉
H+

+
〈
f−, γB−

(iy)
〉
H−

= f̂+(iy) + f̂−(−iy).
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Now (3.35) follows by applying (3.9) in Lemma 3.3 to the real symmetric operator
S acting in the Hilbert space K. Inequalities (3.34) and (3.35) yield

∣∣I2(f+, f−)
∣∣ ≤ C2

22π
(
‖f+‖2H+

+ ‖f−‖2H−

)
(3.36)

for all real f± ∈ H± and for all η > η0 > y2. From (3.33) and (3.36) it follows that
(3.22) holds. Hence Lemma 3.6(ii) implies ∞ ∈ cr(A). �

In the next theorem we give a criterion for 0 6∈ cs(A) formulated in terms of
D0-property.

Theorem 3.11. Let conditions (A1) through (A5) be satisfied and assume that
there exists y0 > 0 such that the Weyl functions m+ and m− satisfy the condition

Rem+(iy)Rem−(iy) > 0 for all 0 < y < y0.

Then

0 6∈ cs(A) and kerA = kerA2 ⇔ the pair m+ and m− has D0-property.

Proof. The necessity of the D0-property for 0 6∈ cs(A) was proved in [51], [49].
To prove the sufficiency we will employ Lemma 3.6 and decompose the integral

in (3.22) into a sum I1(f+, f−) + I2(f+, f−) of two integrals

I1(f+, f−) =

∫ η0

η

Re
(
(f̂+(iy) + f̂−(−iy))2

)(
u+(iy) + u−(iy)

)
∣∣∣m+(iy) +m−(iy)

∣∣∣
2 dy,

I2(f+, f−) =

∫ η0

η

Im
(
(f̂+(iy) + f̂−(−iy))2

)(
v+(iy)− v−(iy)

)
∣∣∣m+(iy) +m−(iy)

∣∣∣
2 dy

The estimates for I1(f+, f−) and I2(f+, f−) for every f± ∈ H± similar to those
in (3.33) and (3.36) follow in the same way as in the proof of Theorem 3.10. �

Remark 3.12. The coupling A in Lemma 3.6 is not necessarily non-negative, so
it may have other critical points α distinct from 0. However, in the present paper
we formulate the regularity conditions only for point 0 since the main object of
Section 4, the operator A associated with the indefinite Sturm-Liouville expres-
sion (1.1), is non-negative.

3.4. One-sided sufficient conditions for regularity. In the next theorem we
give a one-sided condition which is sufficient for ∞ 6∈ cs(A).

Theorem 3.13. Let conditions (A1) through (A5) be satisfied and assume that:

(i) there exists y0 > 0 such that (3.31) holds for all y > y0;
(ii) either Imm+(iy) = O(Rem+(iy)) or Imm−(iy) = O(Rem−(iy)) as y →

+∞.

Then the coupling A of A+ and A− is definitizable in the Krein space
(
K, [ · , · ]K

)
,

∞ ∈ c(A) and
∞ ∈ cr(A).

Proof. The definitizability of A and ∞ ∈ c(A) follow from item (i) in Lemma 3.6.
Let us assume that Imm+(iy)=O(Rem+(iy)) as y → +∞ and show that the pair
m+, m− has the D∞-property. Indeed, in view of (i)∣∣∣∣∣

Imm+(iy)

m+(iy) +m−(iy)

∣∣∣∣∣ ≤
Imm+(iy)

|Rem+(iy)|
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and by assumption (ii) there exist C, y0 > 0, such that
∣∣∣∣∣

Imm+(iy)

m+(iy) +m−(iy)

∣∣∣∣∣ ≤ C, y > y0. (3.37)

Next, if Imm−(iy) > 2 Imm+(iy), then

|Imm−(iy)− Imm+(iy)| ≥ |Imm−(iy)| − |Imm+(iy)| >
1

2
|Imm−(iy)|

and hence ∣∣∣∣∣
Imm−(iy)

m+(iy) +m−(iy)

∣∣∣∣∣ ≤ 2, y > y0.

Now, if Imm−(iy) ≤ 2 Imm+(iy), then∣∣∣∣∣
Imm−(iy)

m+(iy) +m−(iy)

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
Imm+(iy)

m+(iy) +m−(iy)

∣∣∣∣∣ ≤ 2C, y > y0.

Thus the pairm+,m− hasD∞-property, and the statement of Theorem 3.13 follows
from Theorem 3.10. �

In the next theorem we formulate a one-sided condition which is sufficient for
0 6∈ cs(A).

Theorem 3.14. Let the conditions (A1) through (A5) be satisfied and assume that

(i) there exist y0 > 0 such that (3.29) holds;
(ii) either Imm+(iy) = O

(
Rem+(iy)

)
or Imm−(iy) = O

(
Rem−(iy)

)
as y ↓ 0.

Then 0 6∈ cs(A) and kerA = kerA2.

Proof. Let us assume that Imm+(iy) = O(Rem+(iy)) as y → 0. Then in view of
(i) and (ii) the inequality (3.37) holds for 0 < y < y0 and, hence, Imm+(iy) =

O
(
m+(iy) +m−(iy)

)
as y ↓ 0.

The proof of the relation Imm−(iy) = O
(
m+(iy) +m−(iy)

)
as y ↓ 0 is similar

to that in Theorem 3.13. Therefore, the pair m+, m− has D0-property, and the
statement of Theorem 3.14 follows from Theorem 3.11. �

4. Sturm-Liouville operator with indefinite weight

4.1. Indefinite Sturm-Liouville operator as a coupling. Let I = (b−, b+) be
a finite or infinite interval such that −∞ ≤ b− < 0 < b+ ≤ +∞ and let a be
the differential expression (1.1) subject to the assumptions (1.2). In this section
we study a nonnegative self-adjoint operator A associated with a in the Krein
space

(
L2
w(I), [ · , · ]w

)
. In the definition of A given in (4.13) we use nonnegative

symmetric operators B± generated by the differential expressions b± in the Hilbert
spaces L2

w±
(I±) with the inner products

〈f, g〉w±
=

∫

I±

f(x)g(x)w±(x)dx.

Let B±,max be the maximal differential operator generated in L2
w±

(I±) by the dif-

ferential expression b± (see (1.6)), with the domain

dom
(
B±,max

)
=
{
f ∈ L2

w±
(I±) : f, f

[1] ∈ ACloc(I±), b±(f) ∈ L2
w±

(I±)
}
,
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where f [1](x) := r(x)−1f ′(x), x ∈ I. Let B±,min(= (B±,max)
〈∗〉) be the minimal

differential operator generated by b± in L2
w±

(I±).

Let z ∈ C \ R and denote by s±(·, z) and c±(·, z) the solutions on I± of the
equation

b±(f) = zf, (4.1)

satisfying the boundary conditions

c±(0, z) = 1, c
[1]
± (0, z) = 0 and s±(0, z) = 0, s

[1]
± (0, z) = 1.

If b± is in the limit point case at b± then neither s±(·, z) nor c±(·, z) belongs to
L2
w±

(I±), however there exists a coefficient m±(z) such that the solution

ψ±(t, z) = s±(t, z)∓m±(z)c±(t, z), t ∈ I±, (4.2)

of the equation (4.1) belongs to L2
w±

(I±).
In the limit point case the operator B± := B±,min is a symmetric operator in

L2
w±

(I±) with defect numbers (1, 1) and with the domain

dom(B±) =
{
f ∈ dom(B±,max) : f(0) = f [1](0) = 0

}
. (4.3)

In the limit circle case, by [46, Section 10.7], for every f ∈ dom(B±,max) the
following one-sided limit exists

f [1](b±) := lim
x→b±∓0

r±(x)
−1f ′(x).

Let m±(z) be a coefficient such that the solution ψ±(x, z) in (4.2) satisfies the
condition

ψ
[1]
± (b±, z) = 0 for all z ∈ C\R. (4.4)

Clearly, m±(z) is calculated as m±(z) = ±s[1](b±, z)/c[1](b±, z). In the limit circle
case the operator B±,min is a symmetric operator in L2

w±
(I±) with defect numbers

(2, 2) and we define its symmetric extension B± with defect numbers (1, 1) as the
restriction of b± to the domain

dom(B±) =
{
f ∈ dom(B±,max) : f(0) = f [1](0) = f [1](b±) = 0

}
. (4.5)

The adjoint operator B
〈∗〉
± is the restriction of b± to the domain

dom(B
〈∗〉
± ) =

{
f ∈ dom(B±,max) : f

[1](b±) = 0
}
.

In the following definition (see [58]) the notion of Neumann m-function is intro-
duced both for the limit point case and the limit circle case.

Definition 4.1. The function m±(z) for which the solution ψ±(x, z) in (4.2) sat-
isfies the condition

ψ
[1]
± (b±, z) = 0 if b± is in the limit circle case at b±

ψ±(·, z) ∈ L2
w±

(I±) if b± is in the limit point case at b±

}
(4.6)

is called the Neumann m-function of b± on I± subject to (4.6).

The following proposition collects some facts from [27] about boundary triples

for the operator B
〈∗〉
± .

Proposition 4.2. Assume that b± satisfies (1.2), let B± be defined as in (4.3) or
in (4.5), respectively, (depending on limit point or limit circle case) and let m± be
the Neumann m-function of b± on I±, subject to (4.6). Then:
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(a) B± is a symmetric nonnegative operator in the Hilbert space L2
w±

(I±) with

defect numbers (1, 1).
(b) The triple

(
C,Γ±

0 ,Γ
±
1

)
, where

Γ±
0 f± = f

[1]
± (0), Γ±

1 f± = ∓f±(0), f ∈ dom(B
〈∗〉
± ), (4.7)

is a real boundary triple for B
〈∗〉
± .

(c) The Weyl function of B± corresponding to the boundary triple
(
C,Γ±

0 ,Γ
±
1

)

coincides with the Neumann m-function m±(z). That is

m±(z) = ∓ ψ±(0, z)

ψ
[1]
± (0, z)

, z ∈ C \R. (4.8)

If b± is in the limit circle case at b±, then, in addition to (4.8), the following
formula holds

m±(z) = ±s
[1]
± (b±, z)

c
[1]
± (b±, z)

, z ∈ C \R. (4.9)

(d) The Weyl function m± of B± belongs to the Stieltjes class S and satisfies
the condition limx→−∞m±(x) = 0. In particular,

Rem±(iy) ≥ 0 for all y > 0.

Proof. Since

lim
x→b±∓0

f [1](x)f(x) = 0 for all f ∈ dom(B
〈∗〉
± )

both in the limit point case [47, Corollary, p. 199] and in the limit circle case [31,
Lemma 2.1] the following formula holds
∫

I±

b±(f±)f±w±dx = ±f [1]
± (0)f±(0) +

∫

I±

1

r±
|f ′

±|2dx, f± ∈ dom(B
〈∗〉
± ). (4.10)

By (1.2) and Definition 2.3 this proves statements (a) and (b), see also [27, Propo-
sition 9.51, Theorem 9.69].

The statement (c) is implied by Definition 2.4 and the equalities

Γ±
0 ψ±(·, z) = ψ

[1]
± (0, z) = 1, Γ±

1 ψ±(·, z) = ∓ψ±(0, z) = m±(z) z ∈ C \ R.
The formula (4.9) follows from (4.4) and the equality

0 = ψ
[1]
± (b±, z) = s

[1]
± (b±, z)∓m±(z)c

[1]
± (b±, z) z ∈ C \ R.

The extension B±,0 of B± defined by

B±,0f = B
〈∗〉
± f, f ∈ dom(B±,0) := kerΓ±

0 (4.11)

is the von Neumann extension of B±. Hence B±,0 ≥ 0, see also (4.10), and thus the
function m± is holomorphic on R−. Moreover, as it follows from [46, Theorem 3.1],
see also [28, Proposition 3.6],

lim
x→−∞

m±(x) = 0

and hence m± ∈ S. This proves (d). �
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With the differential expression a we associate the following operator A in the
Krein

(
L2
w(I), [ · , · ]w

)
:

dom(A) =
{
f ∈ dom(B

〈∗〉
+ )⊕ dom(B

〈∗〉
− ) : f, r−1f ′ ∈ ACloc(I)

}
(4.12)

and

Af = a(f), f ∈ dom(A). (4.13)

Lemma 4.3. For every λ ∈ R the subspace ker(A−λI) is at most one-dimensional.

