Riesz Basis for

Indefinite Sturm-Liouville Problems

Branko Ćurgus
Western Washington University
Bellingham, WA, USA

December 12, 2004

Consider boundary eigenvalue problem

$$
\ell(f)=\sum_{j=0}^{n}(-1)^{j}\left(p_{j} f^{(j)}\right)^{(j)}=\lambda r f \text { on }[-1,1]
$$

with boundary conditions of the form

$$
\begin{aligned}
\mathbf{L b}(f) & =\mathbf{0} \\
\operatorname{Mb}(f) & =\lambda \mathbf{N b}(f)
\end{aligned}
$$

Consider boundary eigenvalue problem

$$
\ell(f)=\sum_{j=0}^{n}(-1)^{j}\left(p_{j} f^{(j)}\right)^{(j)}=\lambda r f \text { on }[-1,1]
$$

with boundary conditions of the form

$$
\begin{aligned}
\mathbf{L b}(f) & =0 \\
\operatorname{Mb}(f) & =\lambda \mathbf{N b}(f)
\end{aligned}
$$

- ℓ is: regular, symmetric, bounded below, quasi-differential expression (from M. A. Naimark's book)

Consider boundary eigenvalue problem

$$
\ell(f)=\sum_{j=0}^{n}(-1)^{j}\left(p_{j} f^{(j)}\right)^{(j)}=\lambda r f \text { on }[-1,1]
$$

with boundary conditions of the form

$$
\begin{aligned}
\mathbf{L b}(f) & =\mathbf{0} \\
\operatorname{Mb}(f) & =\lambda \mathbf{N b}(f)
\end{aligned}
$$

- ℓ is: regular, symmetric, bounded below, quasi-differential expression (from M. A. Naimark's book)
- boundary conditions are self-adjoint

Consider boundary eigenvalue problem

$$
\ell(f)=\sum_{j=0}^{n}(-1)^{j}\left(p_{j} f^{(j)}\right)^{(j)}=\lambda r f \text { on }[-1,1]
$$

with boundary conditions of the form

$$
\begin{aligned}
\mathbf{L b}(f) & =0 \\
\operatorname{Mb}(f) & =\lambda \mathbf{N b}(f)
\end{aligned}
$$

- ℓ is: regular, symmetric, bounded below, quasi-differential expression (from M. A. Naimark's book)
- boundary conditions are self-adjoint
- $p_{n}>0$ and r changes sign (indefinite)

To which extend the spectral theory of this indefinite problem parallels the spectral theory for the case $r>0$?

To which extend the spectral theory of this indefinite problem parallels the spectral theory for the case $r>0$?

- the problem determines an operator A in the Krein space

$$
L_{2, r}(-1,1) \oplus \mathbb{C}_{\Delta}^{m}
$$

To which extend the spectral theory of this indefinite problem parallels the spectral theory for the case $r>0$?

- the problem determines an operator A in the Krein space

$$
L_{2, r}(-1,1) \oplus \mathbb{C}_{\Delta}^{m}
$$

- A is bounded below, definitizable, its spectrum is discrete

To which extend the spectral theory of this indefinite problem parallels the spectral theory for the case $r>0$?

- the problem determines an operator A in the Krein space

$$
L_{2, r}(-1,1) \oplus \mathbb{C}_{\Delta}^{m}
$$

- A is bounded below, definitizable, its spectrum is discrete

- There exists a Riesz basis of the form domain of A consisting of the root vectors of A.

What is the form domain $\mathcal{F}(A)$ of A ?

What is the form domain $\mathcal{F}(A)$ of A ?
$\mathcal{F}(A)$ is a subspace of $L_{2, r}(-1,1) \oplus \mathbb{C}^{m}$

It consists of vectors of the form

$$
\begin{gathered}
{\left[\begin{array}{c}
f \\
\mathbf{N}_{e} \mathbf{b}_{e}(f) \\
\mathbf{v}
\end{array}\right]} \\
f, f^{\prime}, \ldots, f^{(n-1)} \in A C[-1,1] \\
\int_{-1}^{1} p_{n}\left|f^{(n)}\right|^{2}<+\infty \\
\mathbf{D}_{e} \mathbf{b}_{e}(f)=0
\end{gathered}
$$

These results parallel the corresponding results for the case $r=1$ in
M. G. Krein,

The theory of self-adjoint extensions of semibounded Hermitian transformations and its applications. II. (Russian)

Mat. Sbornik N.S. 21(63), (1947), 365-404.

Does there exist a Riesz basis of

$$
L_{2, r}(-1,1) \oplus \mathbb{C}^{m}
$$

which consists of root vectors of A ?

Does there exist a Riesz basis of

$$
L_{2, r}(-1,1) \oplus \mathbb{C}^{m}
$$

which consists of root vectors of A ?

