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Abstract. Let k be a field. We describe necessary and sufficient conditions

for a k-linear abelian category to be a noncommutative projective line, i.e. a

noncommutative P1-bundle over a pair of division rings over k. As an appli-
cation, we prove that P1

n, Piontkovski’s nth noncommutative projective line,

is the noncommutative projectivization of an n-dimensional vector space.
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1. Introduction

Throughout this paper, we work over a field k.

1.1. Motivation. In noncommutative algebraic geometry, the primary objects of
study are abelian categories which bear similarities to categories of coherent sheaves
over schemes. When k is algebraically closed, a classification of categories like the
category of coherent sheaves over a smooth projective curve has been achieved
[2], [29]. In the case that k is not algebraically closed, there is a general theory
of noncommutative curves due to Kussin [13], and those of genus zero have been
studied extensively [12].

In this paper, we study a notion of noncommutative projective line which special-
izes the concept of noncommutative P1-bundle due to M. Van den Bergh [36]. To
motivate it, recall that the ordinary projective line over k can be constructed as the
projectivization of a two-dimensional vector space V , i.e. P1 = P(V ) = ProjS(V ),
where S(V ) is the symmetric algebra of V . In order to construct a noncommutative
analogue of P1, we replace V by a (suitably well-behaved) bimodule M over a pair
of division rings, we replace S(V ) by Van den Bergh’s noncommutative symmetric
algebra Snc(M) (see Section 3), and we replace the category of coherent sheaves
over P(V ) by the appropriate quotient category of graded coherent right Snc(M)-
modules (see below), which we denote by Pnc(M). Although one has to make some
restrictions on M so that the category Pnc(M) is homologically well behaved (see
the statement of Theorem 4.2(5)), once these restrictions are made, Pnc(M) be-
haves in many respects like the commutative projective line. If, for example, M
has left-right dimension (2, 2) and we let Pnc(M) denote the category of finitely
generated graded right Snc(M)-modules modulo those that are eventually zero,
then the category Pnc(M) is noetherian and has many properties in common with
the commutative projective line [7]. Even if M does not have left-right dimension
(2, 2), the space Pnc(M) can still be defined but is usually not noetherian. However,
the results of this paper and [6] establish that Pnc(M) is hereditary, satisfies Serre
duality, and has the property that each of its objects is a direct sum of its torsion
part and a sum of line bundles. Motivated by these results, we refer to spaces of
the form Pnc(M) as noncommutative projective lines. Our main result (Theorem
4.2(4) and (5)) is a description of necessary and sufficient conditions on a k-linear
abelian category to be a noncommutative projective line.

Noncommutative projective lines are related to other notions of noncommutative
curve. For example, recall that Kussin defines a noncommutative curve of genus zero
to be a small k-linear noetherian, abelian, Ext-finite category C with a Serre functor
inducing the relevant form of Serre duality, an object of infinite length, and a tilting
object. The curve C is homogenous if for all simple objects S in C, Ext1

C(S,S) 6= 0.
Concrete examples of such curves are the noncommutative projective lines Pnc(M)
where D0 and D1 are division rings which are finite dimensional over k, and M is a
k-central D0−D1-bimodule of left-right dimension (1, 4) or (2, 2). In [20, Theorem
3.10] and [24, Theorem 3.1], the following converse is established:

Theorem 1.1. Every homogeneous noncommutative curve of genus zero has the
form Pnc(M) for some division rings D0 and D1 and some k-central D0 − D1-
bimodule M of left-right dimension (1, 4) or (2, 2).

The notion of noncommutative projective line we work with is broad enough to
encompass examples not described using Kussin’s definition. In particular, both
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generic fibers of noncommutative ruled surfaces not finite over their centers ([25],
[7]), and Piontkovski’s noncommutative projective lines ([26]), are noncommutative
projective lines in our sense. The first class of examples is relevant to Artin’s
conjecture [1], which loosely states that noncommutative surfaces which are infinite
over their center are birationally ruled. In this context, our main theorem specializes
to give conditions under which a category is equivalent to the generic fiber of a
noncommutative ruled surface. The second class of examples implies that many
noncommutative projective lines are non-noetherian, and leads us to work more
generally within the framework of coherent noncommutative algebraic geometry
[27]. In this framework, a noncommutative projecive line is a quotient category of
the form

Pnc(M) := cohSnc(M)/torsSnc(M)

where cohSnc(M) denotes the full subcategory of graded right Snc(M)-modules
consisting of coherent modules and torsSnc(M) is the full subcategory of cohSnc(M)
consisting of right-bounded modules.

1.2. The main theorem in the finite over k case. We now describe a special
case of our main result, the so-called finite over k case, deferring a complete state-
ment to Section 4 (Theorem 4.2). Its statement involves a collection of properties
which may or may not hold for an arbitrary sequence

L := (Li)i∈Z
of objects in an abelian k-linear category C. The properties we are interested in
are as follows: for all i ∈ Z,

• EndLi =: Di is a division ring finite-dimensional over k, and dimkDi =
dimkDi+2,
• Hom(Li,Li−1) = 0 = Ext1(Li,Li−1),
• Let li = dimDi+1 Hom(Li,Li+1). Then there is a short exact sequence

0→ Li → Llii+1 → Li+2 → 0

such that the li morphisms defining the left arrow are linearly independent
over Di+1.
• Ext1(Li,Lj) = 0 for all j ≥ i.
• for all M in C, Hom(Li,M) is a finite-dimensional Di-module.
• L is ample (see Section 2.3 for the definition of ampleness).