Proof. Let λ ∈ R. If b± is limit circle at b±, then by Weyl’s alternative the equation
b±(f) = ±λf has two linearly independent solutions c±(x,±λ) and s±(x,±λ) in
L2
w±

(I±). Since the Wronskian of these solutions is not zero, it is not possible

that both of these solutions satisfy f [1](b±) = 0. Therefore, ker(B
〈∗〉
± ∓ λI) is

one-dimensional.
If b± is limit point at b±, then by Weyl’s alternative the equation b±(f) = ±λf

has at most one solution in L2
w±

(I±). Consequently, ker(B
〈∗〉
± ∓ λI) is at most

one-dimensional.
By the uniqueness theorem for linear initial value problems, the only solution of

the problem b±(f) = ±λf , f±(0) = f
[1]
± (0) = 0 is the zero function. Therefore, the

subspace

ker(A− λI) =

{
f = f+ ⊕ f− :

f+ ∈ ker(B
〈∗〉
+ − λI), f+(0) = f−(0)

f− ∈ ker(B
〈∗〉
− + λI), f

[1]
+ (0) = f

[1]
− (0)

}

is also at most one-dimensional. �

Theorem 4.4. Let the differential expression b satisfy (1.2) and let m± be the
Neumann m-function of b± subject to (4.6) on I±. Then the operator A associated
with the expression a is the coupling of the operators A+ := B+ and A− := −B−

in the sense of Theorem 3.1. The operator A is a nonnegative self-adjoint operator
in the Krein space

(
L2
w(I), [ · , · ]w

)
with ρ(A) 6= ∅ and ∞ ∈ c(A). We have

(i) ∞ ∈ cr(A) ⇔ the pair m+ and m− has D∞-property.
(ii) 0 6∈ cs(A) and kerA = kerA2 ⇔ the pair m+ and m− has D0-property.
(iii) Imm+(iy) = O

(
Rem+(iy)

)
as y → +∞ ⇒ ∞ ∈ cr(A).

(iv) Imm−(iy) = O
(
Rem−(iy)

)
as y → +∞ ⇒ ∞ ∈ cr(A).

(v) Imm+(iy) = O
(
Rem+(iy)

)
as y ↓ 0 ⇒ 0 6∈ cs(A) and kerA = kerA2.

(vi) Imm−(iy) = O
(
Rem−(iy)

)
as y ↓ 0 ⇒ 0 6∈ cs(A) and kerA = kerA2.

Proof. The boundary triples
(
C,Γ±

0 ,Γ
±
1

)
from Proposition 4.2 are also boundary

triples for A+
±. The coupling of the operators A± in Theorem 3.1 is characterized

by the conditions

Γ+
0 (f+)− Γ−

0 (f−) = 0, Γ+
1 (f+) + Γ−

1 (f−) = 0, f± ∈ dom(B
〈∗〉
± )

which in view of (4.7) can be rewritten as

f
[1]
+ (0) = f

[1]
− (0), f+(0) = f−(0), f± ∈ dom(B

〈∗〉
± ). (4.14)

Therefore, the differential operator A associated with the expression a is the cou-
pling of the operators A± := ±B± relative to the boundary triples

(
C,Γ±

0 ,Γ
±
1

)
. It
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follows from (4.10) and (4.14) that for f = f+ + f− ∈ domA, f± ∈ dom(B
〈∗〉
± ), we

have

[Af, f ]w =
〈
B

〈∗〉
+ f+, f+

〉
w+

+
〈
B

〈∗〉
− f−, f−

〉
w−

= f
[1]
+ (0)f+(0)− f

[1]
− (0)f−(0) +

∫

I

1

r
|f ′|2dt =

∫

I

1

r
|f ′|2dt ≥ 0.

Hence the operator A is nonnegative.
The Weyl function M±(z) of operator A± corresponding to (C,Γ±

0 ,Γ
±
1 ) and the

Weyl function m±(z) of operator B± satisfy

M±(z) = m±(±z), z ∈ C \ R.

Since m+,m− ∈ S, by Proposition 2.5 we have Re
(
m+(iy) +m−(−iy)

)
> 0 for all

y ∈ R+. Consequently, Theorem 3.1 (d) yields ρ(A) 6= ∅. Therefore the operator A
is definitizable and ∞ ∈ c(A), see Lemma 3.6. As m+,m− ∈ S, the assumptions of
Theorems 3.10, 3.11, 3.13, and 3.14 are satisfied, and, thus, the remaining claims
follow. �

Remark 4.5. In the limit circle case Bennewitz, see [7], considered a more gen-
eral class of Neumann m-functions than introduced in Definition 4.1. We restate
Bennewitz’s definition here.

Denote the Wronskian of two functions f, g ∈ domB±,max by

Wt(f, g) := f(t)g[1](t)− f [1](t)g(t), t ∈ I±.

The one-sided limit

Wb±(f, g) := lim
x→b±∓0

(
f(t)g[1](t)− f [1](t)g(t)

)

exists for all f, g ∈ dom(B±,max). Furthermore, according to Titchmarsh [74] (see
also [27, Theorem 9.69], every symmetric boundary condition at b± for arbitrary
f ∈ dom(B±,max) can be written as

Wb±

(
f, (cosα)s±(·, z0) + (sinα)c±(·, z0)

)
= 0

for some α ∈ (−π/2, π/2] and some z0 ∈ C\R.
If m±(z) is a coefficient for which the solution ψ±(t, z) in (4.2) satisfies the

condition

Wb±

(
ψ±(·, z), (cosα)s±(·, z0) + (sinα)c±(·, z0)

)
= 0, z ∈ C\R, (4.15)

for some α ∈ (−π/2, π/2], then m±(z) is called the Neumann m-function of b± on
I±. Clearly, m±(z) can be expressed as

m±(z) =
(cosα)Wb±

(
s±(·, z), s±(·, z0)

)
+ (sinα)Wb±

(
s±(·, z), c±(·, z0)

)

(cosα)Wb±

(
c±(·, z), s±(·, z0)

)
+ (sinα)Wb±

(
c±(·, z), c±(·, z0)

) , z ∈ C\R.

Since all the symmetric boundary conditions at b± are included in the boundary
condition (4.15), the boundary condition (4.4) is included as well. Therefore, the
class of Neumann m-functions introduced in this remark contains the Neumann
m-functions introduced in Definition 4.1.



INDEFINITE STURM-LIOUVILLE OPERATORS 25

4.2. Asymptotic properties of m-functions. V.A. Marčenko [60], I.S. Kac,
M.G. Krein [44, 46] and Y. Kasahara [54] showed that the asymptotic behaviour
of the Weyl function m along the imaginary axes at +∞ is closely related to the
behaviour of the coefficients of the differential expression at 0. In this section we
present some results in this direction from [6, 7] and their recent developments
in [58].

Define the following four functions

W±(x) :=

∫ x

0

w±(ξ)dξ, R±(x) :=

∫ x

0

r±(ξ)dξ, x ∈ I±. (4.16)

The functions W+ and R+ are positive and increasing on I+, while W− and R− are
negative and increasing functions on I−. Define the function F± : R±

(
I±
)
→ R+

as follows

F±(x) :=
1

xW±

(
R−1

± (x)
) , x ∈ R±

(
I±
)
. (4.17)

Here

R−(I−) = (c−, 0), R+(I+) = (0, c+) with −∞ ≤ c− < 0 < c+ ≤ +∞. (4.18)

The function F+ is decreasing and unbounded, and F− is an unbounded increasing
function. Denote by f± the inverse of F±. Notice that both f− and f+ are defined
in a neighbourhood of +∞, the function f+ is positive and decreasing, the function
f− is negative and increasing, and

lim
x→+∞

f−(x) = 0 and lim
x→+∞

f+(x) = 0.

The following result was proved by F. Atkinson [3]; see also [7, Theorem 3.4] for
the improved version which we use here. The concept of the Neumann m-function
of b± on I± is used in the sense defined in Remark 4.5. For the concept of a slowly
varying function at 0± we refer to Definition A.1 in Appendix A.

Theorem 4.6. Let W± and R± be the functions defined in (4.16), let f± be the
inverse of the function defined in (4.17) and let m± be the Neumann m-function of
b± on I±. If W± ◦R−1

± is a slowly varying function at 0±, then

m±(iy) ∼ ±if±(y) as y → +∞.

Proof. Assume that W± ◦R−1
± is a slowly varying function at 0±. By Corollary A.8

this condition is equivalent to
∫ x

0

R±(ξ) dW±(ξ) = o(R±(x)W±(x)) as |x| ↓ 0 with x ∈ I±. (4.19)

The claim about the function m+ was proved in [7, Theorem 3.4]. We use this
result to prove the claim about m−. Let us set ŵ+(x) = w−(−x), r̂+(x) = r−(−x),
x ∈ Î+ = (0,−b−). Then the Hilbert space L2

ŵ+
(Î+) consists of functions

ŷ(x) := y(−x), y ∈ L2
w−

(I−).

Let B̂+ be the minimal operator generated in L2
ŵ+

(Î+) by the differential expression

(b̂+(f̂))(x) := −(b−(f))(−x), x ∈ Î+.

Then the Neumann m-function m̂+ of b̂+ on Î+ is connected with m− by

m̂+(z) = −m−(−z). (4.20)
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Next the functions

Ŵ+(x) :=

∫ x

0

ŵ+(ξ)dξ, R̂+(x) :=

∫ x

0

r̂+(ξ)dξ, x ∈ Î+

are connected with W− and R− by the equalities

Ŵ+(x) = −W−(−x), R̂+(x) = −R−(−x), x ∈ Î+ (4.21)

and the inverse f̂+ of F̂+ : x ∈ (0, ǫ) 7→ 1/(xŴ+ ◦ R̂−1
+ ) ∈ R+ is connected with the

inverse f− of F− : x ∈ (−ǫ, 0) 7→ 1/(xW− ◦R−1
− (−x)) ∈ R+ by the equality

f̂+(y) = −f−(y), y ∈ R+. (4.22)

It is easy to see, that Ŵ+ and R̂+ satisfy the condition (4.19). Therefore, by

Theorem 4.6 m̂+(iy) ∼ if̂+(y). Hence one obtains by (4.20), (4.21), (4.22)

m−(iy) = −m̂+(iy) ∼ −if̂+(y) = if̂+(y) = −if−(y). �

The following lemma was proved by Bennewitz [6]. The condition that appears
in [6] is equivalent to the definition of a positively increasing function, see Defini-
tion A.15 in Appendix A.

Lemma 4.7. Let m± be the Neumann m-function of b± on I±. Then

Rem±(iy) = O(Imm±(iy)) as y → ±∞ (4.23)

if and only if the function R± ◦W−1
± is positively increasing at 0±.

Notice that the concept of the Neumann m-function of b± on I± in Lemma 4.7 is
used in the sense defined in Remark 4.5, while in the rest of the paper we use Defini-
tion 4.1. Kostenko in [58, Corollary 2.7] proved the following analog of Lemma 4.7.

Lemma 4.8. Let m± be the Neumann m-function of b± on I±, subject to (4.6).
Then

Imm±(iy) = O(Rem±(iy)) as y → ±∞ (4.24)

if and only if the function W± ◦R−1
± is positively increasing at 0±.

Similar criteria for estimates (4.23) and (4.24) at 0 were proved by Kostenko
in [58, Theorem 2.11 and Corollary 2.15].

Lemma 4.9. Let w±, r± 6∈ L1(I±) and let m± be the Neumann m-function of b±
on I±, subject to (4.6). Then

Rem±(iy) = O(Imm±(iy)) as y → 0±

if and only if the function R± ◦W−1
± is positively increasing at ±∞.

