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1. Introduction

Let d ∈ N, the set of natural numbers. A canonical subspace C of Cd[z] is a space of 
d × 1 vector functions of the form

⎡
⎣p1(z)

...
pd(z)

⎤
⎦

in which pk(z) is a scalar polynomial of degree < μk, where μk ∈ N and k ∈ {1, . . . , d}. 
We collect the μk’s in one tuple μ = (μ1, . . . , μd), assume throughout that they are 
ordered μ1 ≥ · · · ≥ μd and denote the space C by Cμ. The operator SCμ

of multiplication 
by the independent variable z in Cμ determines a second decreasing tuple δ = (δ1, . . . , δm)
in which δk = dim

(
dom(SCμ

)k−1) for k ∈ {1, . . . , m} and m ∈ N is the smallest natural 
number such that dim

(
dom(SCμ

)m
)

= 0. The relation between the tuples μ and δ can be 
conveniently formulated by using three kinds of operators on the set of all nonincreasing 
tuples: Con, Int and Der, see Section 5. Each of the tuples μ, δ and a third nonincreasing 
tuple determine a so-called Young diagram which can be used to represent a canonical 
subspace of Cd[z].

The tuples μ and the tuple Conμ are closely related to the Segre characteristic and 
Weyr characteristic of a nilpotent matrix as defined in [27]; see Remark 8.6 and Exam-
ple 8.7.

In this paper we study operators S without eigenvalues defined in finite-dimensional 
vector spaces F; in [26] and [7] such operators are called multishifts. We prove that such 
an operator S is similar to the operator SCμ

of multiplication by the independent variable 
z on a canonical subspace Cμ of Cd[z]. Here d = codim(domS). In this sense the pair 
(Cμ, SCμ

) serves as a model for the pair (F, S). The number of such models with dimCμ =
n is finite; in fact it equals p(n), the number of integer partitions of n, see Corollary 7.2. 
In the last part of the paper we study symmetric operators without eigenvalues defined in 
finite-dimensional vector spaces with nondegenerate inner products. (Since this research 
was motivated by research involving infinite-dimensional Pontryagin spaces, see [10], 
we will call these spaces finite-dimensional Pontryagin spaces.) We prove that such an 
operator is unitarily equivalent to the operator SCμ

of multiplication by the independent 
variable in a canonical subspace Cμ of Cd[z] which is equipped with a nondegenerate inner 
product that makes SCμ

symmetric. Since Cμ is finite-dimensional, this inner product on 
Cμ makes Cμ a reproducing kernel Pontryagin space with a reproducing kernel determined 
by a d × 2d matrix polynomial P(z). We prove that this P(z) is characterized by four 
of its properties, see Theorem 10.4(C).

By definition a canonical space of vector polynomials is a canonical subspace of Cd[z]
for some d ∈ N. In Section 6 we show that a linear bijection between two canonical spaces 
of vector polynomials intertwines the operators of multiplication by the independent 
variable in these spaces if and only if the spaces coincide with the same Cμ and the 
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bijection is the operator of multiplication by a unimodular block upper triangular matrix 
W(z); the sizes of the blocks are determined by the entries of μ, see Theorem 6.2.

The operator S = SCμ
of multiplication by z in Cμ ⊂ Cd[z] has the following proper-

ties:

(a) codim(domS) = d > 0,
(b) S has no eigenvalues.

We show in Theorem 7.1 that if F is a finite-dimensional vector space and S is an 
operator in F satisfying (a) and (b) then there is a linear bijection Φ from F onto a 
canonical subspace Cμ of Cd[z] that intertwines S with the multiplication operator SCμ

. 
Here the tuple μ is uniquely determined by the tuple δ of positive dimensions of domSk−1

using the operators Con, Int and Der introduced in Section 5. The tuple μ is an important 
tool to describe a special basis for F in Theorem 7.1(I). A closely related result is given 
in [30], [26, Theorem 8.1] and [7, Proposition 4.8].

In Section 8 we study a special nilpotent extension of the operator of multiplication 
by the independent variable on a canonical space of vector polynomials, its relation to 
the differentiation operator and to the classical Jordan decomposition of an arbitrary 
everywhere defined operator on a finite-dimensional vector space. The last two theorems 
in Section 8 establish two bijective relations between equivalence classes of operators 
without eigenvalues and equivalence classes of nilpotent operators, see Theorems 8.3
and 8.4.

Section 9 serves as an intermezzo between sections in which we use only the linear 
structure of finite-dimensional vector spaces and sections in which we consider nonde-
generate inner products on finite-dimensional vector spaces and symmetric operators 
without eigenvalues in those spaces. We show that for an arbitrary operator S without 
eigenvalues there exists an inner product in which S is symmetric and that there are no 
restrictions on the signature of this inner product. We first prove this for a shift operator, 
see Definition 9.1, and then we use the fact that each operator without eigenvalues is 
a direct sum of shifts. Self-adjoint extensions of shifts in finite-dimensional Pontryagin 
spaces have been studied by Lander in [22].

In Section 10 we investigate canonical subspaces equipped with a Pontryagin space 
inner product under which the operator of multiplication by the independent variable 
is symmetric. Let Q be a self-adjoint matrix with d positive and d negative eigenvalues 
and let P(z) be a d × 2d matrix polynomial such that the rank of P(z) is d for some 
z ∈ C and

P(z)Q−1P(z∗)∗ = 0, for all z ∈ C.

Consider the matrix polynomial Nevanlinna kernel

KP(z, w) := i
∗ P(z)Q−1P(w)∗, z �= w∗, z, w ∈ C,
z − w
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which we studied in [10] and called a full matrix polynomial Nevanlinna kernel if 
rank P(z) = d for all z ∈ C, see [10, p. 1320]. In Theorem 10.3 we formulate sufficient 
conditions on P(z) which ensure that the reproducing kernel space with this reproducing 
kernel KP(z, w) is the canonical subspace Cμ and the operator SCμ

is symmetric. The 
entries of the tuple μ are the Forney indices of the matrix polynomial P(z), see Section 4. 
Conditions which ensure that the reproducing kernel space is of the form W(z)Cμ for 
some d × d matrix polynomial W(z) are considered in Theorem 10.4. Parts (A) and (B)
of Theorem 10.4 combined with Theorem 10.3 provide a characterization of canonical 
spaces of vector polynomials as reproducing kernel spaces. This characterization is given 
in Theorem 10.4 part (C). Here and in Section 11 we use properties of matrix polynomials 
collected in Section 4.

In Section 11 we construct in two ways a model (C, SC) for the pair (G, S) where G
is a finite-dimensional Pontryagin space and S is a symmetric operator in G without 
eigenvalues. The first construction makes use of a self-adjoint operator extension of S
whose existence follows from Lemma 3.5 and the second construction is based on [10, 
Theorem 1.1]. The inner product on the space C in the model comes from a reproducing 
kernel determined by a polynomial with properties (a)–(d) of Theorem 10.3.

We conclude with Section 12 in which we present examples to illustrate our results.
Although most proofs in this paper are based on methods from linear algebra, in the 

sequel we assume that the reader is familiar with Pontryagin spaces and multi-valued 
operators on such spaces such as symmetric and self-adjoint relations (as in [19] and [11]) 
and reproducing kernel Pontryagin spaces (as in [2, Chapter 1] and [1, Chapter 7]).

2. Notation

The symbols N, Z, R, and C denote the sets of positive integers, integers, real numbers 
and complex numbers. In addition to this standard notation we use N0 to denote the set 
of all nonnegative integers.

For a finite set F by #F we denote the cardinality of F . In case of a tuple μ the 
symbol #μ denotes the length of μ and 

∑
μ stands for the sum of the entries in μ.

With d ∈ N, the vector space of all d × 1 vectors with complex entries is written as 
Cd. Similarly, with m ∈ N, by Cd×m we denote the space of all complex d ×m matrices. 
Id stands for the d × d identity matrix and Zd is the d × d matrix obtained by reversing 
the order of the columns of Id.

For k ∈ {1, . . . , d} by ed,k ∈ Cd we denote the k-th column of Id and Ed,k denotes the 
d × k matrix which embeds the space Ck onto the subspace of Cd spanned by the first 
k columns of the identity matrix Id such that Ed,kek,j = ed,j for j ∈ {1, . . . , k}.

By Cd[z] we denote the space of all vector polynomials with coefficients in Cd and 
by Cd×m[z] the space of all matrix polynomials with coefficients in Cd×m. The spaces 
Cd and Cd×m are identified with the subspaces of all constant polynomials in Cd[z] and 
Cd×m[z], respectively.
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Vector polynomials, that is members of spaces Cd[z] will be denoted by lower case 
Latin letters, sometimes with, sometimes without the variable: f(z) or f . Matrix poly-
nomials, that is members of spaces Cd×m[z] will be denoted by upper case calligraphic 
letters, sometimes with, sometimes without the variable, P(z) or P.

For a polynomial in any of these spaces of polynomials we define its degree. The 
degree of a zero polynomial is −∞. The degree of a nonzero polynomial is the highest 
power of z for which the corresponding coefficient is nonzero. For example, for a nonzero 
P(z) ∈ Cd×m[z] with

P(z) = P0 + P1z + · · · + Pnz
n

we define

deg P(z) := max
{
k ∈ {0, . . . , n} : Pk �= 0

}
.

If the maximum on the right-hand side of the preceding definition is m, then the coeffi-
cient Pm is called the leading coefficient of P(z). By definition, Pm �= 0.

For a set of polynomials A and n ∈ N0 the symbol A<n stands for the set all poly-
nomials in A whose degree is strictly less than n. For example, Cd[z]<1 = Cd and 
Cd[z]<0 = {0}.

A square matrix polynomial U(z) ∈ Cd×d[z] is said to be unimodular if det U(z) is a 
nonzero constant. The inverse of a unimodular U(z) ∈ Cd×d[z] belongs to Cd×d[z] and 
it is also unimodular.

A d × d matrix function K(z, w) is said to be a polynomial Hermitian kernel if it is 
a polynomial of two variables z and w∗ and K(z, w)∗ = K(w, z) for all z, w ∈ C. The 
last equality implies that the degree of K(z, w) as a polynomial in z equals the degree 
of K(z, w) as a polynomial in w∗ and this common value will be called the degree of
K(z, w).

Capital letters in Fraktur alphabet A, B, C, F, G, . . . will denote vector spaces over C. 
Usually letters at the beginning of the alphabet will denote spaces of vector polynomials. 
We are primarily interested in finite-dimensional spaces.

For a subspace C of Cd[z] by SC we denote the operator of multiplication by the 
independent variable in C. More precisely,

domSC =
{
f(z) ∈ C : zf(z) ∈ C

}
and

(SCf)(z) = zf(z) for all f ∈ domSC.

In a finite-dimensional vector space F we will use the letter S without a subscript to 
denote a linear operator without eigenvalues which is defined on a proper subset of F
with values in F. The letter A will be used to denote a linear operator A : F → F defined 
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on the entire vector space. As usual I stands for the identity operator. The underlying 
space will always be clear from the context. In formulas involving operators we often 
abbreviate zI to z when z ∈ C. For example, we write S − z instead of S − zI.

We often identify an operator in F with its graph in

F2 =
{
{u, v} : u, v ∈ F

}
and then we denote them by the same symbol. Here the notation {u, v} stands for the 
ordered pair; although we use curly brackets also to denote sets, the meaning will be 
clear from the context. For example, the operator αI on F, α ∈ C, is identified with 
αI =

{
{u, αu} : u ∈ F

}
. A linear relation S in F is a linear subset S of F2. It is the 

graph of an operator S if and only if {0, v} ∈ S implies v = 0, and then we write Su = v

for {u, v} ∈ S. We treat a linear relation S in F as if it is an operator and define the 
domain domS, the range ranS and the kernel kerS of S by

domS =
{
u : {u, v} ∈ S

}
, ranS =

{
v : {u, v} ∈ S

}
, kerS =

{
u : {u, 0} ∈ S

}
and for u ∈ domS we set S(u) =

{
v : {u, v} ∈ S

}
, S(u) = Su if S is an operator. The 

linear relations

S−1 =
{
{v, u} : {u, v} ∈ S

}
, S|G =

{
{u, v} : {u, v} ∈ S, u ∈ G

}
and

αS =
{
{u, αv} : {u, v} ∈ S

}
are called the inverse of S, the restriction of S to a subset G of F and the product of S
by α ∈ C. The sum and difference S ± T and the product TS of two linear relations S
and T in F are defined by

S ± T =
{
{u, v ± w} : {u, v} ∈ S, {u,w} ∈ T

}
and

TS =
{
{u,w} : {u, v} ∈ S, {v, w} ∈ T for some v ∈ F

}
.

For example, αS = (αI)S and, since S − α = S − αI =
{
{u, v − αu} : {u, v} ∈ S

}
, we 

have ker(S − α) = dom(S ∩ αI). The product of linear relations is associative.
If S is a linear relation in a Pontryagin space (F, [ · , · ]F), its adjoint S∗ is defined by

S∗ =
{
{u, v} ∈ F2 : [v, x]F − [u, y]F = 0 for all {x, y} ∈ S

}
.

Thus, for example, S∗(0) = (domS)[⊥]. The use of graph notation is inevitable since 
we study operators S in a finite-dimensional Pontryagin space (F, [ · , · ]F) which are not 
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defined on all of F. In this case S∗(0) �= {0} and hence S∗ is not (the graph of) an 
operator. Finally we define the direct sum of linear relations S and T in F: if S ∩ T ={
{0, 0}

}
we set

S+̇T :=
{
{u + x, v + y} : {u, v} ∈ S, {x, y} ∈ T

}
and call it the direct sum of S and T .

By 0 we denote either the zero relation 0 = {{0, 0}} or the zero operator

0 =
{
{u, 0} ∈ F2 : u ∈ F

}
.

The distinction should be clear from the context. If S is a linear relation in F, then 
dimS is well defined. For example, dimSm = 0, means Sm = 0 =

{
{0, 0}

}
, that is 

(ranSm−1) ∩ (domS) = {0}, while for a nilpotent operator N , Nm = 0 means that Nm

is the zero operator. If S is an operator in F, then dimS = dim(domS).
Since we often deal with two Pontryagin spaces, the notation for an inner product 

includes the space in which it acts as a subscript. The exception is made in the notation 
of the orthogonal complement. If L is a subspace of a Pontryagin space (F, [ · , · ]F), then 
L[⊥] denotes the orthogonal complement of L in F with respect to [ · , · ]F.

The trivial vector space is excluded from our considerations.

3. Vector space preliminaries

The lemma below states that the resolvent of a linear operator A on a finite-
dimensional vector space scaled by the characteristic polynomial of A is an operator 
polynomial whose coefficients are linear combinations of powers of A.

Let F be a finite-dimensional vector space of dimension n with n ∈ N. For a linear 
operator A : F → F (defined on the whole space F) we define the spectrum of A, denoted 
by σ(A), to be the multiset of the eigenvalues of A in which each eigenvalue λ of A is 
repeated dim

(
ker(A − λ)n

)
times. We define the characteristic polynomial of A to be

pA(z) :=
∏

λ∈σ(A)

(z − λ) =
n∑

k=0

(−1)k ek zn−k,

where ek with k ∈ {0, 1, . . . , n} are the elementary symmetric polynomials in n variables 
taken from the multiset σ(A), see [8, Section 1.1 E.2]. In particular the leading coefficient 
of pA is e0 = 1. By ρ(A) we denote the resolvent set of A, that is, the set of complex 
numbers which are not eigenvalues of A.