For example, if C is the category of coherent sheaves over P1, and O denotes the
structure sheaf on P1, then the sequence (O(i))i∈Z satisfies these conditions.

Finally, we need to introduce the following terminology regarding bimodules. We
say a bimodule over a pair of division rings is of type (m,n) with m,n nonnegative
integers if it has left-dimension m and right-dimension n or left-dimension n and
right-dimension m.

Our main theorem specializes to the following:

Theorem 1.2. (Finite over k case) The category C has a sequence L satisfying the
above six conditions if and only if

C ≡ Pnc(M)

where M is a D0−D1-bimodule of type (m,n) 6= (1, 1), (1, 2), (1, 3) such that Snc(M)
is graded right-coherent.
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The fact that noncommutative symmetric algebras are graded right-coherent has
been proven under very general hypotheses [6].

We call Theorem 1.2 the finite over k case as the rings EndLi are assumed
to be finite-dimensional over k. This hypothesis does not hold for generic fibers
of noncommutative ruled surfaces, and is not necessary in general. The cost of
removing the hypothesis is that we must then add other hypotheses to equate the
left-dimension of a bimodule over division rings with the right-dimension of its
right-dual.

As a consequence of Theorem 1.2 we show that the noncommutative projective
lines, P1

n, n ≥ 2, studied in [26] and [32], are noncommutative projective lines in
our sense. To describe this application in more detail we recall the definition of P1

n.
To this end, we need the following result of J.J. Zhang [38, Theorem 0.1]: every
connected graded regular algebra of dimension two over k generated in degree one
is isomorphic to an algebra of the form

(1-1) A = k〈x1, . . . , xn〉/(b)
where b =

∑n
i=1 xiσ(xn−i) for some graded automorphism σ of the free algebra.

Piontkovski shows that such rings are graded right-coherent [26, Theorem 4.3],
and defines P1

n to be cohprojA, where A is as above, and cohprojA denotes the
category of coherent graded right A-modules modulo those that are eventually
zero. Piontkovski then proves [26, Theorem 1.5] that this category depends only
on k and n, and that such categories share many homological properties with the
category of coherent sheaves on (commutative) P1.

Our main result allows us to deduce the following

Corollary 1.3. Let V be an n-dimensional vector space over k. Then there is an
equivalence

P1
n ≡ Pnc(V ).

This corollary explains, in some sense, P1
n’s reliance only on n and k but not on

the exact form of the relation b in (1-1).
As an immediate consequence of a corollary to Theorem 1.2 (Corollary 5.10) we

also deduce the following related result:

Corollary 1.4. The category C has a sequence L such that the six conditions above
are satisfied and Di = k for all i if and only if there is a k-linear equivalence C ≡ P1

n

for some n.

1.3. Organization of the paper. We now briefly describe the contents of this
paper. In Section 2, after recalling the definition of Z-algebras and noncommu-
tative spaces of the form ProjA for A a Z-algebra, we review basic results about
graded coherence and ampleness from [27]. In Section 3, we recall the definition of
noncommutative symmetric algebras and show, in Section 3.3, that they satisfy an
Euler exact sequence, generalizing [7, Section 3.3] and [20, Lemma 3.7 and Propo-
sition 3.8]. We then state our main result, Theorem 4.2, in Section 4. In Section
5, we study so-called linear sequences, in order to prove Theorem 4.2(1)-(4). The
argument is a refinement of the argument used to prove Theorem 1.1.

Most of the rest of the paper consists of the proof of Theorem 4.2(5), which en-
tails proving that noncommutative projective lines are homologically well-behaved.
In order to do this, we adapt the definition and study of relative local cohomol-
ogy from [21] to our context (in Section 6 and Section 7), in order to show that
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noncommutative symmetric algebras are Gorenstein. There are two fundamental
differences between the analysis in [21] and this paper: since our base is affine, the
relevant functors we study are much easier to work with. On the other hand, since
the noncommutative projective lines we study here are not noetherian, some of our
proofs involve subtleties not encountered in the noetherian setting of [21].

Finally, in Section 8, we check that the spaces P1
n satisfy the hypotheses for our

main result, allowing us to deduce Corollary 1.3.

Acknowledgement: I am grateful to the anonymous referee for their many helpful
and detailed suggestions for the improvement of this paper. Among other things,
I have included the referee’s proof of their significantly strengthened version of
Lemma 2.2(2) and (3).

2. Preliminaries

2.1. Z-algebras and ProjA. We recall the notion of a positively graded Z-algebra
and its graded modules, following [37, Section 2].

A Z-algebra is a ring A with decomposition A = ⊕i,j∈ZAij into k-vector spaces,
such that multiplication has the property AijAjk ⊂ Aik while AijAkl = 0 if j 6= k.
Furthermore, for i ∈ Z, there is a local unit ei ∈ Aii, such that if a ∈ Aij , then
eia = a = aej . A is positively graded if Aij = 0 for all i > j. In what follows,
we will abuse terminology by saying ’A is a Z-algebra’ if A is a positively graded
Z-algebra.

If A is a Z-algebra then a graded right A-module M is a right A-module together
with a decomposition M = ⊕i∈ZMi such that MiAij ⊂Mj , ei acts as a unit on Mi

and MiAjk = 0 if i 6= j.
We let GrA denote the category of graded right A-modules (with obvious notion

of homomorphism), and we note that it is a Grothendieck category (see [37, Section
2]).

