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Abstract. We consider the indefinite Sturm–Liouville differential expres-
sion

a(f) := − 1

w

(
1

r
f ′
)′

,

where a is defined on a finite or infinite open interval I with 0 ∈ I
and the coefficients r and w are locally summable and such that r(x)
and (sgn x)w(x) are positive a.e. on I. With the differential expression
a we associate a nonnegative self-adjoint operator A in the Krein space
L2

w(I) which is viewed as a coupling of symmetric operators in Hilbert
spaces related to the intersections of I with the positive and the nega-
tive semi-axis. For the operator A we derive conditions in terms of the
coefficients w and r for the existence of a Riesz basis consisting of gen-
eralized eigenfunctions of A and for the similarity of A to a self-adjoint
operator in a Hilbert space L2

|w|(I). These results are obtained as con-
sequences of abstract results about the regularity of critical points of
nonnegative self-adjoint operators in Krein spaces which are couplings
of two symmetric operators acting in Hilbert spaces.
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1. Introduction

Let I = (b−, b+) be a finite or infinite interval such that −∞ ≤ b− < 0 <
b+ ≤ +∞. We consider the indefinite Sturm–Liouville differential expression
a on I that is given in polar form

(
af
)
(x) := − 1

w(x)
d

dx

(
1

r(x)
d

dx
f(x)

)
, (1.1)

where the coefficients r and w are real functions on I satisfying the conditions

r, w ∈ L1
loc(I) and r(x), (sgn x)w(x) > 0 for a.a. x ∈ I. (1.2)

With the differential expression a we associate a closed linear operator
A in the weighted Hilbert space L2

|w|(I). The operator A is not self-adjoint
in L2

|w|(I) but it is self-adjoint and nonnegative in the Krein space L2
w(I)

which coincides with L2
|w|(I) as a normed vector space and has indefinite

inner product

[f, g]w :=
∫

I

f(x)g(x)w(x)dx,

see [27] for a similar setting.
We are interested in the following two properties of the differential op-

erator A:
(Ri) Riesz basis property, that is, the existence of a Riesz basis of the Hilbert

space L2
|w|(I) which consists of eigenfunctions and generalized eigen-

functions of A;
(Si) Similarity of A to a self-adjoint operator in the Hilbert space L2

|w|(I),
that is, the existence of a bounded and boundedly invertible operator
T such that T−1AT is self-adjoint in the Hilbert space L2

|w|(I).
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Our results will be formulated in terms of the functions

W±(x) :=
∫ x

0

w±(ξ)dξ, R±(x) :=
∫ x

0

r±(ξ)dξ, x ∈ I±, (1.3)

where I− = (b−, 0), I+ = (0, b+), w− is the restriction of −w onto I−, w+ is
the restriction of w onto I+ and r± is the restriction of r onto I±.

The first result of this kind was given by Beals in [6], where the Riesz
basis property was proved for the constant function r = 1 and for a weight w
which behaves as a power at 0, see Example 4.13. This result was generalized
to ordinary differential equations of higher order by Ćurgus and Langer [17,
21], and to partial differential equations by Pyatkov [81], Ćurgus and Najman
[22]. The first proof of the existence of a weight w, with r = 1, for which A
does not have the Riesz basis property was given by Volkmer in [94] by using
Baire category arguments. Explicit examples of such a weight were found by
Fleige, [40], and Abasheeva, Pyatkov [1]. A full characterization of the Riesz
basis property for the operator A was given by Parfenov [77] in the case when
w is odd and r = 1. Using Pyatkov’s approach via interpolation spaces [80,81],
Parfenov proved that the Riesz basis property for the operator A holds if
and only if the function W+ is positively increasing at 0+. Recall, see [15,
Definition 3.26], that a nondecreasing positive function ϕ is called positively
increasing at 0+ if there exists λ ∈ (0, 1) such that lim supx↓0

(
ϕ(λx)/ϕ(x)

)
<

1; ψ is positively increasing at 0− if x �→ −ψ(−x) is positively increasing at
0+.

In [69] Kostenko used a different method to characterize the properties
(Si) and (Ri) for differential operator A with odd w and even r. In particular,
it was shown in [69] that the Riesz basis property for the operator A holds if
and only if the function W+ ◦ R−1

+ is positively increasing at 0+.
One of the main results of this paper is the following theorem in which

we give a sufficient condition for the Riesz basis property, in the spirit of
Parfenov’s and Kostenko’s results, but without the assumptions that w is
odd and r is even. We also give a new kind of characterization of the Riesz
basis property when W± ◦ R−1

± are slowly varying functions. Recall that
a measurable positive function ϕ is said to be slowly varying at 0+ if for
all λ > 0 we have limx↓0

(
ϕ(λx)/ϕ(x)

)
= 1; ψ is slowly varying at 0− if

x �→ −ψ(−x) is slowly varying at 0+, for more about slowly varying functions
see Appendix A.

Theorem A. Let the differential expression a satisfy (1.2) and let W± and R±
be the functions defined in (1.3). Assume that the spectrum of the operator
A associated with the differential expression a in the Hilbert space L2

|w|(I) is
discrete. Then the eigenvalues of A accumulate on both sides of ∞ and the
following two statements hold.

(a) If either W+◦R−1
+ is positively increasing at 0+ or W−◦R−1

− is positively
increasing at 0−, then the operator A has the Riesz basis property (Ri).
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(b) If W+ ◦ R−1
+ is slowly varying at 0+ and W− ◦ R−1

− is slowly varying at
0−, then the Riesz basis property (Ri) is equivalent to the condition(

1 +
W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0. (1.4)

The main tool that we use in this paper is Langer’s spectral theory of
definitizable operators in Krein spaces, see [71]. Our differential operator A
is a nonnegative self-adjoint operator with a nonempty resolvent set in the
Krein space L2

w(I). This is a special kind of a definitizable operator that
admits a spectral function E which behaves similarly to the spectral function
of a self-adjoint operator in a Hilbert space with a possible exception at its
critical points which are contained in the set {0,∞}, for details see Sect. 2.
A critical point is called regular if E is bounded in a neighbourhood of that
point. Otherwise, a critical point is called singular. By cr(A) we denote the
set of regular critical points of A and by cs(A) the set of singular critical
points of A.

In the case of discrete spectrum of the differential operator A, the Riesz
basis property of A is equivalent to the regularity of the critical point ∞, see
[21, Proposition 4.1]. This fact and the paper of Beals [6] were motivation for
[10,11,20,21,23,39,41,68,94] to study definitizability and the regularity of
the critical point infinity for differential operators; see also a detailed survey
by Fleige [42].

The regularity of both critical points of A is equivalent to A being similar
to a self-adjoint operator in a Hilbert space. This fact was used by Ćurgus
and Najman in [22] to prove that the operator associated with (1.1) where
w(x) = sgn(x), r = 1 and I = R is similar to a self-adjoint operator in the
Hilbert space L2(R). This result was reproved and generalized by Krein space
and other methods by several authors, see [24,25,38,43,57,59,60,62,69].

We use the resolvent criterion of Veselić [93], [3], to study regularity of
critical points of the operator A in terms of the Weyl functions m+ and m−
of some symmetric operators generated by a on intervals I+ and I−. It was
shown in [59] that the so-called D∞-property (resp. D0-property)

max
{
Im m+(iy), Im m−(iy)

}
∣∣m+(iy) + m−(−iy)

∣∣ = O(1) as y → +∞ (resp. y ↓ 0) (1.5)

is necessary for ∞ 	∈ cs(A) (resp. 0 	∈ cs(A)). In the case when w is odd and
r is even the functions m+ and m− coincide. In this case, conditions (1.5)
can be rewritten as

Im m+(iy) = O(Re m+(iy)) as y → +∞ (resp. y ↓ 0) (1.6)

and are proved in [69] to be equivalent both to the similarity property (Si)
and to the validity of the Hardy, Everitt, Littlewood and Polya (HELP)
inequality, see [37]. Moreover, in the general case it was proved in [70] that
the D∞-property together with the D0-property is equivalent to the validity
of the so-called Volkmer inequality [94], an indefinite analog of the HELP
inequality.
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As another main result of our paper, in Theorem 3.10 we prove that
the D∞-property is necessary and sufficient for ∞ 	∈ cs(A) provided that the
Weyl functions m+ and m− satisfy the assumption:

For some y0 > 0 Re m+(iy)Re m−(iy) > 0 for all y > y0. (1.7)

The equivalence in Theorem A(b) is obtained by combining the character-
ization of the regularity of the critical point ∞ for the operator A from
Theorem 3.10 with the Atkinson-Bennewitz asymptotic formula for the Weyl
functions m+(iy) and m−(iy) proved in [4] and [9] and presented in Theo-
rem 4.6.

The questions of similarity of a differential operator to a self-adjoint
operator and the existence of a Riesz basis consisting of its eigenfunctions
arise in problems of numerical computation of eigenvalues. For example, in
[48, Subsection 4.1.2] the authors study the differential expression (1.1) with
w(x) = x3, r = 1 and I = [−1, 1]. To construct an efficient and accurate
eigensolver for the associated differential operator it was important that the
operator is similar to a self-adjoint operator and that its eigenfunctions form
a Riesz basis of the Hilbert space L2

|w|[−1, 1].
This paper is organized as follows. In Sects. 2 and 3 we establish con-

ditions for the regularity of the critical points 0 and ∞ for a nonnegative
self-adjoint operator A with a nonempty resolvent set in an abstract Krein
space K. We use a boundary triple approach to extension theory developed in
[31,45,66]. We construct A as a coupling of two abstract symmetric operators
A+ = B+ and A− = −B−, where B+ and B− are nonnegative symmetric op-
erators with defect numbers (1, 1) acting in Hilbert spaces H+ and H− which
form a fundamental decomposition for K. When boundary triples

(
C,Γ+

0 ,Γ+
1

)
and

(
C,Γ−

0 ,Γ−
1

)
for the operators B+ and B− are fixed the coupling A of the

operators A+ and A− relative to these boundary triples is uniquely defined
as a self-adjoint operator acting in the Krein space K with the fundamental
decomposition K = H+[+]H−, see Theorem 3.1.

The origins of the coupling method are twofold. On one side, it is an
abstract version of an idea used by H. Weyl [95], called Dirichlet-Neumann
decoupling by B. Simon in [88]. On the other side, it is a generalization
of I.M. Glazman’s decomposition method [44]. The coupling method was re-
cently extended to self-adjoint operators in Hilbert spaces in [30]. In the Krein
space setting, it was used in [18,34,58] to study the problem of the similarity
of differential operators with indefinite weights to self-adjoint operators in
Hilbert spaces.

In Theorems 3.10 and 3.11 we prove that the D∞-property is suffi-
cient for ∞ 	∈ cs(A) under the assumption (1.7) and that the D0-property
is sufficient for 0 	∈ cs(A) provided that (1.7) is true for all 0 < y < y0. In
Theorem 3.13 we prove that under the assumption (1.7) the one-sided con-
dition (1.6) at +∞ is sufficient for ∞ 	∈ cs(A). In Theorem 3.14 we prove
analogous results for 0 	∈ cs(A). These results are the key stones in the proof
of Theorem A (and Theorem B below) and are of independent interest for
the coupling of two nonnegative operators in Krein spaces.
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In Sect. 4, the abstract results from Sect. 3 are adapted to indefinite
Sturm–Liouville operators. Let H± be the weighted spaces H± := L2

w±(I±)
and let B± be nonnegative symmetric operators generated in H± by the
differential expressions

b±(f) := − 1
w±

(
1
r±

f ′
)′

on I±. (1.8)

Using the above scheme we represent the operator A as a coupling of two
symmetric operators A+ := B+ and A− := −B−. Conditions for regularity
of critical points 0 and ∞ of the differential operator are formulated in terms
of the functions (1.3). We use the results of Bennewitz [9] and Kostenko [69]
to reformulate one-sided sufficient conditions for regularity of critical points
∞ or 0 from Theorem 3.13 in terms of the functions W± and R±. Specifically,
in Theorem 4.12, we show that if either W+◦R−1

+ is positively increasing at 0+

or W− ◦ R−1
− is positively increasing at 0−, then ∞ is a regular critical point

for the operator A associated with indefinite differential expression (1.1). In
Theorem 4.16 we prove that in the case of slowly varying functions W± ◦R−1

±
the condition ∞ ∈ cr(A) is equivalent to the condition (1.4) in Theorem A.

To show the strength of our results, in Example 4.21 we present an
indefinite Sturm–Liouville operator A with a non-odd weight for which The-
orem 4.16 guarantees that ∞ is a regular critical point, but other known
criteria for regularity such as Volkmer’s condition from [94], Fleige’s condi-
tion from [20], Parfenov’s condition [78] cannot be applied.

In Theorem 4.27 we give a list of sufficient conditions under which we
have 0 /∈ cs(A) for the differential operator A. In particular, it is shown that
in the case when w+ ∈ L1(I+) and w− ∈ L1(I−) the following equivalence
holds

0 	∈ cs(A) and ker A = ker A2 ⇔ W+(b+) + W−(b−) 	= 0. (1.9)

The proof of this theorem is based on abstract results from Theorems 3.11
and 3.14 and asymptotic formulas for the Weyl functions of the operators B+

and B− from Lemmas 4.10 and 4.11.
In Theorem 4.34 we combine the regularity results for the points 0 and

∞ to obtain new results about similarity of the operator A to a self-adjoint
operator in a Hilbert space. In the particular case when w+ ∈ L1(I+) and
w− ∈ L1(I−) these results take the following form

Theorem B. Let the differential expression a satisfy (1.2) and let W±, R±
be the functions defined in (1.3). Assume that w+ ∈ L1(I+), w− ∈ L1(I−)
and one of the equivalent conditions in (1.9)is satisfied. Then the following
statements hold.

(i) If either W+◦R−1
+ is positively increasing at 0+ or W−◦R−1

− is positively
increasing at 0−, then (Si) holds for A.

(ii) If W+ ◦ R−1
+ is slowly varying at 0+ and W− ◦ R−1

− is slowly varying at
0−, then similarity property (Si) for A is equivalent to condition (1.4).

In Sect. 4 we systematically use results from Karamata theory about
positively increasing and slowly varying functions which are presented and
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developed for our purposes in Appendix A. In particular, it is shown that
the condition for the function W± ◦R−1

± to be slowly varying is equivalent to
Atkinson-Bennewitz condition (4.19), see Corollary A.7.

1.1. Notation

By C we denote the set of complex numbers and by R the set of real num-
bers. By C+ (resp. C−) we denote the set of all z ∈ C with positive (resp.
negative) imaginary part. Similarly, R+ (resp. R−) stands for the set of all
positive (resp. negative) reals. For z ∈ C, z, Re z and Im z denote the complex
conjugate, real and imaginary part of z.

All operators in this paper are closed densely defined linear operators.
For such an operator T , we use the common notation ρ(T ), dom(T ), ran(T )
and ker(T ) for the resolvent set, the domain, the range and the null-space,
respectively, of T .

We use the asymptotic notation little-o, big-O and ∼ defined at +∞ as
follows: f(x) = o

(
g(x)

)
as x → +∞ if and only if limx→+∞ f(x)/g(x) = 0;

f(x) = O
(
g(x)

)
as x → +∞ if and only if there exist M,a ∈ R+ such

that |f(x)| ≤ M |g(x)| for all x ≥ a; f(x) ∼ g(x) as x → +∞ if and only
if limx→+∞ f(x)/g(x) = 1. Similar notation is used in the right and left
neighborhood of 0 with analogous definitions. By f ≡ g we mean f(x) = g(x)
for all x in the common domain of f and g.

2. Preliminaries

2.1. Definitizable Operators in Krein Spaces

A Krein space
(K, [ · , · ]K

)
is a complex vector space K with a sesquilin-

ear form [ · , · ]K such that there exist subspaces H+ and H− of K with(H+, [ · , · ]K
)

and
(H−,−[ · , · ]K

)
being Hilbert spaces and K = H+[+̇]H−

is a direct and orthogonal sum; this direct orthogonal sum is called a fun-
damental decomposition of a Krein space K. Let P+ and P− be projections
associated with the direct sum K = H++̇H−. The operator J := P+ − P− is
called a fundamental symmetry of a Krein space. The space K with the inner
product 〈x, y〉K = [Jx, y]K, x, y ∈ K, is a Hilbert space. All topological no-
tions in a Krein space refer to the topology of the Hilbert space

(K, 〈 · , · 〉K
)
.

For the general theory of Krein spaces and operators acting in them we refer
to the monographs [5,13]. For a subspace L ⊂ K denote by κ+(L) (resp.
κ−(L)) the least upper bound of the dimensions of positive (resp. negative)
subspaces of L.

Let A be a linear operator in a Krein space
(K, [ · , · ]K

)
with a dense

domain domA. The adjoint of A with respect to the inner product [ · , · ]K
is denoted by A[∗]. The operator A is called symmetric in

(K, [ · , · ]K
)

if A[∗]

is an extension of A and A is called self-adjoint in
(K, [ · , · ]K

)
if A = A[∗].