Lemma 4.10. Let w±, r± 6∈ L1(I±) and let m± be the Neumann m-function of b±
on I±, subject to (4.6). Then

Imm±(iy) = O(Rem±(iy)) as y → 0±
if and only if the function W± ◦R−1

± is positively increasing at ±∞.

In the following lemma we consider the cases in which the conditions w±, r± 6∈
L1(I±) are not satisfied.

Lemma 4.11. Let m± be the Neumann m-function of b± on I±, subject to (4.6).
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(i) Let a± = ± limx→b± 1/W±(x). Then a± ≥ 0 and the function m̃± defined
by

m±(z) = −a±
z

+ m̃±(z), z ∈ C+,

belongs to S and

lim
y↓0

ym̃±(iy) = 0.

In particular, if w± ∈ L1(I±), then a± > 0 , ym±(iy) ∼ ia± at 0+ and

Rem±(iy) = o(Imm±(iy)) as y ↓ 0. (4.25)

(ii) If r± ∈ L1(I±) and w± 6∈ L1(I±), then

Imm±(iy) = o(Rem±(iy)) as y ↓ 0. (4.26)

Proof. The claims (i) and (ii) appear in [58, Lemma 2.10]. For the proof of (i) see
also [28, Propositions 3.6, 4.6].

We present a proof of (ii) here since its proof in [58] has a gap. Assume that
r+ ∈ L1(I+), w+ 6∈ L1(I+) and consider the dual differential expression

b̂+(f) := − 1

r+(t)

d

dt

(
1

w+(t)

d

dt
f

)
on I+. (4.27)

Since w+ 6∈ L1(I+) the differential expression b̂+ is singular at b+. By [58, Lemma

2.10] (see also [28, Theorem 5.2]) the Neumann m-function m̂+ of b̂+ on I+, subject
to (4.6), is connected with m+ by the equality

m̂+(z) = − 1

zm+(z)
, z ∈ C+. (4.28)

Since r+ ∈ L1(I+), by (4.25) in (i) we have that m̂+ satisfies the condition

Re m̂+(iy) = o(Im m̂+(iy)) as y ↓ 0.

Now (4.28) yields

lim
y↓0

Imm+(iy)

Rem+(iy)
= lim

y↓0

Re m̂+(iy)

Im m̂+(iy)
= 0.

The proof of (ii) for m− is similar. �

Remark 4.12. As was shown in [28, Theorem 5.2] the formula (4.28) holds if the
differential expression b+ is singular at b+. If b+ is regular at b+ then (4.28) is not
true anymore. Notice, that this fact was overlooked in [58].

4.3. Regularity of the critical point ∞. Statements (iii), (iv) of Theorem 4.4
can be restated as follows.

Theorem 4.13. Let the differential expression b± satisfy (1.2) and let the functions
R± and W± be defined by (4.16). If either W+ ◦R−1

+ is positively increasing at 0+
or W− ◦R−1

− is positively increasing at 0−, then ∞ ∈ cr(A).

Proof. Let m± be the Neumann m-function of b± on I±, subject to (4.6). By
Proposition 4.2 (d) m+ and m− belong to the Stieltjes class S. Thus m+ and
m− satisfy the assumption (3.31) of Theorem 3.10. Assume that W+ ◦ R−1

+ is
positively increasing at 0+. Then by Lemma 4.8 condition (4.24) holds. Hence
by Theorem 4.4 (iii) we have ∞ ∈ cr(A). Similar argument proves the theorem if
W− ◦R−1

− is positively increasing at 0−. �
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Example 4.14. Let I = (−1, 1). Consider differential operators B± generated by
b± in L2(I±), where r−, w− are arbitrary subject to conditions (1.2) and r+ = 1,
and w+ satisfies the condition:

w+(x) = xαv+(x), x ∈ I+, α > −1, (4.29)

where v+(x) is slowly varying at 0+. Then by Karamata’s characterization theorem,
Theorem A.6, we have

W+(x) =

∫ x

0

tαv+(t)dt ∼
xα+1

α+ 1
v+(x) as x ↓ 0,

and hence W+(x) is regularly varying at 0+ of order α+1 > 0 by Proposition A.2.
Theorem 4.13 yields that ∞ ∈ cr(A).

In the case when both w+ and w− satisfy the condition (4.29) with v± ∈ C1(I±)
and α > −1/2 (so called Beals conditions) this result was obtained by R. Beals in [5],

and by B. Ćurgus and H. Langer in [16] for α > −1. That one-sided condition for
the weight w on I+ is enough for ∞ ∈ cr(A) was noticed by A. Fleige in [33].

Lemma 4.15. Let a ∈ R+ and let α, β, f, g : [a,+∞) → C\{0} be functions such
that α and β are bounded,

lim
x→+∞

α(x)

β(x)
= 1 and lim

x→+∞

f(x)

g(x)
= 1. (4.30)

Then

1

α(x) − f(x)
= O(1) as x→ +∞ ⇔ 1

β(x) − g(x)
= O(1) as x→ +∞. (4.31)

Proof. We will prove the equivalence of the negations of the statements in (4.31).
The negation of the statement on the left-hand side of (4.31) is: There exists an
increasing sequence (xn) in [a,+∞) such that

lim
n→+∞

xn = +∞ and lim
n→+∞

(
α(xn)− f(xn)

)
= 0.

Since for all n ∈ N we have

β(xn)− g(xn) = α(xn)

(
β(xn)

α(xn)
− g(xn)

f(xn)

)
+
(
α(xn)− f(xn)

) g(xn)
f(xn)

and since α is bounded, (4.30) and the stated negation imply that the negation of
the right-hand side of (4.31) holds. The proof of the converse is similar. �

Lemma 4.16. Let a ∈ R+ and let f and g be positive functions defined on [a,+∞).
Then
(
f(x)

g(x)
− 1

)−1

= O(1) as x→ +∞

⇔
(
g(x)

f(x)
− 1

)−1

= O(1) as x→ +∞.

(4.32)

Proof. The equivalence of the negations of the propositions in (4.32) is clear. �

Application of Theorem 4.4 (i) and Theorem 4.6 leads to the following charac-
terization of regularity of critical point ∞ under the assumptions of Theorem 4.6.
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Theorem 4.17. Let the differential expression a satisfy (1.2). Let W± and R±

be the functions defined in (4.16) and assume that W± ◦ R−1
± is slowly varying

function at 0±. Then the operator A associated with a is nonnegative in the Krein
space

(
L2
w(I), [ · , · ]w

)
, ρ(A) 6= ∅, ∞ is a critical point of A, and

∞ ∈ cr(A) ⇔
(
1 +

W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0.

Proof. Assume that W± ◦ R−1
± is slowly varying function at 0±. An immediate

consequence of the definition in (4.17) is the equivalence
(
1 +

W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0 ⇔
(
1− F+(x)

F−(−x)

)−1

= O(1) as x ↓ 0.

Recall that F+ is unbounded decreasing, and F− is an unbounded increasing func-
tion. Since W± ◦R−1

± is slowly varying at 0±, the function F± is regularly varying
at 0± with index −1, see the definition in (4.17). As the function f± is the inverse
of F±, Corollary A.13 yields the following equivalence

(
1− F+(x)

F−(−x)

)−1

= O(1) as x ↓ 0 ⇔
(
1 +

f+(y)

f−(y)

)−1

= O(1) as y → +∞.

Let m± be the Neumann m-function of b± on I±. By Theorem 4.6 we have

∓im±(iy) ∼ f±(y) as y → +∞.

The preceding asymptotic relation and Lemma 4.15 imply

Imm+(iy)

m+(iy) +m−(−iy)
= O(1) as y → +∞

⇔
(
1 +

f−(y)

f+(y)

)−1

= O(1) as y → +∞.

To see how Lemma 4.15 applies here we write

i Imm+(iy)

m+(iy) +m−(−iy)
=

1
−im+(iy)
Imm+(iy) −

im−(−iy)
Imm+(iy)

,

set

α(y) =
−im+(iy)

Imm+(iy)
, f(y) =

im−(−iy)
Imm+(iy)

, β(y) = 1, g(y) = −f−(y)
f+(y)

,

and observe that the above asymptotic relation from Theorem 4.6 implies

lim
y→+∞

α(y) = 1 and lim
y→+∞

f(y)

g(y)
= 1.

Since by Lemma 4.16 we have
(
1 +

f−(y)

f+(y)

)−1

= O(1) as y → +∞ ⇔
(
1 +

f+(y)

f−(y)

)−1

= O(1) as y → +∞,

we have proved that

(
1 +

W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0
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⇔ Imm+(iy)

m+(iy) +m−(−iy)
= O(1) as y → +∞.

Similarly, we can prove that

(
1 +

W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0

⇔ Imm−(iy)

m+(iy) +m−(−iy)
= O(1) as y → +∞.

Therefore,

(
1 +

W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0

⇔ the pair m+ and m− has D∞-property.

Now the theorem follows from Theorem 4.4. �

Remark 4.18. The criteria in Theorem 4.17 nicely complements the result of
Kostenko in [58, Corollary 4.8(i)]. To see this, we notice that [58, Corollary 4.8(i)]
can be restated as follows: If W− ◦R−1

− is slowly varying function at 0−, W+ ◦R−1
+

is slowly varying function at 0+ and ∞ ∈ cr(A), then w is not odd or r is not even.
The “only if” part of Theorem 4.17 gives more than the fact that w is not odd
or r is not even, that is, there exists a small enough x such that W+

(
R−1

+ (x)
)
6=

−W−

(
R−1

− (−x)
)
. The “only if” part of Theorem 4.17 gives

(
1 +

W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0. (4.33)

In this setting the negation of (4.33), that is the condition

W+

(
R−1

+ (x)
)

s∼ −W−

(
R−1

− (−x)
)

at 0+,

appears to be a natural generalization of the condition that the functions |w| and
r are even. Here we use the symbol s∼ which is defined in Definition A.9. In
the case when r = 1, this condition also generalizes the condition of w being odd-
dominated which was used in Fleige’s criterion for∞ ∈ cr(A), see [15, Definition 3.8
and Theorem 3.11].

For slowly varying functions the following corollary extends the result of [15,
Corollary 3.15].

Corollary 4.19. Let 0 < b+ ≤ +∞, I+ = [0, b+) and r+, w+ ∈ L1
loc(I+) be positive

functions. Let α, β ∈ R+, set b− = −b+/β and define

r(x) =

{
r+(x) if x ∈ [0, b+)

αr+(−βx) if x ∈ (b−, 0),
w(x) =

{
w+(x) if x ∈ [0, b+)

−αw+(−βx) if x ∈ (b−, 0).

Let W+ and R+ be the functions defined in (4.16) and assume that W+ ◦ R−1
+ is

slowly varying function at 0+. Then the operator A associated with a is nonnegative
in the Krein space

(
L2
w(I), [ · , · ]w

)
, ρ(A) 6= ∅, ∞ is a critical point of A, and

∞ ∈ cr(A) if and only if α 6= β.
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Proof. To apply Theorem 4.17 we first calculate for x ∈ (c−, 0) (cf. (4.18))

W−

(
R−1

− (x)
)
= −(α/β)W+

(
R−1

+

(
−(β/α)x

))
.

Hence W− ◦R−1
− is a slowly varying function at 0−. Further

W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
) = −α

β

W+

(
R−1

+

(
(β/α)x

))

W+

(
R−1

+ (x)
) ,

and since W+ ◦R−1
+ is a slowly varying function at 0+ we have

lim
x↓0

W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
) = −α

β
.

Therefore (
1 +

W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0

holds if and only if α 6= β. Now the claim follows from Theorem 4.17. �

We illustrate Corollary 4.19 with an example which has appeared in [15, Exam-
ple 3.17]. The novelty here is that we can give a characterization of the regularity
of the critical point ∞ for all positive coefficients α and β.

