
Linear Algebra and its Applications 679 (2023) 86–98
Contents lists available at ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

Operators without eigenvalues in finite-dimensional 
vector spaces: Essential uniqueness of the model

Branko Ćurgus a,∗, Aad Dijksma b

a Department of Mathematics, Western Washington University, Bellingham, WA 
98225, USA
b Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence 
University of Groningen, P.O. Box 407, 9700 AK Groningen, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 July 2023
Received in revised form 31 August 
2023
Accepted 2 September 2023
Available online 7 September 2023
Submitted by P. Semrl

MSC:
15A03
46C20
46E22
47A06
47A45

Keywords:
Matrix polynomial
Pontryagin space
Reproducing kernel
Symmetric operator
Boundary mapping
Nilpotent operator
Self-adjoint extension
Canonical space of vector 
polynomials

In [4] a model is presented of a finite-dimensional Pontryagin 
space with a symmetric operator without eigenvalues. In this 
note we show that this model is unique up to an equivalence 
relation.

Published by Elsevier Inc.

* Corresponding author.
E-mail addresses: curgus@wwu.edu (B. Ćurgus), a.dijksma@rug.nl (A. Dijksma).
https://doi.org/10.1016/j.laa.2023.09.001
0024-3795/Published by Elsevier Inc.

https://doi.org/10.1016/j.laa.2023.09.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2023.09.001&domain=pdf
mailto:curgus@wwu.edu
mailto:a.dijksma@rug.nl
https://doi.org/10.1016/j.laa.2023.09.001


B. Ćurgus, A. Dijksma / Linear Algebra and its Applications 679 (2023) 86–98 87
1. Introduction

This note is an amendment to our paper [4], in which we presented a model for a finite-
dimensional Pontryagin space (G, [ · , · ]G) in which there is defined a symmetric operator 
S without eigenvalues. The model consists of a finite-dimensional vector space Cμ of 
d-vector polynomials and the operator Sμ in Cμ of multiplication by the independent 
variable; here d = codim(domS) and μ is a d-tuple of positive integers determined by 
S, see the main Theorem 2.4 in the next section. The space Cμ is a reproducing kernel 
space with reproducing kernel defined by an invertible self-adjoint matrix Q and a matrix 
polynomial P(z) both with additional properties which are formulated in Theorem 2.1. 
The purpose of this note is to show that this model is in one-to-one correspondence with 
the pair {Q, P(z)} up to equivalence. This is what we mean by the essential uniqueness 
of the model in the title. In Theorem 2.3 we explain the equivalence relation.

In a sequel [5] to [4] and this note we apply our results to relate the resolvent set, 
the spectrum, eigenfunctions and Jordan chains of a self-adjoint extension (with finite-
dimensional exit space) of a closed symmetric linear relation S in a Krein space to 
an eigenvalue problem for S∗, the adjoint of S, with boundary conditions that depend 
polynomially on the eigenvalue parameter.

We have tried to make this note self-contained, but to avoid repetition in the proofs, 
we refer, where possible, to proofs already given in [4].

By Cd[z], d ∈ N, we denote the vector space of d-vector polynomials in z. Let μ be a 
d-tuple of positive integers: μ = (μ1, . . . , μd) with μ1 ≥ · · · ≥ μd ≥ 1. By Cμ we denote 
the subspace of Cd[z] of vector polynomials⎡⎣p1(z)

...
pd(z)

⎤⎦ with deg pj(z) < μj , j ∈ {1, . . . , d}.

Such a space will be called a canonical subspace of Cd[z]. The operator Sμ on Cμ of 
multiplication by z is an operator without eigenvalues and d = codim(domSμ). Moreover, 
Sμ is nilpotent. If m is the index of nilpotency and

δj := dim(domSj−1
μ ), j ∈ {1, . . . ,m + 1},

(so that δ1 = dimCμ and δm+1 = 0), then μ = (μ1, . . . , μd) with

μj = #
{
i ∈ {1, . . . ,m} : δi − δi+1 ≥ j

}
, j ∈ {1, . . . , d},

where #Ω stands for the number of elements in the set Ω. (In terms of notions related 
to Young diagrams, μ = Con Der δ, where δ = (δ1, . . . , δm), see [4, Section 5].)