Definition 2.1. We say a positively graded Z-algebra A is a connected Z-algebra,
finitely generated in degree one if

• for all i, Aii is a division ring over k for each i,
• for all i, Ai,i+1 is finite-dimensional over both Aii and Ai+1,i+1, and
• A is generated in degree one, i.e. for all i and for j ≥ i, the multiplica-

tion maps Aij ⊗ Aj,j+1 → Ai,j+1 are surjective, and for j ≥ i + 1, the
multiplication maps Ai,i+1 ⊗Ai+1,j → Aij are surjective.

We remark that either part of the third item in the definition implies the other
by associativity of multiplication in A.

Suppose A is a connected Z-algebra, finitely generated in degree one. A graded
right A-module M is right bounded if Mn = 0 for all n >> 0. We let TorsA de-
note the full subcategory of GrA consisting of modules whose elements m have
the property the right A-module generated by m is right bounded. Then the
assumption on A implies that TorsA is a Serre subcategory of GrA, and there
is a torsion functor τ : GrA → TorsA which sends a module to its largest tor-
sion submodule. Furthermore, since GrA has enough injectives, it follows that if
π : GrA→ GrA/TorsA =: ProjA is the quotient functor, then there exists a section
functor ω : ProjA→ GrA which is right adjoint to π.
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2.2. Graded coherence. We now review the basic facts about coherence from
[27] which we will need in the sequel. For the rest of Section 2, we let A denote a
Z-algebra such that

• Aii is a division ring over k for each i, and
• Aij is finite-dimensional as a left Aii-module and as a right Ajj-module.

We warn the reader that our grading convention and assumptions on A differ slightly
from those appearing in [27].

We let Pi := ⊕jAij = eiA. We say that M ∈ GrA is finitely generated if there is a
surjection P →M where P is a finite direct sum of modules of the form Pi. We say
M is coherent if it is finitely generated and if for every homomorphism f : P →M
with P a finite direct sum of Pi’s, ker f is finitely generated. We denote the full
subcategory of GrA consisting of coherent modules by cohA. By [27, Proposition
1.1], cohA is an abelian subcategory of GrA closed under extensions.

We call A graded right-coherent (or just coherent) if the right modules Pj and
Sj := Pj/Pj>j are coherent. In the case that A is a connected Z-algebra, finitely

generated in degree one, then the condition that the modules Pj are coherent implies
that A is coherent.

We let torsA denote the full subcategory of cohA consisting of right-bounded
modules. One can check that this is a Serre subcategory of cohA. If A is graded
coherent, we define

cohprojA := cohA/torsA,

which is abelian.
In the following result, which will be used in Section 7, we abuse notation by

letting π : cohA→ cohprojA denote the quotient functor.

Lemma 2.2. Suppose A is a coherent connected Z-algebra, finitely generated in
degree one. Then

(1) the inclusion functor ι : cohA→ GrA descends to an exact functor

ι : cohprojA→ ProjA,

(2) the functor ι is fully faithful,
(3) if M and N are objects in cohA such that the torsion submodules of ι(M)

and ι(N) are coherent, then the map

(2-1) Ext1
cohprojA(π(M), π(N))→ Ext1

ProjA(ι(π(M)), ι(π(N)))

induced by ι is an isomorphism of End(π(N))− End(π(M))-bimodules.

Proof. We first note that, by hypothesis, ProjA is well-defined.
By [27, Proposition 1.1], the inclusion ι : cohA → GrA makes cohA an abelian

subcategory of GrA. Furthermore, if M ∈ torsA, then ι(M) ∈ TorsA. Therefore, by
[9, Corollaire 2, p. 368], ι induces a functor ι : cohprojA→ ProjA which is exact by
[9, Corollaire 3, p. 369]. Part (1) of the lemma follows.

We next show that ι is faithful. To this end, we recall that, by definition of ι,
ι(π(M)) = π(ι(M)), and if f ∈ HomcohprojA(π(M), π(N)), then we may identify f
with a map f ′ ∈ HomcohA(M ′, N/N ′) where M ′ ⊂ M is coherent, M/M ′ ∈ torsA,
andN ′ ⊂ N is in torsA. Furthermore, by the proof of [9, Corollaire 2, p. 368], ι(f) ∈
HomProjA(π(ι(M)), π(ι(N))) corresponds to ι(f ′) ∈ HomGrA(ι(M ′), ι(N)/ι(N ′)).
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Therefore, if ι(f) = 0, it follows that π(ι(f ′)) = 0 which implies that the im-
age of ι(f ′) is torsion. Since M ′ is coherent, the image of ι(f ′) is right-bounded, so
that the image of f ′ is in torsA. It follows that π(f ′) = 0, so that f = 0.

Now we prove ι is full. Suppose an element of HomProjA(ιπ(M), ιπ(N)) corre-
sponds to a map g : M ′ → ι(N)/N ′ in GrA, where N ′ and ι(M)/M ′ are in TorsA.
We first claim that ι(M) and M ′ are equal in high degree and that M ′ is coherent.
For, since M is coherent, it is finitely generated, so that ι(M) and M ′ are equal in
high degree. Thus, by our assumptions on A, ι(M)/M ′ is coherent. It follows that
M ′ is coherent, whence the claim. Thus, without loss of generality, we may assume
ι(M) = M ′. Now suppose P is a finite direct sum of modules of the form Pi and K
is a coherent submodule of P such that ι(M) ∼= P/K. Since P is projective, g lifts
to a map g′ : P → ι(N). Furthermore, since g′(K) is the image of a map K → N
of coherent modules, g′(K) is coherent. It follows that g factors through a map
ι(M)→ ι(N)/g′(K), so comes from a morphism in cohprojA.