Example 4.20. Let w+, r+ : (0, 1) → R+ be given by

w+(x) =
1

x(ln x)2
, r+(x) = 1, x ∈ (0, 1).

Then

W+(x) =W+

(
R−1

+ (x)
)
= − 1

lnx
, x ∈ [0, 1).

Hence, W+ ◦R−1
+ is a slowly varying function at 0+. Therefore the operator A from

Corollary 4.19 is nonnegative in the Krein space
(
L2
w(−1, 1), [ · , · ]w

)
, ρ(A) 6= ∅, ∞

is its critical point and ∞ ∈ cr(A) if and only if α 6= β.

Example 4.21. Let α± > 0 and I = (−1, 1). Let r = 1 on I and

w−(x) =
α−

x
(
− ln(−x)

)1+α−
, x ∈ (−1, 0), w+(x) =

α+

x(− lnx)1+α+
, x ∈ (0, 1).

Then
R−(x) = x, x ∈ [−1, 0], R+(x) = x, x ∈ [0, 1], (4.34)

W−(x) =
−1(

− ln(−x)
)α−

, x ∈ (−1, 0], W+(x) =
1(

− lnx
)α+

, x ∈ [0, 1). (4.35)

Thus W− ◦ R−1
− = W− is slowly varying at 0−, W+ ◦ R−1

+ = W+ is slowly varying
at 0+ and

(
1 +

W−(−x)
W+(x)

)−1

=
(
1−

(
− ln(x)

)α+−α−

)−1

= O(1) as x ↓ 0

holds if and only if α+ 6= α−.
By Theorem 4.17 the operator A associated with the differential expression a

with the above defined w and r is nonnegative in the Krein space
(
L2
w(I), [ · , · ]w

)
,

ρ(A) 6= ∅, ∞ is its critical point and ∞ ∈ cr(A) if and only if α+ 6= α−. That is, ∞
is a singular critical point of A if and only if α+ = α−. Notice that the implication

α+ = α− ⇒ ∞ ∈ cs(A)
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follows from a result of Parfenov [61, Theorem 6], as with α+ = α− the weight
function w(x), x ∈ I, is odd on I.

The converse of the last displayed implication does not follow from neither
of the following sufficient conditions for regularity: Volkmer’s condition, see [76,
Corollary 2.7] or [15, Theorem 3.14], Fleige’s condition for odd-dominated weights,
see [15], Parfenov’s condition [62, Corollary 8] for non-odd weights.

4.4. Discreteness. For a closed operator T its discrete spectrum consists of its
isolated eigenvalues of finite algebraic multiplicity. The complement of the dis-
crete spectrum is called the essential spectrum of T ; it is denoted by σess(T ). The
following theorem is based on a result from [43].

Theorem 4.22. Let 0 < b+ ≤ +∞, let w+ and r+ be almost everywhere positive
functions on (0, b+) such that w+ ∈ L1(0, b+) and r+ /∈ L1(0, b+) and let B+ and
B+,0 be defined as in (4.5) and (4.11). Then the following two equivalences hold:

σess(B+,0) = ∅ ⇔ lim
x→b+

R+(x)

∫ b+

x

w+(ξ)dξ = 0, (4.36)

0 6∈ σess(B+,0) ⇔ sup
x∈(0,b+)

R+(x)

∫ b+

x

w+(ξ)dξ < +∞ (4.37)

and in the latter case 0 ∈ ρ̂(B+).

Proof. Let us introduce the change of variable function by ξ = R+(x), x ∈ (0, b+)

and consider the weight function w̃ and the differential expression b̃ by

w̃(ξ) =
w
(
R−1

+ (ξ)
)

r
(
R−1

+ (ξ)
) , b̃ = − 1

w̃

d2

dx2
ξ ∈ R+.

Let B̃ and B̃0 be operators associated with b̃ via (4.5) and (4.11). A straightforward
verification yields that the operator U defined for an f : (0, b+) → C by

(Uf)(ξ) = f
(
R+

−1(ξ)
)
, ξ ∈ R+,

is a unitary operator from L2
w+

(0, b) to L2
w̃(R+) and B̃0 = UB+,0U

−1. That is the

operators B+,0 and B̃0 are unitarily equivalent.
We will use a result from [43]. It was shown in [43] that under the assumption

w̃ ∈ L1(R+) the following equivalences hold:

σess(B̃0) = ∅ ⇔ lim
ξ→+∞

ξ

∫ +∞

ξ

w̃(τ)dτ = 0, (4.38)

0 6∈ σess(B̃0) ⇔ sup
ξ∈R+

ξ

∫ +∞

ξ

w̃(τ)dτ < +∞. (4.39)

Moreover, in the latter case 0 is a regular point for the Dirichlet extension of B̃ and

hence 0 ∈ ρ̂(B̃). The equivalences in the lemma follow from (4.38) and (4.39) since
by the change of variable τ = R+(t), t ∈ (0, b+), we have ξ = R+(x) and

ξ

∫ +∞

ξ

w̃(τ)dτ = R+(x)

∫ b+

x

w+(t)dt, ξ ∈ R+.

�
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Let b+ be the dual differential expression (4.27). The spectrum of the Neumann

realization B+,0 (resp. B̂+,0) of b+ (resp. b̂+) coincides with the support of the
measure dσ+ (resp. dσ̂+) in the integral representation (2.10) of m+ (resp. m̂+).
Since the functions m+ and m̂+ are related by (4.28) the essential spectra of the op-

erators B+,0 and B̂+,0 coincide, see also [46, (12.5)] for the case r+ = 1. Therefore,
by switching the coefficients w+ and r+ we obtain the following statement.

Corollary 4.23. Let 0 < b+ ≤ +∞ and let w+ and r+ be almost everywhere
positive functions on (0, b+) such that w+ 6∈ L1(0, b+) and r+ ∈ L1(0, b+). The
following two equivalences hold:

σess(B+,0) = ∅ ⇔ lim
x→b+

W+(x)

∫ b+

x

r+(ξ)dξ = 0, (4.40)

0 6∈ σess(B+,0) ⇔ sup
x∈(0,b+)

W+(x)

∫ b+

x

r+(ξ)dξ < +∞. (4.41)

Remark 4.24. In the case r+ = 1 conditions (4.36), (4.37) were proved in [43].
Conditions similar to (4.36) can be found also in [21] for Sturm-Liouville operators
and in [69], [67] for canonical systems. Clearly, the equivalences (4.36), (4.37),
(4.40) and (4.41) remain in force for B−,0 with b+, w+, r+ replaced by b−, w−, r−,
respectively. In particular,

σess(B−,0) = ∅ ⇔ lim
x→b−

R−(x)

∫ b−

x

w−(ξ)dξ = 0,

0 6∈ σess(B−,0) ⇔ sup
x∈(0,b−)

R−(x)

∫ b−

x

w−(ξ)dξ < +∞. (4.42)

The next proposition shows that the spectrum of the operator B±,0 defined
in (4.11) can be discrete even in the limit point case.

Proposition 4.25. Assume w± ∈ L1(I±). Then
∫

I±

∣∣R±(ξ)
∣∣w±(ξ)dξ =

∫

I±

∣∣W±(b±)−W±(ξ)
∣∣r±(ξ)dξ, (4.43)

meaning that either the two integrals diverge simultaneously, or, if one converges,
then the other one converges as well and the integrals are equal. Further, if R± ∈
L1
w±

(I±), then the spectrum of B±,0 is discrete and 0 ∈ ρ̂(B±).

Proof. Assume that w± ∈ L1(I±). That is assume that W±(b±) is a real number.
Further assume that the integral

∫

I±

∣∣R±(ξ)
∣∣w±(ξ)dξ =

∫ b±

0

R±(ξ)dW±(ξ) = lim
x→b±

∫ x

0

R±(ξ)dW±(ξ) (4.44)

converges. Applying integration by parts (see, e.g., [77, Theorem 2.21]) for all
x ∈ I± we obtain,

∫ x

0

(
W±(x) −W±(ξ)

)
dR±(ξ) =

∫ x

0

R±(ξ)dW±(ξ). (4.45)

Since the limit as x→ b± of the integral on the right-hand side of (4.45) exists, the
Lebesgue Monotone Convergence Theorem implies that the limit of the integral on
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the left-hand side of (4.45) exists and

lim
x→b±

∫ x

0

(
W±(x)−W±(ξ)

)
dR±(ξ) =

∫ b±

0

(
W±(b±)−W±(ξ)

)
dR±(ξ). (4.46)

Clearly,
∫

I±

∣∣W±(b±)−W±(ξ)
∣∣r±(ξ)dξ =

∫ b±

0

(
W±(b±)−W±(ξ)

)
dR±(ξ)

and the equality in (4.43) follows from (4.44), (4.45) and (4.46).
Assume now that the integral on the right-hand side of (4.43) converges. Then

(4.46) holds. Applying again integration by parts for all x ∈ I± we obtain
∫ x

0

(
W±(b±)−W±(ξ)

)
dR±(ξ)

= R±(x)
(
W±(b±)−W±(x)

)
+

∫ x

0

R±(ξ)dW±(ξ).

(4.47)

Notice that all three terms in (4.47) are positive and that the integrals in (4.47) are
increasing functions of x ∈ I±. Therefore (4.46) implies that (4.44) holds. That is
the first integral in (4.43) converges. Now the equality of the integrals follows from
the first part of this proof.

Furthermore, taking the limit as x→ b± in (4.47) yields

lim
x→b±

R±(x)
(
W±(b±)−W±(x)

)
= 0. (4.48)

This limit is the right-hand side of the equivalence (4.37) in Theorem 4.22. Hence
the spectrum of B±,0 is discrete. �

The next theorem combines the results of Theorem 4.22, Corollary 4.23 and
Theorem 4.17 to provide a necessary and sufficient condition for the existence of a
Riesz basis consisting of eigenfunctions of the differential operator A.

Theorem 4.26. Let the differential expression a satisfy (1.2) and let W± and R±

be the functions defined in (4.16). Assume

(a) The functions w+ and r+ satisfy one of the following three conditions:
(i) w+ ∈ L1(I+) and r+ ∈ L1(I+).
(ii) w+ ∈ L1(I+), r+ 6∈ L1(I+) and limx↑b+ R+(x)

(
W+(b+)−W+(x)

)
= 0.

(iii) w+ 6∈ L1(I+), r+ ∈ L1(I+) and limx↑b+ W+(x)
(
R+(b+)−R+(x)

)
= 0.

(b) The functions w− and r− satisfy one of the following three conditions
(i) w− ∈ L1(I−) and r− ∈ L1(I−).
(ii) w− ∈ L1(I−), r− 6∈ L1(I−) and limx↓b− R−(x)

(
W−(b−)−W−(x)

)
= 0.

(iii) w− 6∈ L1(I−), r− ∈ L1(I−) and limx↑b− W−(x)
(
R−(b−)−R−(x)

)
= 0.

Then the spectrum of the operator A associated with the differential expression a

in the Hilbert space L2
|w|(I) is real and discrete, its eigenvalues accumulate on both

sides of ∞, all nonzero eigenvalues are simple and Jordan chain at 0 is of length
at most 2. The following statements hold.

(A) If either W+ ◦R−1
+ is positively increasing at 0+ or W− ◦R−1

− is positively
increasing at 0−, then we have:
(I) There exists a Riesz basis of the Hilbert space L2

|w|(I) which consists

of generalized eigenfunctions of A.
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(B) If W+ ◦R−1
+ is slowly varying at 0+ and W− ◦R−1

− is slowly varying at 0−,
then (I) is equivalent to

(II)

(
1 +

W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0.