The operator A is called nonnegative in
(K, [ · , · ]K

)
if [Af, f ]K ≥ 0 for all

f ∈ dom A.
A self-adjoint operator A in

(K, [ · , · ]K
)

is called definitizable if its resol-
vent set ρ(A) is nonempty and there exists a real polynomial p such that p(A)
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is nonnegative in
(K, [ · , · ]K

)
, see [71]. Such polynomial p is called definitizing

polynomial of A. The non-real spectrum of a definitizable operator consists
of a finite set of points symmetric with respect to R. A real number λ ∈ σ(A)
is said to be a critical point of A if p(λ) = 0 for every definitizing polynomial
p of A. Similarly, ∞ is a critical point of A, if at least one of its definitizing
polynomials p is of odd degree and the real spectrum of A is neither bounded
from below, nor bounded from above. The set of critical points of A is denoted
by c(A). In particular, a self-adjoint nonnegative operator A in

(K, [ · , · ]K
)

with nonempty resolvent set ρ(A) is definitizable with definitizing polynomial
p(λ) = λ. Its only possible critical points are 0 and ∞.

A definitizable operator A admits a spectral function E, see [71, Theo-
rem II.3.1], defined on the semiring R generated by all intervals whose end-
points are not critical points of A with E(Δ) being self-adjoint projection in(K, [ · , · ]K

)
for every Δ ∈ R. Moreover,(

E(Δ)K, [ · , · ]K
)

is a Hilbert space whenever Δ ⊂ {t ∈ R : p(t) > 0}.

(2.1)

It follows from the properties of the spectral function E, see [71], that the
restriction of A to its spectral subspace E(Δ)K in (2.1) is a self-adjoint
operator in the Hilbert space

(
E(Δ)K, [ · , · ]K

)
. A similar statement holds

for intervals in {t ∈ R : p(t) < 0}. However, if one of the endpoints of the
interval approaches a critical point, it may happen that the norms of the
corresponding spectral projections are unbounded. More precisely, a point
α ∈ c(A) is called a regular critical point of A, if there exists a neighbourhood
G of α such that

the set of projections
{
E(Δ) : Δ ∈ R, Δ ⊂ G \ {α}} is bounded.

The set of all regular critical points of A is denoted by cr(A). A critical point
of A which is not regular is called singular critical point of A. The set of all
singular critical points of A is denoted by cs(A). It is often difficult to decide
whether a critical point is singular or regular. A widely used characterization
for ∞ 	∈ cs(A) is from K. Veselić [93], see also [3], [50, Corollaries 1.5 and 1.6].
Due to the Uniform Boundedness Principle it can be reformulated as follows.

Theorem 2.1. Let A be a definitizable operator in a Krein space (K, [ · , · ]K)
and α ∈ R. Then:
(a) ∞ 	∈ cs(A) if and only if there exists η0 > 0 such that for every f ∈ K∫ η

η0

Re
[
(A − iy)−1f, f

]
Kdy = O(1) as η → +∞. (2.2)

(b) α 	∈ cs(A) and ker(A − α) = ker
(
(A − α)2

)
if and only if there exists

η0 > 0 such that for every f ∈ K∫ η0

η

Re
[
(A − α − iy)−1f, f

]
Kdy = O(1) as η ↓ 0. (2.3)

Let us consider a nonnegative operator A in a Krein space
(K, [ · , · ]K

)
.

Then, as mentioned above, the only possible critical points are 0 and ∞.
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Assume that (2.2) holds. Then, by the proof of [49, Lemma 1], this implies
that the set of projections E((1, n)) and E((−n,−1)), n ∈ N, is bounded,
which in turn implies ∞ 	∈ cs(A). Moreover, it is easy to see that the space
(I − E([−1, 1]))K with the new inner product

〈f, g〉new := lim
n→∞

[(
E(1, n) − E(−n,−1)

)
f, g

]
is a Hilbert space and that the restriction of A to (I − E([−1, 1]))K is self-
adjoint in the corresponding Hilbert space. A similar reasoning using (2.3)
holds for the point zero. This implies the following well-known statement
(see, e.g. [71]).

Theorem 2.2. A nonnegative operator A in a Krein space has similarity prop-
erty (Si) if and only if ρ(A) 	= ∅, ker(A) = ker(A2) and 0,∞ 	∈ cs(A).

2.2. Boundary Triples and Weyl Functions of Symmetric Operators

In this subsection S is a closed densely defined symmetric operator in a Krein
space

(K, [ · , · ]K
)
. Let ρ̂(S) denote the set of points of regular type of S, see

[2], and let Nz denote the defect subspace of the operator S

Nz := ran(S − z)[⊥], z ∈ ρ̂(S).

The numbers n±(S) := dim(Nz) are constant for all z ∈ ρ̂(S) ∩ C± and are
called defect numbers of S.

In what follows we assume that the operator S admits a self-adjoint
extension S̃ in

(K, [ · , · ]K
)

with a nonempty resolvent set ρ(S̃). Then for all
z ∈ ρ(S̃) we have

dom(S[∗]) = dom(S̃) � Nz direct sum in H. (2.4)

This implies, in particular, that the dimension dim(Nz) is constant for all
z ∈ ρ(S̃) and hence n+(S) = n−(S). Moreover, we assume everywhere in this
paper that n±(S) = 1. Notice that the equality n+(S) = n−(S) does not
imply the existence of a self-adjoint extension S̃ of S, see [86].

Definition 2.3. Let Γ0 and Γ1 be linear mappings from dom(S[∗]) to C such
that

(i) the mapping Γ : f →
(

Γ0f
Γ1f

)
from dom(S[∗]) to C

2 is surjective;

(ii) the abstract Green’s identity[
S[∗]f, g

]
K − [

f, S[∗]g
]
K = (Γ1f)(Γ0g) − (Γ0f)(Γ1g) (2.5)

holds for all f , g ∈ dom(S[∗]).

Then the triple
(
C,Γ0,Γ1

)
is called a boundary triple for S[∗], see [28,31,45]

for much more general setting.

It follows from (2.5) that the extensions S0, S1 of S defined as restric-
tions of S[∗] to the domains dom(S0) := ker(Γ0) and dom(S1) := ker(Γ1) are
self-adjoint extensions of S.
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Given a self-adjoint extension S̃ of S with ρ(S̃) 	= ∅ one can always
choose a boundary triple

(
C,Γ0,Γ1

)
for S such that S0 = S̃, see [29, Propo-

sition 2.2]. In this case for every z ∈ ρ(S0) the decomposition (2.4) holds with
S̃ = S0 and the mapping Γ0|Nz

: Nz → C is invertible for every z ∈ ρ(S0). A
vector-valued function z �→ γ(z) defined on ρ(S0) with values in Nz is called
the γ-field of S, associated with the boundary triple

(
C,Γ0,Γ1

)
if

Γ0γ(z) = 1 for all z ∈ ρ(S0).

Notice, that γ satisfies the equality, see [29, Proposition 2.2],

γ(z) = (S0 − z0)(S0 − z)−1γ(z0), z, z0 ∈ ρ(S0) (2.6)

and hence the vector-valued function γ is holomorphic on ρ(S0).

Definition 2.4. The function z �→ M(z) defined by the equality

M(z)Γ0fz = Γ1fz, fz ∈ Nz, z ∈ ρ(S0),

is called the abstract Weyl function of S, corresponding to the boundary
triple

(
C,Γ0,Γ1

)
.

The notion of the abstract Weyl function was introduced in [31] for a
Hilbert space symmetric operator and in [28] for a Krein space symmetric
operator.

Clearly, M(z) = Γ1γ(z) for z ∈ ρ(S0), and hence M(z) is well defined.
It follows from (2.5) and (2.6) that the Weyl function M satisfies the identity

M(z) − M(w) = (z − w) [γ(z), γ(w)]K, z, w ∈ ρ(S0). (2.7)

With w = z the identity (2.7) yields that the Weyl function M satisfies the
symmetry condition

M(z) = M(z), z ∈ ρ(S0). (2.8)

In the case when
(H, 〈 · , · 〉H

)
is a Hilbert space we will use the notation

B for a closed densely defined symmetric operator in the Hilbert space H
with defect numbers (1, 1). Let

(
C,Γ0,Γ1

)
be a boundary triple for B〈∗〉. We

will use the notations m and γB for the abstract Weyl function and for the
γ-field of B corresponding to the boundary triple

(
C,Γ0,Γ1

)
. It follows from

(2.7) and (2.8) that m is a Nevanlinna function, see [54], i.e. m is holomorphic
at least on C \ R and satisfies the following two conditions

m(z) = m(z) and Imm(z) ≥ 0, z ∈ C+.

Since the operator B is densely defined the following two conditions hold (see
[32, Theorem 7.36])

lim
y↑+∞

y−1m(iy) = 0, lim
y↑+∞

y Im m(iy) = +∞. (2.9)

Assume that the operators B and its self-adjoint extension B0 with
the domain dom B0 = ker Γ0 are nonnegative. Then the Weyl function m
is holomorphic on R−. A Nevanlinna function m with the above property
which, in addition, takes nonnegative values for all z ∈ R− is called a Stieltjes
function. The class of all Stieltjes functions is denoted by S.
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A Stieltjes function m admits the integral representation, [54],

m(z) = a +
∫ +∞

0

dσ(t)
t − z

(2.10)

with a ≥ 0 and with a non-decreasing left-continuous function σ(t), such that∫ +∞
0

dσ(t)
1+t converges. The following statement is immediate from (2.10).

Proposition 2.5. Let m ∈ S and assume that the support of dσ has a nonempty
intersection with R+. Then Re m(iy) > 0 for all y ∈ R+.

2.3. Real Operators

Recall the notions of real operator and real vector valued function with re-
spect to some conjugation, see [35, Section III.5] and [31,66].

Definition 2.6. An involution jK on a Krein space
(K, [ · , · ]K

)
is called a

conjugation on K if

[jKf, jKg]K = [g, f ]K for all f, g ∈ K. (2.11)

A closed operator T in a Krein space K is called real, if

jK dom(T ) = dom(T ) and jKT = TjK.

Every conjugation is an anti-linear operator, see [89, Section IX.2], i.e.

jK(λf + μg) = λjKf + μjKg for all f, g ∈ K, λ, μ ∈ C.

If T is real and densely defined then its adjoint T [∗] is also real in K.
A vector f in K is called real with respect to the conjugation jK, if

jKf = f . An arbitrary vector f ∈ K can be decomposed into the sum

f = fR + if I , where fR =
1
2
(f + jKf) and f I =

1
2i

(f − jKf) are real.

(2.12)

Let j be the standard conjugation in C, jz = z for all z ∈ C. A scalar
function z �→ m(z) is called real, if its domain is symmetric with respect to
R and m(z) = m(z) for all z in the domain of m. Similarly, a vector valued
function z �→ γ(z) with the values in K is called real if its domain is symmetric
with respect to R and

γ(z) = jKγ(z) (2.13)

for all z in the domain.
Let a symmetric operator S be real in K with the conjugation jK. A

boundary triple
(
C,Γ0,Γ1

)
for S[∗] is called real, if

jΓ0 = Γ0jK and jΓ1 = Γ1jK.

Every real symmetric operator S admits a real boundary triple
(
C,Γ0,Γ1

)
and the corresponding Weyl function M and the γ-field γ are real, see [66]
for the case of a Hilbert space K.
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3. Regularity of Critical Points of Couplings in Krein Spaces

3.1. Couplings of Symmetric Operators in Krein Spaces

In this section we consider two Krein spaces
(K+, [ · , · ]K+

)
and

(K−, [ · , · ]K−
)
.

Let their direct sum

K = K+[+̇]K−

be endowed with the natural inner product

[f+ + f−, g+ + g−]K := [f+, g+]K+ + [f−, g−]K− , f±, g± ∈ K±. (3.1)

Consider two closed symmetric densely defined operators A+ and A− with de-
fect numbers (1, 1) acting in the Krein spaces

(K+,[ · , · ]K+

)
and

(K−,[ · , · ]K−
)
.

Let
(
C,Γ±

0 ,Γ±
1

)
be a boundary triple for A

[∗]
± . Let M± and γA± be the corre-

sponding Weyl function and the γ-field. By A±,0 we denote the self-adjoint
extension of A± which is defined on

dom(A±,0) = ker(Γ±
0 ) by A±,0 = A

[∗]
±
∣∣
ker(Γ±

0 )
.

Then the functions M± are defined and holomorphic on ρ(A±,0). Assume
that

ρ(A+,0) ∩ ρ(A−,0) 	= ∅. (3.2)

The following theorem is an indefinite version of results from [30, Propo-
sition 4.3] which is, in this form, presented in [18, Theorem 4.7] and [34].

Theorem 3.1. Let A± be closed symmetric densely defined operator with de-
fect numbers (1, 1) in the Krein space

(K±, [ · , · ]K±
)
. Let

(
C,Γ±

0 ,Γ±
1

)
be

boundary triples for A
[∗]
± which satisfy (3.2). Let M± and γA± be the Weyl

functions and the γ-fields of A± corresponding to the boundary triples(
C,Γ±

0 ,Γ±
1

)
, and let S and A be the restrictions of A

[∗]
+ [+]A[∗]

− to the do-
mains

dom(S) =
{(

f+

f−

)
∈ K :

Γ+
0 (f+) = Γ−

0 (f−) = 0,
Γ+

1 (f+) + Γ−
1 (f−) = 0,

f± ∈ dom
(
A

[∗]
±
)}

, (3.3)

dom(A) =
{(

f+

f−

)
∈ K :

Γ+
0 (f+) = Γ−

0 (f−),
Γ+

1 (f+) + Γ−
1 (f−) = 0,

f± ∈ dom
(
A

[∗]
±
)}

. (3.4)

Then the following statements hold:
(a) The operator S is symmetric with defect numbers (1, 1) and A is a self-

adjoint extension of S in
(K, [ · , · ]K

)
.

(b) The adjoint S[∗] of S in
(K, [ · , · ]K

)
is the restriction of A

[∗]
+ [+]A[∗]

− to
the domain

dom(S[∗]) =
{(

f+

f−

)
: Γ+

0 (f+) = Γ−
0 (f−), f± ∈ dom

(
A

[∗]
±
)}

and a boundary triple
(
C,Γ0,Γ1

)
for S[∗] is given by

Γ0f = Γ+
0 f+, Γ1f = Γ+

1 f+ + Γ−
1 f−, f =

(
f+

f−

)
∈ dom

(
S[∗]

)
. (3.5)
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(c) The corresponding Weyl function and the γ-field of S are

M(z) = M+(z) + M−(z), γ(z) =
(
γA+(z)
γA−(z)

)
, z ∈ C \ R. (3.6)

(d) If z ∈ ρ(A+,0)∩ρ(A−,0) then z ∈ ρ(A) if and only if M+(z)+M−(z) 	= 0.
(e) The resolvent of the operator A is given by

(
A − z

)−1
f =

(
A0 − z

)−1
f

− [f, γ(z)]K
M+(z) + M−(z)

γ(z), z ∈ ρ(A) ∩ ρ(A0), (3.7)

where A0 = A+,0[+]A−,0 and f ∈ K.

Definition 3.2. The operator A defined in Theorem 3.1(a) is called the cou-
pling of the operators A+ and A− in the Krein space

(K, [ · , · ]K
)

relative to
the triples

(
C,Γ+

0 ,Γ+
1

)
and

(
C,Γ−

0 ,Γ−
1

)
and A0 = A+,0[+]A−,0 is called the

decoupled operator.

The following statement was proved in [69, Lemma 5.4]. For the reader’s
convenience, we present a proof based on Theorem 3.1.

Lemma 3.3. Let (H, 〈 · , · 〉H) be a Hilbert space with a conjugation jH, let B
be a closed densely defined real symmetric operator in H with defect numbers
(1, 1), let

(
C,Γ0,Γ1

)
be a real boundary triple for B〈∗〉, let m and γB be the

corresponding Weyl function and the γ-field for B and define

ĥ(z) =
〈
h, γB(z)

〉
H, h ∈ H, z ∈ C \ R. (3.8)

Then the following inequality holds for all real h ∈ H:
∫ ∞

0

∣∣Im ĥ(iy)2
∣∣

Im m(iy)
dy ≤ 2π‖h‖2

H. (3.9)

Proof. Let K+ and K− be two copies of the Hilbert space H and let us set
A+ := B and A− := −B. Notice that

(
C,Γ0,Γ1

)
is a boundary triple for

A
[∗]
+ ,

(
C,Γ0,−Γ1

)
is a boundary triple for A+

− and the corresponding Weyl
functions M+, M− and the γ-fields γA+ and γA− take the form

M+(z) = m(z), M−(z) = −m(−z), γA+(z) = γB(z), γA−(z) = γB(−z).

Let A be the coupling of A+ and A− acting in the Hilbert space K =
K+ ⊕ K− = H ⊕ H, let A0 = B0 ⊕ (−B0) be the decoupled operator as
defined in Definition 3.2, B0 being the restriction of B〈∗〉 to ker Γ0 and let us
denote by 〈 · , · 〉K the scalar product in K = K+ ⊕ K− = H ⊕ H. Applying
Theorem 3.1 to the operators A+ and A−, setting f = h ⊕ 0 with h ∈ H
in (3.7) we obtain

〈
(A − iy)−1f, f

〉
K =

〈
(A0 − iy)−1f, f

〉
K − ĥ(iy)ĥ(−iy)

m(iy) − m(−iy)
. (3.10)
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Since A and A0 are self-adjoint operators in the Hilbert space K = H ⊕ H,
an application of the functional calculus yields∫ ∞

0

∣∣Re
〈
(A − iy)−1f, f

〉
K
∣∣dy ≤ π

2
‖f‖2

K, (3.11)
∫ ∞

0

∣∣Re
〈
(A0 − iy)−1f, f

〉
K
∣∣dy ≤ π

2
‖f‖2

K (3.12)

for all f ∈ K. Since the boundary triple
(
C,Γ0,Γ1

)
is real, γB is real as well.