Lemma 3.1. Let F be a finite-dimensional vector space with dimF = n. Let A : F → F be 
a linear operator on F. Then
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−pA(z)(A− z)−1 =
n−1∑
k=0

Ckz
k for all z ∈ ρ(A), (3.1)

where

Cn−k =
k−1∑
j=0

(−1)j ej A
k−1−j = Ak−1 − · · · + (−1)k−1 ek−1 I, k ∈ {1, . . . , n}. (3.2)

Proof. The proof is by verification: Multiply (3.1) by A − z and substitute (3.2) in the 
resulting expression. This will yield an identity on the resolvent set of A. �

The following lemma is taken from [5, Lemma 3.2]. We give a slightly different proof.

Lemma 3.2. Let F be a vector space and n ∈ N. Let S be a nonzero operator in F which 
is defined on a subspace domS of F. Let z1, . . . , zn be distinct complex numbers which 
are not eigenvalues of S. Then

n⋂
k=1

ran(S − zk) = ran
(
(S − z1) · · · (S − zn)

)
. (3.3)

Proof. It suffices to prove (3.3) for n > 1. The inclusion ⊇ is clear because the operator 
factors on the right commute. The inclusion ⊆ is proved by induction on n. Let n = 2
and let w = (S − z1)v1 and w = (S − z2)v2 with v1, v2 ∈ domS. Then

S(v1 − v2) = z1v1 − z2v2 ∈ domS.

Therefore v1 − v2 ∈ domS2 = dom
(
(S − z1)(S − z2)

)
. Let us now calculate

(S − z2)(S − z1)(v1 − v2) = (S − z2)(z1 − z2)v2

= (z1 − z2)w.

Hence, w ∈ ran
(
(S − z1)(S − z2)

)
.

To prove the inductive step, let n ∈ N, n > 1 and assume that (3.3) is true 
whenever z1, . . . , zn are distinct complex numbers which are not eigenvalues of S. 
Let μ1, . . . , μn, μn+1 be distinct complex numbers which are not eigenvalues of S. Let 
w = (S − μk)vk with vk ∈ domS for all k ∈ {1, . . . , n + 1}. For each k ∈ {1, . . . , n}, 
by what has been proved for n = 2, we deduce that there exist uk ∈ domS2 such that 
w = (S − zn+1)(S − zk)uk. Hence (S − zn+1)−1w is in ran(S − zk) for all k ∈ {1, . . . , n}. 
By the inductive hypothesis there exists u ∈ domSn such that

(S − zn+1)−1w = (S − zn) · · · (S − z1)u.

This proves that w is in the range of the operator (S − zn+1)(S − zn) · · · (S − z1). �
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Corollary 3.3. Let S be an operator in a finite-dimensional vector space F which is defined 
on a proper subspace domS of F and which has no eigenvalues. Let F ⊆ C be a finite 
set. Then

dim
(
∩{ran(S − z) : z ∈ F

})
= dimS#F .

Proof. Assume n = #F and F = {z1, . . . , zn}. The claim follows from (3.3) and the fact 
that the operator on the right-hand side of (3.3) is a linear injection defined on dom(Sn)
which has the same dimension as Sn. �
Lemma 3.4. Let F be an n-dimensional Pontryagin space and let S : domS → F be an 
operator in F which has no eigenvalues. Set d = codim(domS). Then d ∈ N and for all 
z ∈ C the spaces ker(S∗− z) and S∗ ∩ zI have dimension d. Furthermore, domS, S and 
for all z ∈ C the spaces ran(S − z) have dimension n − d.

Proof. Let z ∈ C be arbitrary. The spaces domS and ran(S − z∗) have the same 
dimension n − d since S − z∗ is a bijection between these spaces. This is also the di-
mension of S since there is a trivial linear bijection mapping each v ∈ domS to the 
pair {v, Sv} ∈ S. Since the orthogonal complement of ran(S − z∗) is ker(S∗ − z), 
we have dim ker(S∗ − z) = d. As the equivalence {v, zv} ∈ S∗ ∩ zI if and only if 
v ∈ ker(S∗ − z) establishes a linear bijection between S∗ ∩ zI and ker(S∗ − z), we 
also have dim

(
S∗ ∩ zI

)
= d. �

The following lemma is used in the first proof of Theorem 11.1 and it is illustrated in 
Example 12.2.

Lemma 3.5. Let (H, 〈 · , · 〉H) be a finite-dimensional Hilbert space and let S be a symmetric 
operator in (H, 〈 · , · 〉H) which is defined on a proper subspace domS of H. Denote by S∗

the adjoint of S and by P the orthogonal projection onto domS. Then the linear relation

S+̇PS∗∣∣
(domS)〈⊥〉 =

{
{x + u, y + Pv} : {x, y} ∈ S, {u, v} ∈ S∗, u ∈ (domS)〈⊥〉

}
is a self-adjoint operator extension of S defined on all of H.

Proof. Since the adjoint of S∗ is S and S is an operator, the adjoint S∗ is defined on 
the whole space H. Moreover, (domS)〈⊥〉 = S∗(0). Set

S1 = PS∗∣∣
(domS)〈⊥〉 =

{
{u, Pv} : {u, v} ∈ S∗, u ∈ (domS)〈⊥〉}.

Then S1 is an operator with domS1 = (domS)〈⊥〉 and since S∗ is an extension of S1, 
for all x ∈ domS and all u ∈ (domS)〈⊥〉 we have

〈Sx, u〉 − 〈x, S1u〉 = 0.
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Let x, y ∈ domS and all u, v ∈ (domS)〈⊥〉 be arbitrary and calculate using the fact that 
S is symmetric, the preceding equality and the fact that the range of S1 is in domS:

〈Sx + S1u,y + v〉 − 〈x + u, Sy + S1v〉
= 〈Sx, y〉 + 〈S1u, y〉 + 〈Sx, v〉 + 〈S1u, v〉

− 〈x, Sy〉 − 〈u, Sy〉 − 〈x, S1v〉 − 〈u, S1v〉
=
(
〈S1u, y〉 − 〈u, Sy〉

)
+
(
〈Sx, v〉 − 〈x, S1v〉

)
+ 〈S1u, v〉 − 〈u, S1v〉

= 0 + 0 + 0 − 0

= 0.

This shows that S+̇S1 is symmetric, and from

dom(S+̇S1) = dom(S)〈+〉 dom(S1) = H

it follows that it is self-adjoint. �
We end this section with a proposition about the main topic of our paper, namely 

an operator without eigenvalues in a finite-dimensional vector space. We show that the 
sequence of the dimensions of powers of such an operator has a special property which 
is the key to our main results.

Proposition 3.6. Let S be an operator in a finite-dimensional space F which is defined 
on a proper subspace domS of F. The operator S has no eigenvalues if and only if there 
exists a positive integer m such that Sm = 0. For the smallest m with this property we 
have m ≤ dimF and

dimF = dimS0 > dimS > · · · > dimSm−1 > dimSm = 0. (3.4)

Furthermore,

dimSk−1 − dimSk ≥ dimSk − dimSk+1 for all k ∈ N. (3.5)

Proof. Notice that by the definition of the composition of operators domSk ⊆ domSk−1

for all k ∈ N. Therefore, if Sk �= 0 for all k ∈ N, there exists l ∈ N such that dimSl =
dimSl−1 > 0. For such l, domSl is a nontrivial invariant subspace of S, which implies 
that S has an eigenvalue. The converse, if S has an eigenvalue, then Sk �= 0 for all k ∈ N

is straightforward. Hence, S has no eigenvalues if and only if Sm = 0 for some m ∈ N.
Now assume that S has no eigenvalues and Sm = 0. From the first paragraph of this 

proof we have that dimSk−1 > dimSk whenever k ∈ N is such that dimSk−1 > 0. Since 
there are only finitely many positive integers which are smaller than dimS0 = dimF, we 
deduce that m ≤ dimF and (3.4) holds. Notice that m = 1 if S = 0.
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To prove (3.5) notice the following equalities. For all l ∈ N we have

S domSl = (domSl−1) ∩ (ranS) and dim
(
S domSl

)
= dimSl. (3.6)

Let k ∈ N be arbitrary. By (3.6) we have S domSk ⊆ domSk−1. Together with domSk ⊆
domSk−1 this yields

dim
(
domSk−1) ≥ dim(S domSk)+dim

(
domSk

)
−dim

(
(S domSk)∩ (domSk)

)
. (3.7)

Applying the first equality in (3.6) twice in opposite directions we get

(S domSk) ∩ (domSk) = (ranS) ∩ (domSk) = S domSk+1.

Therefore by the second equality in (3.6)

dim
(
(S domSk) ∩ (domSk)

)
= dim

(
S domSk+1) = dimSk+1.

Again, by the second equality in (3.6), the inequality (3.7) becomes

dimSk−1 ≥ 2 dimSk − dimSk+1. �
Definition 3.7. Let S be an operator without eigenvalues in a finite-dimensional vector 
space F. The tuple of positive dimensions of powers of S in (3.4) will be denoted by δS
and it will be called the tuple of dimensions of S.

Thus, if δS = (δ1, . . . , δm), then

δ1 = dimS0 > δ2 = dimS > · · · > δm = dimSm−1 > dimSm = 0.

As a consequence of Corollary 3.3 we have:

Corollary 3.8. Let S be an operator in a finite-dimensional vector space F which is defined 
on a proper subspace domS of F and which has no eigenvalues. Let F ⊆ C be such that 
#F ≥ #δS. Then

∩ {
ran(S − z) : z ∈ F

}
= {0}.

4. Preliminaries about matrix polynomials

In this section d, m ∈ N. In addition we assume that d ≤ m, but we notice that the 
statements of this section hold true if d > m with analogous proofs. Let S(z) ∈ Cd×m[z]
with rank S(z) = d for some z ∈ C. For j ∈ {1, . . . , d} let σj be the degree of the j-th 
row of S(z). The rank condition rank S(z) = d for some z ∈ C implies that all σj ≥ 0. 



74 B. Ćurgus, A. Dijksma / Linear Algebra and its Applications 605 (2020) 63–117
Associate with S(z) the d-tuple ΩS = (σ′
1, . . . , σ

′
d) which consists of the ordered row 

degrees of S(z). That is, {σ′
1, . . . , σ

′
d} = {σ1, . . . , σd} as multisets and σ′

1 ≥ · · · ≥ σ′
d ≥ 0.

We introduce a partial order among d-tuples of nonnegative integers. For α, β ∈ (N0)d
we set

α � β ⇔ αi ≤ βi for all i ∈ {1, . . . , d}

and α ≺ β if and only if α � β and α �= β.
Define S∞ by

S∞ = lim
z→∞

diag(z−σ1 , . . . , z−σd) S(z).

Notice that each row of S(z) is a row vector polynomial in C1×m[z]. The definition of 
S∞ implies that the rows of S∞ are the leading coefficients of these row vector polyno-
mials. Thus, the rows of S∞ are nonzero. If rankS∞ = d, then the numbers σ1, . . . , σd

are called the Forney indices of S(z). This definition will be extended to an equivalence 
class of polynomials after the proof of Theorem 4.3.

The matrix polynomial S(z) is said to have the predictable degree property if for every

u(z) =
[
u1(z) · · · ud(z)

]
∈ C1×d[z]

we have

deg
(
u(z)S(z)

)
= max

{
σj + deg uj(z) : j ∈ {1, . . . , d}

}
.

Theorem 4.1. Let d, m ∈ N be such that d ≤ m. Let P(z) ∈ Cd×m[z] be such that 
rank P(z) = d for some z ∈ C. The following statements are equivalent:

(a) rankP∞ = d.
(b) P(z) has the predictable degree property.
(c) ΩP � ΩAP for every A(z) ∈ Cd×d[z] such that det A(z) �≡ 0.
(d) ΩP � ΩUP for every unimodular U(z) ∈ Cd×d[z].

Proof. The equivalence (a) ⇔ (b) is [20, Theorem 6.3-13].
(b)⇒(c). Let A(z) ∈ Cd×d[z] be such that det A(z) �≡ 0 and set T(z) = A(z)P(z). 

Then rank T(z) = d for some z ∈ C. Let τ1, . . . , τd be the row degrees of T(z) and let 
π1, . . . , πd be the row degrees of P(z). Without loss of generality we can assume that 
these row degrees are ordered

τ1 ≥ · · · ≥ τd and π1 ≥ · · · ≥ πd. (4.1)

That is we assume
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ΩT = (τ1, . . . , τd) and ΩP = (π1, . . . , πd).

Denote by akl(z), k, l ∈ {1, . . . , d}, the entry of A(z) in the k-th row and l-th column. 
The k-th row of T(z) equals the k-th row of A(z) times P(z). By (b) P(z) has the 
predictable degree property. Therefore, for all k ∈ {1, . . . , d} we have

τk = max
{
πl + deg akl(z) : l ∈ {1, . . . , d}

}
. (4.2)

Let j ∈ {1, . . . , d} be arbitrary. Notice that any scalar d ×d matrix with a rectangular 
zero block of size (d − j + 1) × j is singular. Therefore, if for all k ∈ {j, . . . , d} and all 
l ∈ {1, . . . , j} we have akl(z) ≡ 0, then det A(z) ≡ 0. Since det A(z) �≡ 0, there exist 
k0 ∈ {j, . . . , d} and l0 ∈ {1, . . . , j} such that ak0l0(z) �≡ 0. Consequently, using (4.2),

τk0 = max
{
πl + deg ak0l(z) : l ∈ {1, . . . , d}

}
≥ πl0 .

Now, (4.1) yields

τj ≥ τk0 ≥ πl0 ≥ πj .

Since j ∈ {1, . . . , d} was arbitrary, we proved ΩP � ΩT.
(c)⇒(d) is trivial.
We prove (d)⇒(a) by proving its contrapositive. Introduce the following notation. Set

P∞(z) := diag(zπ1 , . . . , zπd)P∞

and

R(z) = P(z) − P∞(z).

Denote by ρ1, . . . , ρd the degrees of the rows of R(z). Then, by the definition of P∞ we 
have

πk > ρk for all k ∈ {1, . . . , d}.

Without loss of generality we assume that the row degrees of P(z) are ordered:

π1 ≥ · · · ≥ πd. (4.3)

Assume that rankP∞ < d. Then there exists a nonzero a ∈ C1×d such that aP∞ = 0
and

a = [0 · · · 0 1 ai+1 · · · ad]
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for some i ∈ {1, . . . , d − 1}; the case a = [0 · · · 0 1] is not possible since the rows of P∞
are nonzero.

Let U(z) be the unimodular matrix which is obtained by replacing the i-th row of the 
identity matrix Id with the following row vector polynomial

[
0 · · · 0 1 ai+1z

πi−πi+1 · · · adzπi−πd
]
.