Proof. In either of the three cases in (a), the spectrum of the operator B+,0 is
discrete and the eigenvalues accumulate at +∞. This follows from the fact that in
case (i) in (a) the operator B+,0 is either regular or in the limit-circle case at b+. In
the remaining two cases in (a) this follows from Theorem 4.22. Similarly, in either
of the three cases in (b), the spectrum of the operator B−,0 is discrete and the
eigenvalues accumulate at ∞. Since A is a rank-one perturbation of the operator
B+,0 ⊕ (−B−,0), by Weyl’s theorem the spectrum of the operator A is also discrete
(see [66, Theorem XIII.14]). By Lemma 3.6 the eigenvalues of A accumulate on
both sides of ∞. Since the operator A is nonnegative in the Krein space K all
nonzero eigenvalues of A are semi-simple and the length of the Jordan chain at 0
is at most 2. Moreover, by Lemma 4.3 all nonzero eigenvalues of A are simple.

Let ∆ be an arbitrary finite open interval such that 0 ∈ ∆ and let E be the
spectral function of A in the sense of [59]. By the properties of this spectral func-
tion [59], ∞ ∈ cr(A) if and only if there exists a Riesz basis of (I − E(∆))K which
consists of eigenfunctions of the restriction of A on (I − E(∆))K. Since E(∆)K is
a finite-dimensional space, the eigenfunctions and the generalized eigenfunctions of
the restriction of A on E(∆)K form a Riesz basis of E(∆)K. Therefore (I) is equiv-
alent to ∞ ∈ cr(A). By Theorem 4.13, if either W+ ◦ R−1

+ is positively increasing

at 0+ or W− ◦ R−1
− is positively increasing at 0−, then ∞ ∈ cr(A) and hence the

claim in (A) holds.
If W+ ◦R−1

+ is slowly varying at 0+ and W− ◦R−1
− is slowly varying at 0−, then

by Theorem 4.17 condition (II) is equivalent to ∞ ∈ cr(A). Since we already proved
that ∞ ∈ cr(A) is equivalent to (I), the equivalence in (B) is proved. �

Remark 4.27. For the differential expression a introduced in Example 4.21 we
have

W+(x)
(
R+(1)−R+(x)

)
=

1− x

(− lnx)α+
∼ (1− x)1−α+ as x ↑ 1

and

W−(x)(R−(−1)−R−(x)) =
1 + x(

− ln(−x)
)α−

∼ (1 + x)1−α− as x ↓ −1.

Therefore a satisfies conditions (a)(iii) and (b)(iii) in Theorem 4.26 if and only if
α− ∈ (0, 1) and α+ ∈ (0, 1). By (B) in Theorem 4.26 the operatorA in Example 4.21
with α−, α+ ∈ (0, 1) has the Riesz basis property if and only if α− 6= α+.

4.5. Regularity at 0. Since the operator A associated with the differential ex-
pression a is nonnegative it may have another critical point at 0. In this subsection
we consider the problem of regularity of the critical point 0 of the operator A. Let
W± and R± be defined by (4.16).

Theorem 4.28. Let W± and R± be defined by (4.16), and let A be the differential
operator associated with the expression a with the domain defined by (4.13). Assume
that one of the following cases is in force:
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(i) w−, r− 6∈ L1(I−), w+, r+ 6∈ L1(I+) and either W− ◦ R−1
− is positively

increasing at −∞ or W+ ◦R−1
+ is positively increasing at +∞;

(ii) w− 6∈ L1(I−) and w+ 6∈ L1(I+) and either r+ ∈ L1(I+), or r− ∈ L1(I−);
(iii) either w+ ∈ L1(I+), w− 6∈ L1(I−) or w− ∈ L1(I−), w+ 6∈ L1(I+).
(iv) w− ∈ L1(I−) and w+ ∈ L1(I+), and W+(b+) +W−(b−) 6= 0.

Then

0 6∈ cs(A) and kerA = kerA2. (4.49)

Moreover, the following statements hold.

(a) If w− ∈ L1(I−) and w+ ∈ L1(I+), then (4.49) holds if and only if W+(b+)+
W−(b−) 6= 0.

(b) If w− ∈ L1(I−), w+ ∈ L1(I+) and (4.37), (4.42) hold, then 0 6∈ σess(A) and
the following three statements are equivalent

W+(b+) +W−(b−) 6= 0 ⇔ kerA = kerA2 ⇔ 0 /∈ c(A). (4.50)

Proof. 1. Proof of (4.49) under assumption (i). Due to Lemma 4.10 the assumption
that W+ ◦R−1

+ is positively increasing at +∞ is equivalent to the condition

Imm+(iy) = O
(
Rem+(iy)

)
as y ↓ 0.

By Theorem 4.4 (v) this implies 0 6∈ cs(A) and kerA = kerA2.

2. Proof of (4.49) under assumption (ii). If r+ ∈ L1(R+) and w+ 6∈ L1(R−), then
by Lemma 4.11 (4.26) holds and, hence, by Theorem 4.4 (v) we have 0 6∈ cs(A) and
kerA = kerA2.

3. Proof of (4.49) under assumption (iii). If w+ ∈ L1(I+) and w− 6∈ L1(I−), then
by Lemma 4.11

m+(iy) = i
a+
y

+ m̃+(iy), m−(iy) = o(1/y) as y ↓ 0

for a+ = 1
W+(b+) > 0, m̃+(iy) = o(1/y). Then

m+(iy) +m−(−iy) ∼ −a+
iy

as y ↓ 0.

and

Imm+(iy) ∼
a+
y
, Imm−(iy) → 0 as y ↓ 0.

Hence

Imm±(iy) = O(m+(iy) +m−(−iy)) as y ↓ 0

and by Theorem 4.4 (ii) 0 6∈ cs(A) and kerA = kerA2.

4. Proof of (4.49) under assumption (iv). If w+ ∈ L1(I+) and w− ∈ L1(I−) then
by Lemma 4.11

m+(iy) ∼ i
a+
y
, m−(iy) ∼ i

a−
y

as y ↓ 0

for a± = ±1/W±(b±). Since W+(b+) +W−(b−) 6= 0 then a+ 6= a−,

m+(iy) +m−(−iy) ∼ i
a+ − a−

y
as y ↓ 0

and

Imm±(iy) ∼
a±
y

as y ↓ 0. (4.51)
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Hence

Imm±(iy) = O
(
m+(iy) +m−(−iy)

)
as y ↓ 0. (4.52)

By Theorem 4.4 (ii) (4.52) is equivalent to 0 6∈ cs(A) and kerA = kerA2.

5. Proof of (a). Assume now that W+(b+) +W−(b−) = 0. Then by Lemma 4.11
a+ = a− and hence

m+(iy) +m−(−iy) = o(1/y) as y ↓ 0.

In view of (4.51) the relation (4.52) is not fulfilled and by Theorem 4.4 the rela-
tions (4.49) fail to hold, i.e either 0 ∈ cs(A) or kerA ( kerA2.

6. Proof of (b). If w± ∈ L1(I±) and (4.37), (4.42) hold, then by Theorem 4.22
0 6∈ σess(B±,0). Since A is a rank-one perturbation of the operator B+,0 ⊕ (−B−,0)
we have 0 6∈ σess(A).

Since w ∈ L1(I), all constant functions on I belong to domA defined in (4.12).
Consequently, all constant functions on I belong to kerA. As by Lemma 4.3 kerA is
at most one-dimenional, we deduce that kerA consists of all the constant functions
on I. Denote by 1 the constant function on I equal to 1. Notice that

[1,1]w =W+(b+) +W−(b−). (4.53)

If W+(b+) +W−(b−) 6= 0 then the subspace kerA is nondegenerate. Moreover,
we have kerA = kerA2, since the existence of an associated vector f ∈ domA such
that Af = 1 implies [1,1]w = [Af,1]w = [f,A1]w = 0. This proves the implication

W+(b+) +W−(b−) 6= 0 ⇒ kerA = kerA2.

Now assume kerA = kerA2. Then 0 is a simple eigenvalue of A and since
0 6∈ σess(A) it is an isolated eigenvalue. By [59] kerA is nondegenerate and thus
0 6∈ c(A).

And finally, if 0 6∈ c(A), then by [59] kerA2 = kerA and kerA is definite.
Hence [1,1]w 6= 0 and by (4.53) we have W+(b+) +W−(b−) 6= 0. This proves the
implication 0 6∈ c(A) ⇒ W+(b+) +W−(b−) 6= 0 and hence the equivalence (4.50).

�

In Theorem 4.28 it is not claimed that 0 ∈ cr(A), since it may happen that 0 is
not a critical point of A at all. In the next corollary we specify some cases when 0
is indeed a regular critical point of A.

Corollary 4.29. Assume that w+ and r+ satisfy one of the following assumptions:

(a) w+ ∈ L1(I+), r+ /∈ L1(I+) and supx∈I+ R+(x)
(
W+(b+)−W+(x)

)
= +∞,

(b) w+ 6∈ L1(I+), r+ ∈ L1(I+) and supx∈I+ W+(x)
(
R+(b+)−R+(x)

)
= +∞.

Assume that w− and r− satisfy one of the following assumptions:

(c) w− ∈ L1(I−), r− 6∈ L1(I−) and supx∈I− R−(x)
(
W−(b−)−W−(x)

)
= +∞,

(d) w− 6∈ L1(I−), r− ∈ L1(I−) and supx∈I− W−(x)
(
R−(b−)−R−(x)

)
= +∞.

In cases (a) and (c) assume W+(b+) + W−(b−) 6= 0. Then 0 ∈ cr(A) and the
spectrum of the operator A accumulates on both sides of 0.

Proof. In either of the cases (a) and (b) ((c) and (d), respecitively), 0 is an ac-
cumulation point for the spectrum of the operator B+,0 (B−,0, respectively) from
the right. Therefore, 0 is an accumulation point for the spectrum of the decoupled
operator A0 = A+,0 ⊕ (A−,0) from both sides. Since the resolvent (A − z)−1 of A
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is a one-dimensional perturbation of the resolvent (A0 − z)−1, see (3.7), it follows
from [42, Theorem 1] that 0 ∈ c(A).

The statement 0 ∈ cr(A) follows from Theorem 4.28. �

Remark 4.30. The list of assumptions of Theorem 4.28 covers all possible cases
except the following:

(v) w−, r− 6∈ L1(I−), w+, r+ 6∈ L1(I+) and both W− ◦ R−1
− is not positively

increasing at −∞ and W+ ◦R−1
+ is not positively increasing at +∞.

In this case we cannot apply our abstract results from Theorem 3.10 because the
asymptotic behaviour of the Weyl functions at finite points is insufficiently studied.

Remark 4.31. If w+ ∈ L1(I+), w− ∈ L1(I−), R+ ∈ L1
w+

(I+) and R− ∈ L1
w−

(I−)

then by Proposition 4.25 the spectrum of A is discrete and in the case W+(b+) +
W−(b−) = 0 the root subspace kerA2 can be found explicitly. As was mentioned
above kerA = span{1}. Let us find a generalized eigenvector f ∈ dom(A) such that

Af = 1, i.e. f = f+ ⊕ f−, where f± ∈ dom(B
〈∗〉
± ) are solutions of the equations

b+f+ = 1, −b−f− = 1, (4.54)

such that

f+(0) = f−(0), f
[1]
+ (0) = f

[1]
− (0). (4.55)

holds. Straightforward calculations show that the functions

f±(x) = ±
∫ x

0

R±(ξ)w±(ξ)dξ ±
∫ b±

x

R±(x)w±(ξ)dξ (4.56)

satisfy (4.54) and the first boundary condition in (4.55). The second boundary
condition in (4.55) holds since W+(b+) +W−(b−) = 0.

It follows from (4.48) that the second term in (4.56)

∫ b±

x

R±(x)w±(ξ)dξ = R±(x)(W±(b±)−W±(x))

is bounded. The first term in the right hand part of (4.56) is also bounded since
R± ∈ L1

w±
(I±) and hence f± ∈ L2

w±
(I±).

Therefore, f± ∈ dom(B±,max) and hence f± ∈ dom(B
〈∗〉
± ) in the limit point case.

In the limit circle case we also get f± ∈ dom(B
〈∗〉
± ), since f

[1]
± (b±) = 0. Therefore,

f = f+ ⊕ f− ∈ domA and the equation Af = 1 has a solution f ∈ dom(A). Thus
kerA 6= kerA2.

