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of zeros forcing P to have likewise a bottom row of zeros, and this contradicts the
invertibility of P . Thus H = I , C = P , and the equation P A = H is actually C A = I .

This argument shows at once that (i) a matrix is invertible if and only if its reduced
row echelon form is the identity matrix, and (ii) the set of invertible matrices is pre-
cisely the set of products of elementary matrices.
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Western Washington University

Bellingham, WA 98225-9063
curgus@cc.wwu.edu

VANIA MASCIONI
Ball State University

Muncie, IN 47306-0490
vdm@cs.bsu.edu

Consider the real vector space P2 of all polynomials of degree at most 2. High-school
students study the roots of the polynomials in P2, while linear algebra students study
linear transformations on P2. Is it possible to bring these two groups together to do
some joint research?

For example, a linear algebra student chooses a specific linear transformation T :
P2 → P2 and asks others to study the roots of a polynomial

p(x) = ax2 + bx + c, x ∈ R,

and the roots of its image

(T p)(x) = bx2 + cx + a, x ∈ R. (1)

Here a, b, and c are arbitrary real numbers. The students may immediately notice that
the polynomial x2 + x + 1 is unchanged by this transformation. Hence this particular
polynomial and its image have the same (complex) roots. After some “trial and error,”
a high-school student points out that the polynomial x2 + 3x + 2 has the roots −1
and −2, while its image 3x2 + 2x + 1 does not have real roots. Their next interesting
discovery is that, with v �= 1, the polynomial x2 + (v − 1)x − v has roots 1 and −v,
while its image (v − 1)x2 − vx + 1 has roots 1 and 1/(v − 1). This is curious since in
this case a polynomial and its image have one common root, namely 1.

After further study the students conclude that there doesn’t seem to be any general
simple relationship between the roots of a polynomial p and the roots of its image
T p under the linear transformation given by (1). But the obvious fact is that there are
plenty of other linear transformations on P2; will it always be the case that there is no
simple relationship between the roots? Clearly, a non-zero multiple of the identity on
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P2 does not change the roots of a polynomial, at all, and so such linear transformations
are of no big interest in this study.

In the rest of the note, instead of P2, we consider the (complex or real) vector space
Pn of all polynomials of degree at most n. To cover both cases, F stands for R if we
consider Pn as a real vector space and F stands for C if we consider Pn as a complex
vector space. For p in Pn we denote by Z(p) the set of all roots of p in F.

Inspired by the students’ investigations we ask the following question:

Is there a (non-trivial) linear transformation T from Pn to Pn such that for each
p ∈ Pn with a root in F, the polynomials p and T p have a common root?

Surprisingly, it seems that this question has not been addressed in the literature.
The first author of this note has been assigning it at various levels of linear algebra
courses. His experience is that students find it quite challenging even in the case n = 2.
Students often offer “brute force” proofs that are based on calculating the matrix for
the transformation T entry by entry.

In the next theorem we give a general answer to the above question. In the proof we
use only elementary linear algebra and Taylor polynomials.

THEOREM. Let T �= 0 be a linear transformation from Pn to Pn. Then

Z(p) ∩ Z(T p) �= ∅ for all p ∈ Pn such that Z(p) �= ∅ (2)

if and only if T is a non-zero multiple of the identity on Pn.

Proof. The “if” part of the theorem is obvious. To prove the “only if” part we
assume (2).

Let p ∈ Pn be arbitrary. To prove that T p is a constant multiple of p we choose an
arbitrary w ∈ F and evaluate (T p)(w). To this end we consider the following n + 1
polynomials in Pn

e0(x) := 1, ek,w(x) := (x − w)k, x ∈ F, k = 1, . . . , n. (3)

With notation (3), the nth degree Taylor polynomial of p at w is

p(x) = p(w)e0(x) +
n∑

k=1

p(k)(w)

k! ek,w(x), x ∈ F.

This equality provides a representation of p as a linear combination of the polynomials
in (3). Applying T to both sides of the last equality and using the linearity of T we
obtain

(T p)(x) = p(w)(T e0)(x) +
n∑

k=1

p(k)(w)

k! (T ek,w)(x), x ∈ F. (4)

Clearly, Z
(
ek,w

) = {w} �= ∅ for all k = 1, . . . , n. Therefore, by assumption (2),

∅ �= Z
(
ek,w

) ∩ Z
(
T ek,w

) = {
w

} ∩ Z
(
T ek,w

)
.

Consequently, w ∈ Z(T ek,w) and thus
(
T ek,w

)
(w) = 0 for all k = 1, . . . , n.

Now we set x = w in (4) and use the preceding n equalities to get

(T p)(w) = p(w)(T e0)(w). (5)
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Notice that w ∈ F and p ∈ Pn in (5) are arbitrary. Since the degree of the polynomial
T p ∈ Pn is less than or equal to n, if we choose p ∈ Pn to be of degree n, then (5)
implies that the degree of T e0 must be zero. That is, T e0 is a constant polynomial:
(T e0)(w) = c for all w ∈ F, and so (5) implies that T is a multiple of the identity.

Now, the next natural (but quite a bit harder) question would be the following:

Characterize those linear transformations T from Pn to Pn such that, for some
constant C > 0 and for all p ∈ Pn with Z(p) �= ∅, some zeros of polynomials p
and T p are at most “distance C apart.”

The notion itself of distance between the zero sets Z(p) and Z(T p) needs to be
clarified, of course, but this question has also been completely answered by the authors
and the results will appear in a forthcoming article [1]. A similar question was also
considered in [2].
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For thousands of years mathematicians have studied the properties of cyclic polygons—
polygons that can be circumscribed by a circle. There also exists a large number of
findings concerning cyclic product relations for polygons—products of ratios of seg-
ment lengths, as in [2] and the theorem of Menelaus (see FIGURE 1). This paper
intends to mix the two topics together, offering results reminiscent of but distinct from
those found in [4] and [6]. A product of length-ratios is the primary focus, but rather
than dealing with a single polygon we look at the interaction between a pair of cyclic
polygons.
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Figure 1 Menelaus’ theorem states |v1s1|
|s1v2| · |v2s2|

|s2v3| · |v3s3|
|s3v1| = 1

On a circle we find the vertices of a polygon V = [v1, v2, . . . , vn], where the
order of this set indicates the connection of the vertices. Instead of cutting this