The defect numbers of a closed symmetric operator S in a Pontryagin space (H, [ · , · ]H)
are by definition the defect numbers of the closed symmetric operator JS in the Hilbert 
space H equipped with the positive definite J-inner product [J · , · ]H, where J is an 
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arbitrary fundamental symmetry on (H, [ · , · ]H). The defect numbers are equal if and 
only if S has a self-adjoint extension A in (H, [ · , · ]H) and then their common value equals 
dim(A/S). Assume S has equal defect numbers d. Then an operator b : S∗ → C2d, where 
S∗ is the adjoint of S, is called a boundary mapping for S if b is linear, ran b = C2d and 
ker b = S. Alternatively, a linear operator b : S∗ → C2d is a boundary mapping if there 
exists a 2d × 2d matrix Q such that

[g, h]H − [f, k]H = i b({h, k})∗Qb({f, g}) for all {f, g}, {h, k} ∈ S∗. (1.1)

Q is called the Gram matrix for b and uniquely determined by b. It is invertible, self-
adjoint, and has d positive and d negative eigenvalues. If b and b̂ are boundary mappings 
for S and have Gram matrices Q and Q̂, then there is an invertible 2d × 2d matrix U
such that

Q̂ = U∗QU and b̂ = U−1b.

Indeed, applying (1.1) we obtain the equality

b({h, k})∗Qb({f, g}) = b̂({h, k})∗Q̂b̂({f, g}) for all {f, g}, {h, k} ∈ S∗. (1.2)

Define the linear relation U in C2d ×C2d by

U :=
{{

b̂
(
{f, g}

)
, b
(
{f, g}

)}
: {f, g} ∈ S∗

}
.

Since b̂ and b are boundary mappings, domU = ranU = C2d. If b̂
(
{f, g}

)
= 0, then 

{f, g} ∈ S and hence also b
(
{f, g}

)
= 0. The converse also holds. Thus kerU = kerU−1 =

{0} and U is the graph of an invertible matrix, which we also denote by U :

U b̂
(
{f, g}

)
= b

(
{f, g}

)
, {f, g} ∈ S∗.

If we substitute this in (1.2), we obtain Q̂ = U∗QU .
In the next sections, we use the following conventions. For vector functions a(z) and 

b(z), the identity a(z) ≡ b(z) stands for the proposition a(z) = b(z) for all z ∈ C. For 
m, n ∈ N we denote by Cm×n[z] the space of all matrix polynomials with coefficients 
in Cm×n. The degree of such a polynomial is −∞ if it is the zero polynomial, otherwise 
it is the highest power of z for which the corresponding matrix coefficient is nonzero. A 
square matrix polynomial is called unimodular if its determinant is a nonzero scalar. As 
already done above we write Cm[z] for Cm×1[z]. For z ∈ C by z∗ we denote the complex 
conjugate of z. Also, ∗ denotes the complex conjugate of a matrix.

2. Uniqueness of the model

The first theorem in this section gives sufficient conditions on a matrix Q and a 
matrix polynomial P(z) under which the reproducing kernel space with reproducing 
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kernel defined by (2.1) below is a canonical subspace Cμ of Cd[z] and describes–and we 
think this is new–the adjoint of and a boundary mapping for the symmetric operator 
Sμ of multiplication by the independent variable z acting on this space. For the formula 
of the adjoint in this theorem, see also [2, Theorem 6.2]; in the proof we repeat some 
arguments from [3, p. 1327].

Theorem 2.1. Let d ∈ N, let Q be an invertible self-adjoint 2d ×2d matrix with d positive 
and d negative eigenvalues and let P(z) be a d × 2d matrix polynomial whose j-th row 
has degree μj with j ∈ {1, . . . , d}. Assume that P(z) has the following properties:

(a) P(z)Q−1P(z∗)∗ = 0 for all z ∈ C.
(b) rankP(z) = d for all z ∈ C.
(c) rankP∞ = d, where P∞ := limz→∞ diag(z−μ1 , . . . , z−μd)P(z).
(d) μ1 ≥ · · · ≥ μd ≥ 1.