Remark 4.32. Let b+, α, β, b− and the function w be defined as in Corollary 4.19
and arbitrary r ∈ L1

loc(I). Assume that w+ ∈ L1(I+). Then w− ∈ L1(I−). Let
W+ be the function defined in (4.16). Then, for all x ∈ [b−, 0] we have W−(x) =
−(α/β)W+(−βx). Consequently,

W+(b+) +W−(b−) = (1− α/β)W+(b+).

By Theorem 4.28 (a) we have that (4.49) holds if and only if α 6= β. In particular,
if α = β = 1 the weight function w(t) is odd and condition (4.49) does not hold.
This has been proved in [58, Theorem 4.7] under additional conditions that r is
even and r /∈ L1(I).
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Example 4.33. We consider the differential expression studied in Example 4.21
on an interval I = (b−, b+) with −1 ≤ b− < 0 < b+ ≤ 1.

First assume that b− = −1 and b+ = 1, as in Example 4.21. Then R± and W±

are given by the formulas (4.34) and (4.35). Due to Theorem 4.28 (ii) 0 6∈ cs(A)
and kerA = kerA2.

Moreover, ker(A) = {0} since a function f ∈ ker(A) should have a form f =

f+ ⊕ f− ∈ domA, where f+ ∈ dom(B
〈∗〉
+ ), f− ∈ dom(B

〈∗〉
− ) and the coupling

conditions (4.55) hold. The conditions f+ ∈ dom(B
〈∗〉
+ ), f− ∈ dom(B

〈∗〉
− ) yield that

f+ and f− are proportional to 1− x and 1+ x, respectively. But then the coupling
conditions (4.55) yield f+ = f− = 0.

Further,

lim
x↑1

(
R+(1)−R+(x)

)
W+(x) = lim

x↑1

1− x

(− lnx)α+
=





0 if 0 < α+ < 1,
1 if α+ = 1,

+∞ if α+ > 1,

and

lim
x↓−1

(
R−(−1)−R−(x)

)
W−(x) = lim

x↓−1

1 + x(
− ln(−x)

)α−
=





0 if 0 < α− < 1,
1 if α− = 1,

+∞ if α− > 1.

Hence Corollary 4.23 yields

0 ∈ σess(B−,0) ∩ σess(B+,0) ⇔ α+ > 1 and α− > 1.

Since 0 is not an eigenvalue of A, it follows from the preceding equivalence that
0 ∈ c(A) if and only if α+ > 1 and α− > 1. Theorem 4.28(ii) yields that 0 ∈ cr(A),
whenever α+ > 1 and α− > 1. Conversely, if α+ ∈ (0, 1] or α− ∈ (0, 1], then
0 /∈ c(A). Consequently, 0 ∈ cr(A) if and only if α+ > 1 and α− > 1.

Next assume that b+ = 1 and b− ∈ (−1, 0). Due to Theorem 4.28 (iii) 0 6∈
cs(A). In this case ker(A) = {0}, since a function f ∈ ker(A) should have a form

f = f+ ⊕ f− ∈ domA, where f+ ∈ dom(B
〈∗〉
+ ), f− ∈ dom(B

〈∗〉
− ) and satisfy the

conditions

f+(0) = f−(0), f ′
+(0) = f ′

−(0), f ′
−(b−) = 0. (4.57)

The conditions f+ ∈ dom(B
〈∗〉
+ ) and f ′

−(b−) = 0 yield that f+ is proportional to
1− x and f− is constant. Then (4.57) implies f+ = 0 and hence, also f− = 0.

Since the spectrum of B−,0 is discrete 0 is not an accumulation point of the
negative spectrum of A and consequently 0 /∈ c(A). The same conclusion holds if
b− = −1 and b+ ∈ (0, 1).

Finally we assume that b− ∈ (−1, 0) and b+ ∈ (0, 1). In this case the differential
expression a is regular, so the spectrum of A is discrete. Therefore the root space
at 0 is nondegenerate. Consequently, 0 /∈ cs(A). Since

W−(b−) +W+(b+) =
1

(− ln b+)α+
− 1

(− ln |b−|)α−
,

statement (b) from Theorem 4.28 takes the form:

α+

α−
6= ln

∣∣ln |b−|
∣∣

ln | ln b+|
⇔ kerA = kerA2 ⇔ 0 /∈ c(A).
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It is interesting to write the preceding equivalences in the following form:

α+

α−
=

ln
∣∣ln |b−|

∣∣
ln | ln b+|

⇔ kerA ( kerA2 ⇔ 0 ∈ cr(A).

4.6. Similarity. The coupling operator A in the Krein space K is nonnegative and
ρ(A) 6= ∅. Hence, it has at most two critical points 0 and ∞. Thus, A is similar
to a self-adjoint operator in a Hilbert space if and only if its critical points are
regular and kerA = kerA2, see Theorem 2.2. Combining Theorems 4.4, 4.28, 4.13,
and 4.17 we obtain the following list of sufficient conditions for similarity of A to
a self-adjoint operator in a Hilbert space, which equals the Property (Si) from the
introduction.

Theorem 4.34. Let A be the differential operator associated with the expression a

with the domain defined by (4.13) and let W± and R± be defined by (4.16). Let at
least one of the conditions (i)-(iv) in Theorem 4.28 be in force. Then the following
statements hold.

(a) If either W+ ◦R−1
+ is positively increasing at 0+ or W− ◦R−1

− is positively
increasing at 0−, then the operator A is similar to a self-adjoint operator
in a Hilbert space.

(b) Let W+ ◦R−1
+ be slowly varying at 0+ and let W− ◦R−1

− be slowly varying
at 0−. Then the operator A is similar to a self-adjoint operator in a Hilbert
space if and only if

(
1 +

W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0.

Example 4.35. Let us consider Example 4.21 on an interval I = (b−, b+) with
−1 ≤ b− < 0 < b+ ≤ 1. Combining the conclusions made in Example 4.21 and
Example 4.33 we obtain the following equivalence:
The operator A is similar to a self-adjoint operator in a Hilbert space if and only if

(1) either max{b+, |b−|} = 1 and α+

α−
6= 1;

(2) or max{b+, |b−|} < 1 and α+

α−
6∈
{
1, ln | ln |b−||

ln | ln b+|

}
.

Appendix A. Some results from Karamata’s theory

In Appendix we present the definitions and the results from Karamata’s theory
of regularly varying functions that we use in the paper. Standard references for
Karamata’s theory are [10] and [71]. For completeness we include a few standard
results from Karamata’s theory and some of these results are reformulated to fit
our needs. In addition, we present Theorem A.7, Corollary A.8, and the results of
Subsection A.3 that seem to be new.

A.1. Definitions and basic results. First we give definitions of regularly varying
functions.

Definition A.1. Let a, α ∈ R with a > 0. A measurable function f : (0, a] → R+

is called regularly varying at 0 from the right with index α if the following condition
is satisfied:

for all λ ∈ R+ we have lim
x↓0

f(λx)

f(x)
= λα.

When α = 0 the function f is called slowly varying at 0 from the right.
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A measurable function g : [a,+∞) → R+ is called regularly varying at +∞ with
index α if the following condition is satisfied:

for all λ ∈ R+ we have lim
x→+∞

g(λx)

g(x)
= λα.

When α = 0 the function g is called slowly varying at +∞.
A measurable function g : [−a, 0) → R− is called regularly varying at 0 from

the left with index α if the function f(x) = −g(−x) where x ∈ (0, a] is regularly
varying at 0 from the right with index α. When α = 0 the function g is called
slowly varying at 0 from the left.

We will often use “at 0+” as an abbreviation for the phrase “at 0 from the right”
and “at 0−” as an abbreviation for the phrase “at 0 from the left.”

The Karamata’s theory of regular variation is commonly presented for functions
regularly varying at +∞. The results for functions regularly varying at 0+ follow
from the following equivalence. Let f and g be measurable functions such that
g(x) = f(1/x) for all x in the domain of g for which 1/x is in the domain of f .
Then g is regularly varying at +∞ with index α if and only if f is regularly varying
at 0+ with index −α.

In this section some results will be presented at 0+ and some at +∞. This choice
is sometimes made based on our needs in this paper and sometimes on convenience.

Slow variation plays the central role in the theory of regular variation. That
centrality is expressed in the following proposition that follows immediately from
the definition.

Proposition A.2. Let a, α ∈ R with a > 0 and let f, g : (0, a] → R+ be measurable
functions such that g(x) = xαf(x) for all x ∈ (0, a]. The function g is regularly
varying at 0+ with index α if and only if f is slowly varying at 0+.

The next proposition is a simple characterization of slowly varying functions
which is most conveniently stated at +∞. A simple proof is similar to the proof of
Proposition A.16 at the end of this section.

Proposition A.3. Let a ∈ R+ and let f : [a,+∞) → R+ be a measurable function.
Set b = ln a and set φ to be the composition ln ◦f ◦exp defined on [b,+∞). The
function f is a slowly varying function at +∞ if and only if the following condition
is satisfied:

for all c ∈ R we have lim
u→+∞

(
φ(u)− φ(u − c)

)
= 0.

The next theorem is Karamata’s Representation Theorem, see [10, Theorem 1.3.1]
or [53] for Karamata’s original paper.

Theorem A.4. Let a ∈ R. A function f : [a,+∞) → R+ is slowly varying at +∞
if and only if there exist b ∈ [a,+∞), a measurable function m : [b,+∞) → R+ and
a continuous function ε : [b,+∞) → R such that

lim
x→+∞

m(x) =M ∈ R+, lim
x→+∞

ε(x) = 0,

and for all x ≥ b we have

f(x) = m(x) exp

(∫ x

b

ε(t)

t
dt

)
. (A.1)
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The following property of regularly varying functions follows from Proposition A.2
and Theorem A.4, see [71, 1◦ on page 18].

Corollary A.5. If g is a regularly varying function at +∞ with a positive (negative,
respectively) index, then

lim
x→+∞

g(x) = +∞ ( lim
x→+∞

g(x) = 0, respectively).

If f is a regularly varying function at 0+ with a positive (negative, respectively)
index, then

lim
x↓0

f(x) = 0 ( lim
x↓0

f(x) = +∞, respectively).

If the measurable function m in (A.1) can be chosen to be constant, then f is
called a normalized slowly varying function at +∞. The following characterization
is deduced from Theorem A.4: A continuously differentiable function f : [a,+∞) →
R+ is a normalized slowly varying function at +∞ if and only if

xf ′(x)

f(x)
= o(1) as x→ +∞, (A.2)

see [71, page 7]. Consequently, the natural logarithm lnx is a normalized slowly
varying function at +∞. In fact the natural logarithm is the most popular slowly
varying function at +∞, while the natural logarithm composed with itself ln2 x :=
ln(lnx), x ∈ [e,+∞), is the close second. We utilize them both in the next para-
graph.

Let φ : R+ → R be a continuously differentiable function. A convenient way to
construct normalized slowly varying functions at +∞ is to compose a function of
the form exp

(
φ(u)

)
with u = lnx or u = ln2 x. The following characterizations of

the normalized slowly varying (nsv) functions at +∞ are easily deduced from the
characterization (A.2):

exp
(
φ
(
lnx
))

is nsv at +∞ ⇔ φ′(u) = o(1) as u→ +∞, (A.3)

exp
(
φ
(
ln2 x

))
is nsv at +∞ ⇔ φ′(u) = o

(
exp(u)

)
as u→ +∞. (A.4)

To illustrate the power of these characterizations we use (A.4) to present an
example of a normalized slowly varying function with infinite oscillations. A basic
example of a function with infinite oscillations is

φ(u) = u cosu where u ∈ R+.