Finally, we prove (3). We first recall that the group Ext1
cohprojA(π(M), π(N)) is

defined as Yoneda’s extension group, while the group Ext1
ProjA(ι(π(M)), ι(π(N)))

defined in terms of injective resolutions is isomorphic to Yoneda’s extension group
as a bimodule [18, Section VII.7].

By (1), the functor ι applied to an exact sequence in cohprojA is exact in ProjA,
and hence determines an element of Ext1

ProjA(ι(π(M)), ι(π(N))). The fact that this
induces a morphism between extension groups follows immediately from functori-
ality of ι.

Since ι is exact and additive it preserves pullbacks and pushouts. It follows that
ι induces an additive function between extension groups, and that the assignment
is compatible with bimodule structures, as one can check.

Next we note that by hypothesis we may assume, without loss of generality, that
ι(M) and ι(N) are torsion-free. To prove injectivity of (2-1), suppose ι applied to
an extension

0→ π(N)→ π(P )→ π(M)→ 0

in cohprojA maps to a trivial extension in ProjA. We then have an isomorphism
ιπ(P ) → ιπ(M ⊕N) in ProjA. By part (2), the isomorphism must be induced by
an isomorphism π(P )→ π(M ⊕N), and the result follows.

Next, we prove that (2-1) is surjective. In order to simplify the exposition, we
omit the functors ι and ι. Suppose

(2-2) 0→ π(N)→ π(E)
f→ π(M)→ 0

represents an element of Ext1
ProjA(π(M), π(N)), and suppose

(2-3) 0→ KM → P →M → 0

is a finite presentation of M . Thus, P is a finite direct sum of modules of the form
Pi so that P and KM are coherent. We consider the commutative diagram in GrA

(2-4)

0−→ N −→P ⊕N−→ P −→0y φ

y yφM

0−→ωπ(N)−→ωπ(E)−→im ωf−→0

where the top row is the canonical split exact sequence, the bottom row is induced
by ω applied to (2-2), the left vertical is the adjointness map, the right vertical is
induced by the composition of the right arrow in (2-3) with the adjointness map



8 A. NYMAN

M → ωπM , and the center vertical is due to the projectivity of P . We begin by
showing that im φ is coherent. Let K = kerφ. From the kernel-cokernel exact
sequence of (2-4) we deduce that KM/K is torsion. As in the proof of (2), the fact
that KM is coherent implies that K is coherent. Thus, im φ ∼= P⊕N/K is coherent
as well.

To complete the proof of (3), we claim that the original extension (2-2) is equiv-
alent to an extension of the form

0→ π(N)→ π(imφ)→ π(M)→ 0

in ProjA, so that surjectivity of (2-1) will follow from (2). To prove the claim, let
ψ : imφ → M denote the restriction of the bottom right horizontal in (2-4) and
consider the diagram

0−→π(kerψ)−→π(imφ)−→ π(M) −→ 0y y y
0−→πωπ(N)−→πωπ(E)−→πωπ(M) −→ 0

in which the bottom row is induced by (2-2) and the verticals are induced by
inclusion. Then the left and right verticals are isomorphisms since N ⊂ kerψ ⊂
ωπ(N) and the kernel and cokernel of the adjointness map is torsion. It follows
that the center vertical is an isomorphism and the result follows in light of the fact
that πω is isomorphic to the identity functor. �

2.3. Ampleness. We let C denote a k-linear category, we let E = (Ei)i∈Z denote
a sequence of objects in C such that Hom(Ei, Ei) is a division ring, and (in this
section) we assume that for all M ∈ C, the dimension of HomC(Ei,M) is finite as
a right End(Ei)-module.

We call E
• projective if for every surjection f :M→ N in C there exists an integer n

such that HomC(E−i, f) is surjective for all i > n, and
• ample if it is projective, and if for every M ∈ C and every m ∈ Z there

exists a surjection

⊕sj=1E−ij →M

for some i1, . . . , is with ij ≥ m for all j.

We will need the following mild generalization of (part of) [27, Proposition 2.3(ii)
and Theorem 2.4], which holds by the same proof:

Theorem 2.3. If E is an ample sequence and A(E) denotes the Z-algebra with
Aij := HomC(E−j , E−i) for i ≤ j and Aij = 0 otherwise, then A(E) is coherent, and
there is an equivalence

C ≡ cohprojA(E).

3. Noncommutative symmetric algebras

Let B and C be noetherian k-algebras. In this section, following [36], we define
the noncommutative symmetric algebra of certain B − C-bimodules. Some of the
exposition is adapted from [24].
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3.1. Bimodules. We assume throughout this section that N is an B−C-bimodule
which is finitely generated projective as both a left B-module and as a right C-
module. We recall that the right dual of N , denoted N∗, is the C − B-bimodule
whose underlying set is HomC(NC , C), with action

(c · ψ · b)(n) = cψ(bn)

for all ψ ∈ HomC(NC , C), c ∈ C and b ∈ B.
The left dual of N , denoted ∗N , is the C −B-bimodule whose underlying set is

HomB(BN,B), with action

(c · φ · b)(n) = φ(nc)b

for all φ ∈ HomB(BN,B), c ∈ C and b ∈ B. This assignment extends to morphisms
between B − C-bimodules in the obvious way.

We set

N i∗ :=


N if i = 0,

(N i−1∗)∗ if i > 0,
∗(N i+1∗) if i < 0.

In general, N may not be isomorphic to N∗∗ or ∗∗N [30, Section 6.4]. Furthermore,
although N∗ (resp. ∗N) is finitely generated projective on the left (resp. finitely
generated projective on the right), it is not clear that N∗ is finitely generated
projective on the right (resp. finitely generated projective on the left). Therefore,
we make the following

Definition 3.1. We say N is admissible if N i∗ is finitely generated projective on
each side for all i ∈ Z. We say N is 2-periodic if N is admissible, N i∗ is free on
each side, and the left rank of N i∗ equals the right rank of N i+1∗.