For k ∈ {1, . . . , d} let θk be the degree of the k-th row of U(z)P(z). Since all the rows 
except the i-th row of U(z)P(z) are identical with the rows of P(z), we have

θk = πk for all k ∈ {1, . . . , d} \ {i}. (4.4)

The i-th row of U(z)P∞(z) is

aP∞zπi = 0,

while the i-th row of U(z)R(z) is

R(z)
∣∣
i
+

d∑
k=i+1

akz
πi−πkR(z)

∣∣
k
, (4.5)

where R(z)
∣∣
k

denotes the k-th row of R(z). Since for all k ∈ {i, . . . , d} we have ρk =
deg R(z)

∣∣
k
< πk, the degree of the polynomial in (4.5) is < πi. Consequently θi < πi.

Set j = max
{
k ∈ {1, . . . , d} : θi < πk

}
. Clearly i ≤ j. If j = i, then (4.3), (4.4), 

θi < πi, yield that the d-tuple (θ1, . . . , θd) is ordered and thus ΩUP ≺ ΩP. If i < j, then 
permute the d-tuple (θ1, . . . , θd) to (θ′1, . . . , θ′d) as follows:

θ′k =

⎧⎪⎪⎨
⎪⎪⎩
θk = πk if k ∈ {1, . . . , i− 1} ∪ {j + 1, . . . , d},
θk+1 = πk+1 if k ∈ {i, . . . , j − 1},
θi if k = j.

It follows from the definition of j, (4.3) and θi < πi that the d-tuple (θ′1, . . . , θ′d) is 
ordered θ′1 ≥ · · · ≥ θ′d. Further, (4.3) and θi < πi yield that ΩUP � ΩP. Since (4.4) and 
θi < πi imply that

d∑
k=1

θ′k =
d∑

k=1

θk <

d∑
k=1

πk,

we deduce that ΩUP ≺ ΩP, proving that (d) is false. �
Corollary 4.2. Let P(z), T(z) ∈ Cd×m[z] be such that rank P(z) = d for some z ∈ C, 
rankP∞ = d and P(z) = V(z)T(z) for all z ∈ C and for some unimodular V(z) ∈
Cd×d[z]. Then ΩT = ΩP if and only if rank T∞ = d.



B. Ćurgus, A. Dijksma / Linear Algebra and its Applications 605 (2020) 63–117 77
Proof. Notice that rank T(z) = d for some z ∈ C. Assume ΩT = ΩP. Let U(z) ∈ Cd×d[z]
be unimodular. Then U(z)T(z) = U(z)V(z)−1P(z). Since U(z)V(z)−1 is unimodular and 
rankP∞ = d, we have ΩT = ΩP � ΩUV−1P = ΩUT. Hence, rankT∞ = d proving the 
“only if” part.

Assume rankT∞ = d. Then ΩT � ΩVT = ΩP and ΩP � ΩV−1P = ΩT, yielding 
ΩT = ΩP. �

In the proof of the following theorem we use that any nonzero P(z) ∈ Cd×m[z] admits 
a Smith normal form representation (see for example [15, Satz 6.3] or [20, Theorem 6.3-
16]):

P(z) = U(z)
[

D(z) 0
0 0

]
V(z), (4.6)

where U(z) ∈ Cd×d[z], V(z) ∈ Cm×m[z] are unimodular and the matrix in the middle 
is a d × m matrix in which, for some l ∈ {1, . . . , d}, D(z) is a diagonal l × l matrix 
polynomial with monic diagonal entries: D(z) = diag

(
p1(z), . . . , pl(z)

)
such that pi(z)

divides pi+1(z) for all i ∈ {1, . . . , l−1}. Notice that rank P(α) = l if and only if pl(α) �= 0. 
If for some z ∈ C the rank of P(z) is d, then l = d and the zero block row in the matrix 
in the middle of the right-hand side of the equality (4.6) is not present.

The matrix in the middle of the right-hand side of (4.6) is uniquely determined by 
P(z).

Theorem 4.3. Let T(z) ∈ Cd×m[z] be such that rank T(z) = d for some z ∈ C. Then 
T(z) admits the factorization:

T(z) = W(z)P(z) for all z ∈ C,

where W(z) ∈ Cd×d[z], det W(z) �≡ 0 and P(z) ∈ Cd×m[z] is such that

rank P(z) = d for all z ∈ C, rankP∞ = d and π1 ≥ · · · ≥ πd, (4.7)

π1, . . . , πd being the row degrees of P(z). This factorization is essentially unique, meaning 
that if also T(z) = W1(z)P1(z) for all z ∈ C, where W1(z) and P1(z) have the same 
properties as W(z) and P(z), then for some unimodular d × d matrix polynomial V(z)
we have W1(z) = W(z)V(z)−1 and P1(z) = V(z)P(z) for all z ∈ C. In particular, 
ΩP1 = ΩP.

Proof. Denote by R the set of all matrix polynomials R(z) ∈ Cd×m[z] such that 
rank R(z) = d for all z ∈ C and for which there exists A(z) ∈ Cd×d[z] with det A(z) �≡ 0
such that T(z) = A(z)R(z) for all z ∈ C.

From the Smith normal form of T(z) (see [10, Lemma 2.4]) it follows that R �= ∅.
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Define the function ω : R → N by

ω(R) =
∑

ΩR for all R(z) ∈ R.

It follows from the Well Ordering Axiom of Z that ω takes the minimum value on R. 
Let P(z) ∈ R be such that ω(P) ≤ ω(R) for all R(z) ∈ R. This P(z) has the first two 
properties asserted in (4.7). The first property follows from P(z) ∈ R. In the proof of 
(d)⇒(a) in Theorem 4.1 we proved that if rankP∞ < d, then there exists a unimodular 
U(z) ∈ Cd×d[z] such that ΩUP ≺ ΩP and consequently ω(UP) < ω(P). Since UP ∈ R, 
this shows that rankP∞ < d and ω(P) ≤ ω(R) for all R(z) ∈ R is not possible. Hence 
rankP∞ = d. The last property in (4.7) is easily obtained by multiplying P(z) by a d ×d

permutation matrix.
The essential uniqueness follows from the Smith normal form of P1(z) and P(z). The 

last claim follows from Corollary 4.2. �
The numbers π1, . . . , πd in Theorem 4.3 which are the Forney indices of P(z) are 

called the Forney indices of the matrix polynomial T(z), see [23] and [13].

5. Finite nonincreasing sequences of positive integers

We start with an example. Consider three tuples of positive integers:

μ = (5, 4, 4, 1), ν = (4, 3, 3, 3, 1), δ = (14, 10, 7, 4, 1).

Each of these tuples is represented on the Young diagram (which is also called Ferrers 
board), see [29, page 58] or [3, Section 3.1], in Fig. 1: the tuple μ is represented by the 
number of squares in the rows starting from the top row; the tuple ν is represented by 
the number of squares in the columns starting from the leftmost column, and the tuple 
δ is represented by the number of squares of different shades of gray.

Each of the three given tuples determines the corresponding Young diagram uniquely. 
This is clear for μ and ν and it becomes clear for δ when we observe that the numbers in 
ν are the differences of the consecutive values in δ (temporarily extended with a ghost 
zero at the end). To make the relationship between the three given tuples more formal 
we introduce three operators Con, Int and Der on finite nonincreasing tuples of positive 
integers. With these three operators we have

ν = Conμ = Der δ, δ = Int ν = Int(Conμ), μ = Con ν = Con(Der δ).

Before defining these operators let us point out some immediate relationships between 
these tuples.

max δ =
∑

μ =
∑

ν, max ν = #μ, max μ = #δ = #ν.
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Fig. 1. Young diagram.

Let σ = (σ1, . . . , σm) be a nonincreasing tuple of positive integers. We allow m = 1
and still call this 1-tuple nonincreasing. Here #σ = m and we set n = max σ = σ1. The 
conjugate tuple Conσ is defined as follows:

(Conσ)k := #
{
i ∈ {1, . . . ,m} : σi ≥ k

}
, k ∈ {1, . . . , n}.

From this definition it immediately follows that

#
(
Conσ

)
= max σ and max

(
Conσ

)
= #σ.

The integral operator Int is defined as

(Intσ)j =
m∑
i=j

σi, j ∈ {1, . . . ,m}.

Clearly,

#
(
Intσ

)
= #σ and max

(
Intσ

)
=
∑

σ.

Notice that since σ is a nonincreasing tuple of positive integers, the tuple τ = Intσ is 
decreasing and τ has the property

τj−1 − τj ≥ τj − τj+1, j ∈ {2, . . . ,m}, (5.1)

where we temporarily assign τm+1 = 0 for convenience. A tuple which satisfies (5.1) is 
said to be concave up. By definition we say that a 1-tuple is concave up.

For a concave up tuple τ we define the derivative operator Der:

(Der τ)j = τj − τj+1, j ∈ {1, . . . ,m} where τm+1 = 0.

The assumption (5.1) guarantees that the tuple Der τ is nonincreasing. We clearly have 
Der

(
Intσ

)
= σ for all nonincreasing tuples of positive integers σ.
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For completeness we prove that Con is an involution on the set of all nonincreasing 
tuples of positive integers.

Proposition 5.1. For all nonincreasing tuples σ of positive integers we have

Con(Conσ) = σ.

Proof. Set m = #σ and n = max σ. Since σ is nonincreasing, the following two implica-
tions are clear: For all j ∈ {1, . . . , m} and all l ∈ {1, . . . , n} we have

σj ≥ l ⇒ (Conσ)l ≥ j and σj < l ⇒ (Conσ)l < j.

Set l = σj . Then by the first implication (Conσ)l ≥ j. Applying the same implication to 
the tuple Conσ yields

(
Con(Conσ)

)
j
≥ l.

Since σj < l + 1, applying the second implication gives (Conσ)l+1 < j, and repeating 
this implication for the tuple Conσ yields

(
Con(Conσ)

)
j
< l + 1.

The last two displayed inequalities imply the asserted equality. �
In number theory Young diagrams are commonly used to visualize the number of 

distinct ways of representing a positive integer as a sum of positive integers; so called 
integer partitions. For a positive integer n the number of its partitions is denoted by p(n). 
No elementary explicit formula exists for p(n) in terms of n. Euler found the generating 
function for p(n):

∞∑
n=0

p(n)xn =
∞∏
k=1

1
1 − xk

= 1 + x + 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + 15x7 + 22x8 + · · · ,

which is justified by expending each factor in the product in a geometric series, see [3]. 
Hardy and Ramanujan discovered the asymptotic relation

p(n) ∼ 1
4n

√
3

exp
(
π
√

2n/3
)

as n → +∞,

see [4,21,24,25], for more details.
The number 5 can be represented in p(5) = 7 ways:

1+1+1+1+1 2+1+1+1 3+1+1 2+2+1 4+1 3+2 5
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Here we have counted boxes in each row to get the summands adding to 5. However, 
we could also have counted boxes in each column and get the same representations in 
different order. In number theory partitions that are connected as ν = Conμ are called 
conjugate partitions. That is the source for this operator’s name.

In the next section we will see that Young diagrams can be used to represent canonical 
subspaces of Cd[z]. In this setting: (a) the number of boxes in each row of a Young 
diagram is equal to the highest degree of a polynomial in that row plus one, (b) the 
number of boxes in the k-th column is equal to the maximum number of nonzero entries 
in a vector coefficient with the power zk−1, (c) the number of boxes that we shaded in 
the same shade of gray in Fig. 1 is equal to the dimension of the range of a specific power 
of multiplication by the independent variable (notice that since this operator is bijective 
the dimensions of the ranges are equal to the dimensions of the domains of the same 
powers).

6. Canonical subspaces of Cd[z] and Young diagrams

Definition 6.1. Let d ∈ N and μ = (μ1, . . . , μd) ∈ Nd with μ1 ≥ · · · ≥ μd. Set

Cμ :=
d⊕

k=1

(
C[z]<μk

)
ed,k

=
{
[p1(z) · · · pd(z)]
 : pk(z) ∈ C[z], deg pk < μk, k ∈ {1, . . . , d}

}
.

The tuple μ = (μ1, . . . , μd) will be called the tuple of degrees of Cμ. The space Cμ is 
called a canonical subspace of Cd[z] where d = #μ, or simply a canonical space of vector 
polynomials. The set of vector polynomials

{
zled,k : l ∈ {0, 1, . . . , μk − 1}, k ∈ {1, . . . , d}

}
is called the standard basis for Cμ.

Notice here that the maximal degrees of the polynomial entries of vector polynomials 
in Cμ are μ1 − 1, . . . , μd − 1. If C stands for a canonical space, then its degrees are either 
clear from the context or not important. We set

d = #μ, m = μ1 = max μ and n = dimCμ =
∑

μ = μ1 + · · · + μd.

The canonical subspace Cμ is represented by a Young diagram with μj boxes in the 
j-th row. The conjugate tuple ν = Conμ = (ν1, . . . , νm) relates to polynomials in Cμ in 
the following way. Let f(z) ∈ Cμ ⊂ Cd[z] be written as

f(z) = f0 + f1z + · · · + fm−1z
m−1 with fk−1 ∈ Cd for k ∈ {1, . . . ,m}.
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Then all the entries of the column vector fk−1 with indices > νk are zero. In particular, 
the vector f0 can be any vector in Cd since ν1 = d. Consequently,

Cμ =
{ m∑

j=1
zj−1Ed,νj

aj : aj ∈ Cνj , j ∈ {1, . . . , d}
}
.

For each n ∈ N there is a bijection between the integer partitions of n and the 
canonical spaces of dimension n. Therefore there are exactly p(n) canonical spaces of 
dimension n. For these p(n) canonical spaces the ambient spaces are Cd[z] with d ∈
{1, . . . , n}.

Below we show the Young diagrams of all canonical spaces of dimensions 4, 5 and 6. 
The ambient spaces here are Cd[z] with d ∈ {1, . . . , 6}. Within each dimension diagrams 
are ordered by decreasing d.

C4 C3+̇zE3,1C C2+̇zE2,1C+̇z2E2,1C C2+̇zC2 C+̇zC+̇z2C+̇z3C

C5 C4+̇zE4,1C C3+̇··· C3+̇zE3,2C
2 C2+̇··· C2+̇··· C+̇···+̇z4C

C6 C5+̇··· C4+̇··· C4+̇··· C3+̇··· C3+̇··· C3+̇··· C2+̇··· C2+̇··· C2+̇··· C+̇···+̇z5C

Notice that the maximal degree of polynomials in each row is obtained when 1 is sub-
tracted from the number of boxes in that row: one box constants, two boxes affine 
functions, three boxes at most quadratic polynomials, et cetera.

As we pointed out in Section 5, a tuple μ of nonincreasing row degrees or, equivalently, 
the corresponding conjugate tuple ν = Con(μ) of power depths, of a canonical subspace 
Cμ of Cd[z] uniquely determines the tuple δ = Int ν = Int(Conμ). In this setting the 
tuple δ consists of the nonzero dimensions of the powers of the operator SCμ

:

δk = dim(SC)k−1 =
d∑

j=k

νj =
d∑

j=1
max{μj − k, 0} for k ∈ {1, . . . ,max μ}.