If, in addition, h is real, then

jHh = h, jHγB(iy) = γB(−iy) for all y ∈ R+

and, by (3.8) and Definition 2.6, we have

ĥ(−iy) =
〈
γB(iy), h

〉
H =

〈
jHh, jHγB(iy)

〉
H =

〈
h, γB(−iy)

〉
H = ĥ(iy).

(3.13)

By (3.10), (3.11), (3.12) and (3.13),∫ ∞

0

∣∣∣∣∣Re
ĥ(iy)2

m(iy) − m(−iy)

∣∣∣∣∣ dy ≤ π‖f‖2
H = π‖h‖2

H.

Using the equality m(iy) − m(−iy) = 2i Im m(iy), for all real h ∈ H we get∫ ∞

0

∣∣Im ĥ(iy)2
∣∣

2 Im m(iy)
dy =

∫ ∞

0

∣∣∣∣∣Re
ĥ(iy)2

m(iy) − m(−iy)

∣∣∣∣∣ dy ≤ π‖h‖2
H.

This proves (3.9). �
In the following lemma we apply Theorem 3.1 to two real symmetric op-

erators B+ and B− acting in Hilbert spaces H+ and H− and obtain estimates
for a family of weighted L2-norms of “generalized Fourier transforms”

f̂±(z) =
〈
f±, γB±(z)

〉
H±

, f± ∈ H±, z ∈ C \ R. (3.14)

Lemma 3.4. Let H± be Hilbert spaces with conjugations jH± , let B± be closed
densely defined real symmetric operators in H± with defect numbers (1, 1),
let

(
C,Γ±

0 ,Γ±
1

)
be real boundary triples for B

〈∗〉
± , and let m± and γB± be the

corresponding Weyl functions and the γ-fields for B±. Then the following
inequalities hold for all real f± ∈ H±:∫ +∞

0

∣∣f̂±(iy)
∣∣2
∣∣Re (m+(iy) + m−(iy))

∣∣∣∣m+(iy) + m−(iy)
∣∣2 dy ≤ 5π‖f±‖2

H± . (3.15)

Proof. 1. In this step we prove that for all real f± ∈ H± we have∫ +∞

0

∣∣Re
(
f̂±(iy)2

)∣∣
∣∣Re(m+(iy) + m−(iy))

∣∣∣∣m+(iy) + m−(iy)
∣∣2 dy ≤ 3π‖f±‖2

H± . (3.16)

Applying Theorem 3.1 to the operators A+ := B+ and A− := B− in Hilbert
spaces K+ = H+, K− := H− and taking f = f+ ⊕ f−, f± ∈ H±, one obtains
the equality

〈
(A − iy)−1f, f

〉
=
〈
(A0 − iy)−1f, f

〉−
(
f̂+(iy) + f̂−(iy)

)(
f̂+(−iy) + f̂−(−iy)

)
m+(iy) + m−(iy)
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where A is the coupling of A+ and A− defined by (3.4), A0 is the decoupled
operator, as defined in Definition 3.2. Since A and A0 are self-adjoint opera-
tors in the Hilbert space H := H+ ⊕ H− one obtains from (3.11), (3.12) and
(3.13) for all real f± ∈ H±∫ +∞

0

∣∣∣∣∣Re

(
f̂+(iy) + f̂−(iy)

)2
m+(iy) + m−(iy)

∣∣∣∣∣ dy ≤ π‖f‖2
H. (3.17)

Set

u±(iy) := Rem±(iy), v±(iy) := Im m±(iy), (3.18)

U(iy) := Re
(
(f̂+(iy) + f̂−(iy))2

)
, V (iy) := Im

(
(f̂+(iy) + f̂−(iy))2

)
.

Then inequality (3.17) can be rewritten as∫ +∞

0

∣∣U(iy)
(
u+(iy) + u−(iy)

)
+ V (iy)

(
v+(iy) + v−(iy)

)∣∣∣∣m+(iy) + m−(iy)
∣∣2 dy ≤ π‖f‖2

H.

In particular, setting subsequently f− = 0 or f+ = 0, one obtains

∫ +∞

0

∣∣∣Re
(
f̂±(iy)2

)(
u+(iy) + u−(iy)

)
+ Im

(
f̂±(iy)2

)(
v+(iy) + v−(iy)

)∣∣∣∣∣m+(iy) + m−(iy)
∣∣2 dy

≤ π‖f±‖2
H± . (3.19)

By (3.9), for every real f± ∈ H± we have
∫ +∞

0

∣∣Im(f̂±(iy)2
)(

v+(iy) + v−(iy)
)∣∣∣∣m+(iy) + m−(iy)

∣∣2 dy

≤
∫ +∞

0

∣∣Im(f̂±(iy)2
)∣∣

Im m±(iy)
dy≤2π‖f±‖2

H±(3.20)

and thus (3.19) and (3.20) imply∫ +∞

0

∣∣Re
(
f̂±(iy)2

)∣∣ |u+(iy) + u−(iy)|
|m+(iy) + m−(iy)|2 dy ≤ 3π‖f±‖2

H± ,

for every real f± ∈ H±, which proves (3.16).
2. To prove (3.15) we notice that from

|u+(iy) + u−(iy)|
|m+(iy) + m−(iy)| ≤ 1

and (3.9) we obtain
∫ +∞

0

∣∣Im(f̂±(iy)2
)∣∣ |u+(iy) + u−(iy)|∣∣m+(iy) + m−(iy)

∣∣2 dy ≤
∫ +∞

0

∣∣Im(f̂±(iy)2
)∣∣

|m+(iy) + m−(iy)| dy

≤
∫ +∞

0

∣∣Im(f̂±(iy)2
)∣∣

Im m±(iy)
dy ≤ 2π‖f±‖2

H± , (3.21)

for all real f± ∈ H±. Now (3.15) follows from (3.16) and (3.21). �
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Remark 3.5. (a) It follows from (3.13) that inequalities (3.9) in Lemma 3.3
and (3.15) in Lemma 3.4 remain in force when we substitute f̂±(iy) by
f̂±(−iy) for all real f± ∈ H±:∫ +∞

0

∣∣Im(f̂±(−iy)2
)∣∣

Im m±(iy)
dy ≤ 2π‖f±‖2

H± ,

∫ +∞

0

∣∣f̂±(−iy)
∣∣2
∣∣Re

(
m+(iy) + m−(iy)

)∣∣∣∣m+(iy) + m−(iy)
∣∣2 dy ≤ 5π‖f±‖2

H± .

(b) Notice that the statement of Lemma 3.3 is essentially contained in [69]
for the case when A is a coupling of Sturm–Liouville operators. The
result of Lemma 3.4 is new and in the symmetric case, when m+ = m−,
implies the statement of Corollary 5.6 in [69].

3.2. Veselić Condition and Coupling

In the rest of this section we make the following general assumptions:
(A1)

(H±, 〈 · , · 〉H±
)

are Hilbert spaces with conjugations jH± and the Krein
spaces

(K±, [ · , · ]K±
)

are defined by

K+ = H+, [ · , · ]K+ = 〈 · , · 〉H+ , K− = H−, [ · , · ]K− = −〈 · , · 〉H− .

(A2)
(K, [ · , · ]K

)
is a Krein space with the fundamental decomposition K =

K+[+]K− and the inner product (3.1).
(A3) B± are real closed nonnegative symmetric densely defined operators

with defect numbers (1, 1) in the Hilbert spaces
(H±, 〈 · , · 〉H±

)
and let

A+ and A− be symmetric operators in the Krein spaces K+ and K−,
respectively:

A+ := B+, A− := −B−.

(A4)
(
C,Γ±

0 ,Γ±
1

)
are real boundary triples for B

〈∗〉
± and m± and γB± are the

corresponding Weyl functions and the γ-fields.
(A5) A is the coupling of the operators A+ and A− in the Krein space(K, [ · , · ]K

)
relative to the triples

(
C,Γ+

0 ,Γ+
1

)
and

(
C,Γ−

0 ,Γ−
1

)
.

By B±,0 we denote the self-adjoint extension of B± which is defined on

dom(B±,0) = ker(Γ±
0 ) by B±,0 = B

〈∗〉
±
∣∣
ker(Γ±

0 )
.

Clearly,
(
C,Γ±

0 ,Γ±
1

)
are also boundary triples for A

[∗]
± . The Weyl functions

M± and the γ-fields γA± of the operators A± corresponding to
(
C,Γ±

0 ,Γ±
1

)
are connected with the Weyl functions m± and the γ-fields γB± of the oper-
ators B± by the equalities

M±(z) = m±(±z), γA±(z) = γB±(±z), z ∈ ρ(B±,0).

In the next lemma we reformulate the Veselić condition from Theo-
rem 2.1 for the coupling A of two nonnegative operators as defined in Defi-
nition 3.2, cf. [34] and [18].

Lemma 3.6. Let conditions (A1) through (A5) be satisfied and α ∈ R. Then
the following statements hold.



IEOT Indefinite Sturm–Liouville Page 17 of 58     2 

(i) The coupling A is definitizable and ∞ ∈ c(A).
(ii) ∞ ∈ cr(A) if and only if there exists η0 > 0 such that for all real

f± ∈ H±
∫ η

η0

Re

(
f̂+(iy) + f̂−(−iy)

)2
m+(iy) + m−(−iy)

dy = O(1) as η → +∞. (3.22)

(iii) α 	∈ cs(A) and ker(A − α) = ker(A − α)2 if and only if there is η0 > 0
such that for all real f± ∈ H±

∫ η0

η

Re

(
f̂+(α + iy) + f̂−(α − iy)

)2
m+(α + iy) + m−(α − iy)

dy = O(1) as η ↓ 0. (3.23)

Proof. (i) Let us show that ρ(A) 	= ∅ for the operator A from Theorem 3.1.
Assume ρ(A) = ∅. Then, by Theorem 3.1(d)

m+(z) + m−(−z) = 0 for all z ∈ ρ(A+,0) ∩ ρ(A−,0). (3.24)

Since B± is nonnegative, its self-adjoint extension B±,0 = ±A±,0 has at most
one isolated negative eigenvalue. Hence m± has at most one pole a± in R−.
Now, equality (3.24) implies that m+ has at most one pole −a− in R+ and
possibly a pole at 0. Therefore,

m+(z) =
σ−

−a− − z
+

σ0

−z
+

σ+

a+ − z

for some a−, a+ < 0, σ0, σ−, σ+ ≥ 0. Since B+ is densely defined, see (A3),
the last displayed formula contradicts (2.9).

The operator A0 = B+,0 ⊕ (−B−,0) is definitizable, and ∞ ∈ c(A0) as,
by assumptions, B±,0 are unbounded. Since the resolvent (A− z)−1 of A is a
one-dimensional perturbation of the resolvent (A0 −z)−1, see (3.7), the claim
(i) follows from [51, Theorem 1].

(ii) Applying Theorem 3.1 to the operators A± = ±B± in the inner
product spaces (K±, [ · , · ]K±) = (H±,±〈 · , · 〉H±) one obtains the equality

[(
A − z

)−1
f, f

]
K =

[(
A0 − z

)−1
f, f

]
K −

[
f, γ(z)

]
K
[
γ(z), f

]
K

m+(z) + m+(−z)
,

where A0 = B+,0 ⊕ (−B−,0), z ∈ ρ(A) ∩ ρ(A0). Since A0 is a self-adjoint
operator in H, Theorem 2.1 and (3.12) imply that the condition ∞ 	∈ cs(A)
is equivalent to

∫ η

η0

Re

[
f, γ(−iy)

]
K
[
γ(iy), f

]
K

m+(iy) + m−(−iy)
dy = O(1), η → +∞ for all f ∈ K.

(3.25)

Decompose f ∈ K into its “real” and “imaginary” part, f = fR + if I , where
fR and f I are real, see (2.12). Since the vector valued functions γB±(z) are
real, it follows from (2.11) and (2.13) that[

γ(iy), fR
]
K =

[
fR, γ(−iy)

]
K,

[
γ(iy), f I

]
K =

[
f I , γ(−iy)

]
K
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and hence (see also analogous identity in [69, Proof of Theorem 4.5])[
f, γ(−iy)

]
K
[
γ(iy), f

]
K =

[
fR + if I , γ(−iy)

]
K
[
γ(iy), fR + if I

]
K

=
[
fR, γ(−iy)

]2
K +

[
f I , γ(−iy)

]2
K.

Therefore, ∞ 	∈ cs(A) if and only if (3.25) hold for all real f ∈ K. Since[
f, γ(−iy)

]
K =

〈
f+, γB+(−iy)

〉
H+

−〈f−, γB−(iy)
〉

H−
= f̂+(iy) − f̂−(−iy), (3.26)

condition (3.25) takes the form
∫ η

η0

Re

(
f̂+(iy) − f̂−(−iy)

)2
m+(iy) + m−(−iy)

dy = O(1) as η → +∞,

which reduces to (3.22) when we substitute f− with −f−.
(iii) By Theorem 2.1 and (3.12), we have that the conjunction α 	∈ cs(A)

and ker(A − α) = ker(A − α)2 is equivalent to
∫ η0

η

Re

[
f, γ(α−iy)

]
K
[
γ(α + iy), f

]
K

m+(α + iy) + m−(α − iy)
dy=O(1) as η ↓ 0 for all f ∈K.

(3.27)

The reasoning in the proof of item (ii) shows that the preceding equivalence
is preserved if f in (3.27) is restricted to be real, which in view of (3.26)
yields (3.23). �

3.3. D-Properties and Conditions for Regularity

In Sect. 4 we study the indefinite Sturm–Liouville expression (1.1). Operators
associated with this expression are non-negative in a Krein space. The only
critical points of such operators are 0 and ∞. Therefore, in the rest of the
paper we study the regularity of these two points.

Definition 3.7. A pair of Nevanlinna functions m+ and m− is said to have
the D∞-property (resp. D0-property) if

max
{
Im m+(iy), Im m−(iy)

}
∣∣m+(iy) + m−(−iy)

∣∣ = O(1) as y → +∞ (resp. y ↓ 0).

(3.28)

Lemma 3.8. Assume that a pair m+ and m− has the D∞-property (resp.
D0-property). Then

m+(iy) + m−(iy)
m+(iy) + m−(iy)

= O(1) as y → +∞ (resp. y ↓ 0). (3.29)

If, in addition, there exists y0 > 0 such that

Re m+(iy)Re m−(iy) > 0 for all y > y0 (resp. 0 < y < y0),
(3.30)
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then

m+(iy) − m−(iy)
m+(iy) + m−(iy)

= O(1) as y → +∞ (resp. y ↓ 0). (3.31)

Proof. Assume that the pair m+ and m− has the D∞-property. To prove
(3.29) we use the notation u±(iy) and v±(iy) introduced in (3.18). With this
notation we have∣∣m+(iy) + m−(iy)

∣∣2 =
(
u+(iy) + u−(iy)

)2 +
(
v+(iy) + v−(iy)

)2
and

|u+(iy) + u−(iy)|
|m+(iy) + m−(iy)| < 1 for all y > 0.

By the D∞-property

v+(iy) + v−(iy)
|m+(iy) + m−(iy)| = O(1) as y → +∞.

Hence (3.29) holds.
To prove (3.31), assume further that there exists y0 > 0 such that (3.30)

holds for all y > y0. Then (3.30) yields

|Re m±(iy)|
|m+(iy) + m−(iy)| <

|Re m±(iy)|
|Re m+(iy) + Re m−(iy)| ≤ 1 for all y > y0,

which, together with (3.28), imply (3.31).
To prove the claims involving the D0-property we notice that if the

pair m+(z) and m−(z) has the D0-property, then the pair m+(−1/z) and
m−(−1/z) has the D∞-property and we apply already proven statements to
the functions m+(−1/z) and m−(−1/z). �

Remark 3.9. As was shown in [59] the D∞-property (D0-property, respec-
tively) is necessary for the condition ∞ 	∈ cs(A) (0 	∈ cs(A), respectively). A
weaker form of condition (3.28) for the Sturm–Liouville operator (1.1) with
w(x) = sgn x, and r ≡ 1 was presented in [61].

In the next theorem we show that the D∞-property becomes also suffi-
cient for ∞ 	∈ cs(A) if it is supplemented by the assumption (3.30).

Theorem 3.10. Let conditions (A1) through (A5) be satisfied and assume that
there exists y0 > 0 such that

Re m+(iy)Re m−(iy) > 0 for all y > y0. (3.32)

Then the coupling A is definitizable in the Krein space
(K, [ · , · ]K

)
, ∞ ∈ c(A)

and

∞ ∈ cr(A) ⇔ the pair m+ and m− has the D∞-property.

Proof. The definitizability of A and the fact that ∞ ∈ c(A) follow from item
(i) in Lemma 3.6. The necessity of the condition that the pair m+ and m−
has the D∞-property for ∞ 	∈ cs(A) was proved in [59].
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To prove sufficiency, assume that the pair m+ and m− has the D∞-
property. We use Lemma 3.6(ii) to prove ∞ ∈ cr(A). The integral in (3.22)
can be rewritten as the sum I1(f+, f−) + I2(f+, f−) of two integrals

I1(f+, f−) =
∫ η

η0

u+(iy) + u−(iy)∣∣m+(iy) + m−(iy)
∣∣2 Re

(
(f̂+(iy) + f̂−(−iy))2

)
dy,

I2(f+, f−) =
∫ η

η0

v+(iy) − v−(iy)∣∣m+(iy) + m−(iy)
∣∣2 Im

(
(f̂+(iy) + f̂−(−iy))2

)
dy,

where we use the notation introduced in (3.18).
We will prove that both of these integrals are bounded as η → +∞. By

Lemma 3.8, there exist y1, C1 > 0 such that∣∣∣∣∣
m+(iy) + m−(iy)
m+(iy) + m−(iy)

∣∣∣∣∣ ≤ C1 for all y > y1. (3.33)

It follows from (3.33) and (3.15) that for all η ≥ η0 > y1 we have∫ η

η0

∣∣f̂±(iy)
∣∣2 |u+(iy) + u−(iy)|∣∣∣m+(iy) + m−(iy)

∣∣∣2
dy

≤ C2
1

∫ η

η0

∣∣f̂±(iy)
∣∣2 |u+(iy) + u−(iy)|∣∣m+(iy) + m−(iy)

∣∣2 dy < 5πC2
1‖f±‖2.