We remark that if B and C are finite dimensional simple rings over k, then N is
automatically 2-periodic. If B and C are fields and N is of type (2, 2), then N is
2-periodic [7, Lemma 3.4]. Finally, if B = C is a perfect field and N has finite left
and right dimension, then N is 2-periodic [10, Proposition 4.3].

If B and C are division rings and N has finite left-dimension m and finite right-
dimension n, we say N has left-right dimension (m,n). In this situation, we let
ldimN denote the dimension of N over B and we let rdimN denote the dimension
of N over C.

Let

Si =

{
B if i is even, and

C if i is odd.

In what follows, all unadorned tensor products will be over Si.
We recall that, if N is admissible, then for each i, both pairs of functors

(3-1) (−⊗Si N
i∗,−⊗Si+1 N

i+1∗)

and

(3-2) (−⊗Si

∗(N i+1∗),−⊗Si+1
N i+1∗)

between the category of right Si-modules and the category of right Si+1-modules
have canonical adjoint structures.

By adjointness, Si maps to N i∗ ⊗Si+1
N i+1∗ and to ∗(N i+1∗) ⊗Si+1

N i+1∗ and
we denote its images by Qi and Q′i, respectively. If B and C are division rings, N is
2-periodic, {φ1, . . . , φn} is a right-basis for N i∗ and {φ∗1, . . . , φ∗n} is a corresponding
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left dual basis for N i+1∗, then the canonical adjointness map from Si to Qi maps
1 to

∑
i φi ⊗ φ∗i (see [20, Section 2]). In particular, the latter element is Si-central.

We will employ this fact without comment in the sequel.

3.2. The definition of Snc(M). We now recall (from [36]) the definition of the
noncommutative symmetric algebra of an admissible B-C-bimodule N . The non-
commutative symmetric algebra of N , denoted Snc(N), is the positively graded
Z-algebra ⊕

i,j∈Z
Aij with components defined as follows:

• Aii = B for i even,
• Aii = C for i odd, and
• Ai,i+1 = N i∗.

In order to define Aij for j > i+1, we introduce some notation: we define Ti,i+1 :=
Ai,i+1, and, for j > i+ 1, we define

Tij := Ai,i+1 ⊗Ai+1,i+2 ⊗ · · · ⊗Aj−1,j .

We let Ri,i+1 := 0, Ri,i+2 := Qi,

Ri,i+3 := Qi ⊗N i+2∗ +N i∗ ⊗Qi+1,

and, for j > i+ 3, we let

Rij := Qi ⊗ Ti+2,j + Ti,i+1 ⊗Qi+1 ⊗ Ti+3,j + · · ·+ Ti,j−2 ⊗Qj−2.

• For j > i+ 1, we define Aij as the quotient Tij/Rij .

Multiplication in Snc(N) is defined as follows:

• if x ∈ Aij and y ∈ Ajk, with either i = j or j = k, then xy is induced by
the usual scalar action,
• otherwise, if i < j < k, we have

Aij ⊗Ajk =
Tij
Rij
⊗ Tjk
Rjk

∼=
Tik

Rij ⊗ Tjk + Tij ⊗Rjk
.

Since Rij ⊗ Tjk + Tij ⊗Rjk is a submodule of Rik, we may define multipli-
cation Aij ⊗Ajk −→ Aik as the canonical epimorphism.

3.3. Euler sequences. In this section, we assume D0 and D1 are division rings
over k, we let M be a k-central D0 −D1-bimodule such that M is 2-periodic and
not of type (1, 1), (1, 2) or (1, 3), and we let A = Snc(M). Our main goal in this
section, Corollary 3.5, is to prove that the trivial module in GrA has the expected
resolution. We then derive some consequences, which we will need in the sequel.
We remark that if M is 2-periodic, of type (1, 1), (1, 2) or (1, 3), and Corollary 3.5
holds for A, then it is not hard to show that A degenerates so that cohprojA is
trivial.

Lemma 3.2. Let j ∈ Z and suppose M j∗ has left-right dimension (n,m) with
m ≥ 2. If v ∈M j∗ has the property that v ⊗ g ∈ Qj for some nonzero g ∈M j+1∗,
then v = 0.
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Proof. Let {φ1, . . . , φm} denote a right basis for M j∗ so that {φ∗1, . . . , φ∗m} (the
right-dual basis) is a left basis for M j+1∗. Let v =

∑
l φlal and suppose v 6= 0. We

have

(
∑
l

φl ⊗ φ∗l )c =
∑
l

φlal ⊗ g

=
∑
l

φl ⊗ alg.

Therefore, for all l, alg = φ∗l c. Since there exists an l such that al 6= 0, we have

c 6= 0. It follows that all al are nonzero. Since m ≥ 2, we thus have a−1
1 φ∗1 = a−1

2 φ∗2,
which is a contradiction. �

The following generalizes [7, Lemma 3.5]:

Proposition 3.3. Let j ∈ Z and suppose M j∗ has left-right dimension (n,m) with
m,n ≥ 2. If v ∈ Ti,j+1 has the property that v ⊗ g ∈ Ri,j+2 for some nonzero
g ∈M j+1∗, then v ∈ Ri,j+1.