Then:

(i) The Pontryagin space KP with reproducing kernel

KP(z, w) = i
z − w∗ P(z)Q−1P(w)∗, z �= w∗, z, w ∈ C, (2.1)

is the canonical subspace Cμ of Cd[z] where μ = (μ1, . . . , μd).
(ii) The operator Sμ of multiplication by the independent variable is symmetric in this 

space, its defect numbers are equal to d and its adjoint is given by

S∗
μ =

{
{f, g} ∈ C2

μ : zf(z) − g(z) ≡ P(z)c for some c ∈ C2d}.
(iii) The linear relation{{

{f, g}, c
}
∈ C2

μ ×C2d : {f, g} ∈ S∗
μ and zf(z) − g(z) ≡ P(z)c

}
is the graph of an operator bμ : S∗

μ → C2d which is a boundary mapping for Sμ with 
Gram matrix Q.

The inner product in Cμ relative to which Sμ is symmetric is determined by the kernel 
(2.1). To emphasize this we sometimes write Cμ = KP or Cμ = (Cμ, KP).

Remark 2.2. In the next section, see the last sentence there, we show that the properties 
(a)-(d) of P(z) imply that ⋂

kerP(z) = {0}. (2.2)

z∈C
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This equality does not play a role in [4, Sections 10 and 11], but it is now a frequently 
used tool in the proofs that follow.

Proof of Theorem 2.1. (i) This statement is proved in [4, Theorem 10.3].
(ii) Step 1. By [3, Theorem 1.1 and its proof], Sμ is symmetric. We prove that its 

defect numbers are both equal to d. Notice that d = codim(domSμ) and that Sμ is an 
operator without eigenvalues. Let J be a fundamental symmetry on Cμ. Then according 
to [4, Lemma 3.5] JSμ has a self-adjoint operator extension B in Cμ equipped with the 
J-inner product, which implies that Sμ has equal defect numbers and A := JB is a 
self-adjoint extension of Sμ in Cμ which is also an operator. Thus domA is dense in G, 
in fact domA = Cμ, since Cμ is finite dimensional. Thus the defect numbers of Sμ are 
equal to

dim(A/Sμ) = dim
(
(domA)/(domSμ)

)
= dim

(
Cμ/(domSμ)

)
= codim(domSμ) = d.

Step 2. By [2, Remark 3.5 and Theorem 3.7], a generalized Von Neumann’s formula 
holds for Sμ:

S∗
μ = Sμ + S∗

μ ∩ w0I + S∗
μ ∩ w∗

0I +
κ∑

j=1
S∗
μ ∩ wjI,

where κ is the negative index of the Pontryagin space Cμ and the wj ’s belong to C \ R
and satisfy wj �= w∗

k for all j, k ∈ {0, . . . , κ}. Set

Lw∗ =
{
{KP ( · , w)x,w∗KP ( · , w)x} : x ∈ Cd

}
and

L = span{Lw∗ : w ∈ C}.

We show that

S∗
μ ∩ w∗I = Lw∗ for all w ∈ C. (2.3)

Let w ∈ C. First, we establish that both spaces in (2.3) have dimension d. That 
dim(S∗

μ ∩w∗I) = d follows from Lemma [4, Lemma 3.4]. To show that dimLw∗ = d, as-
sume that for some x ∈ Cd we have KP ( · , w)x = 0. This means that P(z)Q−1P(w)∗x =
0 for all z ∈ C. By equality (2.2), we have P(w)∗x = 0, and then from property (b) we 
obtain that x = 0. Hence dimLw∗ = d. Since both spaces have the same dimension, to 
prove that they coincide, it suffices to prove the inclusion Lw∗ ⊆ S∗

μ ∩ w∗I. Let x ∈ Cd

and {KP ( · , w)x, w∗KP ( · , w)x} ∈ Lw∗ . Then, by the reproducing property of the kernel 
KP , we have that for all {f, g} ∈ Sμ[

g,KP ( · , w)x
]

−
[
f, w∗KP ( · , w)x

]
=

〈
g(w), x

〉
d −

〈
wf(w), x

〉
d = 0.
KP KP C C
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Hence 
{
KP ( · , w)x, w∗KP ( · , w)x

}
∈ S∗

μ ∩ w∗I. This proves the desired inclusion and 
equality (2.3). From (2.3) and the generalized Von Neumann’s formula we obtain

S∗
μ = Sμ + L. (2.4)

Step 3. Using (2.4), we prove the equality in the theorem. Denote its right-hand side by 
Tμ. By its definition, Sμ ⊆ Tμ. Let x ∈ Cd, w ∈ C and let 

{
KP ( · , w)x, w∗KP ( · , w)x

}
∈

Lw∗ . Then

zKP (z, w)x− w∗KP (z, w)x = P(z)c with c = i Q−1P(w)∗x.