This is much harder question!
A. I. Parfënov in

Sibirsk. Mat. Zh. 44 (2003), 810-819
considered a special case

$$
-f^{\prime \prime}=\lambda r f \quad \text { on } \quad[-1,1]
$$

with the Dirichlet boundary conditions

$$
f(-1)=f(1)=0
$$

where r is an odd function in $L_{1}(-1,1)$ such that

$$
r>0 \quad \text { on } \quad[0,1] .
$$

Parfënov's answer:

There exists a Riesz basis of

$$
L_{2, r}(-1,1)
$$

consisting of eigenfunctions of A
if and only if

Parfënov's answer:

There exists a Riesz basis of

$$
L_{2, r}(-1,1)
$$

consisting of eigenfunctions of A
if and only if
there exist $c \geq 1$ and $\gamma>0$ such that

$$
\int_{0}^{t x} r(\xi) d \xi \leq c t^{\gamma} \int_{0}^{x} r(\xi) d \xi
$$

for all $t, x \in(0,1]$.

Let $u>1$. The function

$$
r_{u}(x)=\frac{1}{x(\ln u-\ln |x|)^{2}}, \quad x \in[-1,1] \backslash\{0\}
$$

does not satisfy the Parfënov condition, since

$$
\int_{0}^{x} r_{u}(\xi) d \xi=\frac{1}{\ln u-\ln x}, \quad x \in[0,1]
$$

The function r_{u}

No set of eigenfunctions of the problem

$$
\begin{gathered}
-f^{\prime \prime}(x)=\lambda \frac{1}{x(\ln u-\ln |x|)^{2}} f(x), \\
f(-1)=f(1)=0,
\end{gathered}
$$

forms a Riesz basis of $L_{2, r_{u}}(-1,1)$.

Does Parfënov's criteria hold true for all selfadjoint boundary conditions?

Does Parfënov's criteria hold true for all selfadjoint boundary conditions?

No!

There exists an odd function $r, r>0$ on $[0,1]$, satisfying the Parfënov condition and such that no set of eigenfunctions of the eigenvalue problem

$$
\begin{gathered}
-f^{\prime \prime}=\lambda r f \\
f(-1)+f(1)=0 \\
f^{\prime}(-1)+f^{\prime}(1)=0
\end{gathered}
$$

is a Riesz basis of $L_{2, r}(-1,1)$.

Consider a more general problem

$$
-f^{\prime \prime}+q f=\lambda r f \quad \text { on } \quad[-1,1]
$$

with
general self-adjoint boundary conditions
and
a function r which is not necessarily odd
(for simplicity I assume that $x r(x)>0$)

Theorem.

Let $\mathcal{F}(A)$ denote the form domain of A.

There exists a Riesz basis of

$$
L_{2, r}(-1,1) \oplus \mathbb{C}_{\Delta}^{m}
$$

consisting of root vectors of A
if and only if
there exists a bounded, uniformly positive operator W in the Krein space $L_{2, r}(-1,1) \oplus \mathbb{C}_{\Delta}^{m}$ such that

$$
W \mathcal{F}(A) \subset \mathcal{F}(A) .
$$

Let
$a, b \in[-1,1], \quad h_{a}, h_{b} \subset[-1,1]$
half-neighborhoods of a and b

We say that h_{a} and h_{b} are smoothly r-connected
if there exist

Let
$a, b \in[-1,1], \quad h_{a}, h_{b} \subset[-1,1]$
half-neighborhoods of a and b

We say that h_{a} and h_{b} are
smoothly r-connected
if there exist

- $\epsilon>0$,
- non-constant linear functions

$$
\alpha:[0, \epsilon] \rightarrow h_{a} \text { and } \beta:[0, \epsilon] \rightarrow h_{b}
$$

- $\rho \in H^{1}[0, \epsilon]$,
such that

Let
$a, b \in[-1,1], \quad h_{a}, h_{b} \subset[-1,1]$
half-neighborhoods of a and b

We say that h_{a} and h_{b} are

smoothly r-connected

if there exist

- $\epsilon>0$,
- non-constant linear functions

$$
\alpha:[0, \epsilon] \rightarrow h_{a} \text { and } \beta:[0, \epsilon] \rightarrow h_{b}
$$

- $\rho \in H^{1}[0, \epsilon]$,
such that
- $\alpha(0)=a$ and $\beta(0)=b$,
- $|r(\alpha(t))| \rho(t)=|r(\beta(t))|$,
- $\left|\alpha^{\prime}\right| \neq\left|\beta^{\prime}\right| \rho(0)$

Let $a \in[-1,1]$ and let $h_{a} \subset[-1,1]$ be a half-neighborhood of a.

If there exists $\nu>-1$ and $g_{1} \in C^{1}\left(h_{a}\right)$ such that

$$
r(x)=|x-a|^{\nu} g_{1}(x) \quad \text { and } \quad g_{1}(x) \neq 0, \quad x \in h_{a}
$$

then h_{a} is smoothly r-connected to itself.

Let $a \in[-1,1]$ and
let $h_{a} \subset[-1,1]$ be a half-neighborhood of a.