The tuple δ of the positive dimensions of the powers of SC is concave up since it 
is given as δ = Int(Conμ). This is just a confirmation of what has been proven in 
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Proposition 3.6: The tuple of the positive dimensions of powers of an arbitrary operator 
without eigenvalues in a finite-dimensional vector space is concave up.

It is important to note that the tuple δ of the positive dimensions of the powers of SC

uniquely determines the canonical space C = Cμ where μ = Con(Der δ).
We call two canonical subspaces equivalent if there exists a linear bijection between 

them. This equivalence relation splits the family of canonical spaces in equivalence classes 
of canonical spaces of the same dimension. Earlier we pointed out that for n ∈ N the 
equivalence class of the canonical spaces of dimension n has p(n) elements. Refine this 
equivalence relation by requesting that the linear bijection intertwines the corresponding 
operators of multiplication by the independent variable. The next theorem shows that 
the corresponding equivalence classes are singletons.

Theorem 6.2. Let C and D be canonical spaces of vector polynomials and let SC and 
SD be the corresponding operators of multiplication by the independent variable in these 
spaces. Let Φ : C → D be a linear mapping. The following statements are equivalent.

(I) Φ is a linear bijection such that ΦSC = SDΦ.
(II) There exist

(a) d ∈ N and μ = (μ1, . . . , μd) ∈ Nd with μ1 ≥ · · · ≥ μd such that C = D =
Cμ ⊂ Cd[z],

(b) a d × d unimodular matrix polynomial W(z) =
[
wjk(z)

]d
j,k=1 with

degwjk(z) ≤ μj − μk for all j, k ∈ {1, . . . , d}

such that (Φf)(z) = W(z)f(z) for all f ∈ C.

Proof. Assume (I). The assumption ΦSC = SDΦ implies that Φ(SC)k = (SD)kΦ for all 
k ∈ N0. Since Φ is a bijection, we have dim(SC)k = dim(SD)k for all k ∈ N0. Let δ
be the tuple of positive dimensions of the operators SC and SD. As the degrees of a 
canonical space are uniquely determined by the dimensions of the powers of the operator 
of multiplication, it follows that C = D = Cμ, where μ = Con(Der δ). This proves (a).

Next we prove (b). Since the set of vector polynomials

{
ed,kz

l : l ∈ {0, 1, . . . , μk − 1}, k ∈ {1, . . . , d}
}

is the standard basis for C = Cμ and since Φ(ed,kzl) = zlΦ(ed,k) for all l ∈ {1, . . . , μk−1}, 
to understand the action of Φ on C it is sufficient to understand Φ(ed,k) for k ∈ {1, . . . , d}.

Let d′ ∈ {1, . . . , d} be the cardinality of the set {μ1, . . . , μd}. Assume the set equality 
{μ1, . . . , μd} = {μ′

1, . . . , μ
′
d′} and let ik ∈ {1, . . . , d} be the multiplicity of μ′

k in the 
multiset {μ1, . . . , μd}, with k ∈ {1, . . . , d′}. We keep the order μ′

1 > · · · > μ′
d′ and notice 

that 
∑d′

k=1 ik = d.
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In the rest of this proof we write x ∈ Cd in the block form

x =

⎡
⎣ x1...
xd′

⎤
⎦ where xk ∈ Cik for k ∈ {1, . . . , d′}.

When convenient we will write the above block vector x in a partially transposed form 
as [x1 · · · xd′ ]
 ∈ Cd. We will use a similar convention for the vector polynomials 
in C. With this convention C can be described as the set of all vector polynomials 
[p1(z) · · · pd′(z)]
 ∈ Cd[z] such that pk(z) ∈ Cik [z]<μ′

k
for all k ∈ {1, . . . , d′}.

To reveal the block structure of Φ we will use the fact that

Φ
(
domSk

C + ranSl
C

)
= domSk

C + ranSl
C for all k, l ∈ N0.

Notice that, since μ′
1 > · · · > μ′

d′ , we have Sμ′
1−1

C
�= 0 and Sμ′

1
C

= 0. Also, 
[p1(z) · · · pd′(z)]
 ∈ domS

μ′
1−1

C
if and only if there exists x1 ∈ Ci1 such that

[p1(z) · · · pd′(z)]
 = [x1 0 · · · 0]
.

Since Φ is a linear bijection on domS
μ′

1−1
C

, there exists an i1 × i1 invertible matrix W11
such that Φ[x1 0 · · · 0]
 = [W11x1 0 · · · 0]
.

Let x2 ∈ Ci2 be an arbitrary nonzero vector. Set x = [0 x2 0 · · · 0]
. Then 

x ∈ domS
μ′

2−1
C

and x /∈ domS
μ′

2
C

+ ranSC. Therefore Φx ∈ domS
μ′

2−1
C

and Φx /∈
domS

μ′
2

C
+ranSC. Since Φx ∈ domS

μ′
2−1

C
, there exists y2 ∈ Ci2 and p1(z) ∈ Ci1 [z]≤μ′

1−μ′
2

such that Φx = [p1(z) y2 0 · · · 0]
. As Φx /∈ domS
μ′

2
C

+ranSC it is not possible that y2 =
0. Consequently, there exists an i2×i2 invertible matrix W22 and an i1×i2 matrix polyno-
mial W12(z) of degree not exceeding μ′

1−μ′
2 such that Φx = [W12(z)x2 W22x2 0 · · · 0]
.

In general, let k ∈ {2, . . . , d′} and let xk ∈ Cik be an arbitrary nonzero vector. 
Set x = [0 · · · 0 xk 0 · · · 0]
 so that x ∈ domS

μ′
k−1

C
and x /∈ domS

μ′
k

C
+ ranSC. Then 

Φx ∈ domS
μ′
k−1

C
and Φx /∈ domS

μ′
k

C
+ ranSC. Since Φx ∈ domS

μ′
k−1

C
, there exists 

yk ∈ Cik and vector polynomials pj(z) ∈ Cij [z]≤μ′
j−μ′

k
with j ∈ {1, . . . , k− 1} such that 

Φx = [p1(z) · · · pk−1(z) yk 0 · · · 0]
. As Φx /∈ domS
μ′
k

C
+ ranSC it is not possible that 

yk = 0. Since Φ is linear, there exists an ik × ik invertible matrix Wkk and an ij × ik
matrix polynomials Wjk(z) of degree not exceeding μ′

j − μ′
k with j ∈ {1, . . . , k− 1} such 

that Φx = [W1k(z)xk · · · Wk−1,k(z)xk Wkkxk 0 · · · 0]
.
This proves that Φf(z) = W(z)f(z) for all f(z) ∈ C, where W(z) is a d × d matrix 

polynomial

W(z) =

⎡
⎢⎢⎢⎢⎢⎣

W11 W12(z) · · · W1d′(z)

0 W22 · · · W2d′(z)

...
...

. . .
...

0 0 · · · Wd′d′

⎤
⎥⎥⎥⎥⎥⎦ (6.1)
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which consists of the blocks Wjk(z), k, l ∈ {1, . . . , d′}, such that Wjk(z) = 0ij×ik if j > k, 
Wkk(z) = Wkk is an invertible ik × ik constant matrix, and if j < k, Wjk(z) is an ij × ik
matrix polynomial of degree not exceeding μ′

j − μ′
k.

The converse is straightforward. �
7. Similarity to an operator of multiplication

The fact that the tuple of the positive dimensions of powers of an arbitrary operator S
without eigenvalues in a finite-dimensional vector space is concave up makes it possible 
to link S to an operator of multiplication by the independent variable in a canonical 
space of vector polynomials. This is shown in the second part of the next theorem.

Theorem 7.1. Let F be a finite-dimensional vector space and let S be an operator in F
without eigenvalues. Let δS be the tuple of dimensions of S. Let μ = (μ1, . . . , μd) =
Con(Der δS). The following statements hold.

(I) There exist vectors v1, . . . , vd in F with vj ∈ domSμj−1, j ∈ {1, . . . , d}, such that 
the set

{
vj , . . . , S

μj−1vj : j ∈ {1, . . . , d}
}

(7.1)

is a basis for F.
(II) The function defined by

ΦSj−1vk = zj−1ed,k for all j ∈ {1, . . . , μk} and all k ∈ {1, . . . , d}

extends linearly to a linear bijection from F to Cμ such that ΦS = SCμ
Φ.

Recall that δS = (δ1, . . . , δm) is the tuple of positive dimensions δk = dimSk−1

for k ∈ {1, . . . , m} and Sm = 0, where 0 stands for the zero relation 
{
{0, 0}

}
. Thus, 

δ1 = dimF, δ2 = dimS and d = δ1−δ2 = codim(domS). Notice that in (7.1) the vectors

{
vj , . . . , S

μj−1vj : j ∈ {1, . . . , d}
}
\
{
Sμj−1vj : j ∈ {1, . . . , d}

}
⊂ domS

form a basis for domS. There are exactly −d +
∑d

j=1 μj = δ2 vectors in the last set.

Proof of Theorem 7.1. 1. If S = 0, then δS = (n) where n = dimF; that is δS is a 
tuple consisting of only one positive number. In this case d = n and μ = Con(Der δS) =
(1, . . . , 1) is the n-tuple consisting of 1s. The theorem is trivially true in this case.

2. We assume that S �= 0 and proceed with a proof of (I) by mathematical induction with 
respect to the cardinality m = #δS . Since S �= 0, we start the induction with m = 2.
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Assume S2 = 0. Then

δ1 = dimS0 = dimF > δ2 = dimS > dimS2 = 0

and δ1 − δ2 ≥ δ2, see (3.5). Notice that

d = δ1 − δ2 = dimF− dimS = codim(domS).

Since δ2 = dimS = dim(ranS), there exist v1, . . . , vδ2 ∈ domS such that Sv1, . . . , Svδ2
form a basis for ranS. Then the 2δ2 vectors

v1, . . . , vδ2 , Sv1, . . . , Svδ2 (7.2)

are linearly independent. For a basis for F we need additional δ1 − 2δ2 = d − δ2 vectors. 
Let vδ2+1, . . . , vd ∈ F be d − δ2 vectors which together with vectors in (7.2) form a basis 
for F. With μi = 2 for i ∈ {1, . . . , δ2} and μi = 1 for i ∈ {δ2 + 1, . . . , d}, this is a basis 
whose existence is claimed in the theorem.

3. Let m ∈ N \ {1} be arbitrary and assume that the theorem holds whenever S is 
an operator without eigenvalues in a finite-dimensional space such that #δS = m, that 
is, such that Sm−1 �= 0 and Sm = 0. Let T be an operator without eigenvalues in a 
finite-dimensional space G such that #δT = m + 1, that is Tm �= 0 and Tm+1 = 0. In 
particular, since m ∈ N \ {1}, we have T 2 �= 0. Set

δT = (η1, . . . , ηm, ηm+1), with ηk = dimT k−1 for k ∈ {1, . . . ,m + 1},

and dT = η1 − η2 = codim(domT ). Since m ∈ N \ {1} and η1 > η2 > · · · > ηm+1 > 0, 
see (3.4), we must have dimG = η1 ≥ 3.

Set F = ranT ,

S = T |(domT )∩(ranT )

and denote by dS the codimension of domS in F = ranT . Then S is an operator in F
without eigenvalues. We set S0 = IF and prove that for all k ∈ N0

SkT = T k+1 on domT k+1 and domSk = T domT k+1(= (domT k) ∩ (ranT )). (7.3)

The first equality trivially holds for k = 0. Assume it holds for some k ∈ N0 and let 
x ∈ domT k+2. Then Tx ∈ domT k+1 ⊂ domT , hence Tx ∈ domS and consequently

T k+2x = T k+1Tx = SkTTx = SkSTx = Sk+1Tx, x ∈ domT k+2.

As to the second equality in (7.3), by the first equality in (7.3), we have T domT k+1 ⊂
domSk. We prove the reverse inclusion: domSk ⊂ T domT k+1. Since S0 = IranT , this 
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holds for k = 0. Assume it holds for k ∈ N0 and let x ∈ domSk+1. Then Sx ∈ domSk ⊂
T domT k+1. Hence x ∈ domS ⊂ ranT and Tx = Sx = Ty for some y ∈ domT k+1. It 
follows that x = y ∈ domT k+1 ∩ ranT = T domT k+2.

The first equality in (7.3) implies Sm−1 �= 0. The second equality implies that Sm = 0. 
It also implies that domSk−1 = domT k and therefore, for the numbers

δk := dimSk−1, k ∈ {1, . . . ,m},

we have δk = ηk+1. Furthermore, by (3.5),

dS := δ1 − δ2 = η2 − η3 ≤ η1 − η2 = dT .

Let

μS = (μ1, . . . , μdS
) = Con(Der δS) and μT = (σ1, . . . , σdT

) = Con(Der δT ).

It is easily verified that

σk =

⎧⎨
⎩
μk + 1 for all k ∈

{
1, . . . , dS

}
,

1 for all k ∈
{
dS + 1, . . . , dT

}
.

By the inductive hypothesis applied to the operator S in F there exist vectors w1, . . . , wdS

in F = ranT such that

{
wj , Swj , . . . , S

μj−1wj : j ∈ {1, . . . , dS}
}
, (7.4)

is a basis for F = ranT . Let v1, . . . , vdS
∈ domT be such that Tvj = wj for j ∈

{1, . . . , dS}. We append the dS vectors v1, . . . , vdS
to the vectors in (7.4) to get the 

following set of linearly independent vectors in G:

{
vj , T vj , . . . , T

μjvj : j ∈ {1, . . . , dS}
}
. (7.5)

Here we used that SkT = T k+1 for all k ∈ N. There are dS +
∑

μ linearly independent 
vectors in the set in (7.5). Since

dimG = dT + dimF = dT +
∑

μ,

we need exactly dT − dS more linearly independent vectors to get a basis for G.
Let vdS+1, . . . , vdT

be linearly independent vectors in G which, when appended to the 
vectors in (7.5), form a basis for G. Then the set

{
vj , T vj , . . . , T

σj−1vj : j ∈ {1, . . . , dT }
}
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is a basis for G. This completes the proof of (I).

4. To prove (II) notice that Φ maps the basis in (7.1) onto the standard basis of the 
canonical subspace Cμ. Therefore Φ extends to a linear bijection. The second claim is 
straightforward since the property ΦS = SCμ

Φ is easily verified on the basis vectors. �
Corollary 7.2. Consider the set of all ordered pairs {F, S} in which F is a finite-
dimensional vector space and S is an operator without eigenvalues in F. Introduce the 
equivalence relation on this set by setting

{F1, S1} ∼ {F2, S2} ⇔ ∃Φ : F1 → F2 linear bijection such that ΦS1 = S2Φ.

Then in each equivalence class there exists a unique pair consisting of a canonical space of 
vector polynomials and its operator of multiplication by the independent variable. There 
are exactly p(n) equivalence classes in which dimF = n.

8. Two related nilpotent operators

Let n ∈ N. Here we introduce the operation of degree truncation of a scalar polyno-
mial. Notice that for each scalar polynomial p(z) ∈ C[z] there exist unique polynomials 
q(z) ∈ C[z]<n and r(z) ∈ C[z] such that

p(z) = q(z) + znr(z).