Proof. Throughout the proof, we let {f1, . . . , fn} be a left basis of M j∗ so that
{∗f1, . . . ,

∗fn} (the left-dual basis) is a right basis of M j−1∗ ∼= ∗(M j∗). Similarly,
we let {φ1, . . . , φm} denote a right basis for M j∗ so that {φ∗1, . . . , φ∗m} (the right-
dual basis) is a left basis for M j+1∗.

We proceed by induction on j − i. First, if i = j, then the result follows from
Lemma 3.2.

Next, we assume j = i+ 1. If g =
∑
r brφ

∗
r , then there exists an h ∈M j−1∗ such

that
v ⊗

∑
r

brφ
∗
r − h⊗

∑
s

φs ⊗ φ∗s ∈ Ri,j+1 ⊗M j+1∗.

It follows that
vbr − h⊗ φr ∈ Ri,j+1

for all r. Thus
vbr − h⊗ φr = cr(

∑
l

∗fl ⊗ fl)

for all r. Without loss of generality, assume b1 6= 0. Then we deduce

h⊗ φ1b
−1
1 b2 + c1b

−1
1 b2(

∑
l

∗fl ⊗ fl) = h⊗ φ2 + c2(
∑
l

∗fl ⊗ fl).

Thus,

h⊗ (φ1b
−1
1 b2 − φ2) + (c1b

−1
1 b2 − c2)(

∑
l

∗fl ⊗ fl) = 0.

Since the φi are right-independent, ψ := φ1b
−1
1 b2 − φ2 6= 0. Therefore, h ⊗ ψ ∈

Ri,i+2, so that, by Lemma 3.2, h = 0. This implies that v ∈ Ri,j+1 as desired.
Now we assume j > i+ 1 and let g =

∑
r brφ

∗
r as above. Then

v ⊗ g − h⊗
∑

φs ⊗ φ∗s ∈ Ri,j+1 ⊗M j+1∗

for some h ∈ Tij so that vbr − h⊗ φr ∈ Ri,j+1 for all r. Thus, for all r, we have

vbr − h⊗ φr − hr ⊗ (
∑

∗fl ⊗ fl) ∈ Rij ⊗M j∗

for some hr ∈ Ti,j−1. Suppose, without loss of generality, that b1 6= 0. Then

(3-3) vb1 − h⊗ φ1 − h1 ⊗ (
∑

∗fl ⊗ fl) ∈ Rij ⊗M j∗
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while

(3-4) vb2 − h⊗ φ2 − h2 ⊗ (∗fl ⊗ fl) ∈ Rij ⊗M j∗.

Therefore, if we multiply (3-3) by b−1
1 b2 on the right and subtract (3-4), we deduce

that

h⊗ (φ2 − φ1b
−1
1 b2) + (h2 − h1b

−1
1 b2)⊗ (

∑
∗fl ⊗ fl) ∈ Rij ⊗M j∗.

Since φ2 − φ1b
−1
1 b2 6= 0, induction implies that h ∈ Rij , and it follows that v ∈

Ri,j+1. �

Theorem 3.4. For all i ≤ j, the canonical complex

(3-5) 0→ Aij ⊗Qj → Ai,j+1 ⊗M j+1∗ → Ai,j+2 → 0

is exact.

Proof. There are two fundamentally different cases to consider. First, if M has
left-right dimension (1, n) for n ≥ 4, then the proofs of [20, Lemma 3.7] and [20,
Proposition 3.8] still work in our context. Thus, we may suppose that M is of type
(n,m) with both n and m ≥ 2. In this case, suppose without loss of generality,
that M j∗ has left-right dimension (n,m). We show that (3-5) is exact on the left.
In order to prove this, it suffices to check that

(3-6) Ri,j+1 ⊗M j+1∗ ∩ Tij ⊗Qj = Rij ⊗Qj .

As in the proof of Proposition 3.3, we let {f1, . . . , fn} be a left basis of M j∗ so that
{∗f1, . . . ,

∗fn} (the left-dual basis) is a right basis of M j−1∗ ∼= ∗(M j∗). Similarly, we
let {φ1, . . . , φm} denote a right basis for M j∗ so that {φ∗1, . . . , φ∗m} (the right-dual
basis) is a left basis for M j+1∗.

First, we assume j = i. Then both sides of (3-6) are zero, as desired.
Next, we assume j = i+1. Suppose v⊗

∑
p φp⊗φ∗p is an element of the left-hand

side of (3-6). Then we have an equality

v ⊗
∑
p

φp ⊗ φ∗p = a(
∑
q

∗fq ⊗ fq)⊗
∑
r

arφ
∗
r

for some scalars a, a1, . . . , am, so that v ⊗ φl = aal
∑
q
∗fq ⊗ fq for all l. Without

loss of generality, we may assume φ1 = f1 so that aa1 = 0. If a = 0 then v⊗φl = 0
for all l which implies that v = 0. Otherwise, a1 = 0, so that v ⊗ f1 = 0. By
Proposition 3.3, v = 0 and the assertion follows in this case.

Now suppose j > i+ 1. If v ⊗
∑
p φp ⊗ φ∗p is in the left-hand side of (3-6), then

it is in Ri,j+1⊗M j+1∗. If we let evφq ∈ ∗(M j+1∗) denote the evaluation map, then
id⊗evφq (v⊗

∑
p φp⊗φ∗p) = v⊗φq ∈ Ri,j+1. Therefore, by Proposition 3.3, v ∈ Rij .

�

Corollary 3.5. For all k ∈ Z, multiplication in A induces an exact sequence of
Di−2 −A-bimodules

0→ Qi−2 ⊗ eiA→ Ai−2,i−1 ⊗ ei−1A→ ei−2A→ ei−2A/ei−2A≥i−1 → 0.