This proves that∣∣I1(f+, f−)
∣∣ < 10πC2

1

(‖f+‖2
H+

+ ‖f−‖2
H−

)
(3.34)

for all real f± ∈ H± and for all η ≥ η0 > y1.
It follows from (3.31) that there exist y2, C2 > 0 such that∣∣∣∣∣

m+(iy) − m−(iy)
m+(iy) + m−(iy)

∣∣∣∣∣ ≤ C2 for all y > y2.

The preceding inequality yields that for all real f± ∈ H± and for all η ≥ η0 >
y2 we have
∣∣I2(f+, f−)

∣∣ ≤ C2
2

∫ η

η0

|v+(iy) − v−(iy)|∣∣m+(iy) − m−(iy)
∣∣2
∣∣Im((f̂+(iy) + f̂−(−iy))2

)∣∣dy

≤ C2
2

∫ η

η0

∣∣Im((f̂+(iy) + f̂−(−iy))2
)∣∣

Im
(
m+(iy) − m−(iy)

) dy, (3.35)

where for the second inequality we used that∣∣m+(iy) − m−(iy)
∣∣ ≥ v+(iy) + v−(iy) ≥ |v+(iy) − v−(iy)| for all y > 0.

Next we prove the inequality∫ η

η0

∣∣Im((f̂+(iy) + f̂−(−iy))2
)∣∣

Im
(
m+(iy) − m−(iy)

) dy ≤ 2π
(‖f+‖2

H+
+ ‖f−‖2

H−

)
(3.36)

for all real f± ∈ H± and for all η > η0 > y2.
We will prove the inequality in (3.36) by applying (3.9) in Lemma 3.3

to the setting introduced in Theorem 3.1. To distinguish the mathematical
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objects in conditions (A1) through (A5) which we consider in this proof,
from those in Theorem 3.1, we place tilde above mathematical objects in
Theorem 3.1.

In Theorem 3.1 we set(K̃±, [ · , · ]K̃±

)
:=

(H±, 〈 · , · 〉H±
)

and Ã± := ±B±.

Then
(
C,Γ+

0 ,Γ+
1

)
is a boundary triple for Ã

[∗]
+ with the corresponding Weyl

function and the γ-field given by

z �→ m+(z) and z �→ γB+(z), z ∈ C \ R.

The triple
(
C,Γ−

0 ,−Γ−
1

)
is a boundary triple for Ã

[∗]
− with the corresponding

Weyl function and the γ-field given by

z �→ −m−(−z) and z �→ γB−(−z), z ∈ C \ R.

The operator S̃ defined in Theorem 3.1 in the Krein space
(K̃, [ · , · ]K̃

)
is

a real densely defined symmetric operator with defect numbers (1, 1). How-
ever, in this case the Krein space

(K̃, [ · , · ]K̃
)

is the Hilbert space which is
the direct sum of the Hilbert spaces

(H+, 〈 · , · 〉H+

)
and

(H−, 〈 · , · 〉H−
)
; that

is K̃ = H+ ⊕ H−. It follows from (3.5) that a real boundary triple for S̃[∗] is
the boundary triple

(
C, Γ̃0, Γ̃1

)
given by

Γ̃0f = Γ+
0 f+, Γ̃1f = Γ+

1 f+ − Γ−
1 f−, f =

(
f+

f−

)
∈ dom

(
S̃[∗]

)
.

By (3.6), the corresponding Weyl function and the γ-field are given by

M̃(z) = m+(z) − m−(−z) and γ̃(z) =
(

γB+(z)
γB−(−z)

)
, z ∈ C \ R.

For f =
(

f+

f−

)
∈ K̃ = H+ ⊕ H− its “generalized Fourier transform” is

f̂(iy) =
[
f, γ̃(−iy)

]
K̃

=
〈
f+, γB+(−iy)

〉
H+

+
〈
f−, γB−(iy)

〉
H−

= f̂+(iy) + f̂−(−iy).

By applying (3.9) in Lemma 3.3 to the real symmetric operator S̃ acting
in the Hilbert space

(K̃, [ · , · ]K̃
)

we obtain
∫ ∞

0

∣∣Im f̂(iy)2
∣∣

Im M̃(iy)
dy ≤ 2π‖f‖2

K̃, (3.37)

With the formulas from the preceding paragraph, (3.37) is exactly (3.36).
The inequalities in (3.35) and (3.36) yield∣∣I2(f+, f−)

∣∣ ≤ 2πC2
2

(‖f+‖2
H+

+ ‖f−‖2
H−

)
(3.38)

for all real f± ∈ H± and for all η > η0 > y2. From (3.34) and (3.38) it follows
that (3.22) holds. Hence Lemma 3.6(ii) implies ∞ ∈ cr(A). �
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In the next theorem we give a criterion for 0 	∈ cs(A) formulated in
terms of the D0-property.

Theorem 3.11. Let conditions (A1) through (A5) be satisfied and assume that
there exists y0 > 0 such that the Weyl functions m+ and m− satisfy the
condition

Re m+(iy)Re m−(iy) > 0 for all 0 < y < y0.

Then

0 	∈ cs(A) and ker A= ker A2 ⇔ the pair m+ and m− has the D0-property.

Proof. The necessity of the D0-property for 0 	∈ cs(A) was proved in [59].
To prove the sufficiency we will employ Lemma 3.6 and decompose the

integral in (3.22) into a sum I1(f+, f−) + I2(f+, f−) of two integrals

I1(f+, f−) =
∫ η0

η

u+(iy) + u−(iy)∣∣m+(iy) + m−(iy)
∣∣2 Re

(
(f̂+(iy) + f̂−(−iy))2

)
dy,

I2(f+, f−) =
∫ η0

η

v+(iy) − v−(iy)∣∣m+(iy) + m−(iy)
∣∣2 Im

(
(f̂+(iy) + f̂−(−iy))2

)
dy

The estimates for I1(f+, f−) and I2(f+, f−) for every f± ∈ H± similar to
those in (3.34) and (3.38) follow in the same way as in the proof of Theo-
rem 3.10. �

Remark 3.12. Notice that the condition (3.32) is not necessary for the non-
negativity of the coupling A. For example, let B± be minimal operators
generated by the differential expression − d2

dx2 in L2(R±), let d± ∈ R± be
such that d+ + d− > 0, and let boundary triples (C,Γ±

0 ,Γ±
1 ) for B

〈∗〉
± be

given by

Γ+
0 f+ = f ′

+(0), Γ+
1 f+ = −f+(0) + d+f ′

+(0), f+ ∈ dom(B〈∗〉
+ ),

Γ−
0 f− = f ′

−(0), Γ−
1 f− = f−(0) + d−f ′

−(0), f− ∈ dom(B〈∗〉
− ).

Then the operator A defined by (3.4) as the restriction of −(sgn x) d2

dx2 to the
domain

dom(A) =
{

f ∈ dom(B〈∗〉
+ ) ⊕ dom(B〈∗〉

− ) :
f ′
+(0) = f ′

−(0)
f+(0) − f−(0) = cf ′

+(0)

}
,

where c = d− + d+ > 0, is nonnegative in the Krein space
(
L2

w(R), [ · , · ]w
)
,

where w(x) = sgn x, x ∈ R. Indeed, for f = f+ ⊕ f− ∈ dom A we obtain

[Af, f ]w = −
∫ 0

−∞
f ′′

−f− −
∫ +∞

0

f ′′
+f+ = (d− + d+)|f ′

+(0)|2 +
∫
R

|f ′|2 ≥ 0.

The Weyl functions m± of the operators B± corresponding to the boundary
triples (C,Γ±

0 ,Γ±
1 ) have the form

m+(z) =
i√
z

+ d+, m−(z) =
i√
z

+ d−, d± ∈ R±

and hence there exists y0 > 0 such that Rem+(iy)Re m−(iy) < 0 for all
y > y0.
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The operator A above belongs to the family of operators studied in [63].
It follows from [63, Theorem 2] that A is similar to a self-adjoint operator
in the Hilbert space L2(R). This fact also follows from Theorem 3.10 if we
choose positive d− and d+ such that c = d− + d+.

3.4. One-Sided Sufficient Conditions for Regularity

In the next theorem we give a one-sided condition which is sufficient for
∞ 	∈ cs(A).

Theorem 3.13. Let conditions (A1) through (A5) be satisfied and assume that:
(i) there exists y0 > 0 such that (3.32) holds;
(ii) either Im m+(iy) = O

(
Re m+(iy)

)
or Im m−(iy) = O

(
Re m−(iy)

)
as

y → +∞.
Then the coupling A of the operators A+ and A− is definitizable in the Krein
space

(K, [ · , · ]K
)
, ∞ ∈ c(A) and

∞ ∈ cr(A).

Proof. The definitizability of A and ∞ ∈ c(A) follow from Lemma 3.6(i).
Assume Im m+(iy) = O

(
Re m+(iy)

)
as y → +∞. We show that the pair

m+, m− has the D∞-property. It follows from (i) that∣∣∣∣∣
Im m+(iy)

m+(iy) + m−(iy)

∣∣∣∣∣ ≤ Im m+(iy)
|Re m+(iy)| for all y > y0.

Since Im m+(iy) = O(Re m+(iy)) as y → +∞, there exists C > 0 such that∣∣∣∣∣
Im m+(iy)

m+(iy) + m−(iy)

∣∣∣∣∣ ≤ C for all y > y0. (3.39)

Next, if Im m−(iy) > 2 Im m+(iy), then

|Im m−(iy) − Im m+(iy)| ≥ |Im m−(iy)| − |Im m+(iy)| >
1
2
|Im m−(iy)|,

and hence ∣∣∣∣∣
Im m−(iy)

m+(iy) + m−(iy)

∣∣∣∣∣ ≤ 2 for all y > y0.

Now, if Im m−(iy) ≤ 2 Im m+(iy), then∣∣∣∣∣
Im m−(iy)

m+(iy) + m−(iy)

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
Im m+(iy)

m+(iy) + m−(iy)

∣∣∣∣∣ ≤ 2C for all y > y0.

Thus, the pair m+, m− has the D∞-property, and the statement of Theo-
rem 3.13 follows from Theorem 3.10. �

In the next theorem we formulate a one-sided condition which is suffi-
cient for 0 	∈ cs(A).

Theorem 3.14. Let conditions (A1) through (A5) be satisfied and assume that:
(i) there exist y0 > 0 such that (3.30) holds;
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(ii) either Im m+(iy) = O
(
Re m+(iy)

)
or Im m−(iy) = O

(
Re m−(iy)

)
as

y ↓ 0.

Then the coupling A of the operators A+ and A− is definitizable in the Krein
space

(K, [ · , · ]K
)
, 0 	∈ cs(A) and ker A = ker A2.

Proof. Let us assume that Im m+(iy) = O(Re m+(iy)) as y ↓ 0. Then in
view of (i) and (ii) the inequality (3.39) holds for 0 < y < y0 and, hence,
Im m+(iy) = O

(
m+(iy) + m−(iy)

)
as y ↓ 0.

The proof of the relation Imm−(iy) = O
(
m+(iy) + m−(iy)

)
as y ↓ 0

is similar to that in Theorem 3.13. Therefore, the pair m+, m− has the D0-
property, and the statement of Theorem 3.14 follows from
Theorem 3.11. �

4. Sturm–Liouville Operator with Indefinite Weight

4.1. Indefinite Sturm–Liouville Operator as a Coupling

Let I = (b−, b+) be a finite or infinite interval such that −∞ ≤ b− < 0 <
b+ ≤ +∞ and let a be the differential expression (1.1) subject to the as-
sumptions (1.2). In this section we study a nonnegative self-adjoint operator
A associated with a in the Krein space

(
L2

w(I), [ · , · ]w
)
. In the definition of

A given in (4.13) we use nonnegative symmetric operators B± generated by
the differential expressions b± in the Hilbert spaces L2

w±(I±) with the inner
products

〈f, g〉w± =
∫

I±
f(x)g(x)w±(x)dx.

Let B±,max be the maximal differential operator generated in L2
w±(I±) by

the differential expression b± (see (1.8)), with the domain

dom
(
B±,max

)
=
{
f ∈ L2

w±(I±) : f, f [1] ∈ ACloc(I±), b±(f) ∈ L2
w±(I±)

}
,

where f [1](x) := r(x)−1f ′(x), x ∈ I. Let B±,min(= (B±,max)〈∗〉) be the mini-
mal differential operator generated by b± in L2

w±(I±).
Let z ∈ C \ R and denote by s±(·, z) and c±(·, z) the solutions on I± of

the equation

b±(f) = zf, (4.1)

satisfying the boundary conditions

c±(0, z) = 1, c
[1]
± (0, z) = 0 and s±(0, z) = 0, s

[1]
± (0, z) = 1.

If b± is in the limit point case at b± then neither s±(·, z) nor c±(·, z)
belongs to L2

w±(I±), however there exists a coefficient m±(z) such that the
solution

ψ±(t, z) = s±(t, z)∓m±(z)c±(t, z), t ∈ I±, (4.2)

of the equation (4.1) belongs to L2
w±(I±).
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In the limit point case the operator B± := B±,min is a symmetric oper-
ator in L2

w±(I±) with defect numbers (1, 1) and with the domain

dom(B±) =
{
f ∈ dom(B±,max) : f(0) = f [1](0) = 0

}
. (4.3)

In the limit circle case, by [55, Section 10.7], for every f ∈ dom(B±,max)
the following one-sided limit exists

f [1](b±) := lim
x→b±∓0

r±(x)−1f ′(x).

Let m±(z) be a coefficient such that the solution ψ±(x, z) in (4.2) satisfies
the condition

ψ
[1]
± (b±, z) = 0 for all z ∈ C\R. (4.4)

Clearly, m±(z) is calculated as m±(z) = ±s[1](b±, z)/c[1](b±, z). In the limit
circle case the operator B±,min is a symmetric operator in L2

w±(I±) with
defect numbers (2, 2) and we define its symmetric extension B± with defect
numbers (1, 1) as the restriction of b± to the domain

dom(B±) =
{
f ∈ dom(B±,max) : f(0) = f [1](0) = f [1](b±) = 0

}
. (4.5)

The adjoint operator B
〈∗〉
± is the restriction of b± to the domain

dom(B〈∗〉
± ) =

{
f ∈ dom(B±,max) : f [1](b±) = 0

}
.

In the following definition (see [69]) the notion of Neumann m-function
is introduced both for the limit point case and the limit circle case.

Definition 4.1. The function m± for which the solution ψ±(x, z) in (4.2) sat-
isfies the condition

ψ
[1]
± (b±, z) = 0 if b± is in the limit circle case at b±

ψ±(·, z) ∈ L2
w±(I±) if b± is in the limit point case at b±

}
(4.6)

is called the Neumann m-function of b± on I± subject to (4.6).

The following proposition collects some facts from [32] about boundary
triples for the operator B

〈∗〉
± .

Proposition 4.2. Assume that b± satisfies (1.2), let B± be defined as in (4.3)
or in (4.5), respectively, (depending on limit point or limit circle case) and
let m± be the Neumann m-function of b± on I±, subject to (4.6). Then:

(a) B± is a symmetric nonnegative operator in the Hilbert space L2
w±(I±)

with defect numbers (1, 1).
(b) The triple

(
C,Γ±

0 ,Γ±
1

)
, where

Γ±
0 f± = f

[1]
± (0), Γ±

1 f± = ∓f±(0), f ∈ dom(B〈∗〉
± ), (4.7)

is a real boundary triple for B
〈∗〉
± .
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(c) The Weyl function of the operator B± corresponding to the boundary
triple

(
C,Γ±

0 ,Γ±
1

)
coincides with the Neumann m-function m±, that is

m±(z) = ∓ ψ±(0, z)

ψ
[1]
± (0, z)

, z ∈ C \ R. (4.8)

If b± is in the limit circle case at b±, then, in addition to (4.8), the
following formula holds

m±(z) = ±s
[1]
± (b±, z)

c
[1]
± (b±, z)

, z ∈ C \ R. (4.9)

(d) The Weyl function m± of B± belongs to the Stieltjes class S and satisfies
the condition limx→−∞ m±(x) = 0. In particular,

Re m±(iy) ≥ 0 for all y > 0.

Proof. Since

lim
x→b±∓0

f [1](x)f(x) = 0 for all f ∈ dom(B〈∗〉
± )

both in the limit point case [56, Corollary, p. 199], and in the limit circle case
[36, Lemma 2.1] the following formula holds∫

I±
b±(f±)f±w±dx = ±f

[1]
± (0)f±(0) +

∫
I±

1
r±

|f ′
±|2dx, f± ∈ dom(B〈∗〉

± ).

(4.10)

By (1.2) and Definition 2.3 this proves statements (a) and (b), see also [32,
Proposition 9.51, Theorem 9.69].