The polynomial q(z) is the truncation of the polynomial p(z) to degree < n; we denote 
it by �p(z)�<n.

Next we introduce the truncation operator for vector polynomials. Let Cμ ⊂ Cd[z]
with μ = (μ1, . . . , μd) be a canonical subspace of vector polynomials. We define the 
canonical projection TCμ

: Cd[z] → Cμ by setting

(TCμ
f)(z) =

[
�f1(z)�<μ1 · · · �fd(z)�<μd

]


for an arbitrary f(z) =
[
f1(z) · · · fd(z)

]
 ∈ Cd[z]. Further, we define the nilpotent 
extension NCμ

: Cμ → Cμ of SCμ
by setting

(NCμ
f)(z) =

[
�zf1(z)�<μ1 · · · �zfd(z)�<μd

]


for an arbitrary f(z) =
[
f1(z) · · · fd(z)

]
 ∈ Cμ, or, equivalently, by

NCμ
= TCμ

SCd[z]
∣∣
Cμ

.

Another important nilpotent operator on a canonical space of vector polynomials Cμ

is the differentiation operator DCμ
: Cμ → Cμ defined by
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(DCμ
f)(z) =

[
f ′
1(z) · · · f ′

d(z)
]
 where f(z) =

[
f1(z) · · · fd(z)

]
 ∈ Cμ.

Here g′(z) denotes the derivative of g(z) ∈ C[z].
Next we restate the classical Jordan canonical form theorem, see [17, § 58, Theorem 2]

or [28, Section 4.3] for everywhere defined operators in the spirit of Theorem 7.1.

Theorem 8.1. Let F be a finite-dimensional vector space and let A be an operator defined 
on all of F. Let A = L + N be a Jordan decomposition of A where L is diagonalizable, 
N is nilpotent and both commute with A. Let m be the nilpotency index of N and let 
δN = (δ1, . . . , δm) be the tuple of nonzero dimensions of the ranges of powers of N :

δk := dim(ranNk−1) for k ∈ {1, . . . ,m}.

Let μ = (μ1, . . . , μd) = Con(Der δN ). The following statements hold.

(I) We have d = dim(kerN) and there exist vectors w1, . . . , wd in F such that:

(i) the set 
{
Nμ1−1w1, · · · , Nμd−1wd

}
is a basis for kerN ,

(ii) the set 
{
wl, . . . , Nμl−1wl : l ∈ {1, . . . , d}

}
is a basis for F,

(iii) there exist λ1, . . . , λd ∈ C such that

ANk−1wl = λlN
k−1wl +Nkwl for all k ∈ {1, . . . , μl} and all l ∈ {1, . . . , d}.

(II) The function defined by

ΦNk−1wl = ed,lz
k−1 for all k ∈ {1, . . . , μl} and all l ∈ {1, . . . , d}

extends linearly to a linear bijection Φ : F → Cμ such that

ΦA =
(
Diag(λ1, . . . , λd) + NCμ

)
Φ.

(III) The function defined by

ΨNk−1wl = 1
(μl−k)!ed,lz

μl−k for all k ∈ {1, . . . , μl} and all l ∈ {1, . . . , d}

extends linearly to a linear bijection Ψ : F → Cμ such that

ΨA =
(
Diag(λ1, . . . , λd) + DCμ

)
Ψ.

Notice that with L = 0 in Theorem 8.1 parts (II) and (III) establish similarity between 
the nilpotent operators NCμ

and DCμ
. More generally, Theorem 8.1 with L = 0 yields 

the following corollary.
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Corollary 8.2. Let E and F be finite-dimensional vector spaces and let M : E → E and 
N : F → F be nilpotent operators. The operators M and N are similar if and only if

dim(ranMk−1) = dim(ranNk−1) for all k ∈ N.

Theorem 8.3. Let F be a finite-dimensional vector space and let S be an operator in F
without eigenvalues. There exists a nilpotent operator N on F such that N |domS = S, 
dim(kerN) = codim(domS) and ranSk = ranNk for all k ∈ N. Such an operator N is 
unique up to similarity.

Conversely, if N is a nilpotent operator on F, then there exists an operator S in F
without eigenvalues such that N |domS = S, dim(kerN) = codim(domS) and ranSk =
ranNk for all k ∈ N. Such an operator S is unique up to similarity.

Proof. By Theorem 7.1 there exist a canonical space Cμ of vector polynomials and a 
linear bijection Φ : F → Cμ such that ΦS = SCμ

Φ. The nilpotent operator N defined by

N = Φ−1NCμ
Φ

has all the properties stated in the theorem. The uniqueness claim follows from Corol-
lary 8.2.

Let N be a nilpotent operator on F. In the notation of Theorem 8.1 with A = N , let 
S be the restriction of N onto the subspace spanned by the vectors:

{
wl, . . . , N

μl−1wl : l ∈ {1, . . . , d}
}
\
{
Nμ1−1w1, · · · , Nμd−1wd

}
.

Since this span does not contain any vectors from kerN , the operator S does not have 
eigenvalues. The other claims about S are easily verified. The uniqueness claim follows 
from Theorem 7.1 and Corollary 7.2. �
Theorem 8.4. Let F be a finite-dimensional vector space and let S be an operator in F
without eigenvalues. There exists a nilpotent operator D on F such that DS − SD = I

holds on domS and ranDk = domSk for all k ∈ N. Such an operator D is unique up 
to similarity.

Conversely, if D is a nilpotent operator on F, then there exists an operator S in F
without eigenvalues such that DS − SD = I and ranDk = domSk for all k ∈ N. Such 
an operator S is unique up to similarity.

Proof. By Theorem 7.1 there exist a canonical space Cμ of vector polynomials and a 
linear bijection Φ : F → Cμ such that ΦS = SCμ

Φ. Since DCμ
SCμ

− SCμ
DCμ

= ICμ
, the 

nilpotent operator D defined by

D = Φ−1DCμ
Φ
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has all the properties stated in the theorem. The uniqueness claim follows from Corol-
lary 8.2.

Let D be a nilpotent operator on F. Let Ψ : F → Cμ be the linear bijection from 
Theorem 8.1(III) with A = N . Then the operator

S = Ψ−1SCμ
Ψ

has all the properties stated in the theorem. The uniqueness claim follows from Theo-
rem 7.1 and Corollary 7.2. �
Remark 8.5. Let F be a finite-dimensional vector space and let S be an operator in 
F without eigenvalues. Let N be a nilpotent operator whose existence was established 
in Theorem 8.3 and let D be a nilpotent operator whose existence was established in 
Theorem 8.4. Corollary 8.2 implies that the operators N and D are similar.

Remark 8.6. The Weyr characteristics of any nilpotent operator N is defined in [27] as 
the tuple of positive integers from the sequence

dim
(
nulNk

)
− dim

(
nulNk−1) = dim

(
ranNk−1)− dim

(
ranNk

)
, k ∈ N.

For N and S in Theorem 8.3 this definition coincides with our definition of νS. The Segre 
characteristics of N is defined in [27] as the conjugate tuple to its Weyr characteristic; 
hence it coincides with μS = Con νS . The same holds for D and S in Theorem 8.4.

Example 8.7. The following nilpotent operator given by the 16 × 16 matrix in the Weyr 
canonical form was studied in [27]:

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

0
0

0
0

0

1
1

1
1

1
0 0 0 0 0
0 0 0 0 0
0

0
0

0
0

1
1

0 0
0 0
0 0
0

0
1

1
0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By [27] N has Weyr characteristic (7, 5, 2, 2) and Segre characteristic (4, 4, 2, 2, 2, 1, 1).
Denote by S the restriction of N onto

domS = span{e16,8, . . . , e16,16},

as in Theorem 8.3. Since the null space of N is
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nulN = span{e16,1, . . . , e16,7},

the operator S does not have eigenvalues. We have

nulN2 = span{e16,1, . . . , e16,12}

and S2 is the restriction of N2 to

domS2 = span{e16,13, e16,14, e16,15, e16,16}.

Further,

nulN3 = span{e16,1, . . . , e16,14},

S3 is the restriction of N3 to

domS3 = span{e16,15, e16,16}

and S4 = 0 and N4 = 0. Therefore,

ranSk = ranNk for all k ∈ {0, 1, 2, 3, 4}.

Thus δS = (16, 9, 4, 2) and hence

νS = Der δS = (7, 5, 2, 2), μS = Con νS = (4, 4, 2, 2, 2, 1).

As stated in Remark 8.6, νS coincides with the Weyr characteristic and μS coincides 
with the Segre characteristic of N .

The matrix

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is a nilpotent operator satisfying Theorem 8.4 with S as above. This can be verified 
directly or using Theorem 7.1 as in the proof of Theorem 8.4.
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9. Shifts and symmetrizability of operators without eigenvalues

Theorem 7.1 (I) brings forward a special class of operators without eigenvalues.

Definition 9.1. Let F be a vector space of dimension n. An operator S in F will be called 
a shift if there exists a basis {v1, . . . , vn} of F such that domS = span{v1, . . . , vn−1} and 
Svk = vk+1 for all k ∈ {1, . . . , n − 1}; if n = 1, then S =

{
{0, 0}

}
.

In [14, Definition 5.2] a shift operator is any extension of a shift in Definition 9.1 to 
all of F. Now Theorem 7.1 (I) can be restated as follows.

Corollary 9.2. Let F be a finite-dimensional vector space and let S be an operator in 
F without eigenvalues. Let δS be the tuple of dimensions of S and set l = δ2 − δ3 =
dim(ranS) −dim(ranS2) and μ = (μ1, . . . , μd) = Con(Der δS). Then there exist subspaces 
F0, F1, . . . , Fl of F and shifts Sk in Fk with k ∈ {1 . . . , l} such that

dimF0 = d− l, dimFj = μj , j ∈ {1, . . . , l},

F = F0+̇F1+̇ · · · +̇Fl and S = S1+̇ · · · +̇Sl.

Next we will study inner products on a finite-dimensional vector space in which a 
given operator without eigenvalues is symmetric.

For an operator A defined on all of a finite-dimensional vector space F Theorem 5.1.1 
and Corollary 5.1.2 in [16] describe all the inner products with respect to which A is 
self-adjoint. It turns out that the Jordan structure of A restricts the possible numbers of 
positive and negative squares of such an inner product. For example, if n = dimF and 
if A is a nilpotent operator whose index of nilpotency is n, then each inner product on 
F with respect to which A is self-adjoint must have �n/2� positive and �n/2� negative 
squares or �n/2� positive and �n/2� negative squares; to some extent the inner product 
is uniquely determined. On the other extreme, if A is diagonalizable and if its spectrum 
is real, then there are no restrictions on the numbers of positive and negative squares for 
an inner product with respect to which A is self-adjoint. In the next theorem we show 
that no such restrictions exist for an operator without eigenvalues.

Theorem 9.3. Let F be a finite-dimensional vector space of dimension n and let p and q
be nonnegative integers such that n = p + q. Let S be an operator without eigenvalues in 
F. Then there exists an inner product [ · , · ] on F with p positive and q negative squares 
such that S is symmetric in the Pontryagin space (F, [ · , · ]).

Proof. We will first prove the theorem for S being a shift. Let {v1, . . . , vn} be the basis 
for F such that Svj = vj+1 for j ∈ {1, . . . , n − 1}. Let [ · , · ] be an inner product on F
and denote by G the Gram matrix of [ · , · ] with respect to the basis of {v1, . . . , vn}.
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Recall that G is the n × n self-adjoint matrix whose entries Gjk are defined by

Gjk =
[
vk, vj

]
, j, k ∈ {1, . . . , n}. (9.1)

The operator S is symmetric in 
(
F, [ · , · ]

)
if and only if for all j, k ∈ {1, . . . , n − 1} we 

have

Gj,k+1 = [Svk, vj ] =
[
vk, Svj

]
= Gj+1,k.

The preceding (n −1)2 equalities involving the entries of G are equivalent to the following 
(n − 1)2 equalities

G1,k = G1+i,k−i, i ∈ {1, . . . , k − 1}, k ∈ {2, . . . , n},

Gk,n = Gk+i,n−i, i ∈ {1, . . . , n− k}, k ∈ {2, . . . , n− 1}.

Since G is a self-adjoint matrix, the last (n − 1)2 equalities hold if and only if there exist 
h1, . . . , h2n−1 ∈ R such that

Gj,k = hj+k−1 for all j, k ∈ {1, . . . , n}.

This proves that S is symmetric in 
(
F, [ · , · ]

)
if and only if the Gram matrix of [ · , · ]

with respect to the basis of {v1, . . . , vn} is an invertible real Hankel matrix.
Direct calculations show that for an arbitrary invertible real Vandermonde matrix V

and an arbitrary invertible real diagonal matrix D the matrix V DV 
 is an invertible real 
Hankel matrix. This is the easy direction of the Vandermonde factorization theorem for 
Hankel matrices, see [12, Theorem 7.9], [18, Corollary I.2.8], [9]. Define the inner product 
on F by (9.1) where G = V DV 
 with D having p positive and q negative diagonal entries 
and with an invertible real Vandermonde matrix V to complete the proof of the theorem 
for a shift.

The general statement follows from Corollary 9.2. �
Remark 9.4. Let F be a finite-dimensional vector space and let S be an operator without 
eigenvalues in F. The nilpotent operator N studied in Theorem 8.3 is an extension of S
onto the entire F. Therefore S is symmetric with respect to each inner product on F with 
respect to which N is self-adjoint. All such inner products are described in Theorem 5.1.1 
and Corollary 5.1.2 in [16].

The situation with the operator D studied in Theorem 8.4 is different. To clarify this, 
let S and D be as in Theorem 8.4 and notice that we have that S2 =

{
{0, 0}

}
if and 

only if D2 = 0. We will show that there exists an inner product on F with respect to 
which S is symmetric and D is self-adjoint if and only if D2 = 0. Assume that [ · , · ] is 
an inner product on F with respect to which S is symmetric and D is self-adjoint. Then, 
using domS = ranD and DS − SD = I on domS, we have for all x, y ∈ domS
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[DSx, y] = [x, y] + [SDx, y] = [x, y] + [x,DSy] = 2[x, y] + [x, SDy] = 2[x, y] + [DSx, y],

that is [x, y] = 0. Hence, domS = ranD is a neutral subspace of (F, [ · , · ]). Consequently, 
for x, y ∈ F we have

[D2x, y] = [Dx,Dy] = 0,

implying that D2 = 0.
To prove the converse, assume that S and D have all the properties in Theorem 8.4

and, in addition, D2 = 0, or, equivalently, S2 =
{
{0, 0}

}
. These assumptions imply that 

(kerD) ∩ (ranS) = {0}, domS = ranD ⊆ kerD and D(x −SDx) = 0, x ∈ F. Therefore, 
F = (kerD)+̇(ranS) and DSx = x for all x ∈ domS. Let 〈 · , · 〉 be an arbitrary positive 
definite inner product on kerD and let F0 be the orthogonal complement of domS in 
this inner product. Then

F = F0+̇(domS)+̇(ranS).

For arbitrary x, y ∈ F define [ · , · ] by

[x, y] = 〈x0, y0〉 + 〈x2, y1〉 + 〈x1, y2〉,

where

x = x0 + x1 + Sx2 with x0 ∈ F0, x1, x2 ∈ domS,

y = y0 + y1 + Sy2 with y0 ∈ F0, y1, y2 ∈ domS.