Hence Lw∗ ∈ Tμ for all w ∈ C. Consequently, Sμ+L ⊆ Tμ. To prove the reverse inclusion, 
let {f, g} ∈ Tμ. Then {f, g} ∈ C2

μ and zf(z) −g(z) ≡ P(z)c for some c ∈ C2d. By equality 
(2.2)

span
{
ranP(w)∗ : w ∈ C

}
= C2d,

and hence c can be written as a finite sum of the form

c = i Q−1
∑
w

P(w)∗cw with cw ∈ Cd. (2.5)

Define

{f1, g1} =
∑
w

{
KP ( · , w)cw, w∗KP ( · , w)cw

}
. (2.6)

Then, by (2.4), {f1, g1} ∈ L. Using (2.1), we find that {f, g} − {f1, g1} ∈ Sμ. It follows 
that {f, g} ∈ Sμ + L. Thus we have shown that Tμ ⊆ Sμ + L. Consequently, S∗

μ = Tμ.

(iii) If 
{
{f, g}, c

}
∈ C2

μ × C2d and {f, g} = 0, then P(z)c = 0 for all z ∈ C. From 
equality (2.2), it follows that c = 0. Hence, the linear relation is an operator which, as in 
the theorem, we denote by bμ. By item (ii), dom bμ = S∗

μ, ran bμ ⊆ C2d and ker bμ = Sμ. 
We show that bμ is surjective. Let c ∈ C2d and let {f1, g1} ∈ S∗

μ be defined as in the 
proof of item (ii), see (2.5) and (2.6). Then

zf1(z) − g1(z) ≡ P(z)c,

that is, bμ({f1, g1}) = c.
Finally, we prove that Q is the Gram matrix for bμ. Let {f, g}, {h, k} ∈ S∗

μ and set 
c = bμ({f, g}) and a = bμ({h, k}). Define {f1, g1} as above. Similarly, with a written as 
the finite sum

a = i Q−1
∑

P(v)∗av with av ∈ Cd,

v
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define

{h1, k1} =
∑
v

{
KP ( · , v)av, v∗KP ( · , v)av

}
.

Then {f1, g1} and {h1, k1} belong to S∗
μ and the differences

{f1, g1} − {f, g} and {h1, k1} − {h, k}

belong to Sμ. This and the reproducing property of the kernel KP imply

[g, h]KP
− [f, k]KP

= [g1, h1]KP
− [f1, k1]KP

=
∑
v,w

(v − w∗)
〈
KP (v, w)cw, av

〉
Cd

= i
∑
v,w

a∗vP(v)Q−1P(w)∗cw

= i a∗Qc

= i bμ({h, k})∗Qbμ({f, g}).

This shows that bμ is a boundary mapping for Sμ with Gram matrix Q. �
Denote by S the set of all pairs {Q, P(z)} in which Q is a self-adjoint invertible 2d ×2d

matrix with d positive and d negative eigenvalues and P(z) is a d ×2d matrix polynomial 
with the properties (a)-(d) of Theorem 2.1. We say the pairs {Q, P(z)} and {Q̂, P̂(z)}
in S are related and denote it by {Q, P(z)} ∼ {Q̂, P̂(z)}, if there exists a unimodular 
d × d matrix polynomial W(z) =

[
wjk(z)

]d
j,k=1 satisfying

degwjk(z) ≤ μj − μk for all j, k ∈ {1, . . . , d}, (2.7)

such that

P̂(z)Q̂−1P̂(w)∗ = W(z)P(z)Q−1P(w)∗W(w)∗ for all z, w ∈ C. (2.8)

Theorem 2.3.
(a) The relation ∼ is an equivalence relation on S.
(b) For {Q, P(z)} and {Q̂, P̂(z)} ∈ S the following statements are equivalent:

(i) {Q, P(z)} ∼ {Q̂, P̂(z)}.
(ii) There exists an isomorphism Ψ : (Cμ, KP) → (Cμ, KP̂) satisfying ΨSμ = SμΨ.
(iii) There exist an invertible 2d × 2d matrix V and a unimodular d × d matrix 

polynomial W(z) =
[
wjk(z)