The statement (c) is implied by Definition 2.4 and the equalities

Γ±
0 ψ±(·, z) = ψ

[1]
± (0, z) = 1, Γ±

1 ψ±(·, z) = ∓ψ±(0, z) = m±(z) z ∈ C \ R.

The formula (4.9) follows from (4.4) and the equality

0 = ψ
[1]
± (b±, z) = s

[1]
± (b±, z)∓m±(z)c[1]

± (b±, z) z ∈ C \ R.

The extension B±,0 of B± defined by

B±,0f = B
〈∗〉
± f, f ∈ dom(B±,0) := ker Γ±

0 (4.11)

is the von Neumann extension of B±. Hence B±,0 ≥ 0, see also (4.10), and
thus the function m± is holomorphic on R−. Moreover, as it follows from [55,
Theorem 3.1], see also [33, Proposition 3.6],

lim
x→−∞ m±(x) = 0

and hence m± ∈ S. This proves (d). �

With the differential expression a we associate the following operator A
in the Krein

(
L2

w(I), [ · , · ]w
)
:

dom(A) =
{
f ∈ dom(B〈∗〉

+ ) ⊕ dom(B〈∗〉
− ) : f, r−1f ′ ∈ ACloc(I)

}
(4.12)

and

Af = a(f), f ∈ dom(A). (4.13)
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Lemma 4.3. For every λ ∈ R the subspace ker(A − λI) is at most one-
dimensional.

Proof. Let λ ∈ R. If b± is limit circle at b±, then, by Weyl’s alternative, the
equation b±(f) = ±λf has two linearly independent solutions c±(x,±λ) and
s±(x,±λ) in L2

w±(I±). Since the Wronskian of these solutions is not zero, it
is not possible that both of these solutions satisfy f [1](b±) = 0. Therefore,
ker(B〈∗〉

± ∓λI) is one-dimensional.
If b± is limit point at b±, then, by Weyl’s alternative, the equation

b±(f) = ±λf has at most one solution in L2
w±(I±). Consequently,

ker(B〈∗〉
± ∓λI) is at most one-dimensional.
By the uniqueness theorem for linear initial value problems, the only so-

lution of the problem b±(f) = ±λf , f±(0) = f
[1]
± (0) = 0 is the zero function.

Therefore, the subspace

ker(A − λI) =

⎧⎨
⎩f = f+ ⊕ f− :

f+ ∈ ker(B〈∗〉
+ − λI), f+(0) = f−(0)

f− ∈ ker(B〈∗〉
− + λI), f

[1]
+ (0) = f

[1]
− (0)

⎫⎬
⎭

is also at most one-dimensional. �

Theorem 4.4. Let the differential expression b satisfy (1.2) and let m± be
the Neumann m-function of b± subject to (4.6) on I±. Then the operator A
associated with the expression a is the coupling of the operators A+ := B+ and
A− := −B− in the sense of Theorem 3.1. The operator A is a nonnegative
self-adjoint operator in the Krein space

(
L2

w(I), [ · , · ]w
)

with ρ(A) 	= ∅ and
∞ ∈ c(A). We have

(i) ∞ ∈ cr(A) ⇔ the pair m+and m− has the D∞-property.
(ii) 0 	∈ cs(A) and ker A = ker A2

⇔ the pair m+ and m− has the D0-property.
(iii) Imm+(iy) = O

(
Re m+(iy)

)
as y → +∞ ⇒ ∞ ∈ cr(A).

(iv) Im m−(iy) = O
(
Re m−(iy)

)
as y → +∞ ⇒ ∞ ∈ cr(A).

(v) Im m+(iy) = O
(
Re m+(iy)

)
as y ↓ 0 ⇒ 0 	∈ cs(A) and ker A = ker A2.

(vi) Im m−(iy) = O
(
Re m−(iy)

)
as y ↓ 0 ⇒ 0 	∈ cs(A) and ker A = ker A2.

Proof. The boundary triples
(
C,Γ±

0 ,Γ±
1

)
from Proposition 4.2 are also bound-

ary triples for A
[∗]
± . The coupling of the operators A± in Theorem 3.1 is

characterized by the conditions

Γ+
0 (f+) − Γ−

0 (f−) = 0, Γ+
1 (f+) + Γ−

1 (f−) = 0, f± ∈ dom(B〈∗〉
± )

which in view of (4.7) can be rewritten as

f
[1]
+ (0) = f

[1]
− (0), f+(0) = f−(0), f± ∈ dom(B〈∗〉

± ). (4.14)

Therefore, the differential operator A associated with the expression a is
the coupling of the operators A± := ±B± relative to the boundary triples(
C,Γ±

0 ,Γ±
1

)
. It follows from (4.10) and (4.14) that for f = f+ + f− ∈ dom A,
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f± ∈ dom(B〈∗〉
± ), we have

[Af, f ]w =
〈
B

〈∗〉
+ f+, f+

〉
w+

+
〈
B

〈∗〉
− f−, f−

〉
w−

= f
[1]
+ (0)f+(0) − f

[1]
− (0)f−(0) +

∫
I

1
r
|f ′|2dt =

∫
I

1
r
|f ′|2dt ≥ 0.

Hence the operator A is nonnegative.
The Weyl function M± of the operator A± corresponding to (C,Γ±

0 ,Γ±
1 )

and the Weyl function m± of the operator B± satisfy

M±(z) = m±(±z), z ∈ C \ R.

Since m+,m− ∈ S, by Proposition 2.5, we have Re
(
m+(iy) + m−(−iy)

)
> 0

for all y ∈ R+. Consequently, Theorem 3.1(d) yields ρ(A) 	= ∅. Therefore the
operator A is definitizable and ∞ ∈ c(A), see Lemma 3.6. As m+,m− ∈ S,
the assumptions of Theorems 3.10, 3.11, 3.13, and 3.14 are satisfied and, thus,
the remaining claims follow. �

Remark 4.5. In the limit circle case Bennewitz, see [9], considered a more
general class of Neumann m-functions than introduced in Definition 4.1. We
restate Bennewitz’s definition here.

Denote the Wronskian of two functions f, g ∈ dom(B±,max) by

Wt(f, g) := f(t)g[1](t) − f [1](t)g(t), t ∈ I±.

The one-sided limit

Wb±(f, g) := lim
x→b±∓0

(
f(t)g[1](t) − f [1](t)g(t)

)

exists for all f, g ∈ dom(B±,max). Furthermore, according to Titchmarsh [92]
(see also [32, Theorem 9.69], every symmetric boundary condition at b± for
arbitrary f ∈ dom(B±,max) can be written as

Wb±
(
f, (cos α)s±(·, z0) + (sin α)c±(·, z0)

)
= 0

for some α ∈ (−π/2, π/2] and some z0 ∈ C\R.
If m±(z) is a coefficient for which the solution ψ±(t, z) in (4.2) satisfies

the condition

Wb±
(
ψ±(·, z), (cos α)s±(·, z0) + (sin α)c±(·, z0)

)
= 0, z ∈ C\R,

(4.15)

for some α ∈ (−π/2, π/2], then m± is called the Neumann m-function of b±
on I±. Clearly, m±(z) can be expressed as

m±(z) =
(cos α)Wb±

(
s±(·, z), s±(·, z0)

)
+ (sin α)Wb±

(
s±(·, z), c±(·, z0)

)
(cos α)Wb±

(
c±(·, z), s±(·, z0)

)
+ (sin α)Wb±

(
c±(·, z), c±(·, z0)

) ,

for all z ∈ C \ R. Since all the symmetric boundary conditions at b± are
included in the boundary condition (4.15), the boundary condition (4.4) is
included as well. Therefore, the class of Neumann m-functions introduced in
this remark contains the Neumann m-functions introduced in Definition 4.1.



IEOT Indefinite Sturm–Liouville Page 29 of 58     2 

4.2. Asymptotic Properties of m-Functions

V.A. Marčenko [72] (for Sturm–Liouville operator − d2

dx2 +q), and I.S. Kac [53]
and Y. Kasahara [65] (for weighted Sturm-Liuoville operator) showed that
the asymptotic behaviour of the Weyl function m along the imaginary axes
at +∞ is closely related to the behaviour of the coefficients of the differential
expression at 0. In this section we present some results in this direction from
[8,9] and their recent developments in [69].

Recall the definition (1.3) of functions W± and R±:

W±(x) :=
∫ x

0

w±(ξ)dξ, R±(x) :=
∫ x

0

r±(ξ)dξ, x ∈ I±, (4.16)

where W+ and R+ are positive and increasing on I+, while W− and R− are
negative and increasing functions on I−. Define the function F± : R±

(
I±
) →

R+ as follows

F±(x) :=
1

xW±
(
R−1

± (x)
) , x ∈ R±

(
I±
)
. (4.17)

Here

R−(I−) = (c−, 0), R+(I+) = (0, c+) with − ∞ ≤ c− < 0 < c+ ≤ +∞.

(4.18)

The function F+ is decreasing and unbounded, and F− is an unbounded
increasing function. Denote by f± the inverse of F±. Notice that both f−
and f+ are defined in a neighbourhood of +∞, the function f+ is positive
and decreasing, the function f− is negative and increasing, and

lim
x→+∞ f−(x) = 0 and lim

x→+∞ f+(x) = 0.

The following result was proved by F. Atkinson [4], see also Bennewitz
[9, Theorem 3.4] for an improved version which we use here. The concept
of the Neumann m-function of b± on I± is used in the sense defined in
Remark 4.5. For the concept of a slowly varying function at 0± we refer to
Definition A.1 in Appendix A.

Theorem 4.6. Let W± and R± be the functions defined in (4.16), let f± be
the inverse of the function defined in (4.17) and let m± be the Neumann
m-function of b± on I±. If W± ◦ R−1

± is a slowly varying function at 0±,
then

m±(iy) ∼ ±if±(y) as y → +∞.

Proof. Assume that W± ◦ R−1
± is a slowly varying function at 0±. By Corol-

lary A.7, this condition is equivalent to∫ x

0

R±(ξ) dW±(ξ) = o
(
R±(x)W±(x)

)
as |x| ↓ 0 with x ∈ I±.

(4.19)

The claim about the function m+ was proved in [9, Theorem 3.4]. We use this
result to prove the claim about m−. Set w̃+(x) = w−(−x), r̃+(x) = r−(−x),
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x ∈ Ĩ+ := (0,−b−). Then the Hilbert space L2
w̃+

(Ĩ+) consists of the functions

g̃(x) := g(−x), g ∈ L2
w−(I−).

Let B̃+ be the minimal operator generated in L2
w̃+

(Ĩ+) by the differential
expression(

b̃+(g̃ )
)
(x) := −(b−(g))(−x), g ∈ L2

w−(I−), x ∈ Ĩ+.

Then the Neumann m-function m̃+ of b̃+ on Ĩ+ is related to m− as follows

m̃+(z) = −m−(−z). (4.20)

Next the functions

W̃+(x) :=
∫ x

0

w̃+(ξ)dξ, R̃+(x) :=
∫ x

0

r̃+(ξ)dξ, x ∈ Ĩ+

are related to W− and R− by

W̃+(x) = −W−(−x), R̃+(x) = −R−(−x), x ∈ Ĩ+. (4.21)

Recall, that by definition,

F̃+(x) =
1

x
(
W̃+ ◦ R̃−1

+

)
(x)

, x ∈ R̃+

(
Ĩ+

)

By f̃+ we denote the inverse of F̃+. It is connected with the inverse f− of

F−(x) =
1

x
(
W− ◦ R−1

−
)
(−x)

, x ∈ R−(I−),

by the equality

f̃+(x) = −f−(x), x ∈ R+. (4.22)

It is easy to see, that W̃+ and R̃+ satisfy the condition in (4.19). There-
fore, by Theorem 4.6, m̃+(iy) ∼ if̃+(y). Consequently, by (4.20), (4.21), and
(4.22), one obtains

m−(iy) = −m̃+(iy) ∼ −if̃+(y) = if̃+(y) = −if−(y). �

The sufficiency part of the following lemma was proved by Bennewitz [8].
The condition that appears in [8] is equivalent to the definition of a positively
increasing function, see Definition A.12 in Appendix A. The necessity of
condition (4.23) below was proved by Kostenko in [70].

Lemma 4.7. Let m± be the Neumann m-function of b± on I±. Then

Re m±(iy) = O
(
Im m±(iy)

)
as y → ±∞ (4.23)

if and only if the function R± ◦ W−1
± is positively increasing at 0±.

Notice that the concept of the Neumann m-function of b± on I± in
Lemma 4.7 is used in the sense defined in Remark 4.5, while in the rest of the
paper we use Definition 4.1. The following analog of Lemma 4.7 was proved
in [69, Corollary 2.7].
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Lemma 4.8. Let m± be the Neumann m-function of b± on I±, subject to (4.6).
Then

Im m±(iy) = O
(
Re m±(iy)

)
as y → ±∞ (4.24)

if and only if the function W± ◦ R−1
± is positively increasing at 0±.

Similar criteria for estimates (4.23) and (4.24) at 0 were proved by
Kostenko in [69, Theorem 2.11 and Corollary 2.15].

Lemma 4.9. Let w±, r± 	∈ L1(I±) and let m± be the Neumann m-function of
b± on I±, subject to (4.6). Then

Re m±(iy) = O
(
Im m±(iy)

)
as y → 0±

if and only if the function R± ◦ W−1
± is positively increasing at ±∞.

Lemma 4.10. Let w±, r± 	∈ L1(I±) and let m± be the Neumann m-function
of b± on I±, subject to (4.6). Then

Im m±(iy) = O
(
Re m±(iy)

)
as y → 0±

if and only if the function W± ◦ R−1
± is positively increasing at ±∞.

In the following lemma we consider the cases in which the conditions
w±, r± 	∈ L1(I±) are not satisfied.

Lemma 4.11. Let m± be the Neumann m-function of b± on I±, subject to (4.6).
(i) Let a± = ± limx→b± 1/W±(x). Then a± ≥ 0 and the function

m̃±(z) := m±(z) +
a±
z

, z ∈ C+,

belongs to S and limy↓0 ym̃±(iy) = 0. In particular, if w± ∈ L1(I±),
then a± > 0, ym±(iy) ∼ ia± at 0+ and

Re m±(iy) = o
(
Im m±(iy)

)
as y ↓ 0.

(ii) If r± ∈ L1(I±) and w± 	∈ L1(I±), then

Im m±(iy) = o
(
Re m±(iy)

)
as y ↓ 0. (4.25)

Proof. The claims (i) and (ii) appear in [69, Lemma 2.10]. For the proof of
(i) see also [33, Propositions 3.6, 4.6]. �
4.3. Regularity of the Critical Point ∞
Statements (iii), (iv) of Theorem 4.4 can be restated as follows.

Theorem 4.12. Let the differential expression b± satisfy (1.2) and let the
functions R± and W± be defined by (4.16). If either W+ ◦ R−1

+ is positively
increasing at 0+ or W− ◦R−1

− is positively increasing at 0−, then ∞ ∈ cr(A).

Proof. Let m± be the Neumann m-function of b± on I±, subject to (4.6). By
Proposition 4.2(d), m+ and m− belong to the Stieltjes class S. Thus m+ and
m− satisfy the assumption (3.32) of Theorem 3.10. Assume that W+ ◦ R−1

+

is positively increasing at 0+. Then, by Lemma 4.8, condition (4.24) holds.
Hence, by Theorem 4.4 (iii), we have ∞ ∈ cr(A). Similar argument proves
the theorem if W− ◦ R−1

− is positively increasing at 0−. �



    2 Page 32 of 58 B. Ćurgus, V. Derkach and C. Trunk IEOT

Example 4.13. Let I = (−1, 1). Consider differential operators B± generated
by b± in L2(I±), where r−, w− are arbitrary subject to conditions (1.2) and
r+ = 1, and w+ satisfies the condition

w+(x) = xαv+(x), x ∈ I+, α > −1, (4.26)

where v+(x) is slowly varying at 0+. Then, by Karamata’s characterization
theorem, Theorem A.5, we have

W+(x) =
∫ x

0

tαv+(t)dt ∼ xα+1

α + 1
v+(x) as x ↓ 0,

and hence, W+(x) is regularly varying at 0+ of order α + 1 > 0 by Proposi-
tion A.2. Theorem 4.12 yields that ∞ ∈ cr(A).

In the case when both w+ and w− satisfy the condition (4.26) with
v± ∈ C1(I±) and α > −1/2 (so called Beals conditions) this result was
obtained by R. Beals in [6], and by B. Ćurgus and H. Langer in [21] for
α > −1. That one-sided condition for the weight w on I+ is enough for
∞ ∈ cr(A) was noticed by A. Fleige in [39].

Lemma 4.14. Let a ∈ R+ and let α, β, f, g : [a,+∞) → C\{0} be functions
such that α and β are bounded,

lim
x→+∞

α(x)
β(x)

= 1 and lim
x→+∞

f(x)
g(x)

= 1. (4.27)

Then
1

α(x) − f(x)
= O(1) as x → +∞

⇔ 1
β(x) − g(x)

= O(1) as x → +∞. (4.28)

Proof. We will prove the equivalence of the negations of the statements in
(4.28). The negation of the statement on the left-hand side of (4.28) is: There
exists an increasing sequence (xn) in [a,+∞) such that

lim
n→+∞ xn = +∞ and lim

n→+∞
(
α(xn) − f(xn)

)
= 0.