Since clearly φ′(u) = o
(
exp(u)

)
as u→ +∞, characterization (A.4) yields that the

function
f(x) = exp

(
(ln2 x) cos(ln2 x)

)
where x ∈ [e,+∞),

is a normalized slowly varying function at +∞. Since

f
(
ee

(2k−1)π
)
= e−(2k−1)π and f

(
ee

2kπ
)
= e2kπ where k ∈ N,

we can informally say that the function f oscillates between 0 and +∞, that is f
exhibits infinite oscillations. Notice that a more complicated example

f(x) = exp
((

3
√
lnx
)
cos
(

3
√
lnx
))

where x ∈ [1,+∞),

appears often in literature, as for example in [10, page 16]. That the preceding
function is a normalized slowly varying function at +∞ is deduced from (A.3).
The cube root in the last displayed formula cannot be replaced by the square root



INDEFINITE STURM-LIOUVILLE OPERATORS 43

since for such a function the right-hand side of (A.3) does not hold. This was
overlooked in [78, (A.5) on page 570].

A.2. Karamata’s characterization and consequences. The following theorem
is our restatement of Karamata’s characterization of regular variation as it appears
in [38, Theorem 1.2.1], [56, Theorems IV.5.2 and IV.5.3], [10, Theorems 1.5.11
and 1.6.1] and [12]. In [10, 12, 38, 56] regular variation at +∞ is considered. Here
we characterize regular variation at 0+.

Theorem A.6. Let a ∈ R+ and let f : (0, a] → R+ be a locally integrable function
on (0, a]. Let α, γ ∈ R be such that γ + α 6= 0 and consider the following two
conditions: ∫ a

0

sγ−1f(s)ds exists as an improper integral at 0, (A.5)

lim
v↓0

1

vγf(v)

∫ v

0

sγ−1f(s)ds =
1

γ + α
. (A.6)

The following statements are equivalent:

(a) f is regularly varying at 0+ with index α.
(b) For all γ ∈ R such that γ + α > 0 conditions (A.5) and (A.6) hold.
(c) There exists γ ∈ R such that γ + α > 0 and conditions (A.5) and (A.6)

hold.

The next theorem is a reformulation of the preceding one in terms of the differ-
ential of the function under consideration.

Theorem A.7. Let a, α, γ ∈ R be such that a > 0, γ 6= 0 and γ + α 6= 0. Let
f : (0, a] → R+ be a measurable function which is of bounded variation on each
closed interval contained in (0, a]. Consider the following three conditions:

∫ a

0

sγdf(s) exists as an improper Riemann-Stieltjes integral at 0, (A.7)

lim
v↓0

vγf(v) = 0, (A.8)

lim
v↓0

1

vγf(v)

∫ v

0

sγdf(s) =
α

γ + α
. (A.9)

The following statements are equivalent:

(i) f is regularly varying at 0+ with index α.
(ii) For all γ ∈ R\{0} such that γ + α > 0 conditions (A.7), (A.8) and (A.9)

hold.
(iii) There exists γ ∈ R\{0} such that γ + α > 0 and conditions (A.7), (A.8)

and (A.9) hold.

Proof. Let u, v ∈ (0, a] such that u < v. First notice that since f is of bounded
variation on [u, v], see [77, Theorems 2.21 and 2.24], the integration by parts yields

∫ v

u

sγdf(s) = vγf(v)− uγf(u)− γ

∫ v

u

sγ−1f(s)ds. (A.10)

Assume (i). Let γ ∈ R\{0} be such that γ + α > 0. Since by Definition A.1 the
function x 7→ xγf(x) is regularly varying at 0+ with index γ + α, Corollary A.5
yields (A.8).
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Theorem A.6 implies that (A.5) and (A.6) hold. Letting u ↓ 0 in (A.10) and
using (A.5) yields (A.7) and

1

vγf(v)

∫ v

0

sγdf(s) = 1− γ

vγf(v)

∫ v

0

sγ−1f(s)ds. (A.11)

Now letting v ↓ 0 and using (A.6) we deduce (A.9), proving (ii).
The fact that (ii) implies (iii) is trivial. Now assume (iii). Letting u ↓ 0 in (A.10)

and using (A.7) yields (A.5), and we again deduce (A.11). Together (A.11) and
(A.9) imply (A.6) in Theorem A.6. Thus, (c) in Theorem A.6 holds and (i) follows
from Theorem A.6. �

Let γ > 0. With the substitution t = vγ , conditions (A.7), (A.8) and (A.9)
can be rewritten as (see [63, Theorem 12.11] for the change of variables formula in
Riemann-Stieltjes integral)

∫ aγ

0

tdf(t1/γ) exists as an improper Riemann-Stieltjes integral at 0,

lim
t↓0

tf(t1/γ) = 0,

lim
t↓0

1

tf(t1/γ)

∫ t

0

sdf
(
s1/γ

)
=

α/γ

1 + α/γ
.

This observation and Theorem A.7 (with γ being 1 and α being α/γ) yield the
following equivalence: The function t 7→ f(t1/γ) with t ∈ (0, aγ ] is regularly varying
at 0+ with index α/γ > −1 if and only if conditions (A.7), (A.8), (A.9) hold. Here
it is convenient to read the last fraction in (A.9) as (α/γ)/

(
1 + (α/γ)

)
.

The next corollary generalizes the preceding equivalence to any increasing bijec-
tion on [0, a].

Corollary A.8. Let α, a, b ∈ R be such that a, b > 0 and α > −1. Let f : (0, b] →
R+ be a function of bounded variation on every closed subinterval of (0, b] and let
g : [0, b] → [0, a] be an increasing bijection. The function f ◦g−1 : (0, a] → R+

is regularly varying at 0+ with index α > −1 if and only if the following three
conditions are satisfied:

∫ b

0

g(s)df(s) exists as an improper Riemann-Stieltjes integral at 0, (A.12)

lim
v↓0

f(v)g(v) = 0, (A.13)

lim
v↓0

1

f(v)g(v)

∫ v

0

g(s)df(s) =
α

1 + α
. (A.14)

Proof. Let u, v ∈ (0, b] such that u < v. As in the preceding theorem we notice that
since f is of bounded variation on [u, v] the integration by parts ([77, Theorem 2.21])
yields ∫ v

u

g(s)df(s) = f(v)g(v)− f(u)g(u)−
∫ v

u

f(s)dg(s). (A.15)

In this proof we will also use that, since g is a continuous increasing bijection, we
have that u ↓ 0 if and only if g(u) ↓ 0.
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Assume (A.12), (A.13) and (A.14). Letting u ↓ 0 and using (A.12) and (A.13)
in (A.15) yields ∫ v

0

g(s)df(s) = f(v)g(v)−
∫ v

0

f(s)dg(s) (A.16)

for all v ∈ (0, b]. Therefore, for all v ∈ (0, b] we have

1

f(v)g(v)

∫ v

0

g(s)df(s) = 1− 1

f(v)g(v)

∫ v

0

f(s)dg(s)

= 1− 1

f(v)g(v)

∫ g(v)

0

f
(
g−1(t)

)
dt,

(A.17)

where, for the second equality, we used the change of variables formula in Riemann-
Stieltjes integral, [63, Theorem 12.11]. Now (A.14) implies

1

1 + α
= lim

v↓0

1

f(v)g(v)

∫ g(v)

0

f
(
g−1(t)

)
dt = lim

u↓0

1

uf
(
g−1(u)

)
∫ u

0

f
(
g−1(t)

)
dt.

Since we assume 1 + α > 0, Theorem A.6 yields that f ◦g−1 is regularly varying at
0+ with index α.

To prove the converse assume that f ◦g−1 is regularly varying at 0+ with index
α > −1. Then the function x 7→ xf

(
g−1(x)

)
is regularly varying at 0+ with index

α+ 1 > 0 and (A.13) follows from Corollary A.5 after a change of variables in the
limit. By the change of variables formula for all u ∈ (0, a] we have

∫ a

u

sdf
(
g−1(s)

)
=

∫ b

g−1(u)

g(t)df(t).

Consequently, (A.12) follows from (A.7) in Theorem A.7 applied to f ◦g−1 with
γ = 1. Therefore, (A.16) and consequently (A.17) both hold. Now (A.14) follows
from (A.6) in Theorem A.6 with γ = 1. �

A.3. Asymptotic equivalence of functions on a sequence. In the next defi-
nition we extend the notation ∼ of asymptotic equivalence of functions to hold only
on a sequence.

Definition A.9. Let a ∈ R+. For functions f, g : [a,+∞) → R+ we write

f s∼ g at +∞
if and only if there exists an increasing sequence (xn) in [a,+∞) such that

lim
n→+∞

xn = +∞ and lim
n→+∞

f(xn)

g(xn)
= 1. (A.18)

For functions f, g : (0, a] → R+ we write

f s∼ g at 0+

if and only if there exists a decreasing sequence (xn) in (0, a] such that

lim
n→+∞

xn = 0 and lim
n→+∞

f(xn)

g(xn)
= 1.

Proposition A.10. Let f and g be regularly varying functions at +∞ with indices
α and β, respectively. If f s∼ g at +∞, then α = β.
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Proof. We will prove the contrapositive. Assume that α < β. Since the function
f(x)/g(x) is regularly varying with index α − β < 0 it follows from Corollary A.5
that limx→+∞ f(x)/g(x) = 0. Thus, f s∼ g at +∞ is not true. If α > β the
preceding limit is +∞, so f s∼ g at +∞ is not true in this case either. �

The converse of the preceding proposition is not true. For example, let f be a
slowly varying function at +∞ and g = 2f . Then α = β = 0, but f s∼ g at +∞ is
clearly not true.

The following theorem extends [68, Proposition 0.8(vi)] to the concept introduced
in the previous definition.

Theorem A.11. Let f and g be strictly monotonic positive functions defined in a
neighbourhood of +∞ and let f be regularly varying at +∞ with a nonzero index.

(a) If f and g are increasing and unbounded, then the inverses f−1 and g−1

are also increasing and unbounded and the following equivalence holds

f s∼ g at +∞ ⇔ f−1 s∼ g−1 at +∞.

(b) If f and g are both decreasing with 0 as the limit, then the inverses f−1

and g−1 are decreasing functions defined in a neighbourhood of 0+ and the
following equivalence holds

f s∼ g at +∞ ⇔ f−1 s∼ g−1 at 0+.

Proof. (a) Assume that f and g are increasing and unbounded and that f is regu-
larly varying at +∞ with positive index α. Assume also that f s∼ g at +∞ and let
(xn) be an increasing sequence in the common domain of f and g such that (A.18)
holds. For all n ∈ N set yn = f(xn) and zn = g(xn). Then, for every ǫ > 0 there
exists Nǫ ∈ R such that for all n ∈ N we have

n > Nǫ ⇒ 1− ǫ <
yn
zn

< 1 + ǫ. (A.19)

Clearly the inverses f−1 and g−1 are increasing functions defined in a neighbour-
hood of +∞. It follows from [10, Theorem 1.5.12] that f−1 is regularly varying
function at +∞ with the index 1/α ∈ R\{0}. By the definition of regular variation
for all λ ∈ R+ we have

lim
y→+∞

f−1(λy)

f−1(y)
= λ1/α. (A.20)

Denote by ∆ the closed interval with the endpoints (1/2)1/α and (3/2)1/α. By the
Karamata Uniform Convergence Theorem for regularly varying functions, see [10,
Theorem 1.5.2], the convergence in (A.20) is uniform in λ while λ ∈

[
1
2 ,

3
2

]
. Since

the function u 7→ uα is uniformly continuous on a closed interval which strictly
contains ∆, we deduce that

lim
y→+∞

(
f−1(λy)

f−1(y)

)α
= λ uniformly in λ on

[
1
2 ,

3
2

]
.