If there exists $\nu>-1$ and $g_{1} \in C^{1}\left(h_{a}\right)$
such that
$r(x)=|x-a|^{\nu} g_{1}(x) \quad$ and $\quad g_{1}(x) \neq 0, \quad x \in h_{a}$,
then h_{a} is smoothly r-connected to itself.
h_{a} is smoothly r-connected to h_{b} if also
$r(x)=|x-b|^{\nu} g_{2}(x) \quad$ and $\quad g_{2}(x) \neq 0, \quad x \in h_{b}$, where $g_{2} \in C^{1}\left(h_{b}\right)$

Condition at 0.

Denote by 0_{-}a generic left and by 0_{+}a generic right half-neighborhood of 0 . At least one of the four pairs of half-neighborhoods

$$
\left(0_{-}, 0_{-}\right), \quad\left(0_{-}, 0_{+}\right), \quad\left(0_{+}, 0_{-}\right), \quad\left(0_{+}, 0_{+}\right),
$$

is smoothly r-connected.

Condition at 0 .

Denote by 0_{-}a generic left and by 0_{+}a generic right half-neighborhood of 0 . At least one of the four pairs of half-neighborhoods
($0_{-}, 0_{-}$),
($0_{-}, 0_{+}$),
$\left(0_{+}, 0_{-}\right)$,
$\left(0_{+}, 0_{+}\right)$,
is smoothly r-connected.
"Slightly non-odd functions"
Let $g \in L_{1}(0,1), g>0$, e.g.,

$$
g(x)=\frac{1}{x(\ln u-\ln x)^{2}}, x \in[0,1]
$$

Let $0<v \neq 1$. Put

$$
r(x)= \begin{cases}g(x), & x \in[0,1] \\ -v g(-x), & x \in[-1,0)\end{cases}
$$

"Slightly non-odd function"

Condition at -1 .
A right half-neighborhood of -1 is smoothly r-connected to itself.

Condition at -1 .
A right half-neighborhood of -1 is smoothly r-connected to itself.

Condition at 1.
A left half-neighborhood of 1 is
smoothly r-connected to itself.

Condition at -1 .
A right half-neighborhood of -1 is
smoothly r-connected to itself.

Condition at 1.
A left half-neighborhood of 1 is
smoothly r-connected to itself.

- For λ-independent boundary conditions either of the above conditions is sufficient for Riesz-basis property of A. ("one-sided" condition)

Condition at -1 .
A right half-neighborhood of -1 is
smoothly r-connected to itself.

Condition at 1.
A left half-neighborhood of 1 is
smoothly r-connected to itself.

- For λ-independent boundary conditions either of the above conditions is sufficient for Riesz-basis property of A. ("one-sided" condition)
- If one boundary condition is λ-dependent our method, in some cases, does not allow a free choice of the condition. For example

For the problem

$$
\begin{aligned}
-f^{\prime \prime} & =\lambda r f \\
f^{\prime}(1) & =0 \\
-f^{\prime}(-1) & =\lambda f(-1)
\end{aligned}
$$

our method requires Condition at -1 for the proof of the Riesz-basis property.

If both boundary conditions are λ-dependent, then our method, in some cases, requires all the above conditions and

Mixed Condition at ± 1.

There are
two smooth r-connections between
a right half-neighborhood of -1 and
a left half-neighborhood of 1 with the connection parameters $\alpha_{j}^{\prime}, \beta_{j}^{\prime}$ and $\rho_{j}(0)$, $j=1,2$, such that

$$
\left|\begin{array}{cc}
\left|\alpha_{1}^{\prime}\right| & \left|\alpha_{2}^{\prime}\right| \\
\left|\beta_{1}^{\prime}\right| \rho_{1}(0) & \left|\beta_{2}^{\prime}\right| \rho_{2}(0)
\end{array}\right| \neq 0 .
$$

Example

For the problem

$$
\begin{aligned}
-f^{\prime \prime} & =\lambda r f \\
f^{\prime}(1) & =\lambda f(-1) \\
-f^{\prime}(-1) & =\lambda f(1)
\end{aligned}
$$

our method requires all the stated conditions to be satisfied to prove the Riesz-basis property.

For the problem

$$
\begin{aligned}
-f^{\prime \prime} & =\lambda r f \\
f^{\prime}(1) & =\lambda f(-1) \\
-f^{\prime}(-1) & =\lambda f(1)
\end{aligned}
$$

our method requires all the stated conditions to be satisfied to prove the Riesz-basis property.

Here $\Delta=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

$$
\mathcal{F}(A)=\left\{\left[\begin{array}{c}
f \\
f(-1) \\
f(1)
\end{array}\right] \in \stackrel{L_{2, r}}{\underset{\mathbb{C}_{\Delta}^{2}}{\oplus}}: \quad: f \in H^{1}[-1,1]\right\}
$$

$$
\begin{aligned}
-f^{\prime \prime} & =\lambda r f \\
f^{\prime}(1) & =\lambda f(-1) \\
-f^{\prime}(-1) & =\lambda f(1)
\end{aligned}
$$

The function

$$
r(x)= \begin{cases}-1, & x \in[-1,0) \\ 1-x, & x \in[0,1]\end{cases}
$$

does not satisfy Mixed Condition at ± 1.

Our method fails to prove the Riesz-basis property for the above problem.