Since for all n ∈ N we have

β(xn) − g(xn) = α(xn)
(

β(xn)
α(xn)

− g(xn)
f(xn)

)
+
(
α(xn) − f(xn)

) g(xn)
f(xn)

and since α is bounded, (4.27) and the stated negation imply that the nega-
tion of the right-hand side of (4.28) holds. The proof of the converse is
similar. �

Lemma 4.15. Let a ∈ R+ and let f and g be positive functions defined on
[a,+∞). Then(

f(x)
g(x)

− 1
)−1

= O(1) as x → +∞

⇔
(

g(x)
f(x)

− 1
)−1

=O(1) as x → +∞. (4.29)
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Proof. The equivalence of the negations of the propositions in (4.29) is
clear. �

Application of Theorem 4.4(i) and Theorem 4.6 leads to the following
characterization of regularity of critical point ∞ under the assumptions of
Theorem 4.6.

Theorem 4.16. Let the differential expression a satisfy (1.2). Let W± and R±
be the functions defined in (4.16) and assume that W± ◦R−1

± is slowly varying
function at 0±. Then the operator A associated with a is nonnegative in the
Krein space

(
L2

w(I), [ · , · ]w
)
, ρ(A) 	= ∅, ∞ is a critical point of A, and

∞ ∈ cr(A) ⇔
(

1 +
W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0.

Proof. Assume that W±◦R−1
± is slowly varying function at 0±. An immediate

consequence of the definition in (4.17) is the equivalence
(

1 +
W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0

⇔
(

1 − F+(x)
F−(−x)

)−1

=O(1) as x ↓ 0.

Recall that F+ is unbounded decreasing, and F− is an unbounded increasing
function. Since W± ◦R−1

± is slowly varying at 0±, the function F± is regularly
varying at 0± with index −1, see the definition in (4.17). As the function f±
is the inverse of F±, Corollary A.11 yields the following equivalence
(

1 − F+(x)
F−(−x)

)−1

= O(1) as x ↓ 0

⇔
(

1 +
f+(y)
f−(y)

)−1

= O(1) as y → +∞.

Let m± be the Neumann m-function of b± on I±. By Theorem 4.6, we
have

∓im±(iy) ∼ f±(y) as y → +∞.

The preceding asymptotic relation and Lemma 4.14 imply

Im m+(iy)
m+(iy) + m−(−iy)

= O(1) as y → +∞

⇔
(

1 +
f−(y)
f+(y)

)−1

= O(1) as y → +∞.

To see how Lemma 4.14 applies here we write

i Im m+(iy)
m+(iy) + m−(−iy)

=
1

−i m+(iy)
Im m+(iy) − i m−(−iy)

Im m+(iy)

,
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set

α(y) =
−im+(iy)
Im m+(iy)

, f(y) =
im−(−iy)
Im m+(iy)

, β(y) = 1, g(y) = −f−(y)
f+(y)

,

and observe that the above asymptotic relation from Theorem 4.6 implies

lim
y→+∞ α(y) = 1 and lim

y→+∞
f(y)
g(y)

= 1.

Since by Lemma 4.15 we have(
1 +

f−(y)
f+(y)

)−1

= O(1) as y → +∞

⇔
(

1 +
f+(y)
f−(y)

)−1

= O(1) as y → +∞,

we have proved that(
1 +

W−
(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0

⇔ Im m+(iy)
m+(iy) + m−(−iy)

= O(1) as y → +∞.

Similarly, we can prove that(
1 +

W−
(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0

⇔ Im m−(iy)
m+(iy) + m−(−iy)

= O(1) as y → +∞.

Therefore,(
1 +

W−
(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0

⇔ the pair m+ and m− has the D∞-property.

Now the theorem follows from Theorem 4.4. �

Corollary 4.17. Under the assumptions of Theorem 4.16 the following equiv-
alence holds

∞ ∈ cs(A) ⇔

lim inf
x↓0

−W−
(
R−1

− (−x)
)

W+

(
R−1

+ (x)
) ≤ 1 ≤ lim sup

x↓0

−W−
(
R−1

− (−x)
)

W+

(
R−1

+ (x)
) . (4.30)

Proof. By Theorem 4.16, ∞ ∈ cs(A) is equivalent to the negation of(
1 +

W−
(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0. (4.31)

In Sect. A.3 of Appendix we give two equivalent negations of (4.31). One is

W+

(
R−1

+ (x)
)

s∼ −W−
(
R−1

− (−x)
)

at 0+,
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and the other, 1 is a cluster value at 0+ of the function

x �→ −W−
(
R−1

− (−x)
)

W+

(
R−1

+ (x)
) with x ∈ (0, c), (4.32)

where c = min{c+,−c−} with c− and c+ as defined in (4.18). Since the func-
tion in (4.32) is continuous on (0, c) it is an exercise in elementary analysis,
see [91, 5.10.11], that 1 is a cluster value at 0+ of the function in (4.32) if
and only if the inequalities on the right-hand side of the equivalence in (4.30)
hold. �

Remark 4.18. The criteria in Theorem 4.16 nicely complements the result
of Kostenko in [69, Corollary 4.8(i)]. To see this, we notice that [69, Corol-
lary 4.8(i)] can be restated as follows: If W− ◦ R−1

− is slowly varying function
at 0−, W+ ◦ R−1

+ is slowly varying function at 0+ and ∞ ∈ cr(A), then w is
not odd or r is not even.

The “only if” part of Theorem 4.16 gives (4.31) which is more than the
fact that w is not odd or r is not even, that is, (4.31) gives that for all small
enough positive x we have W+

(
R−1

+ (x)
) 	= −W−

(
R−1

− (−x)
)
.

In this setting the negation of (4.31), that is the right-hand side of the
equivalence in (4.30), appears to be a natural generalization of the condition
that the function w is odd and r is even. In the case when r = 1, this condition
also generalizes the condition of w being odd-dominated which was used in
Fleige’s criterion for ∞ ∈ cr(A), see [20, Definition 3.8 and Theorem 3.11].

For slowly varying functions the following corollary extends the result
of [20, Corollary 3.15].

Corollary 4.19. Let 0 < b+ ≤ +∞, I+ = [0, b+) and r+, w+ ∈ L1
loc(I+) be

positive functions. Let α, β ∈ R+, set b− = −b+/β and define

r(x) =

{
r+(x) if x ∈ [0, b+)

αr+(−βx) if x ∈ (b−, 0),

w(x) =

{
w+(x) if x ∈ [0, b+)

−αw+(−βx) if x ∈ (b−, 0).

Let W+ and R+ be the functions defined in (4.16) and assume that W+ ◦R−1
+

is slowly varying function at 0+. Then the operator A associated with a is
nonnegative in the Krein space

(
L2

w(I), [ · , · ]w
)
, ρ(A) 	= ∅, ∞ is a critical

point of A, and ∞ ∈ cr(A) if and only if α 	= β.

Proof. To apply Theorem 4.16 we first calculate for x ∈ (c−, 0) (cf. (4.18))

W−
(
R−1

− (x)
)

= −(α/β)W+

(
R−1

+

(−(β/α)x
))

.

Hence W− ◦ R−1
− is a slowly varying function at 0−. Further

W−
(
R−1

− (−x)
)

W+

(
R−1

+ (x)
) = −α

β

W+

(
R−1

+

(
(β/α)x

))
W+

(
R−1

+ (x)
) ,
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and since W+ ◦ R−1
+ is a slowly varying function at 0+ we have

lim
x↓0

W−
(
R−1

− (−x)
)

W+

(
R−1

+ (x)
) = −α

β
.

Therefore (
1 +

W−
(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0

holds if and only if α 	= β. Now the claim follows from Theorem 4.16. �

We illustrate Corollary 4.19 with an example which has appeared in [20,
Example 3.17]. The novelty here is that we can give a characterization of the
regularity of the critical point ∞ for all positive coefficients α and β.

Example 4.20. Let w+, r+ : (0, 1) → R+ be given by

w+(x) =
1

x(ln x)2
, r+(x) = 1, x ∈ (0, 1).

Then

W+(x) = W+

(
R−1

+ (x)
)

= − 1
ln x

, x ∈ [0, 1).

Hence, W+ ◦ R−1
+ is a slowly varying function at 0+. Therefore the operator

A from Corollary 4.19 is nonnegative in the Krein space
(
L2

w(−1, 1), [ · , · ]w
)
,

ρ(A) 	= ∅, ∞ is its critical point and ∞ ∈ cr(A) if and only if α 	= β.

Example 4.21. Let α± > 0 and I = (−1, 1). Let r = 1 on I and

w−(x) =
α−

x
(− ln(−x)

)1+α−
, x ∈ (−1, 0), w+(x) =

α+

x(− ln x)1+α+
, x ∈ (0, 1).

Then

R−(x) = x, x ∈ [−1, 0], R+(x) = x, x ∈ [0, 1], (4.33)

W−(x) =
−1(− ln(−x)

)α− , x ∈ (−1, 0],

W+(x) =
1(− ln x
)α+ , x ∈ [0, 1). (4.34)

Thus W− ◦ R−1
− = W− is slowly varying at 0−, W+ ◦ R−1

+ = W+ is slowly
varying at 0+ and(

1 +
W−(−x)
W+(x)

)−1

=
(
1 − (− ln(x)

)α+−α−
)−1

= O(1) as x ↓ 0

holds if and only if α+ 	= α−.
By Theorem 4.16, the operator A associated with the differential ex-

pression a with the above defined w and r is nonnegative in the Krein space(
L2

w(I), [ · , · ]w
)
, ρ(A) 	= ∅, ∞ is its critical point and ∞ ∈ cr(A) if and only if

α+ 	= α−. That is, ∞ is a singular critical point of A if and only if α+ = α−.
Notice that the implication

α+ = α− ⇒ ∞ ∈ cs(A)
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follows from a result of Parfenov [77, Theorem 6], as with α+ = α− the
weight function w(x), x ∈ I, is odd on I.

The converse of the last displayed implication does not follow from
neither of the following sufficient conditions for regularity: Volkmer’s con-
dition, see [94, Corollary 2.7] or [20, Theorem 3.14], Fleige’s condition for
odd-dominated weights, see [20], Parfenov’s condition [78, Corollary 8] for
non-odd weights.

4.4. Discreteness

By definition, for a closed operator T , its discrete spectrum consists of its
isolated eigenvalues of finite algebraic multiplicity. The complement of the dis-
crete spectrum is called the essential spectrum of T ; it is denoted by σess(T ).
The differential expression b+ is said to be quasi-regular at the end-point
b+ if w+, r+ ∈ L1(I+). As is known, see [52], in the quasi-regular case the
spectrum of the operator B+,0 is discrete. The following statement for a non-
quasi-regular case is also based on a result from [52].

Theorem 4.22. Let 0 < b+ ≤ +∞, let B+,0 be defined by (4.11) and let either
w+ 	∈ L1(0, b+) or r+ /∈ L1(0, b+). Then 0 	∈ σess(B+,0) if and only if:
Either

(I) w+ ∈ L1(0, b+), r+ /∈ L1(0, b+) and

sup
x∈(0,b+)

R+(x)
(
W+(b+) − W+(x)

)
< +∞, (4.35)

or
(II) w+ 	∈ L1(0, b+), r+ ∈ L1(0, b+) and

sup
x∈(0,b+)

W+(x)
(
R+(b+) − R+(x)

)
< +∞.

Moreover, the spectrum of B+,0 is discrete if and only if:

Either
(III) w+ ∈ L1(0, b+), r+ /∈ L1(0, b+) and

lim
x→b+

R+(x)
(
W+(b+) − W+(x)

)
= 0, (4.36)

or
(IV) w+ 	∈ L1(0, b+), r+ ∈ L1(0, b+) holds and

lim
x→b+

W+(x)
(
R+(b+) − R+(x)

)
= 0.

Proof. By using the change of variable ξ = R+(x), x ∈ (0, b+), the statements
of Theorem 4.22 are easily reduced to [52], see [19] for the details. �

The statements of Theorem 4.22 remain in force for B−,0 with b+, w+,
r+ replaced by b−, w−, r−, respectively. In particular, if w− ∈ L1(b−, 0), then
0 	∈ σess(B−,0) if and only if

sup
x∈(b−,0)

R−(x)
(
W−(b−) − W−(x)

)
< +∞. (4.37)
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Remark 4.23. In the case when r+ ≡ 1 and w+ is continuous, condition (4.36)
was first introduced by Hille in [47] and later used by Nehari in [75] as a cri-
teria for the strongly non-oscillatory property of (4.1). For w+ ∈ L1(I+),
(4.36) was proved to be a discreteness criterion for the Krein string by
Kac and Krein [52]. A condition similar to (4.35) was used by Chisholm
and Everitt [16] as a criterion for the boundedness of the integral operator
(Tf)(x) = v(x)

∫ x

0
u(t)f(t)dt with f ∈ L2(R+); here u, v ∈ L2(R+). Stuart

[90] proved that the compactness of the operator T is characterized by a con-
dition of type (4.36) and this allowed him to characterize the discreteness of
a general Sturm–Liouville operator. See also [76] and [26] where discreteness
criteria were formulated in terms of the coefficients of the Sturm–Liouville
operator. Conditions similar to (4.35) appeared also in [74] and [73, Sec-
tion 1.3.1] as criteria for some Hardy-type inequalities in weighted spaces.
Criteria for the discreteness of the spectra of canonical systems, that contain
the Krein string as a special case, were found recently in [85], see also [83]
for a class of semibounded canonical systems.

The next proposition shows that the spectrum of the operator B±,0

defined in (4.11) can be discrete even in the limit point case.

Proposition 4.24. Assume w± ∈ L1(I±). Then∫
I±

∣∣R±(ξ)
∣∣w±(ξ)dξ =

∫
I±

∣∣W±(b±) − W±(ξ)
∣∣r±(ξ)dξ, (4.38)

meaning that either the two integrals diverge simultaneously, or, if one con-
verges, then the other one converges as well and the integrals are equal. Fur-
ther, if R± ∈ L1

w±(I±), then the spectrum of B±,0 is discrete and 0 ∈ ρ̂(B±).

Proof. Using integration by parts in
∫

I±

∣∣R±(ξ)
∣∣w±(ξ)dξ one verifies (4.38).

Assume now that R± ∈ L1
w±(I±). Applying again integration by parts

to the integral
∫ x

0

(
W±(b±) − W±(ξ)

)
dR±(ξ) we obtain for all x ∈ I±∫ x

0

(
W±(b±) − W±(ξ)

)
dR±(ξ)

= R±(x)
(
W±(b±) − W±(x)

)
+
∫ x

0

R±(ξ)dW±(ξ). (4.39)

Taking the limit as x → b± in (4.39) and using (4.38) yields

lim
x→b±

R±(x)
(
W±(b±) − W±(x)

)
= 0. (4.40)

Hence, by Theorem 4.22, the spectrum of B±,0 is discrete. �

The next theorem combines the results of Theorem 4.16 and Theo-
rem 4.22 to provide a necessary and sufficient condition for the existence of
a Riesz basis consisting of eigenfunctions of the differential operator A.

Theorem 4.25. Let the differential expression a satisfy (1.2) and let W± and
R± be the functions defined in (4.16). Assume
(a) The functions w+ and r+ satisfy one of the following three conditions:
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(i) w+ ∈ L1(I+) and r+ ∈ L1(I+);
(ii) w+ ∈ L1(I+), r+ 	∈ L1(I+) and lim

x↑b+
R+(x)

(
W+(b+)−W+(x)

)
= 0;

(iii) w+ 	∈ L1(I+), r+ ∈ L1(I+) and lim
x↑b+

W+(x)
(
R+(b+)−R+(x)

)
= 0.

(b) The functions w− and r− satisfy one of the following three conditions:
(i) w− ∈ L1(I−) and r− ∈ L1(I−);
(ii) w− ∈ L1(I−), r− 	∈ L1(I−) and lim

x↓b−
R−(x)

(
W−(b−)−W−(x)

)
= 0;

(iii) w− 	∈ L1(I−), r− ∈ L1(I−) and lim
x↓b−

W−(x)
(
R−(b−)−R−(x)

)
= 0.

Then the spectrum of the operator A associated with the differential
expression a in the Hilbert space L2

|w|(I) is real and discrete, its eigenvalues
accumulate on both sides of ∞, all nonzero eigenvalues are simple and Jordan
chain at 0 is of length at most 2. The following statements hold.
(A) If either W+◦R−1

+ is positively increasing at 0+ or W−◦R−1
− is positively

increasing at 0−, then A has the Riesz basis property (Ri).
(B) If W+ ◦ R−1

+ is slowly varying at 0+ and W− ◦ R−1
− is slowly varying at

0−, then A has the Riesz basis property (Ri) if and only if(
1 +

W−
(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0. (4.41)

Proof. In either of the three cases in (a), the spectrum of the operator B+,0

is discrete and its eigenvalues accumulate at +∞. This follows from the fact
that in case (i) in (a) the operator B+,0 is either regular or in the limit-circle
case at b+. In the remaining two cases in (a) this follows from Theorem 4.22.
Similarly, in either of the three cases in (b), the spectrum of the operator
B−,0 is discrete and its eigenvalues accumulate at +∞. Since A is a rank-
one perturbation of the operator B+,0 ⊕ (−B−,0), by Weyl’s theorem, the
spectrum of the operator A is also discrete (see [82, Theorem XIII.14]). By
Lemma 3.6, the eigenvalues of A accumulate on both sides of ∞. Since the
operator A is nonnegative in the Krein space K all nonzero eigenvalues of
A are semi-simple and the length of the Jordan chain at 0 is at most 2.
Moreover, by Lemma 4.3, all nonzero eigenvalues of A are simple.