Clearly [ · , · ] is an indefinite inner product on F in which domS and ranS are neutral 
subspaces. With x, y ∈ F as above, since DS acts as an identity on domS we have 
Dx = x2 and Dy = y2. Therefore, for all x, y ∈ F,

[Dx, y] = [x2, y] = 〈x2, y2〉 = [x, y2] = [x,Dy],

proving that D is self-adjoint in (F, [ · , · ]). Similarly, for all x1, y1 ∈ domS,

[Sx1, y1] = 〈x1, y1〉 = [x1, Sy1],

proving that S is symmetric.

10. Canonical subspaces of Cd[z] as reproducing kernel spaces

The next theorem was implicitly proved in [10]. Here we give a simpler proof.
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Lemma 10.1. Let (K, [ · , · ]K) be a Pontryagin space with positive and negative index equal 
to n. Let N be a neutral subspace of K with dimN = τ < n and denote by N[⊥] the 
orthogonal complement of N in (K, [ · , · ]K). Then the quotient space N[⊥]/N with the 
induced inner product is a Pontryagin space with positive and negative index equal to 
n − τ .

Proof. Let N[⊥] = N + N− + N+ be a fundamental decomposition of N[⊥], see [6, 
Sections I.4 and I.11]. Since N is a neutral subspace of K, we have n ≥ τ +dimN±. Since 
also

2n− τ = dimN[⊥] = τ + dimN− + dimN+,

we conclude dimN− = dimN+ = n − τ . �
The next lemma is [10, Lemma 2.7].

Lemma 10.2. Let d, p ∈ N and let K(z, w) be a Hermitian d ×d matrix polynomial kernel 
of degree p − 1. For q ∈ N set

Lq(z, w) = −i (zq − w∗q)K(z, w), z, w ∈ C.

If q ≥ p, then the positive and the negative index of the reproducing kernel Pontryagin 
space with kernel Lq(z, w) are equal and coincide with the dimension of the reproducing 
kernel Pontryagin space with kernel K(z, w).

Theorem 10.3. Let d ∈ N, let Q be a 2d × 2d self-adjoint matrix with d positive and d
negative eigenvalues and let P(z) be a d × 2d matrix polynomial whose row degrees are 
μ1, . . . , μd. Assume that P(z) has the following properties:

(a) P(z)Q−1P(z∗)∗ = 0 for all z ∈ C.
(b) rank P(z) = d for all z ∈ C.
(c) rankP∞ = d.
(d) μ1 ≥ · · · ≥ μd ≥ 1.

Then the Pontryagin space with reproducing polynomial Nevanlinna kernel

KP(z, w) = i
z − w∗ P(z)Q−1P(w)∗, z �= w∗, z, w ∈ C, (10.1)

is the canonical subspace Cμ of Cd[z] where μ = (μ1, . . . , μd) and the operator SCμ
is 

symmetric in this Pontryagin space.
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Proof. 1. Set p = μ1 and consider the space C2d[z]<p with the inner product

[f, g]Q :=
p−1∑
j=0

b∗p−1−jQ−1aj (10.2)

where

f(z) =
p−1∑
j=0

ajz
j , g(z) =

p−1∑
j=0

bjz
j , aj , bj ∈ C2d.

In this Pontryagin space we define a special subspace related to the d × 2d matrix 
polynomial P(z):

L := span
{

p−1∑
k=0

zp−1−kw∗kP(w)∗x : w ∈ C, x ∈ Cd

}
.

For an element f(z) =
∑p−1

j=0 ajz
j ∈ C2d[z]<p the following equivalences hold:

f(z) ∈ L⊥ ⇔
(

p−1∑
k=0

w∗ka∗k

)
Q−1P(w)∗ = 0 ∀w ∈ C,

⇔ P(z)Q−1f(z) = 0 ∀ z ∈ C, (10.3)

⇔ ∀ z ∈ C ∃uz ∈ Cd such that f(z) = P(z∗)∗uz.

The last equivalence follows from (a) and (b). To prove that the vector uz depends 
polynomially on z we use that the Smith normal form of P(z) is given by: P(z) =
U(z)

[
Id 0

]
V(z), where U(z) and V(z) are unimodular matrices. Then

f(z) = P(z∗)∗uz = V(z∗)∗
[
Id
0

]
U(z∗)∗uz.

Therefore

uz = U(z∗)−∗ [Id 0] V(z∗)−∗f(z)

and the right-hand side belongs to Cd[z]. Hence

L⊥ =
{
f(z) ∈ C2d[z]<p : f(z) = P(z∗)∗u(z) with u(z) ∈ Cd[z]

}
.

2. Since P(z∗)∗ has full rank for every z ∈ C, it acts as an injection on Cd[z]. There-
fore
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dimL⊥ = dim
{
u(z) ∈ Cd[z] : deg

(
P(z∗)∗u(z)

)
< p

}
. (10.4)

The number on the right-hand side in (10.4) can be expressed in terms of row 
degrees μ1, . . . , μd of P(z). By Theorem 4.1, since rankP∞ = d, the polyno-
mial P(z) has the predictable degree property (which we state here in transposed 
form):

deg
(
P(z∗)∗u(z)

)
= max

{
μj + deg uj(z) : j ∈ {1, . . . , d}

}
.

Consequently, the space on the right-hand side of the equation in (10.4) equals

M =
{
u(z) ∈ Cd[z] : deg uj(z) < p− μj , j ∈ {1, . . . , d}

}
.

In fact, since p − μd ≥ · · · ≥ p − μ1, M = ZdC(p−μd,...,p−μ1), where Zd is the 
d × d reverse identity matrix. The dimension of this space is dp −

(
μ1 + · · · + μd

)
. 

Hence,

dimL⊥ = dp−
(
μ1 + · · · + μd

)
and

dimL = dim
(
C2d[z]<p

)
− dimL⊥ = dp +

(
μ1 + · · · + μd

)
.

3. To prove that L⊥ is a neutral subspace of 
(
C2d[z]<p, [ · , · ]Q

)
we rewrite L⊥

as

L⊥ = span
{
zkP(z∗)∗a :

a ∈ Cd, k ∈ {0, 1, . . . , p− 1}
such that zkP(z∗)∗a ∈ C2d[z]<p

}
(10.5)

and set P(z) = P0 + zP1 + · · ·+ zpPp and Pi = 0 for negative integers i and for integers 
i > p. Further, let a, b ∈ Cd and k, l ∈ {0, 1, . . . , p −1} be such that zkP(z∗)∗a ∈ C2d[z]<p

and zlP(z∗)∗b ∈ C2d[z]<p. Then P ∗
j a = 0 for j ≥ p − k, P ∗

j b = 0 for j ≥ p − l

and

zkP(z∗)∗a =
p−1∑
j=0

zjP ∗
j−ka and zlP(z∗)∗b =

p−1∑
j=0

zjP ∗
j−lb.

Therefore
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[
zkP(z∗)∗a, zlP(z∗)∗b

]
Q =

p−1∑
j=0

b∗Pp−1−j+lQ−1P ∗
j−ka

=
∑

r+s=l−k+p−1
r∈{l,...,l+p−1}

s∈{−k,...,−k+p−1}

b∗PrQ−1P ∗
s a

=
∑

r+s=l−k+p−1
r∈{l,...,l+p−1}

s∈{0,...,l−k+p−1}

b∗PrQ−1P ∗
s a

=
∑

r+s=l−k+p−1
r,s∈{0,...,l−k+p−1}

b∗PrQ−1P ∗
s a

= b∗
( ∑

r+s=l−k+p−1
r,s∈{0,...,l−k+p−1}

PrQ−1P ∗
s

)
a

= 0,

(10.6)

where the last equality holds because the assumption (a) is equivalent to∑
r+s=n

r,s∈{0,...,n}

PrQ−1P ∗
s = 0 for all n ∈ N0,

provided Ps = 0 for s > p. The third equality holds because Ps = 0 for neg-
ative indices s and P ∗

s a = 0 for s ≥ p − k. The fourth equality holds be-
cause if r + s = l − k + p − 1, then r ≤ l − 1 implies that s ≥ p − k

and hence P ∗
s a = 0 and r ≥ l + p implies that s ≤ −1 − k ≤ −1 and 

hence Ps = 0. Now (10.5) and (10.6) yield that L⊥ is a neutral subspace of (
C2d[z]<p, [ · , · ]Q

)
.

Lemma 10.1 applied to the Pontryagin space 
(
C2d[z]<p, [ · , · ]Q

)
with n = dp and 

τ = dp − (μ1 + · · · + μd) implies that

dim
(
L/L⊥) = 2(μ1 + · · · + μd)

and the positive and negative index of L/L⊥ equal μ1 + · · · + μd.

4. Denote by Bp the reproducing kernel Pontryagin space with kernel

Lp(z, w) := −i (zp − w∗p)KP(z, w) =
(p−1∑

k=0

zp−1−kw∗k
)

P(z)Q−1P(w)∗, z, w ∈ C.

Then

Bp = span
{

P(z)Q−1
p−1∑

zp−1−kw∗kP(w)∗x : w ∈ C, x ∈ Cd

}

k=0
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and

[
P(z)Q−1f,P(z)Q−1g

]
Bp

=
p−1∑
k=0

(
v∗(p−1−k)P(v)∗y

)∗
Q−1

(
w∗kP(w)∗x

)
, (10.7)

where

f(z) =
p−1∑
k=0

zp−1−kw∗kP(w)∗x, g(z) =
p−1∑
k=0

zp−1−kv∗kP(v)∗y.

It follows from the definitions of the inner products in (10.7) and (10.2) that the 
operator of multiplication by P(z)Q−1 maps L ⊂ C2d[z]<p isometrically onto Bp. The 
second equivalence in (10.3) implies that the null space of this mapping is L⊥. Hence, 
dimBp = 2(μ1 + · · · + μd) and the positive and the negative index of Bp equal μ1 +
· · · + μd.

5. Let KP be the reproducing kernel space with reproducing kernel KP(z, w). Lemma 10.2
yields dimKP = μ1 + · · · + μd. The space KP is spanned by the columns of 
the matrices KP(z, w) with w ∈ C and for j ∈ {1, . . . , d} the degree of the j-
th row of K(z, w) as a polynomial in z is equal to μj − 1. Therefore KP ⊆⊕d

j=1
(
C[z]<μj

)
ed,j . Since both spaces have dimension μ1 + · · · + μd, equality pre-

vails:

KP =
d⊕

j=1

(
C[z]<μj

)
ed,j = C(μ1,...,μd) = Cμ.

6. It follows from the “only if” part of [10, Theorem 1.1] that SCμ
is symmet-

ric. �
The next theorem considers reproducing kernel spaces with kernels generated by more 

general matrix polynomials T(z) ∈ Cd×2d[z]. Part (C) below can be considered as a kind 
of converse of Theorem 10.3.

Theorem 10.4. Let d ∈ N, let Q be a 2d × 2d self-adjoint matrix with d positive and d
negative eigenvalues and let T(z) ∈ Cd×2d[z] be such that:

(i) T(z)Q−1T(z∗)∗ = 0 for all z ∈ C.
(ii) rank T(z) = d for some z ∈ C.

Then:

(A) There exist P(z) ∈ Cd×2d[z] which satisfies (a) through (d) in Theorem 10.3 and 
W(z) ∈ Cd×d[z] with det W(z) �≡ 0 such that
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T(z) = W(z)P(z) for all z ∈ C.

(B) Let P(z) ∈ Cd×2d[z] and W(z) ∈ Cd×d[z] be as in (A). The reproducing kernel 
Pontryagin space KT with reproducing polynomial Nevanlinna kernel

KT(z, w) := i
z − w∗ T(z)Q−1T(w)∗, z �= w∗, z, w ∈ C,

is the subspace of Cd[z] given by:

KT =
{

W(z)f(z) : f(z) ∈ Cμ

}
where μ = (μ1, . . . , μd).

The operator W of multiplication by W(z) is an isometry from KP = Cμ onto KT

and WSCμ
= SKT

W . Moreover, the operator SKT
is symmetric in the reproducing 

kernel Pontryagin space KT.
(C) Let P(z) ∈ Cd×2d[z] and W(z) ∈ Cd×d[z] be as in (A). The following statements 

are equivalent:

(I) KT = Cμ.
(II) W(z) =

[
wjk(z)

]d
j,k=1 is a d × d unimodular matrix such that

degwjk(z) ≤ μj − μk for all j, k ∈ {1, . . . , d}. (10.8)

(III) The row degrees of the matrix polynomial T(z) are μ1 ≥ · · · ≥ μd.
(IV) The matrix polynomial T(z) satisfies (a) through (d) in Theorem 10.3.

Notice that the entries μ1, . . . , μd of μ in Theorem 10.4 (B) are the Forney indices of 
T(z), see the definition after the proof of Theorem 4.3.

Proof of Theorem 10.4. The claim in (A), with the exception of property (a) in Theo-
rem 10.3 follows from Theorem 4.3. That in this case P(z) from Theorem 4.3 satisfies
(a) in Theorem 10.3 follows from the assumption (i) and the fact that det W(z) �≡ 0.

The first part of (B) follows from [2, Theorem 1.5.7]; for this simple case we give a 
direct proof. The reproducing kernel space with kernel KT is

KT = span
{
KT(z, w)x : w ∈ C, x ∈ Cd

}
.

Moreover, for every finite set F ⊂ C we have

KT = span
{
KT(z, w)x : w ∈ C \ F , x ∈ Cd

}
. (10.9)

To prove (10.9) assume that f(z) ∈ KT is orthogonal in KT to the span on the right-
hand side of the equality in (10.9). That is, assume that for every w ∈ C \ F and every 
x ∈ Cd we have



102 B. Ćurgus, A. Dijksma / Linear Algebra and its Applications 605 (2020) 63–117
0 =
[
f(z),KT(z, w)x

]
KT

= x∗f(w).

This yields that f(w) = 0 for all w ∈ C \ F , implying that f = 0 in KT.
Next choose F to be the finite set

F =
{
z ∈ C : det W(z) = 0

}
.

In view of Theorem 10.3, the equality (10.9) for KP reads

Cμ = KP = span
{
KP(z, w)x : w ∈ C \ F , x ∈ Cd

}
. (10.10)

Then, (10.9), (10.10), KT(z, w) = W(z)KP(z, w)W(w)∗ and the fact that W(w) is 
invertible for all w ∈ C \ F , yield

KT = span
{
KT(z, w)y : w ∈ C \ F , y ∈ Cd

}
= span

{
W(z)KP(z, w)W(w)∗y : w ∈ C \ F , y ∈ Cd

}
= span

{
W(z)KP(z, w)x : w ∈ C \ F , x ∈ Cd

}
=
{

W(z)f(z) : f(z) ∈ Cμ

}
.