]d
j,k=1 satisfying (2.7) such that

Q̂ = V ∗QV and P̂(z) ≡ W(z)P(z)V. (2.9)
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(c) If (i)-(iii) in (b) hold then Ψ is the operator of multiplication by W(z) and the bound-
ary mappings bμ and b̂μ associated with Sμ in the spaces (Cμ, KP) and (Cμ, KP̂)
satisfy the relation

b̂μ
(
{Wf,Wg}

)
= V −1bμ({f, g}) for all {f, g} ∈ S∗

μ,

where Wf stands for the polynomial W(z)f(z).

Proof. To prove item (a) we use [4, Theorem 6.2], which implies that there exists a 
bijection Φ : (Cμ, KP) → (Cμ, KP̂) satisfying ΦSμ = SμΦ if and only if Φ is the operator 
of multiplication by a unimodular d ×d matrix polynomial W(z) satisfying (2.7). It follows 
that if W1(z) and W2(z) are unimodular d × d matrix polynomials satisfying (2.7), then 
so are the inverse W1(z)−1 and the product W1(z)W2(z). From this, it readily follows 
that the relation ∼ is reflexive, symmetric and transitive, hence an equivalence relation.

We now prove item (b). Assume (i). Then, by (2.8),

W(z)KP(z, w)W(w)∗ = KP̂(z, w).

Since kerW(·) = {0} and by [1, Theorem 1.5.7], the operator of multiplication by W(z)
is an isomorphism from (Cμ, KP) onto (Cμ, KP̂). Clearly, it intertwines the operators 
Sμ. This proves (ii). Now assume (ii). We prove (iii) together with item (c). Since Ψ
is a bijection that intertwines the multiplication operators by z and by [4, Theorem 
6.2], there exists a matrix W(z) with the properties asserted in the theorem such that 
(Ψf)(z) = W(z)f(z), f(z) ∈ Cμ. We denote by S×

μ the adjoint of Sμ in the space 
(Cμ, KP̂). Since Ψ is an isomorphism,

S×
μ = ΨS∗

μΨ−1

or in full

S×
μ =

{
{Ψf,Ψg} : {f, g} ∈ C2

μ, zf(z) − g(z) ≡ P(z)bμ({f, g})
}

=
{
{u, v} : {u, v} ∈ C2

μ, zu(z) − v(z) ≡ W(z)P(z)bμ({Ψ−1u,Ψ−1v})
}
.

On the other hand

S×
μ =

{
{u, v} : {u, v} ∈ C2

μ, zu(z) − v(z) ≡ P̂(z)b̂μ({u, v})
}
.

Now consider the relation V in C2d defined by

V :=
{
{b̂μ({u, v}), bμ({Ψ−1u,Ψ−1v})} : {u, v} ∈ S×

μ

}
.

Since b̂μ is a boundary mapping, domV = C2d. Since Ψ−1S×
μ Ψ = S∗

μ and bμ is a bound-
ary mapping, ranV = C2d. We show that V is an operator. Indeed, if b̂μ({u, v}) = 0 for 



94 B. Ćurgus, A. Dijksma / Linear Algebra and its Applications 679 (2023) 86–98
some {u, v} ∈ S×
μ , then {u, v} ∈ Sμ and hence, since Ψ−1SμΨ = Sμ, {Ψ−1u, Ψ−1v} ∈ Sμ

which shows that bμ({Ψ−1u, Ψ−1v}) = 0. The converse also holds. Thus V defines an 
invertible 2d × 2d matrix and

bμ
(
{Ψ−1u,Ψ−1v}

)
= V b̂μ({u, v}) for all {u, v} ∈ S×

μ .

This equality and the two formulas for S×
μ imply the last two equalities in the theorem. 

It remains to prove Q̂ = V ∗QV . Since the isomorphism Ψ amounts to multiplication by 
W(z) it follows that the canonical subspace 

(
Cμ, KP̂

)
has two reproducing kernels which 

necessarily coincide:

W(z)KP(z, w)W(w)∗ = KP̂(z, w),

see [1, Theorem 1.5.7]. By writing this out, using the equality P̂(z) ≡ W(z)P(z)V and 
the fact that W(z) is invertible, we find that

P(z)
(
Q−1 − V Q̂−1V ∗)P(w)∗ = 0 for all z, w ∈ C.