By the definition of the uniform limit for every ǫ > 0 there exists Yǫ > 0 such that
for all y > Yǫ and for all λ ∈

[
1
2 ,

3
2

]
we have

λ− ǫ <

(
f−1(λy)

f−1(y)

)α
< λ+ ǫ. (A.21)

Since zn = g(xn) → +∞ as n → +∞, for every ǫ > 0 there exists Mǫ ∈ N such
that for all n > Mǫ we have zn > Yǫ.
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Let ǫ ∈
(
0, 12

]
and let n ∈ N be such that n > max{Nǫ,Mǫ}. Then, since n > Nǫ,

by (A.19) we have
yn
zn

∈ (1 − ǫ, 1 + ǫ) ⊂
[
1
2 ,

3
2

]
,

and since n > Mǫ we have zn > Yǫ. Now, substituting y = zn > Yǫ and λ =
yn/zn ∈ (1 − ǫ, 1 + ǫ) in (A.21) we obtain that for all n > max{Nǫ,Mǫ} we have

1− 2ǫ < λ− ǫ <

(
f−1(yn)

f−1(zn)

)α
< λ+ ǫ < 1 + 2ǫ.

As for all n ∈ N we have f−1(yn) = g−1(zn), the preceding statement reads: for all
n > max{Nǫ,Mǫ} we have

1− 2ǫ <

(
g−1(zn)

f−1(zn)

)α

< 1 + 2ǫ.

Since ǫ ∈
(
0, 12
]
was arbitrary, the last displayed relationship proves that g−1 s∼ f−1

at +∞ which is equivalent to f−1 s∼ g−1 at +∞.
The converse follows when we apply the already proven implication to the reg-

ularly varying function f−1 at +∞ and an increasing unbounded function g−1.
We prove (b) by change of variables. Assume that f and g are decreasing with

0 as the limit and that f is regularly varying at +∞ with negative index α. Define
the functions f1(x) = 1/f(x) and g1(x) = 1/g(x). Then f−1

1 (x) = f−1(1/x) and
g−1
1 (x) = g−1(1/x) and f1 and g1 are increasing and unbounded. Clearly, f s∼ g at
+∞ if and only if f1

s∼ g1 at +∞ and f−1
1

s∼ g−1
1 at +∞ if and only if f−1 s∼ g−1

at 0+. Also, f1 is regularly varying at +∞ with positive index −α. Hence, by part
(a), f1

s∼ g1 at +∞ if and only if f−1
1

s∼ g−1
1 at +∞. The last three equivalences

prove (b). �

The preceding theorem and the method utilized in the proof of its part (b) yield
the next corollary.

Corollary A.12. Let f and g be strictly monotonic positive functions defined in a
neighbourhood of 0+ and let f be regularly varying at 0+ with a nonzero index.

(a) If f and g are increasing with 0 limit at 0+, then the inverses f−1 and
g−1 are also increasing, defined in a neighbourhood of 0+ and the following
equivalence holds

f s∼ g at 0+ ⇔ f−1 s∼ g−1 at 0+.

(b) If f and g are decreasing and unbounded, then the inverses f−1 and g−1 are
decreasing, defined in a neighbourhood of +∞ and the following equivalence
holds

f s∼ g at 0+ ⇔ f−1 s∼ g−1 at +∞.

The following corollary is a consequence of the fact that the negation of f s∼ g
at +∞ is the statement

(
f(x)

g(x)
− 1

)−1

= O(1) as x→ +∞.

The similar negation is easily formulated for f s∼ g at 0+. Each of the four state-
ments in Theorem A.11 and Corollary A.12 can be expressed using one of these
negations. We state only the analogue of the last statement in Corollary A.12 since
that is what is used in Theorem 4.17.
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Corollary A.13. Let f and g be strictly monotonic positive functions defined in a
neighbourhood of 0+ and let f be regularly varying at 0+ with a nonzero index. If f
and g are decreasing and unbounded, then the inverses f−1 and g−1 are decreasing,
defined in a neighbourhood of +∞ and the following equivalence holds
(
f(x)

g(x)
− 1

)−1

= O(1) as x ↓ 0 ⇔
(
f−1(y)

g−1(y)
− 1

)−1

= O(1) as y → +∞.

Clearly f ∼ g at +∞ implies f s∼ g at +∞. In the next example we will
demonstrate that f s∼ g at +∞ does not imply f ∼ g at +∞ even for smooth
normalized slowly varying increasing functions f and g for which f/g is normalized
slowly varying function.

Example A.14. Consider the following two increasing functions

φ(u) = u+ sinu, ψ(u) = u− sinu, u ∈ R+.

Then, φ(u) − ψ(u) = 2 sinu, and all three functions φ, ψ and φ − ψ satisfy the
condition on the right-hand side of the equivalence in (A.4). Therefore the functions

f(x) = exp
(
ln2 x+ sin(ln2 x)

)
and g(x) = exp

(
ln2 x− sin(ln2 x)

)
,

as well as the ratio

f(x)

g(x)
= exp

(
2 sin(ln2 x)

)
= exp

(
(φ− ψ)(ln2 x)

)
,

are normalized slowly varying functions at +∞. Notice that f and g are increasing
and unbounded. For every n ∈ N set

xn = exp
(
exp(nπ)

)
, yn = (x2n−1)

exp(−π/2), zn = (x2n−1)
exp(π/2),

and calculate
f(xn)

g(xn)
= 1,

f(yn)

g(yn)
= e2,

f(zn)

g(zn)
= e−2.

Hence f s∼ g at +∞ holds and f(x) ∼ g(x) as x→ +∞ is not true. To get a sense
how fast the above sequences grow we list their second entries:

x2 ≈ 3.64 ∗ 10232, y2 ≈ 5.37 ∗ 101118, z2 ≈ 1.52 ∗ 1025888,
and point out that x12, y8, and z7 are larger than the maximum number available
to Wolfram Mathematica on a 64-bit Windows computer.

A.4. Positively increasing functions. The following class of functions was in-
troduced as a generalization of regularly varying functions with positive index, see
[13, Section 3.1 and Definition 3.26].

Definition A.15. Let a ∈ R+. A nondecreasing function f : (0, a] → R+ is called
positively increasing at 0 from the right if there exists λ ∈ (0, 1) such that

lim sup
x↓0

f(λx)

f(x)
< 1.

A function g : [−a, 0) → R− is called positively increasing at 0 from the left if the
function f(x) = −g(−x), x ∈ [−a, 0), is positively increasing at 0 from the right.

A function g : [a,+∞) → R+ is called positively increasing at +∞ if the function
f(x) = 1/g(1/x), x ∈ (0, 1/a], is positively increasing at 0 from the right. A
function g : (−∞,−a] → R− is called positively increasing at −∞ if the function
f(x) = −1/g(−1/x), x ∈ (0, 1/a], is positively increasing at 0 from the right.
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The relationship between regularly varying and positively increasing functions at
+∞, and analogously at −∞, 0+ and 0−, is as follows. Each regularly varying func-
tion with positive index is positively increasing, while a regularly varying function
with a nonpositive index is not positively increasing. In particular, a slowly vary-
ing function is not positively increasing. The exponential function exp is positively
increasing at +∞ but not regularly varying at +∞, see Figure 2.

The next proposition is analogous to Proposition A.3.

Proposition A.16. Let a ∈ R+ and let f : [a,+∞) → R+ be a nondecreasing
function. Set b = ln a and set φ to be the composition ln◦f◦exp defined on [b,+∞).
The function f is positively increasing at +∞ if and only if there exists c ∈ R+

such that

lim
u↑+∞

(
φ(u)− φ(u − c)

)
= +∞ or lim inf

u↑+∞

(
φ(u)− φ(u − c)

)
> 0.

Proof. The definition of φ implies that

f(x) = exp
(
φ(ln x)

)
for all x ∈ [a,+∞).

Therefore, for all λ ∈ (0, 1) and all x ∈ [a/λ,+∞) we have

f(λx)

f(x)
= exp

(
−
(
φ(ln x)− φ(ln x+ lnλ)

))
.

Now the claim follows from the continuity of the function exp(−x), the fact that the
function − lnx is a bijection between (0, 1) and R+ and the fact that lnx → +∞
as x→ +∞. �

Example A.17. In this example we present a nondecreasing function f : [1,+∞) →
R+ which is neither positively increasing nor slowly varying. Let φ : [0,+∞) be a
continuous piecewise linear function such that φ(0) = 0 and for each n ∈ N on the
closed interval

[
n2, n2 + n

]
it has the value n(n+1)/2, see Figure 1. This function

can be defined piecewise as follows: for every n ∈ N we have

φ(x) =
n(n+ 1)

2
+ min

{
0, x− n2

}
where x ∈ (n2 − n, n2 + n].

Since for every n ∈ N we have

φ′(x) = 1 if x ∈ (n2 − n, n2) and φ′(x) = 0 if x ∈ (n2, n2 + n),

the function φ is nondecreasing and by the fundamental theorem of calculus for
x0, x ∈ R+ such that x0 ≤ x we have

x− φ(x) − x0 + φ(x0) =

∫ x

x0

(
1− φ′(ξ)

)
dξ ≥ 0.

That is, for an arbitrary x0 ∈ R+ we have

φ(x) ≤ x− x0 + φ(x0) for all x ∈ [x0,+∞). (A.22)

Let c ∈ R+ be arbitrary and let x ∈ R+ be such that x > c. Then substituting
x0 = x− c in (A.22) and using the fact that φ is nondecreasing we get

0 ≤ φ(x) − φ(x− c) ≤ c for all x ∈ [c,+∞).

Further, for all n ∈ N such that n > c we have

φ
(
n2
)
− φ

(
n2 − c

)
=

1

2
n(n+ 1)−

(
1

2
n(n+ 1)− c

)
= c
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Figure 1. The function φ in Example A.17

and

φ
(
n2 + n

)
− φ

(
n2 + n− c

)
=

1

2
n(n+ 1)− 1

2
n(n+ 1) = 0.

The last three displayed relations yield that for all c ∈ R+ we have

lim inf
u↑+∞

(
φ(u)− φ(u − c)

)
= 0 and lim sup

u↑+∞

(
φ(u)− φ(u − c)

)
= c > 0.

The preceding two equalities and Propositions A.3 and A.16 imply that the nonde-
creasing function

f(x) = exp
(
φ(ln x)

)
where x ∈ [1,+∞)

is neither slowly varying nor it is positively increasing.
We point out that the integer sequence 1, 2, 4, 6, 9, 12, 16, 20, . . . of the values

of the independent variable at which φ is not differentiable has been exhaustively
studied in [72].

In Figure 2 we present a Venn diagram with the universal set of nondecreasing
functions. On this diagram we informally present three classes of functions that are
most relevant for this paper. The black dot marked by exp represent the exponential
function, while the other black dot represents the function f from Example A.17.
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Physics, Chemistry, Mathematics 8 (2017), 166–179.
[30] D. Edmunds, W. Evans, Spectral theory and differential operators. Oxford: Oxford University

Press, 1987.
[31] W.D. Evans, W.N. Everitt, HELP inequalities for limit-circle and regular problems, Proc.

Roy. Soc. Lond. A 432 (1991), 367–390.
[32] M.M. Faddeev, R.G. Shterenberg, On the similarity of some singular differential operators to

self-adjoint operators. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov.
(POMI) 270 (2000), Issled. po Linein. Oper. i Teor. Funkts. 28, 336–349, 370–371; translation
in J. Math. Sci. (N. Y.) 115 (2003) 2279–2286

[33] A. Fleige, The turning point condition of Beals for indefinite Sturm-Liouville problems, Math.
Nachr. 172 (1995) 109–112.

[34] A. Fleige, The Riesz basis property of an indefinite Sturm-Liouville problem with a non odd
weight function, Integral Equations Operator Theory 60 (2008) 237–246.

[35] A. Fleige, The Critical Point Infinity Associated with Indefinite Sturm–Liouville Problems.
In: Alpay D. (eds) Operator Theory. Springer, Basel, 2015.

[36] A. Fleige, B. Najman, Nosingularity of critical points of some differential and difference
operators, Oper. Theory: Adv. Appl., vol. 102, Birkhäuser, Basel, 1998.
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54 BRANKO ĆURGUS, VOLODYMYR DERKACH, AND CARSTEN TRUNK

[74] E.C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential

Equations. Part I, 2nd ed., Clarendon Press, Oxford, 1962.
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