What we just proved implies that W is a surjection from KP = Cμ onto KT. That this 
operator is a linear injection is trivial. To verify that W is an isometry we calculate with 
f(z) ∈ KP, w ∈ C \ F and x ∈ Cd:

[W(z)f(z),W(z)KP(z, w)x]KT
= [W(z)f(z),W(z)KP(z, w)W(w)∗W(w)−∗x]KT

= [W(z)f(z),KT(z, w)W(w)−∗x]KT

=
(
W(w)−∗x

)∗
W(w)f(w)

= x∗f(w)

= [f(z),KP(z, w)x]KP
.

This, (10.9) and (10.10) imply that W is an isometry from KP = Cμ onto KT.
The equality WSCμ

= SKT
W follows from the just proven equality KT = WCμ. That 

SKT
is symmetric is a consequence of the facts that SCμ

is symmetric, W is an isometry 
and SKT

= WSCμ
W−1.

The equivalence (I)⇔(II) in (C) follows from Theorem 6.2.
The implication (II)⇒(III) is easily verified. To prove the converse (III)⇒(II) assume 

(III). Since we assume that rankP∞ = d, Theorem 4.1 implies that P(z) has the pre-
dictable degree property. This yields (10.8). Thus W(z) has the block upper triangular 
form as in (6.1). Therefore det W(z) is constant. This constant is not zero since the 
assumption (ii) implies det W(z) �≡ 0. Thus W(z) is unimodular.

We have thus established that (I)⇔(II)⇔(III). Next we will prove that assuming 
any, and then all, of these three statements implies (IV). That T(z) satisfies (a) in 
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Theorem 10.3 is assumed in (i). That T(z) satisfies (b) in Theorem 10.3 follows from 
(II), and that it satisfies (d) in Theorem 10.3 follows from (III). That T(z) satisfies (c)
in Theorem 10.3 follows from Corollary 4.2.

Finally, (IV)⇒(I) follows from Theorem 10.3. �
11. Finite-dimensional Pontryagin spaces

In Section 9 we have seen that each operator without eigenvalues in a finite-
dimensional space is symmetrizable. In this section we prove that a symmetric operator 
without eigenvalues in a finite-dimensional Pontryagin space is isomorphic to the opera-
tor of multiplication by the independent variable in some canonical subspace of Cd[z] for 
some d ∈ N equipped with an inner product determined by a matrix polynomial as in 
Theorem 10.3. We give two proofs of the next theorem. In both proofs we apply results 
of this paper. In the first we invoke Theorem 10.4 and statements from Section 3, while 
in the second we use Theorem 7.1 and the “if” part of [10, Theorem 1.1].

Theorem 11.1. Let (G, [ · , · ]G) be a finite-dimensional Pontryagin space and let S be a 
symmetric operator in (G, [ · , · ]G) without eigenvalues. Let δS be the tuple of dimensions 
of S and set μ = (μ1, . . . , μd) = Con(Der δS) with d = codim(domS). Let Q be an 
arbitrary 2d × 2d self-adjoint matrix with d positive and d negative eigenvalues. Then 
there exist:

(A) a matrix polynomial P(z) ∈ Cd×2d[z] with properties (a) through (d) in Theo-
rem 10.3 such that the reproducing kernel Pontryagin space with kernel KP(z, w)
defined in (10.1) is the canonical subspace Cμ of Cd[z],

(B) an isomorphism Φ between the Pontryagin spaces (G, [ · , · ]G) and (Cμ, [ · , · ]Cμ
) such 

that ΦS = SCμ
Φ.

Proof. Let S be as in the theorem. Let S∗ be the adjoint of S in (G, [ · , · ]G).

1. Let A be a self-adjoint operator extension of S on (G, [ · , · ]G) (see Lemma 3.5), let 
p

A
(z) be the characteristic polynomial of A and let

R(z,A) := −p
A
(z)(A− z)−1, z ∈ ρ(A),

be the scaled resolvent of A. Since A is a self-adjoint operator on a Pontryagin space, 
the coefficients of p

A
(z) are real. For u ∈ (domS)[⊥], v ∈ domS and z ∈ C we have

[
Sv,R(z,A)u

]
G
−
[
v, zR(z,A)u

]
G

=
[
R(z∗, A)Sv, u

]
G
−
[
z∗R(z∗, A)v, u

]
G

=
[
R(z∗, A)(S − z∗)v, u

]
G

= −p
A
(z∗)

[
v, u

]
G

= 0.
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Hence, for arbitrary z ∈ ρ(A) the mapping

u �→
{
R(z,A)u, zR(z,A)u

}
, u ∈ (domS)[⊥], (11.1)

is a linear injection defined on (domS)[⊥] with values in S∗ ∩ zI. Since by Lemma 3.4

dim
(
(domS)[⊥]) = d and dim

(
S∗ ∩ zI

)
= d for all z ∈ C,

the mapping in (11.1) is a bijection between (domS)[⊥] and S∗ ∩ zI. Consequently,

{{
R(z,A)u, zR(z,A)u

}
: u ∈ (domS)[⊥]

}
= S∗ ∩ zI for all z ∈ ρ(A). (11.2)

Since dom(S∗ ∩ zI) = ker(S∗ − zI), we also have

ker(S∗ − zI) =
{
R(z,A)u : u ∈ (domS)[⊥]

}
for all z ∈ ρ(A). (11.3)

Set

T = span
{{

R(z,A)u, zR(z,A)u
}

: u ∈ (domS)[⊥], z ∈ ρ(A)
}
. (11.4)

Clearly T ⊆ S∗. Therefore T ∩ zI ⊆ S∗ ∩ zI. Since for z ∈ ρ(A) the subspace in (11.2)
is a subset of T ∩ zI, we conclude that

T ∩ zI = S∗ ∩ zI for all z ∈ ρ(A). (11.5)

Next we will prove that T ∗ is an operator without eigenvalues. First notice that for all 
z ∈ ρ(A) and all u, v, x ∈ G we have

[v,R(z,A)x]G − [u, zR(z,A)x]G =
[
R(z∗, A)(v − z∗u), x

]
G
.

This identity, the definition of the adjoint and elementary considerations yield that the 
following four statements are equivalent:

(a) {u, v} ∈ T ∗.
(b) For all z ∈ ρ(A) and all x ∈ (domS)[⊥] we have 

[
R(z∗, A)(v − z∗u), x

]
G

= 0.
(c) For all z ∈ ρ(A) we have (A − z∗)−1(v − z∗u) ∈ domS.
(d) For all z ∈ ρ(A) we have v − z∗u ∈ ran(S − z∗).

Therefore, if {0, v} ∈ T ∗, then v ∈ ran(S − z∗) for all z ∈ ρ(A), which, by Corollary 3.3, 
implies that v = 0, proving that T ∗ is an operator. If λ ∈ C and {u, λu} ∈ T ∗, then 
(λ − z∗)u ∈ ran(S − z∗) for all z ∈ ρ(A). Consequently, u ∈ ran(S − z∗) for all z ∈
ρ(A) \{λ}. Again, Corollary 3.3 yields u = 0, proving that T ∗ does not have eigenvalues.
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Since neither T ∗ nor S has eigenvalues, (11.5) and Lemma 3.4 imply that for every 
z ∈ C we have

codim(domT ∗) = codim
((

ran(T ∗ − z)
)

= dim
(
dom(T ∩ z∗I)

)
= dim

(
dom(S∗ ∩ z∗I)

)
= codim(domS)

Now S ⊆ T ∗ yields T ∗ = S, and consequently T = S∗. An immediate consequence of 
T = S∗, (11.5) and (11.4) is

S∗ = span
{{

R(z,A)u, zR(z,A)u
}

: u ∈ (domS)[⊥], z ∈ ρ(A)
}

(11.6)

= span
{
S∗ ∩ zI : z ∈ ρ(A)

}
.

2. Let b : S∗ → C2d be the boundary mapping for S∗ with Gram matrix −Q. That is 
for every {x, y}, {u, v} ∈ S∗ we have

−i
(
[y, u]G − [x, v]G

)
= b({u, v})∗(−Q)b({x, y}). (11.7)

Let bex : G2 → C2d be an arbitrary linear extension of b : S∗ → C2d. Let

u1, . . . , ud

be a basis for (domS)[⊥]. Then for every z ∈ ρ(A) the pairs

{
R(z,A)uj , zR(z,A)uj

}
with j ∈ {1, . . . , d},

form a basis for S∗ ∩ zI.
By Lemma 3.1 for every z ∈ ρ(A) we have

R(z,A) =
n−1∑
k=0

Ckz
k, (11.8)

where Cn−1 = I and for k ∈ {0, . . . , n − 2} the operator Ck is a linear combination of 
powers of A, see (3.2). Notice that (11.8) implies that the operator R(z, A) is defined for 
all z ∈ C; however it is guaranteed to be a bijection whenever z ∈ ρ(A).

Notice that

zR(z,A) = (z −A + A)R(z,A) = p
A
(z) + AR(z,A).

Therefore, for each j ∈ {1, . . . , d} we have
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{
R(z,A)uj , zR(z,A)uj

}
= p

A
(z)
{
0, uj

}
+
{
R(z,A)uj , AR(z,A)uj

}
.

Further, by (11.8), for each j ∈ {1, . . . , d} we have

{
R(z,A)uj , zR(z,A)uj

}
= p

A
(z)
{
0, uj

}
+

n−1∑
k=0

zk
{
Ckuj , ACkuj

}
.

The linearity of bex yields

b
({

R(z,A)uj , zR(z,A)uj

})
= p

A
(z)bex

({
0, uj

})
+

n−1∑
k=0

zkbex
({

Ckuj , ACkuj

})
.

Since the range of bex is in C2d, the expression on the right-hand side is a vector poly-
nomial in C2d[z]. Therefore,

B(z) :=
[
b
({

R(z,A)u1, zR(z,A)u1
})

· · · b
({

R(z,A)ud, zR(z,A)ud

})]

is a matrix polynomial in C2d×d[z]. As S∩zI =
{
{0, 0}

}
, the mapping b, when restricted 

to S∗ ∩ zI, is a bijection. Hence, for every z ∈ ρ(A) we have rank B(z) = d.
Notice that by (11.7) for arbitrary j, k ∈ {1, . . . , d} and z, w ∈ ρ(A) we have

b
(
{R(z∗, A)uj ,z

∗R(z∗, A)uj}
)∗Qb

(
{R(w∗, A)uk, w

∗R(w∗, A)uk}
)

= i
([

w∗R(w∗, A)uk, R(z∗, A)uj

]
G
−
[
R(w∗, A)uk, z

∗R(z∗, A)uj

]
G

)
= −i(z − w∗)

[
R(w∗, A)uk, R(z∗, A)uj

]
G
.

The last displayed expression is the entry in the j-th row and the k-th column of the 
d × d matrix polynomial B(z∗)∗QB(w∗). Or, in a formula,

B(z∗)∗QB(w∗) = −i(z − w∗)
[[
R(w∗, A)uk, R(z∗, A)uj

]
G

]d
j,k=1

, z, w ∈ ρ(A).

Set

T(z) =
(
QB(z∗)

)∗
. (11.9)

Then T(z) ∈ Cd×2d[z] and for z, w ∈ ρ(A)

T(z)Q−1T(w)∗ =
(
QB(z∗)

)∗Q−1QB(w∗)

= B(z∗)∗QB(w∗)

= −i(z − w∗)
[ [

R(w∗, A)uk, R(z∗, A)uj

]
G

]d
j,k=1

. (11.10)



B. Ćurgus, A. Dijksma / Linear Algebra and its Applications 605 (2020) 63–117 107
Hence

T(z)Q−1T(z∗)∗ = 0 for all z ∈ C.

Further, since rank B(z) = d for all z ∈ ρ(A), we have

rank T(z) = d for all z ∈ ρ(A).

Set

KT(z, w) = i
z − w∗ T(z)Q−1T(w)∗, w �= z∗, z, w ∈ C.

Then, by (11.10),

KT(z, w) =
[ [

R(w∗, A)uk, R(z∗, A)uj

]
G

]d
j,k=1

for all z, w ∈ ρ(A). (11.11)

3. Let KT be the reproducing kernel space with kernel KT(z, w). It follows from Corol-
lary 3.8 and (11.3) that

G = span
{
R(w∗, A)uk : k ∈ {1, . . . , d}, w ∈ ρ(A)

}
. (11.12)

Consequently,

KT = span
{
KT(z, w)x : x ∈ Cd, w ∈ C

}
=
{[ [

v,R(z∗, A)u1
]
G

· · ·
[
v,R(z∗, A)ud

]
G

]

: v ∈ G

}
.

Now consider the mapping Ψ : G → KT defined by

(Ψv)(z) :=
[ [

R(z,A)v, u1
]
G

· · ·
[
R(z,A)v, ud

]
G

]

, z ∈ ρ(A), v ∈ G.

The last expression for KT implies that Ψ is a surjection. To show that Ψ is an injection 
assume Ψv = 0. Then (A − z)−1v ∈ domS for all z ∈ ρ(A) and hence

v ∈ ∩ {
ran(S − z) : z ∈ ρ(A)

}
.

Consequently v = 0 by Corollary 3.8.
To prove that Ψ is an isomorphism consider two special vectors from G:

v1 = R(w∗
1 , A)

∑d
k=1 x

1
kuk, v2 = R(w∗

2 , A)
∑d

k=1 x
2
kuk,

where w1, w2 ∈ ρ(A) and x1 = [x1
1 · · ·x1

d]
, x2 = [x2
1 · · ·x2

d]
 ∈ Cd. Clearly, using (11.11), 
we have
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[
v1, v2

]
G

= (x2)∗KT(w2, w1)x1.

By the definition of Ψ we have

Ψv1 = KT(·, w1)x1, Ψv2 = KT(·, w2)x2

and thus, by the reproducing kernel property of KT(z, w) and (11.11),

[
Ψv1,Ψv2

]
KT

= (x2)∗KT(w2, w1)x1.

Now (11.12) implies that Ψ is an isomorphism.

4. Next we consider the relation ΨS∗Ψ−1 ⊂ (KT)2. The definition of Ψ and (11.11) yield

ΨR(w∗, A)y = KT( ·, w)x and Ψw∗R(w∗, A)y = w∗KT( ·, w)x,

where w ∈ C, x = [x1 · · ·xd]
 ∈ Cd and y = x1u1 + · · ·+ xdud. The preceding displayed 
formulas and (11.6) lead to a formula for ΨS∗Ψ−1 which is analogous to (11.6):

ΨS∗Ψ−1 =
{
{Ψu,Ψv} : {u, v} ∈ S∗}

= span
{
{ΨR(w∗, A)y,Ψw∗R(w∗, A)y} : y ∈ (domS)[⊥], w ∈ ρ(A)

}
= span

{{
KT(·, w)x,w∗KT(·, w)x

}
: w ∈ ρ(A), x ∈ Cd

}
.

The last expression for ΨS∗Ψ−1 makes calculating the adjoint of ΨS∗Ψ−1 in the 
reproducing kernel space (KT, [ · , · ]KT

) easy. For {f, g} ∈ (KT)2, w ∈ C and x ∈ Cd we 
have

[
g,KT(·, w)x

]
KT

−
[
f, w∗KT(·, w)x

]
KT

= x∗(g(w) − wf(w)
)
.

Therefore {f, g} ∈
(
ΨS∗Ψ−1)∗ if and only if g(z) = zf(z) and both f(z), g(z) ∈ KT. 