Applying (2.2) we find that(
Q−1 − V Q̂−1V ∗)P(w)∗ = 0 for all w ∈ C.

Since (2.2) also implies that span {ranP (w)∗ : w ∈ C} = C2d, it follows that

Q−1 = V Q̂−1V ∗.

From this, we obtain the asserted equality. Finally the equalities for Q̂ and P̂(z) in (2.9)
imply the equality (2.8), that is, (iii) implies (i). �

The next theorem, the main theorem, provides a model for a finite-dimensional Pon-
tryagin space on which there is defined a symmetric operator without eigenvalues. The 
model is a canonical subspace Cμ together with the operator Sμ uniquely determined by 
an equivalence class in the set S. The model appeared already in [4], but the essential 
uniqueness is new.

Theorem 2.4. Let (G, [ · , · ]G) be a finite-dimensional Pontryagin space and let S be a 
symmetric operator on G without eigenvalues. Then the defect numbers of S are equal 
to d := codim(domS) and S is nilpotent. With m being the nilpotency index of S and

δj := dim(domSj−1), j ∈ {1, . . . ,m + 1}, (so that δ1 = dimG, δm+1 = 0),

let μ = (μ1, μ2, . . . , μd) be the d-tuple with entries

μj = #
{
i ∈ {1, . . . ,m} : δi − δi+1 ≥ j

}
, j ∈ {1, . . . , d}.
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Then there exist

(i) a pair {Q, P(z)} ∈ S with μj = degPj(z), where Pj(z) is the j-th row of P(z),
(ii) an isomorphism Φ : G → (Cμ, KP) with ΦS = SμΦ, where the canonical subspace 

Cμ, the multiplication operator Sμ and the kernel KP are related to {Q, P(z)} as in 
Theorem 2.1.

The pair {Q, P(z)} is unique up to equivalence in S.

Proof. That S is nilpotent follows from [4, Proposition 3.6]. A proof based on [4, Lemma 
3.5] that S has defect numbers both equal to d can be given similar to the proof that Sμ

in Theorem 2.1 has defect numbers equal to d. The remaining statements in items (i) and 
(ii) are established by [4, Theorem 11.1]. It remains to prove the essential uniqueness. 
Assume {Q̂, P̂(z)} is a pair in S for which there exists an isomorphism Φ̂ : G → (Cμ, KP̂). 
Then Ψ := Φ̂Φ−1 : (Cμ, KP) → (Cμ, KP̂) is an isomorphism satisfying with ΨSμ = SμΨ. 
Hence, by Theorem 2.3 (b) we have {Q, P(z)} ∼ {Q̂, P̂(z)}. �
3. On the kernel of P(z)

In this section, we prove Remark 2.2. We assume d ∈ N and P(z) is a nonzero d × 2d
matrix polynomial with rows Pj(z):

P(z) =

⎡⎣P1(z)
...

Pd(z)

⎤⎦ where Pj(z) ∈ C1×2d[z].

We set σj = degPj(z) ∈ {0} ∪N, j ∈ {1, . . . , d}, and define the d × 2d matrix

P∞ := lim
z→∞

diag(z−σ1 , . . . , z−σd)P(z).

We denote by p the degree of P(z). Thus p ∈ {0} ∪N. Expanding P(z) in powers of z:

P(z) = P0 + P1z + · · · + Ppz
p, Pj ∈ Cd×2d,

we associate with P(z) the (p + 1)d × 2d coefficient matrix P

P :=

⎡⎢⎢⎣
P0
P1
...
Pp

⎤⎥⎥⎦ .

Then

P(z) = [Id zId · · · zpId ]P, z ∈ C, (3.1)
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and this readily implies that

kerP =
⋂
z∈C

kerP(z) =
⋂

z∈W
kerP(z), (3.2)

whenever W ⊂ C and #W ≥ p +1. Indeed, the set on the left is contained in the set in the 
middle and the set in the middle is contained in the set on the right. To prove that the set 
on the right is contained in the set on the left, let W be a subset of C containing mutually 
different elements w0, w1, . . . , wp and define the invertible Vandermonde (p +1)d ×(p +1)d
matrix M by

M =

⎡⎢⎢⎣
Id w0Id · · · wp

0Id
Id w1Id · · · wp

1Id
...