Let Δ be an arbitrary finite open interval such that 0 ∈ Δ and let
E be the spectral function of A in the sense of [71]. By the properties of
this spectral function [71], ∞ ∈ cr(A) if and only if there exists a Riesz
basis of (I − E(Δ))K which consists of eigenfunctions and the generalized
eigenfunctions of the restriction of A on (I−E(Δ))K. Since E(Δ)K is a finite-
dimensional space, the eigenfunctions and the generalized eigenfunctions of
the restriction of A on E(Δ)K form a Riesz basis of E(Δ)K. Therefore, the
Riesz basis property (Ri) is equivalent to ∞ ∈ cr(A). By Theorem 4.12, if
either W+ ◦ R−1

+ is positively increasing at 0+ or W− ◦ R−1
− is positively

increasing at 0−, then ∞ ∈ cr(A) and hence the claim in (A) holds.
If W+ ◦ R−1

+ is slowly varying at 0+ and W− ◦ R−1
− is slowly varying

at 0−, then, by Theorem 4.16, condition (4.41) is equivalent to ∞ ∈ cr(A).
Since we already proved that ∞ ∈ cr(A) is equivalent to (Ri), the equivalence
in (B) is proved. �
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Remark 4.26. For the differential expression a introduced in Example 4.21
we have

W+(x)
(
R+(1) − R+(x)

)
=

1 − x

(− ln x)α+
∼ (1 − x)1−α+ as x ↑ 1

and

W−(x)(R−(−1) − R−(x)) =
1 + x(− ln(−x)

)α− ∼ (1 + x)1−α− as x ↓ −1.

Therefore, a satisfies conditions (a)(iii) and (b)(iii) in Theorem 4.25 if and
only if α− ∈ (0, 1) and α+ ∈ (0, 1). By (B) in Theorem 4.25, the operator
A in Example 4.21 with α−, α+ ∈ (0, 1) has the Riesz basis property if and
only if α− 	= α+.

4.5. Regularity at 0
Since the operator A associated with the differential expression a is nonneg-
ative, it may have another critical point at 0. In this subsection we consider
the problem of regularity of the critical point 0 of the operator A. Let W±
and R± be defined by (4.16).

Theorem 4.27. Let W± and R± be defined by (4.16)and let A be the dif-
ferential operator associated with the expression a with the domain defined
by (4.12). Assume that one of the following cases is in force:

(i) w−, r− 	∈ L1(I−), w+, r+ 	∈ L1(I+) and either W− ◦ R−1
− is positively

increasing at −∞ or W+ ◦ R−1
+ is positively increasing at +∞;

(ii) either w− 	∈ L1(I−) and r− ∈ L1(I−), or w+ 	∈ L1(I+) and r+ ∈ L1(I+);
(iii) either w− 	∈ L1(I−) and w+ ∈ L1(I+), or w− ∈ L1(I−) and w+ 	∈

L1(I+);
(iv) w− ∈ L1(I−), w+ ∈ L1(I+), and W+(b+) + W−(b−) 	= 0.

Then

0 	∈ cs(A) and ker A = ker A2. (4.42)

Moreover, the following statements hold.
(a) If w− ∈ L1(I−) and w+ ∈ L1(I+), then (4.42) holds if and only if

W+(b+) + W−(b−) 	= 0.
(b) If w− ∈ L1(I−), w+ ∈ L1(I+) and (4.35), (4.37) hold, then 0 	∈ σess(A)

and the following three statements are equivalent

W+(b+) + W−(b−) 	= 0 ⇔ ker A = ker A2 ⇔ 0 /∈ c(A). (4.43)

Proof. 1. Proof of (4.42) under assumption (i). Due to Lemma 4.10 the as-
sumption that W+ ◦ R−1

+ is positively increasing at +∞ is equivalent to the
condition

Im m+(iy) = O
(
Re m+(iy)

)
as y ↓ 0.

By Theorem 4.4(v), this implies 0 	∈ cs(A) and ker A = ker A2.
2. Proof of (4.42) under assumption (ii). If r+ ∈ L1(R+) and w+ 	∈ L1(R−),
then, by Lemma 4.11, (4.25) holds and, hence, by Theorem 4.4(v), we have
0 	∈ cs(A) and kerA = ker A2.
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3. Proof of (4.42) under assumption (iii). If w+ ∈ L1(I+) and w− 	∈ L1(I−),
then, by Lemma 4.11,

m+(iy) = i
a+

y
+ m̃+(iy), m−(iy) = o(1/y) as y ↓ 0

for a+ = 1/W+(b+) > 0, m̃+(iy) = o(1/y). Then

m+(iy) + m−(−iy) ∼ −a+

iy
as y ↓ 0

and

Im m+(iy) ∼ a+

y
, Im m−(iy) → 0 as y ↓ 0.

Hence,

Im m±(iy) = O
(
m+(iy) + m−(−iy)

)
as y ↓ 0 (4.44)

holds and, by Theorem 4.4(ii), we have 0 	∈ cs(A) and ker A = ker A2.
4. Proof of (4.42) under assumption (iv). If w+ ∈ L1(I+) and w− ∈ L1(I−)
then, by Lemma 4.11,

m+(iy) ∼ i
a+

y
, m−(iy) ∼ i

a−
y

as y ↓ 0

for a± = ±1/W±(b±). Since W+(b+) + W−(b−) 	= 0, we have a+ 	= a−,

m+(iy) + m−(−iy) ∼ i
a+ − a−

y
as y ↓ 0

and

Im m±(iy) ∼ a±
y

as y ↓ 0. (4.45)

Hence, (4.44) holds. By Theorem 4.4(ii), (4.44) is equivalent to 0 	∈ cs(A) and
ker A = ker A2.
5. Proof of (a). Assume now that W+(b+)+W−(b−) = 0. Then, by Lemma 4.11,
a+ = a− and hence

m+(iy) + m−(−iy) = o(1/y) as y ↓ 0.

In view of (4.45), the relation (4.44) is not fulfilled and, by Theorem 4.4, the
relations (4.42) fail to hold, that is, either 0 ∈ cs(A) or ker A � ker A2.
6. Proof of (b). If w± ∈ L1(I±) and (4.35), (4.37) hold, then, by Theorem 4.22,
0 	∈ σess(B±,0). Since A is a rank-one perturbation of the operator B+,0 ⊕
(−B−,0), we have 0 	∈ σess(A).

Since w ∈ L1(I), all constant functions on I belong to dom A defined
in (4.12). Consequently, all constant functions on I belong to ker A. As, by
Lemma 4.3, ker A is at most one-dimensional, we deduce that ker A consists
of all the constant functions on I. Denote by 1 the constant function on I
equal to 1. Notice that

[1,1]w = W+(b+) + W−(b−). (4.46)

If W+(b+) + W−(b−) 	= 0, then the subspace ker A is nondegenerate.
Moreover, we have ker A = ker A2, since the existence of an associated vector
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f ∈ dom A such that Af = 1 implies [1,1]w = [Af,1]w = [f,A1]w = 0. This
proves the implication

W+(b+) + W−(b−) 	= 0 ⇒ ker A = ker A2.

Now assume ker A = ker A2. Then 0 is a simple eigenvalue of A, and
since 0 	∈ σess(A), it is an isolated eigenvalue. By [71], ker A is nondegenerate
and thus 0 	∈ c(A).

And finally, if 0 	∈ c(A), then, by [71], kerA2 = ker A and ker A is
definite. Hence, [1,1]w 	= 0, and, by (4.46), we have W+(b+) + W−(b−) 	= 0.
This proves the implication 0 	∈ c(A) ⇒ W+(b+)+W−(b−) 	= 0, and thus the
equivalences in (4.43) hold. �

Remark 4.28. The first equivalence in (4.43) can also be derived from [58,
Theorem 3.1]. Indeed, let σ± be measures from the integral representations
m±(z) =

∫
R
(t − z)−1dσ±(t) of the m-functions m±. If w− ∈ L1(I−), w+ ∈

L1(I+) and (4.35), (4.37) hold, then 0 	∈ σess(B−) ∩ σess(B+). Hence the
conditions ∫

R\{0}
t−2dσ−(t) < +∞,

∫
R\{0}

t−2dσ+(t) < +∞

are automatically fulfilled. By [58, Theorem 3.1, 2(ii)], the condition ker A2 =
ker A is equivalent to dσ−({0}) 	= dσ+({0}), which, by Lemma 4.11, is equiv-
alent to W+(b+) + W−(b−) 	= 0.

In Theorem 4.27 it is not claimed that 0 ∈ cr(A), since it may happen
that 0 is not a critical point of A at all. In the next corollary we specify some
cases when 0 is indeed a regular critical point of A.

Corollary 4.29. Assume that w+ and r+ satisfy one of the following condi-
tions:
(a) w+ ∈ L1(I+), r+ /∈ L1(I+) and sup

x∈I+

R+(x)
(
W+(b+) − W+(x)

)
= +∞;

(b) w+ 	∈ L1(I+), r+ ∈ L1(I+) and sup
x∈I+

W+(x)
(
R+(b+) − R+(x)

)
= +∞.

Assume that w− and r− satisfy one of the following conditions:
(c) w− ∈ L1(I−), r− 	∈ L1(I−) and sup

x∈I−
R−(x)

(
W−(b−) − W−(x)

)
= +∞;

(d) w− 	∈ L1(I−), r− ∈ L1(I−) and sup
x∈I−

W−(x)
(
R−(b−) − R−(x)

)
= +∞.

In cases (a) and (c) assume W+(b+) + W−(b−) 	= 0. Then 0 ∈ cr(A) and the
spectrum of the operator A accumulates on both sides of 0.

Proof. In either of the cases (a) and (b) ((c) and (d), respecitively), 0 is an
accumulation point for the spectrum of the operator B+,0 (B−,0, respectively)
from the right. Therefore, 0 is an accumulation point for the spectrum of the
decoupled operator A0 = A+,0 ⊕ (A−,0) from both sides. Since the resolvent
(A−z)−1 of A is a one-dimensional perturbation of the resolvent (A0 −z)−1,
see (3.7), it follows from [51, Theorem 1] that 0 ∈ c(A).

The statement 0 ∈ cr(A) follows from Theorem 4.27. �
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Remark 4.30. The list of the assumptions of Theorem 4.27 covers all possible
cases except the following:
(v) w−, r− 	∈ L1(I−), w+, r+ 	∈ L1(I+) and both W− ◦R−1

− is not positively
increasing at −∞ and W+ ◦ R−1

+ is not positively increasing at +∞.
In this case we cannot apply our abstract results from Theorem 3.10 because
the asymptotic behaviour of the Weyl functions at finite points is insufficiently
studied.

Notice that if r± = 1, then [94, Theorem 5.2] and [70, Theorem 7.4]
yield that the set of all not positively increasing functions is dense in some
metric subspace of L1(I±).

Remark 4.31. If w+ ∈ L1(I+), w− ∈ L1(I−), R+ ∈ L1
w+

(I+) and R− ∈
L1

w−(I−) then, by Proposition 4.24, the spectrum of A is discrete and in the
case W+(b+)+W−(b−) = 0 the root subspace ker A2 can be found explicitly.
As was mentioned above ker A = span{1}. Let us find a generalized eigenvec-
tor f ∈ dom(A) such that Af = 1, i.e. f = f+ ⊕ f−, where f± ∈ dom(B〈∗〉

± )
are solutions of the equations

b+f+ = 1, −b−f− = 1, (4.47)

such that

f+(0) = f−(0), f
[1]
+ (0) = f

[1]
− (0). (4.48)

holds. Straightforward calculations show that the functions

f±(x) = ±
∫ x

0

R±(ξ)w±(ξ)dξ ±
∫ b±

x

R±(x)w±(ξ)dξ (4.49)

satisfy (4.47) and the first boundary condition in (4.48). The second boundary
condition in (4.48) holds since W+(b+) + W−(b−) = 0.

It follows from (4.40) that the second term in (4.49)∫ b±

x

R±(x)w±(ξ)dξ = R±(x) (W±(b±) − W±(x))

is bounded. The first term in the right hand part of (4.49) is also bounded
since R± ∈ L1

w±(I±) and hence f± ∈ L2
w±(I±). Therefore, f± ∈ dom(B±,max)

and hence f± ∈ dom(B〈∗〉
± ) in the limit point case.

In the limit circle case we also get f± ∈ dom(B〈∗〉
± ), since f

[1]
± (b±) = 0.

Therefore, f = f+ ⊕ f− ∈ dom A and the equation Af = 1 has a solution
f ∈ dom(A). Thus ker A 	= ker A2.

Remark 4.32. Let b+, α, β, b− and the function w be defined as in Corol-
lary 4.19 and arbitrary r ∈ L1

loc(I). Assume that w+ ∈ L1(I+). Then w− ∈
L1(I−). Let W+ be the function defined in (4.16). Then, for all x ∈ [b−, 0] we
have W−(x) = −(α/β)W+(−βx). Consequently,

W+(b+) + W−(b−) = (1 − α/β) W+(b+).

By Theorem 4.27(a), we have that (4.42) holds if and only if α 	= β. In
particular, if α = β = 1 the weight function w(t) is odd and condition (4.42)
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does not hold. This has been proved in [69, Theorem 4.7] under additional
conditions that r is even and r /∈ L1(I).

Example 4.33. We consider the differential expression studied in Example 4.21
on an interval I = (b−, b+) with −1 ≤ b− < 0 < b+ ≤ 1.

First assume that b− = −1 and b+ = 1, as in Example 4.21. Then R±
and W± are given by the formulas (4.33) and (4.34). Due to Theorem 4.27(ii)
we have 0 	∈ cs(A) and kerA = ker A2.

Moreover, ker(A) = {0} since a function f ∈ ker(A) should have a form
f = f+ ⊕ f− ∈ dom A, where f+ ∈ dom(B〈∗〉

+ ), f− ∈ dom(B〈∗〉
− ) and the cou-

pling conditions (4.48) hold. The conditions f+ ∈ dom(B〈∗〉
+ ), f− ∈ dom(B〈∗〉

− )
yield that f+ and f− are proportional to 1 − x and 1 + x, respectively. But
then the coupling conditions (4.48) yield f+ = f− = 0.

Further,

lim
x↑1

(
R+(1) − R+(x)

)
W+(x) = lim

x↑1

1 − x

(− ln x)α+
=

⎧⎨
⎩

0 if 0 < α+ < 1,
1 if α+ = 1,

+∞ if α+ > 1,

and

lim
x↓−1

(
R−(−1) − R−(x)

)
W−(x) = lim

x↓−1

1 + x(− ln(−x)
)α− =

⎧⎨
⎩

0 if 0 < α− < 1,
1 if α− = 1,

+∞if α− > 1.

Hence Theorem 4.22 yields

0 ∈ σess(B−,0) ∩ σess(B+,0) ⇔ α+ > 1 and α− > 1.

Since 0 is not an eigenvalue of A, it follows from the preceding equivalence
that 0 ∈ c(A) if and only if α+ > 1 and α− > 1. Theorem 4.27 (ii) yields
that 0 ∈ cr(A), whenever α+ > 1 and α− > 1. Conversely, if α+ ∈ (0, 1] or
α− ∈ (0, 1], then 0 /∈ c(A). Consequently, 0 ∈ cr(A) if and only if α+ > 1 and
α− > 1.

Next assume that b+ = 1 and b− ∈ (−1, 0). Due to Theorem 4.27(iii)
0 	∈ cs(A). In this case ker(A) = {0}, since a function f ∈ ker(A) should have
a form f = f+ ⊕ f− ∈ dom A, where f+ ∈ dom(B〈∗〉

+ ), f− ∈ dom(B〈∗〉
− ) and

satisfy the conditions

f+(0) = f−(0), f ′
+(0) = f ′

−(0), f ′
−(b−) = 0. (4.50)

The conditions f+ ∈ dom(B〈∗〉
+ ) and f ′

−(b−) = 0 yield that f+ is proportional
to 1 − x and f− is constant. Then (4.50) implies f+ = 0 and hence, also
f− = 0.

Since the spectrum of B−,0 is discrete, 0 is not an accumulation point of
the negative spectrum of A and consequently 0 /∈ c(A). The same conclusion
holds if b− = −1 and b+ ∈ (0, 1).

Finally we assume that b− ∈ (−1, 0) and b+ ∈ (0, 1). In this case the
differential expression a is regular, so the spectrum of A is discrete. Therefore
the root space at 0 is nondegenerate. Consequently, 0 /∈ cs(A). Since

W−(b−) + W+(b+) =
1

(− ln b+)α+
− 1

(− ln |b−|)α−
,
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statement (b) from Theorem 4.27 takes the form:

α+

α−
	= ln

∣∣ln |b−|∣∣
ln | ln b+| ⇔ ker A = ker A2 ⇔ 0 /∈ c(A).

It is interesting to write the preceding equivalences in the following form:

α+

α−
=

ln
∣∣ln |b−|∣∣

ln | ln b+| ⇔ ker A � ker A2 ⇔ 0 ∈ cr(A).

4.6. Similarity

The coupling operator A in the Krein space K is nonnegative and ρ(A) 	= ∅.
Hence, it has at most two critical points 0 and ∞. Thus, A is similar to a self-
adjoint operator in a Hilbert space if and only if its critical points are regular
and kerA = ker A2, see Theorem 2.2. Combining Theorems 4.4, 4.27, 4.12,
and 4.16 we obtain the following list of sufficient conditions for similarity of
A to a self-adjoint operator in a Hilbert space, which equals Property (Si)
from the introduction.

Theorem 4.34. Let A be the differential operator associated with the expres-
sion a with the domain defined by (4.12) and let W± and R± be defined
by (4.16). Let at least one of the conditions (i)-(iv) in Theorem 4.27 be in
force. Then the following statements hold.
(a) If either W+◦R−1

+ is positively increasing at 0+ or W−◦R−1
− is positively

increasing at 0−, then the operator A is similar to a self-adjoint operator
in a Hilbert space.