Thus the adjoint of ΨS∗Ψ−1 in the reproducing kernel space KT is the operator SKT
of 

multiplication by the independent variable in KT. Hence,

SKT
=
(
ΨS∗Ψ−1)∗ = ΨSΨ−1.

5. Finally, we apply statements (A) and (B) of Theorem 10.4 to T(z) to obtain the desired 
polynomial P(z). In the notation of Theorem 10.4 set Φ := W−1Ψ. Then Φ : G → Cμ is 
an isomorphism and

ΦS = W−1ΨS = W−1SKT
Ψ = SCμ

W−1Ψ = SCμ
Φ. �
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As mentioned in the Introduction the research in this paper is closely connected to 
[10], where the main topic was the characterization of full matrix polynomial Nevanlinna 
kernels. By definition a kernel K(z, w) is a full matrix polynomial Nevanlinna kernel if 
for some self-adjoint 2d × 2d matrix Q with d positive and d negative eigenvalues there 
exists a d × 2d matrix polynomial P(z) such that

P(z)Q−1P(w)∗ = −i(z − w∗)K(z, w) for all z, w ∈ C (11.13)

and rank P(z) = d for all z ∈ C. To show this connection more explicitly we give a 
second proof of Theorem 11.1.

Second proof of Theorem 11.1. Let Φ be the isomorphism between the vector space G
and the canonical space Cμ whose existence has been established in Theorem 7.1. Notice 
that Φ is first defined on a special basis of G with values at the vectors ed,kzj ∈ Cμ, 
j ∈ {0, . . . , μk−1}, k ∈ {1, . . . , d}, of the standard basis of Cμ. Recall that μ1 ≥ · · · ≥ μd

and 
∑d

k=1 μk = n = dimG.
Let G be the Gram matrix of the vectors Φ−1(ed,kzj) ∈ G, j ∈ {0, . . . , μk − 1}, 

k ∈ {1, . . . , d}, in this order. Denote by B(z) the d ×n matrix polynomial whose columns 
are the vectors ed,kzj ∈ Cμ, j ∈ {0, . . . , μk − 1}, k ∈ {1, . . . , d}, in this order:

B(z) =

⎡
⎢⎢⎢⎢⎣

1 z · · · zμ1−1 0 · · · 0 · · · 0 · · · 0
0 0 · · · 0 1 · · · zμ2−1 · · · 0 · · · 0
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 0 · · · 0 0 · · · 0 · · · 1 · · · zμd−1

⎤
⎥⎥⎥⎥⎦

Define the reproducing kernel

KB(z, w) := B(z)G−1B(w)∗, z, w ∈ C.

We claim that the reproducing kernel space with kernel KB(z, w) is exactly the canonical 
space Cμ. Since μ1 ≥ · · · ≥ μd and 

∑d
k=1 μk = n, we have dμ1 ≥ n. With distinct 

w1, . . . , wμ1 ∈ C the n × dμ1 matrix

[
B(w1)∗ · · · B(wμ1)∗

]
has full rank n. Therefore for each α, β ∈ Cn there exist vectors x1, . . . , xμ1 , y1, . . . , yμ1 ∈
Cd such that

α = G−1
μ1∑
j=1

B(wj)∗xj , β = G−1
μ1∑
j=1

B(wj)∗yj .

For f(z), g(z) ∈ Cμ whose coordinates with respect to the standard basis are α and β
we have
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f(z) =
μ1∑
j=1

KB(z, wj)xj = B(z)α, g(z) =
μ1∑
j=1

KB(z, wj)yj = B(z)β.

This proves that the reproducing kernel space with kernel KB(z, w) is exactly the canon-
ical space Cμ.

Moreover, this construction shows that the inverse images Φ−1f and Φ−1g in G are 
the vectors with the coordinates α and β, respectively. Now we can show that Φ is an 
isomorphism between the Pontryagin space (G, [ · , · ]G) and the reproducing kernel space 
Cμ with kernel KB(z, w). We calculate:

[f, g]Cμ
=
[ μ1∑
j=1

KB(z, wi)xi,

μ1∑
j=1

KB(z, wj)yj
]
Cμ

=
μ1∑
j=1

μ1∑
j=1

y∗jKB(wj , wi)xi

=
( μ1∑

j=1
B(wj)∗yj

)∗
G−1

( μ1∑
j=1

B(wi)∗xi

)

=
(
Gβ

)∗
G−1Gα

= β∗Gα

=
[
Φ−1f,Φ−1g

]
G
.

Since ΦSG = SCμ
Φ, the operator SCμ

is symmetric in the reproducing kernel space 
Cμ with kernel KB(z, w). Moreover, for all α ∈ C we have

ran(SCμ
− α) =

{
f ∈ Cμ : f(α) = 0

}
.

By the “if” part of [10, Theorem 1.1] the reproducing kernel KB(z, w) is a full matrix 
polynomial Nevanlinna kernel. The equality (11.13) implies that the row degrees of P(z)
are given by μ1, . . . , μd. �
12. Examples

Example 12.1. Consider the following operator in C6

S =
{
{x, y} : x, y ∈ C6,

y2 = y3 = x1, y4 = x3 = x2,

y5 = y1 = x6 = x4 = 0, y6 = x5

}
= span

{
{e6,1, e6,2 + e6,3}, {e6,2 + e6,3, e6,4}, {e6,5, e6,6}

}
.

Clearly,

S2 = span
{
{e6,1, e6,4}

}
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and hence,

dimS0 = 6, dimS = 3, dimS2 = 1, dimS3 = 0.

Consequently S has no eigenvalues and δ = (6, 3, 1), ν = Der δ = (3, 2, 1) and μ =
Con ν = (3, 2, 1). The Young diagram associated with this operator is .

By Theorem 7.1 S is similar to the operator of multiplication with the independent 
variable in the canonical space

C(3,2,1) = e3,1C[z]<3+̇e3,2C[z]<2+̇e3,3C[z]<1.

The linear bijection Φ : C6 → C(3,2,1) from Theorem 7.1 (II) which intertwines S and 
SC(3,2,1) is given by:

e6,1 �→
[1

0
0

]
, e6,2 + e6,3 �→

[
z
0
0

]
, e6,4 �→

[
z2

0
0

]
,

e6,5 �→
[0

1
0

]
, e6,6 �→

[0
z
0

]
,

e6,2 �→
[0

0
1

]
.

For this S, the nilpotent operator N from Theorem 8.3 is given by the following matrix
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and the nilpotent operator D from Theorem 8.4 is given by the matrix
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 2 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

In the direct sum decomposition of C6 from Corollary 9.2 we have

F0 = span{e6,2}, F1 = span{e6,5, e6,6}, F2 = span{e6,1, e6,2 + e6,3, e6,4}.
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The inner products studied in the proof of Theorem 9.3 in which S is symmetric are 
given by the Gram matrices

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h5 0 h6 h7 0 0

0 h1 −h1 0 0 0

h6 −h1 h1 + h7 h8 0 0

h7 0 h8 h9 0 0

0 0 0 0 h2 h3

0 0 0 0 h3 h4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

relative to the standard basis of C6. Here h1, . . . , h9 are real and such that the matrices 
are invertible. The nilpotent matrix N is self-adjoint in these inner products, that is 
GN = N∗G, if and only if h4 = h5 = h9 = 0. In this case the above Gram matrices are 
invertible if and only if h3h7h9 �= 0. It follows from Theorem 5.1.1 and Corollary 5.1.2 
in [16] that such inner products cannot be positive definite. The matrix G is positive 
definite if for example

h5 = h9 = h2 = h4 = 2, h6 = h8 = −1, h7 = h3 = h1 = 1.

Example 12.2. Consider the vector space C6 with the indefinite inner product [x, y] =
〈Jx, y〉 where

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

is a self-adjoint involution matrix and 〈 · , · 〉 is the Euclidean inner product on C6. Let

S =
{
{x, y} : x, y ∈ C6,

y6 = y4 = x5 = x2, y5 = 0, y2 = x1,

x3 = 0, −y3 = y1 = x6 = x4,

}

= span
{
{e6,1, e6,2}, {e6,2 + e6,5, e6,4 + e6,6}, {e6,4 + e6,6, e6,1 − e6,3}

}
be a symmetric operator in (C6, [ · , · ]). Its adjoint is

S[∗] =
{
{x, y} : x, y ∈ C6,

y3 = −x4 + x6 − y1,

y = x + x − y , y = x

}
.

5 1 3 2 6 2
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A boundary mapping b : S[∗] → C6 is given by

b
(
{x, y}

)
=
[
x1 − y2 x2 − y4 x3 x4 − y1 x5 − y4 x6 − y1

]

,

where {x, y} ∈ S[∗] and the corresponding Gram matrix is

Q = i

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 −1 0
−1 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1
1 0 1 0 0 0
0 0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The self-adjoint extension of JS in (C6, 〈 · , · 〉) introduced in Lemma 3.5 leads to the 
following self-adjoint extension of S in (C6, [ · , · ]):

A = 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 2
2 0 1 0 0 0
0 0 0 −2 0 0
0 1 0 0 1 0
0 0 1 0 0 0
0 2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 1
2J

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 0 0 0
2 0 1 0 0 0
0 1 0 0 1 0
0 0 0 −2 0 0
0 0 1 0 0 0
0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The scaled resolvent (see the beginning of Section 3) of A is

R(z,A) = −4 det
(
z −A

)
(A− z)−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4z5 + 2z2 4z3 + 1 2z2 −2z −1 4z4 + 2z
4z4 + z 4z5 + z2 2z4 −2z3 −z2 4z3 + 1
−2z2 −2z3 4z5 − 4z2 4z − 4z4 2 − 2z3 −2z
2z3 2z4 2z3 − 1 4z5 − 4z2 2z4 − 2z 2z2

−z −z2 2z4 − 2z 2 − 2z3 4z5 − 3z2 −1
4z3 + 1 4z4 + z 2z3 −2z2 −z 4z5 + 2z2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Here we additionally scale the resolvent by 4 to avoid fractions. Choose a basis of 
(domS)[⊥] to be

{
[0,−1, 0, 0, 1, 0]
, [0, 0, 0, 1, 0, 0]
, [1, 0,−1, 0, 0, 0]


}
.

Then the matrix polynomial T(z) from (11.9) in the proof of Theorem 11.1 is given by

T(z) = i
[ 8z5 4z6 − 2z3 − 2 4z5 0 2z3 − 4z6 4z4

2 2z4 − 2z −4z6 + 2z3 + 2 0 2z4 − 2z 4z5 − 2z2
4 5 2 4 6 3 5 2 6

]
.

−4z 2z − z −2z 4z − 2z − 1 2z − z −4z + 1
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To get the polynomial P(z) whose existence is claimed in Theorem 11.1 we use the Smith 
normal form of T(z) to obtain the factorization

T(z) = i

⎡
⎢⎣ 8z5 −8z9 + 12z6 − 2z3 − 2 −8z7 + 4z4 + 2z

2 0 0
−4z4 4z8 − 2z5 − z2 4z6 − 2z3 − 1

⎤
⎥⎦

×

⎡
⎢⎣1 z4 − z −2z6 + z3 + 1 0 z4 − z 2z5 − z2

0 1 0 z 0 −z

0 0 −2z4 1 − z3 z2 3z3 − 1

⎤
⎥⎦ .

Further we apply the method of the proof of Theorem 4.3 to get the factorization the 
last 3 × 6 matrix as follows⎡

⎢⎣−2z3 + 1 z2 −z

0 0 1
−2z 1 −z2

⎤
⎥⎦
⎡
⎢⎣ 1 0 z3 + 1 0 −z −z2

2z z2 2z 1 −z2 −1
0 1 0 z 0 −z

⎤
⎥⎦ .

Hence

T(z) = 2i

⎡
⎢⎣ −2z2 2z4 + z −2z3 − 1
−2z3 + 1 z2 −z

z −z3 − 1/2 2z5

⎤
⎥⎦
⎡
⎢⎣ 1 0 z3 + 1 0 −z −z2

2z z2 2z 1 −z2 −1
0 1 0 z 0 −z

⎤
⎥⎦ .

This yields the desired polynomial P(z):

P(z) =

⎡
⎢⎣ 1 0 z3 + 1 0 −z −z2

2z z2 2z 1 −z2 −1
0 1 0 z 0 −z

⎤
⎥⎦ .

Notice that P(z) has rank 3 for all z ∈ C and that

P∞ =

⎡
⎢⎣0 0 1 0 0 0

0 1 0 0 −1 0
0 0 0 1 0 −1

⎤
⎥⎦

also has rank 3. Hence, 3, 2, 1 are the Forney indices of the matrix polynomials P(z) and 
T(z). Further, by Theorem 11.1 and the above construction we have that P(z)Q−1P(z∗)∗
= 0 for all z ∈ C and the row degrees of P(z) satisfy 3 > 2 > 1. Thus, P(z) satisfies (a)
through (d) in Theorem 10.3.

The corresponding reproducing kernel is

K(z, w) = i
z − w∗ P(z)Q−1P(w)∗ =

⎡
⎢⎣1 − w∗z2 − w∗2z −z + w∗ z2

z − w∗ 2zw∗ 0
w∗2 0 0

⎤
⎥⎦ .
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The isomorphism Φ from Theorem 11.1 between the Pontryagin spaces (C6, [ · , · ])
and the reproducing kernel space C(3,2,1) with the reproducing kernel K(z, w) such that 
ΦS = SCμ

Φ is given by

e6,2 + e6,5 �→
[1

0
0

]
, e6,4 + e6,6 �→

[
z
0
0

]
, e6,1 − e6,3 �→

[
z2

0
0

]
,

−e6,1 �→
[0

1
0

]
, −e6,2 �→

[0
z
0

]
,

e6,6 �→
[0

0
1

]
.

Or, equivalently Φ is given by,

e6,1 �→ −e3,2 = K(z, 0)e3,3 + 1
2K(z, 1)e3,1 − 1

2K(z,−1)e3,1,

e6,2 �→ −ze3,2 = K(z, 0)(e3,1 + e3,2) −K(z, 1)e3,2,

e6,3 �→ −z2e3,1 − e3,2 = 1
2K(z, 1)e3,1 − 1

2K(z,−1)e3,1,

e6,4 �→ ze3,1 − e3,3 = K(z, 0)e3,1 − 1
2K(z, 1)e3,1 − 1

2K(z,−1)e3,1,

e6,5 �→ e3,1 + ze3,2 = K(z, 0)e3,1,

e6,6 �→ e3,3 = −K(z, 0)(e3,1 + e3,2) + 1
2K(z, 1)e3,1 + 1

2K(z,−1)e3,1.

The matrix J is the Gram matrix of the vectors on the left-hand side in the space 
(C6, [ · , · ]). A lengthy but straightforward computation of the Gram matrix of the vectors 
on the right-hand side in the reproducing kernel Pontryagin space C(3,2,1) shows that 
this matrix also equals J . This confirms that Φ is an isomorphism between Pontryagin 
spaces.

For calculations in the above examples we used a Wolfram Mathematica package 
developed for explorations of operators without eigenvalues and matrix polynomials. 
This package is available on the first author’s website.
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