Proof. The only nontrivial part of the proof is to show the sequence is exact on the
left. This can be checked by counting right-dimensions, which can be deduced from
the exactness of (3-5). More precisely, one can prove, using (3-5) and induction
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on the difference of indices, that the right-dimension of Ai−2,j equals the right-
dimension of Ai,j+2, and the right-dimension of Ai−2,i−1 ⊗Ai−1,j equals the right-
dimension of Ai,j+1 ⊗ Aj+1,j+2. Using these facts, the result follows immediately
from (3-5). We leave the details to the reader. �

We will need the following result for our proof of Theorem 7.1.

Lemma 3.6. If x ∈ Ai,j+1 is such that xy = 0 for all y ∈ Aj+1,j+2, then x = 0.

Proof. If j+1 ≤ i the result is trivial, so suppose j+1 > i. If Aj+1,j+2 has left-right
dimension (n,m) with m,n ≥ 2, the result follows from Proposition 3.3. Similarly,
if Aj+1,j+2 has left-right dimension (1, n) with n ≥ 4, the result follows from [20,
Lemma 3.7].

It remains to prove the result in case Aj+1,j+2 has left-right dimension (n, 1) with
n ≥ 4. We let {φ1, . . . , φm} denote a right basis for Aj,j+1 so that {φ∗1, . . . , φ∗m}
(the right-dual basis) is a left basis for M j+1∗. Since xy = 0 for all y ∈ Aj+1,j+2,
Theorem 3.4 implies that in Ai,j+1⊗M j+1∗, x⊗φ∗1 =

∑
l zφl⊗φ∗l for some z ∈ Aij .

It follows that x = zφ1, 0 = zφ2 and 0 = zφ3. By [20, Lemma 3.7], z = 0, so that
x = 0. �

Since A is a connected Z-algebra, finitely generated in degree one, we may form
the category ProjA. As in Section 2.1, we let π : GrA→ ProjA denote the quotient
functor, and we let Ai := π(eiA). Applying π to the Euler sequence from Corollary
3.5 yields, for each i ∈ Z, an exact sequence

(3-7) 0→ Ai → Adii−1 → Ai−2 → 0

in ProjA, where di is the right-dimension of Ai−2,i−1.

Proposition 3.7. Suppose a ∈ End(Ai) is induced by left-multiplication by α ∈
Aii. Then there exist fa ∈ End(Adii−1) and a′ ∈ End(Ai−2) such that the diagram

(3-8)

0−→Ai−→Adii−1−→Ai−2−→ 0

a

y yfa ya′
0−→Ai−→Adii−1−→Ai−2−→ 0,

whose horizontals are (3-7), commutes. Moreover, a′ is induced by left-multiplication
by α ∈ Ai−2,i−2 = Aii.

Proof. We prove the existence of the desired morphisms in the graded module cate-
gory. SinceQi−2 isDi−2-central, the result follows from the fact that the morphisms
in the exact sequence from Corollary 3.5 are compatible with left-multiplication by
elements of Di−2.

�

4. Statement of the main theorem

In this section, C will denote a k-linear abelian category. Our main theorem will
involve a collection of properties describing a sequence

L := (Li)i∈Z
of objects in C. Before we describe these properties, we recall that if L and M are
objects of C and EndL =: D, then one can define an object ∗Hom(M,L)⊗DL of C
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as in [3, Section B3]. In particular, if D is a noetherian k-algebra and Hom(M,L)
is a finitely generated projective left D-module, then there is a canonical map

ηM :M→ ∗Hom(M,L)⊗D L.

The properties we are interested in are as follows: for all i ∈ Z,

(1) EndLi =: Di is a division ring with k in its center,
(2) Hom(Li,Li−1) = 0 = Ext1(Li,Li−1),
(3) Hom(Li,Li+1) is finite-dimensional as both a left Di+1-module and a right

Di-module. The left and right dimensions are denoted li and ri.
(4) There is a short exact sequence, which we call the ith Euler sequence,

0→ Li
ηLi→ ∗Hom(Li,Li+1)⊗Di+1

Li+1 → Li+2 → 0.

(5) The canonical one-to-one k-algebra map Φi : Di → Di+2 (defined in Lemma
4.5 using (4)) is an isomorphism.

(6) Ext1(Li,Lj) = 0 for all j ≥ i.
(7) There is an equality li = ri−1.
(8) For all M in C, Hom(Li,M) is a finite-dimensional right Di-module.
(9) The sequence L is ample.

Inspired by Seminaire Rudakov [31], we make the following definition.

Definition 4.1. Let C be a k-linear abelian category. A sequence of objects L :=
(Li)i∈Z in C is called a helix if it satisfies properties (1)-(9).

This terminology is also employed in [19] for a related notion.
We remark that, assuming (1) and (3) hold, property (4) is equivalent to the

following: there is a short exact sequence

0→ Li → Llii+1 → Li+2 → 0

such that the li morphisms defining the left arrow are left linearly independent.
This fact will be employed without comment in the sequel.

From the sequence L we can form the Z-algebra H with Hij = Hom(L−j ,L−i)
and with multiplication induced by composition.

We prove the following result:

Theorem 4.2. Let L denote a sequence of objects in a k-linear abelian category C.