(b) Let W+ ◦ R−1
+ be slowly varying at 0+ and let W− ◦ R−1

− be slowly
varying at 0−. Then the operator A is similar to a self-adjoint operator
in a Hilbert space if and only if(

1 +
W−

(
R−1

− (−x)
)

W+

(
R−1

+ (x)
)
)−1

= O(1) as x ↓ 0.

Example 4.35. Let us consider Example 4.21 on an interval I = (b−, b+) with
−1 ≤ b− < 0 < b+ ≤ 1. Combining the conclusions made in Example 4.21
and Example 4.33 we obtain the following equivalence:
The operator A is similar to a self-adjoint operator in a Hilbert space if and
only if

1. either max{b+, |b−|} = 1 and α+
α−

	= 1;

2. or max{b+, |b−|} < 1 and α+
α−

	∈
{

1, ln | ln |b−||
ln | ln b+|

}
.
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Appendix A: Some Results from Karamata’s Theory

In Appendix we present the definitions and the results from Karamata’s the-
ory of regularly varying functions that we use in the paper. Standard refer-
ences for Karamata’s theory are [12] and [87]. For completeness we include a
few standard results from Karamata’s theory and some of them are reformu-
lated to fit our needs. In addition, we present Theorem A.6 and Corollary A.7
that seem to be new.

A.1. Definitions and basic results

First we give definitions of regularly varying functions.

Definition A.1. Let a, α ∈ R with a > 0. A measurable function f : (0, a] →
R+ is called regularly varying at 0 from the right with index α if the following
condition is satisfied:

for all λ ∈ R+ we have lim
x↓0

f(λx)
f(x)

= λα.

When α = 0 the function f is called slowly varying at 0 from the right.
A measurable function g : [a,+∞) → R+ is called regularly varying at

+∞ with index α if the following condition is satisfied:

for all λ ∈ R+ we have lim
x→+∞

g(λx)
g(x)

= λα.

When α = 0 the function g is called slowly varying at +∞.
A measurable function g : [−a, 0) → R− is called regularly varying at 0

from the left with index α if the function f(x) = −g(−x) where x ∈ (0, a] is
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regularly varying at 0 from the right with index α. When α = 0 the function
g is called slowly varying at 0 from the left.

We will often use “at 0+” as an abbreviation for the phrase “at 0 from
the right” and “at 0−” as an abbreviation for the phrase “at 0 from the left.”

The Karamata’s theory of regular variation is commonly presented for
functions regularly varying at +∞. The results for functions regularly vary-
ing at 0+ follow from the following equivalence. Let f and g be measurable
functions such that g(x) = f(1/x) for all x in the domain of g for which 1/x
is in the domain of f . Then g is regularly varying at +∞ with index α if and
only if f is regularly varying at 0+ with index −α.

In this section some results will be presented at 0+ and some at +∞.
This choice is sometimes made based on our needs in this paper and some-
times on convenience.

Slow variation plays the central role in the theory of regular variation.
That centrality is expressed in the following proposition that follows imme-
diately from the definition.

Proposition A.2. Let a, α ∈ R with a > 0 and let f, g : (0, a] → R+ be
measurable functions such that g(x) = xαf(x) for all x ∈ (0, a]. The function
g is regularly varying at 0+ with index α if and only if f is slowly varying at
0+.

The next theorem is Karamata’s Representation Theorem, see [12, The-
orem 1.3.1] or [64] for Karamata’s original paper.

Theorem A.3. Let a ∈ R. A function f : [a,+∞) → R+ is slowly varying
at +∞ if and only if there exist b ∈ [a,+∞), a measurable function m :
[b,+∞) → R+ and a continuous function ε : [b,+∞) → R such that

lim
x→+∞ m(x) = M ∈ R+, lim

x→+∞ ε(x) = 0,

and for all x ≥ b we have

f(x) = m(x) exp
(∫ x

b

ε(t)
t

dt

)
.

The following property of regularly varying functions follows from Propo-
sition A.2 and Theorem A.3, see [87, 1◦ on page 18].

Corollary A.4. If g is a regularly varying function at +∞ with a positive
(negative, respectively) index, then

lim
x→+∞ g(x) = +∞ ( lim

x→+∞ g(x) = 0, respectively).

If f is a regularly varying function at 0+ with a positive (negative, respec-
tively) index, then

lim
x↓0

f(x) = 0 ( lim
x↓0

f(x) = +∞, respectively).
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A.2. Karamata’s Characterization and Consequences

The following theorem is our restatement of Karamata’s characterization of
regular variation as it appears in [46, Theorem 1.2.1], [67, Theorems IV.5.2
and IV.5.3], [12, Theorems 1.5.11 and 1.6.1] and [14]. In [12,14,46,67] regular
variation at +∞ is considered. Here we characterize regular variation at 0+.

Theorem A.5. Let a ∈ R+ and let f : (0, a] → R+ be a locally integrable
function on (0, a]. Let α, γ ∈ R be such that γ + α 	= 0 and consider the
following two conditions:∫ a

0

sγ−1f(s)ds exists as an improper integral at 0, (A.1)

lim
v↓0

1
vγf(v)

∫ v

0

sγ−1f(s)ds =
1

γ + α
. (A.2)

The following statements are equivalent:
(a) f is regularly varying at 0+ with index α.
(b) For all γ ∈ R such that γ + α > 0 conditions (A.1) and (A.2) hold.
(c) There exists γ ∈ R such that γ + α > 0 and (A.1) and (A.2) hold.

The next theorem is a reformulation of the preceding one in terms of
the differential of the function under consideration.

Theorem A.6. Let a, α, γ ∈ R be such that a > 0, γ 	= 0 and γ + α 	= 0.
Let f : (0, a] → R+ be a measurable function which is of bounded variation
on each closed interval contained in (0, a]. Consider the following three con-
ditions:∫ a

0

sγdf(s) exists as an improper Riemann-Stieltjes integral at 0,

(A.3)
lim
v↓0

vγf(v) = 0, (A.4)

lim
v↓0

1
vγf(v)

∫ v

0

sγdf(s) =
α

γ + α
. (A.5)

The following statements are equivalent:
(i) f is regularly varying at 0+ with index α.
(ii) For all γ ∈ R\{0} such that γ +α > 0 conditions (A.3), (A.4) and (A.5)

hold.
(iii) There exists γ ∈ R\{0} such that γ +α > 0 and conditions (A.3), (A.4)

and (A.5) hold.

Proof. Let u, v ∈ (0, a] such that u < v. First notice that since f is of bounded
variation on [u, v], see [96, Theorems 2.21 and 2.24], the integration by parts
yields ∫ v

u

sγdf(s) = vγf(v) − uγf(u) − γ

∫ v

u

sγ−1f(s)ds. (A.6)

Assume (i). Let γ ∈ R\{0} be such that γ + α > 0. Since by Defini-
tion A.1 the function x �→ xγf(x) is regularly varying at 0+ with index γ+α,
Corollary A.4 yields (A.4).
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Theorem A.5 implies that (A.1) and (A.2) hold. Letting u ↓ 0 in (A.6)
and using (A.1) yields (A.3) and

1
vγf(v)

∫ v

0

sγdf(s) = 1 − γ

vγf(v)

∫ v

0

sγ−1f(s)ds. (A.7)

Now letting v ↓ 0 and using (A.2) we deduce (A.5), proving (ii).
The fact that (ii) implies (iii) is trivial. Now assume (iii). Letting u ↓ 0

in (A.6) and using (A.3) yields (A.1), and we again deduce (A.7). Together
(A.7) and (A.5) imply (A.2) in Theorem A.5. Thus, (c) in Theorem A.5 holds
and (i) follows from Theorem A.5. �

Let γ > 0. With the substitution t = vγ , conditions (A.3), (A.4) and
(A.5) can be rewritten as (see [79, Theorem 12.11] for the change of variables
formula in Riemann-Stieltjes integral)∫ aγ

0

tdf(t1/γ) exists as an improper Riemann-Stieltjes integral at 0,

lim
t↓0

tf(t1/γ) = 0,

lim
t↓0

1
tf(t1/γ)

∫ t

0

sdf
(
s1/γ

)
=

α/γ

1 + α/γ
.

This observation and Theorem A.6 (with γ being 1 and α being α/γ) yield
the following equivalence: The function t �→ f(t1/γ) with t ∈ (0, aγ ] is reg-
ularly varying at 0+ with index α/γ > −1 if and only if conditions (A.3),
(A.4), (A.5) hold. Here it is convenient to read the last fraction in (A.5) as
(α/γ)/

(
1 + (α/γ)

)
.

The next corollary generalizes the preceding equivalence to any increas-
ing bijection on [0, a].

Corollary A.7. Let α, a, b ∈ R be such that a, b > 0 and α > −1. Let
f : (0, b] → R+ be a function of bounded variation on every closed subinterval
of (0, b] and let g : [0, b] → [0, a] be an increasing bijection. The function
f ◦g−1 : (0, a] → R+ is regularly varying at 0+ with index α > −1 if and only
if the following three conditions are satisfied:∫ b

0

g(s)df(s) exists as an improper Riemann-Stieltjes integral at 0,

(A.8)
lim
v↓0

f(v)g(v) = 0, (A.9)

lim
v↓0

1
f(v)g(v)

∫ v

0

g(s)df(s) =
α

1 + α
. (A.10)

Proof. Let u, v ∈ (0, b] such that u < v. As in the preceding theorem we
notice that since f is of bounded variation on [u, v] the integration by parts
( [96, Theorem 2.21]) yields∫ v

u

g(s)df(s) = f(v)g(v) − f(u)g(u) −
∫ v

u

f(s)dg(s). (A.11)
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In this proof we will also use that, since g is a continuous increasing bijection,
we have that u ↓ 0 if and only if g(u) ↓ 0.

Assume (A.8), (A.9) and (A.10). Letting u ↓ 0 and using (A.8) and
(A.9) in (A.11) yields∫ v

0

g(s)df(s) = f(v)g(v) −
∫ v

0

f(s)dg(s) (A.12)

for all v ∈ (0, b]. Therefore, for all v ∈ (0, b] we have
1

f(v)g(v)

∫ v

0

g(s)df(s) = 1 − 1
f(v)g(v)

∫ v

0

f(s)dg(s)

= 1 − 1
f(v)g(v)

∫ g(v)

0

f
(
g−1(t)

)
dt,

(A.13)

where, for the second equality, we used the change of variables formula in
Riemann-Stieltjes integral, [79, Theorem 12.11]. Now (A.10) implies

1
1 + α

= lim
v↓0

1
f(v)g(v)

∫ g(v)

0

f
(
g−1(t)

)
dt = lim

u↓0

1
uf
(
g−1(u)

)
∫ u

0

f
(
g−1(t)

)
dt.

Since we assume 1+α > 0, Theorem A.5 yields that f◦g−1 is regularly varying
at 0+ with index α.

To prove the converse assume that f◦g−1 is regularly varying at 0+ with
index α > −1. Then the function x �→ xf

(
g−1(x)

)
is regularly varying at 0+

with index α + 1 > 0 and (A.9) follows from Corollary A.4 after a change of
variables in the limit. By the change of variables formula for all u ∈ (0, a] we
have ∫ a

u

sdf
(
g−1(s)

)
=
∫ b

g−1(u)

g(t)df(t).

Consequently, (A.8) follows from (A.3) in Theorem A.6 applied to f◦g−1 with
γ = 1. Therefore, (A.12) and consequently (A.13) both hold. Now (A.10)
follows from (A.2) in Theorem A.5 with γ = 1. �
A.3. Asymptotic Equivalence of Functions on a Sequence

In the next definition we extend the notation ∼ of asymptotic equivalence of
functions to hold only on a sequence.

Definition A.8. Let a ∈ R+. For functions f, g : [a,+∞) → R+ we write

f s∼ g at +∞
if and only if there exists an increasing sequence (xn) in [a,+∞) such that

lim
n→+∞ xn = +∞ and lim

n→+∞
f(xn)
g(xn)

= 1.

For functions f, g : (0, a] → R+ we write

f s∼ g at 0+

if and only if there exists a decreasing sequence (xn) in (0, a] such that

lim
n→+∞ xn = 0 and lim

n→+∞
f(xn)
g(xn)

= 1.



IEOT Indefinite Sturm–Liouville Page 51 of 58     2 

Recall, see [7], [91, 5.10.11], that for a function φ : [a,+∞) a real number
L is a cluster value of φ at +∞ if for every ε > 0 and for every X ∈ R there
exists x > X such that |φ(x) − L| < ε. Similarly, for a function φ : (0, a] a
real number L is a cluster value of φ at 0+ if for every ε > 0 and for every
δ > 0 there exists x ∈ (0, δ) such that |φ(x) − L| < ε. Notice that f s∼ g at
+∞ (at 0+) if and only if 1 is a cluster value of the function f/g at +∞ (at
0+).

Proposition A.9. Let f and g be regularly varying functions at +∞ with in-
dices α and β, respectively. If f s∼ g at +∞, then α = β.

Proof. We will prove the contrapositive. Assume that α < β. Since the func-
tion f(x)/g(x) is regularly varying with index α − β < 0 it follows from
Corollary A.4 that limx→+∞ f(x)/g(x) = 0. Thus, f s∼ g at +∞ is not true.
If α > β the preceding limit is +∞, so f s∼ g at +∞ is not true in this case
either. �

The converse of the preceding proposition is not true. For example, let
f be a slowly varying function at +∞ and g = 2f . Then α = β = 0, but
f s∼ g at +∞ is clearly not true.

The following theorem extends [84, Proposition 0.8(vi)] to the concept
introduced in the previous definition. This theorem can be deduced from [15,
Corollary 7.66]. A direct proof is presented in [19, Theorem A.11, Corol-
lary A.12].

Theorem A.10. Let f and g be strictly monotonic positive functions defined
in a neighbourhood of 0+ and let f be regularly varying at 0+ with a nonzero
index.
(a) If f and g are increasing with 0 limit at 0+, then the inverses f−1

and g−1 are also increasing, defined in a neighbourhood of 0+ and the
following equivalence holds

f s∼ g at 0+ ⇔ f−1 s∼ g−1 at 0+.

(b) If f and g are decreasing and unbounded, then the inverses f−1 and
g−1 are decreasing, defined in a neighbourhood of +∞ and the following
equivalence holds

f s∼ g at 0+ ⇔ f−1 s∼ g−1 at + ∞.

The following corollary is a consequence of the fact that the negation of
f s∼ g at 0+ is the statement(

f(x)
g(x)

− 1
)−1

= O(1) as x ↓ 0.

Each of the two statements in Theorem A.10 can be expressed using one of
these negations. We state only the analogue of the last statement in Theo-
rem A.10 since that is what is used in Theorem 4.16.

Corollary A.11. Let f and g be strictly monotonic positive functions defined
in a neighbourhood of 0+ and let f be regularly varying at 0+ with a nonzero
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index. If f and g are decreasing and unbounded, then the inverses f−1 and
g−1 are decreasing, defined in a neighbourhood of +∞ and the following equiv-
alence holds(

f(x)
g(x)

− 1
)−1

= O(1) as x ↓ 0 ⇔
(

f−1(y)
g−1(y)

− 1
)−1

= O(1) as y → +∞.

Clearly f ∼ g at +∞ implies f s∼ g at +∞. In the next example we
will demonstrate that f s∼ g at +∞ does not imply f ∼ g at +∞ even for
smooth normalized slowly varying increasing functions f and g for which f/g
is normalized slowly varying function.

A.4. Positively Increasing Functions

The following class of functions was introduced as a generalization of regularly
varying functions with positive index, see [15, Section 3.1 and Definition 3.26].

Definition A.12. Let a ∈ R+. A nondecreasing function f : (0, a] → R+ is
called positively increasing at 0 from the right if there exists λ ∈ (0, 1) such
that

lim sup
x↓0

f(λx)
f(x)

< 1.

A function g : [−a, 0) → R− is called positively increasing at 0 from the left
if the function f(x) = −g(−x), x ∈ [−a, 0), is positively increasing at 0 from
the right.

A function g : [a,+∞) → R+ is called positively increasing at +∞ if the
function f(x) = 1/g(1/x), x ∈ (0, 1/a], is positively increasing at 0 from the
right. A function g : (−∞,−a] → R− is called positively increasing at −∞
if the function f(x) = −1/g(−1/x), x ∈ (0, 1/a], is positively increasing at 0
from the right.

The relationship between regularly varying and positively increasing
functions at +∞, and analogously at −∞, 0+ and 0−, is as follows. Each
regularly varying function with positive index is positively increasing, while
a regularly varying function with a nonpositive index is not positively in-
creasing. In particular, a slowly varying function is not positively increasing.
The exponential function exp is positively increasing at +∞ but not regularly
varying at +∞. As was shown in [19, Example A.17], there exists a nonde-
creasing function f : [1,+∞) → R+ which is neither positively increasing nor
slowly varying at +∞.
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[20] Ćurgus, B., Fleige, A., Kostenko, A.: The Riesz basis property of an indefi-
nite Sturm–Liouville problem with non-separated boundary conditions. Inte-
gral Equ. Oper. Theory 77, 533–557 (2013)
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[24] Ćurgus, B., Najman, B.: Positive differential operators in Krein space L2(R).
Recent developments in operator theory and its applications (Winnipeg, MB,
1994). In: Operator Theory: Advances and Applications, vol. 87, pp. 95–104.
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