...
. . .

...
Id wpId · · · wp

pId

⎤⎥⎥⎦ .

Then P(wk)x = 0 for all k ∈ {0, . . . , p} implies, by (3.1), MPx = 0 and hence Px = 0, 
proving (3.2).

We say that P(z) has the predictable degree property if for every 1 ×d vector polynomial 
u(z) =

[
u1(z) · · · ud(z)

]
we have

deg
(
u(z)P(z)

)
= max

{
σj + deg uj(z), j ∈ {1, . . . , d}

}
. (3.3)

The following lemma is the key to the proof of Theorem 3.2 below. It is well-known 
in system theory, specifically in convolutional coding. For proofs see [10, Theorem A.2], 
[8, Theorems 2.22 and 2.28], [9, Theorem 6.3-13] and Forney’s fundamental paper [6].

Lemma 3.1. If rankP(z) = d for some z ∈ C, then rankP∞ = d if and only if P(z) has 
the predictable degree property.

Theorem 3.2. Let Q be an invertible self-adjoint 2d × 2d matrix with d positive and d
negative eigenvalues. If P(z) has the properties

(a) P(z)Q−1P(z∗)∗ = 0 for all z ∈ C,
(b) rankP(z) = d for all z ∈ C,
(c) rankP∞ = d,

then

dim
( ⋂

z∈W
kerP(z)

)
= #

{
j ∈ {1, . . . , d} : σj = 0

}
(3.4)

for any subset W of C with #W ≥ p + 1.
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Proof. In view of (3.2) it suffices to show that

dim kerP =
d∑

j=1
max

{
0, 1 − σj

}
.

We denote by π : C2d[z] → Cd[z] and by τ : Cd[z] → C2d[z] the operators of multiplica-
tion by P(z) and T (z) := Q−1P(z∗)∗. By (b), T (z) has full rank for all z ∈ C. Therefore 
the Smith Normal Form theorem (see for example [7, Satz 6.3] or [9, Theorem 6.3-16]) 
yields the existence of a unimodular d × d matrix polynomial E(z) and a unimodular 
2d × 2d matrix polynomial F(z) such that

T (z) = F(z)
[
Id
0

]
E(z) for all z ∈ C. (3.5)

This implies that τ is injective.
It follows from (3.1) that P is the matrix representation of the restriction π|C2d of 

π to C2d with respect to the standard bases in C2d and the subspace of polynomials in 
Cd[z] of degree < p + 1. It follows that

kerP = (kerπ) ∩C2d. (3.6)

By (a) we have π ◦ τ = 0, hence ran τ ⊆ kerπ. We show that, in fact, equality holds. 
For that, consider f(z) ∈ kerπ. Then P(z)f(z) ≡ 0 and, by (a) and (b), for every z ∈ C

there exists a unique cz ∈ Cd such that f(z) = T (z)cz. From (3.5) it follows that

cz = E(z)−1 [Id 0]F(z)−1f(z),

hence cz is a polynomial in Cd[z] and f(z) ∈ ran τ . This proves the asserted equality. It 
follows that

(kerπ) ∩C2d = (ran τ ) ∩C2d. (3.7)

Now (3.6), (3.7) and the injectivity of τ imply the following chain of equalities

dim kerP = dim((ran τ ) ∩C2d)

= dim τ−1(C2d)

= dim{f(z) ∈ Cd[z] : T (z)f(z) ∈ C2d}
= dim{f(z) ∈ Cd[z] : deg(P(z∗)∗f(z)) < 1}
= dim{u(z) ∈ C1×d[z] : deg(u(z)P(z)) < 1}

=
d∑

j=1
max

{
0, 1 − σj

}
.
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The last equality follows from (c) and Lemma 3.1. Indeed, using the notation as in (3.3)
we obtain

deg(u(z)P(z)) < 1 ⇔ σj + deg uj(z) < 1 for all j ∈ {1, . . . , d}
⇔ deg uj(z) < 1 − σj for all j ∈ {1, . . . , d}.

This proves (3.4). �
In the previous section we have that degPj(z) = σj = μj ≥ 1, for all j ∈ {1, . . . , d}, 

and hence (2.2) in Remark 2.2 follows from (3.4) in Theorem 3.2.
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