Numbers in the Sky(viewing Sculpture)

Branko Ćurgus
Department of Mathematics
Western Washington University
Bellingham, Washington, USA

Saturday, May 12, 2007

Volume 32 | Issue 4. | April 2002
 KLIPSUN
 A Western Washington University Publication

Within the metal lies a math equa-

 tion, which math professor Branko Curgus has had his students solve in the past.Klipsun, Volume 32, Issue 4, April 2002, Page 14

Within the metal lies a math equa-

 tion, which math professor Branko Curgus has had his students solve in the past. This is just one example of how those who aren't interested in art can relate to the sculptures.Klipsun, Volume 32, Issue 4, April 2002, Page 14

M

$$
1
$$

$$
0
$$

$$
\pi
$$

e

$$
i
$$

$+1=0$

The Hall of Fame of Numbers:
1

i

The number

represented as a length.

The number

represented
as an area.

Which number is represented by the white area?

Which number is represented by the sky blue area?

The number

is sky blue.

Which number is navy blue?

The number

is navy blue.

The number
$\pi_{\substack{\text { eremeented }}}$ as an area.

Compare the areas:

Compare the areas:

Compare the areas:
$\square \quad \square$

The area of the black square is
$4(1+\nu)^{2}$

The volume of the black box is

$$
4 \nu(1+\nu)^{2}
$$

Now remove the yellow cylinder. Its volume is

 $\nu \pi$

Removing the yellow cylinder.

$$
\begin{aligned}
& \text { The remaining } \\
& \text { volume is } \\
& 4 \nu(1+\nu)^{2}-\nu \pi
\end{aligned}
$$

$$
10
$$

$$
1 \otimes
$$

$$
\mid \sigma
$$

Io

This is the first building block for the Skyviewing sculpture

We need three such pieces.

Now we put them together.

Closer!

Several small pieces are missing.

This is one missing piece.

In fact, we need three of them.

Place them.

Place them.

Closer!

Now, four identical pieces are still missing.

This is one missing piece. It has a very interesting shape.

This is the missing piece.

This is the missing piece in its full glory.

\}

S

We need four MatHearts to complete the sculpture.

Place four MatHearts
in four corners.

Place four MatHearts
in four corners.

The construction is complete.

The only volume which is hard to calculate is the volume of the MatHeart.

$$
0
$$

Skyviewing Sculpture rotates

$$
\begin{gathered}
\text { Math and Art } \\
\text { joined together } \\
\text { today } \\
\text { in MatHeArt }
\end{gathered}
$$

$$
\left(1-\frac{1}{\sqrt{2}}\right)^{3}+3 \int_{0}^{\frac{1}{\sqrt{2}}}\left(1-\sqrt{1-x^{2}}\right)^{2} d x
$$

$$
\left(1-\frac{1}{\sqrt{2}}\right)^{3}+3 \int_{0}^{\frac{1}{\sqrt{2}}}\left(1-\sqrt{1-x^{2}}\right)^{2} d x
$$

$1+\sqrt{2}-\frac{3}{4} *$