(1) If L satisfies (1)-(5), then Hii+1 is admissible and there is a k-linear Z-
algebra homomorphism

(4-1) Snc(H01)→ H

which is an isomorphism in degrees zero and one.
(2) If L satisfies (1)-(6), then the homomorphism (4-1) is an epimorphism.
(3) If L satisfies (1)-(7), then the homomorphism (4-1) is an isomorphism, and

Hii+1 is 2-periodic and not of type (1, 1), (1, 2) or (1, 3).
(4) If the category C has a helix L, then there is a k-linear equivalence C ≡

Pnc(M) with M a 2-periodic bimodule not of type (1, 1), (1, 2) or (1, 3)
such that Snc(M) is graded coherent.

(5) If there is a k-linear equivalence C ≡ Pnc(M) with M a 2-periodic bimodule
not of type (1, 1), (1, 2) or (1, 3) such that Snc(M) is graded coherent, then
C has a helix.
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By Theorem 1.1 and Theorem 4.2, Kussin’s noncommutative curves of genus
zero [12] have helices. In addition, although the noncommutative curves studied in
[7] are noetherian, they are not noncommutative curves of genus zero in the sense
of [12] since they are not necessarily Ext-finite. Nevertheless, Theorem 4.2 implies
they also have helices.

We now describe some immediate consequences of some of these properties.

Lemma 4.3. Suppose L satisfies (1)-(4). Then for all j < i, Hom(Li,Lj) = 0.

Proof. We proceed by induction on i− j. The base case holds by (2). Now suppose
Hom(Li,Lj) = 0 for some j < i, and apply Hom(Li,−) to the j − 1th Euler
sequence. The induced sequence starts

0→ Hom(Li,Lj−1)→ Hom(Li,Lj)lj−1 .

Since the right term is zero so is Hom(Li,Lj−1), as desired. �

Lemma 4.4. Suppose L satisfies (1)-(4). Then the numbers li and ri are nonzero.

Proof. Suppose one of li or ri was equal to zero. Then Hom(Li,Li+1) = 0, so that
the ith Euler sequence would imply that Li = 0. This contradicts the fact that
End(Li) = Di. �

Lemma 4.5. Suppose L satisfies (1), (3) and (4).

(1) If a ∈ Di, then there exists a map fa ∈ End(Llii+1) such that the diagram

Li
h−→Llii+1

a

y yfa
Li−→

h
Llii+1

whose horizontal arrows are from the ith Euler sequence, commutes.
(2) The function a 7→ fa is a k-algebra homomorphism.
(3) There exists a k-algebra homomorphism

Φi : End(Li) −→ End(Li+2)

endowing Hom(Li+1,Li+2) with an End(Li) − End(Li+1)-bimodule struc-
ture.

Proof. Properties (1) and (2) follow immediately from the fact that ηLi
is natural.

For (3), we define the k-algebra homomorphism Φi : Di −→ Di+2 as follows:

given a ∈ Di, part (1) implies that we get a map fa ∈ End(Llii+1) such that the
diagram

Li
h−→Llii+1

a

y yfa
Li−→

h
Llii+1

commutes. It follows that there is a unique a′ ∈ Di+2 making the diagram

(4-2)

Llii+1−→Li+2yfa ya′
Llii+1−→Li+2
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whose horizontal arrows are those in the ith Euler sequence, commute. We define
Φi(a) := a′. The proof that Φi is a k-algebra homomorphism is routine and omitted.

�

5. Sufficiency of the helical criterion

Throughout this section, we let C denote a k-linear abelian category, and we let
L be a sequence of objects in C. We say that L is linear if it satisfies properties
(1)-(5) from Section 4. The purpose of this section is to study properties of linear
sequences and use them to prove Theorem 4.2(1)-(4). In particular, we show that
the existence of a helix in C implies that C is a noncommutative projective line.

5.1. Linear sequences.

Proposition 5.1. Suppose L is linear. If, for each i, we endow Hom(Li+1,Li+2)
with the Di − Di+1-bimodule structure from Lemma 4.5(3), then there is an iso-
morphism of bimodules

Ψi : ∗Hom(Li,Li+1) −→ Hom(Li+1,Li+2).

Proof. The map Ψi is constructed by applying Hom(Li+1,−) to the ith Euler se-
quence

0→ Li
ηLi→ ∗Hom(Li,Li+1)⊗Di+1

Li+1 → Li+2 → 0

and using a variant of [3, Proposition B3.19]. The map is an isomorphism by
property (2).

�

The following is an adaptation of [8, Proposition 2.2].

Lemma 5.2. Suppose L is linear, and suppose {h1, . . . , hli} is a left basis for
Hom(Li,Li+1). Then, under the composition

∗Hom(Li,Li+1)⊗Hom(Li,Li+1)
Ψi⊗1−→ Hom(Li+1,Li+2)⊗Hom(Li,Li+1)

−→ Hom(Li,Li+2)

whose second arrow is induced by composition, the element
∑
j
∗hj ⊗ hj goes to

zero.

Proof. As one can check, the element
∑
j
∗hj⊗hj maps to the composition of maps

in the ith Euler sequence, hence maps to zero. �

Proposition 5.3. Suppose L is linear. Then the Di+1 − Di-bimodule M :=
Hom(Li,Li+1) is admissible.

Proof. The fact that the left duals of M are finite dimensional on either side follows
immediately from Proposition 5.1. On the other hand, if N = Hom(Li−1,Li) then
Proposition 5.1 implies that M ∼= ∗N . Since N is finite-dimensional on either side
by linearity of L, the canonical map N → (∗N)∗ is an isomorphism of bimodules,
and so M∗ ∼= N . Since i is arbitrary, the result follows. �

In light of Lemma 5.2 and Proposition 5.3, the proof of the next result is similar
to the proof of [20, Proposition 3.4]. We leave the details to the interested reader.
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Proposition 5.4. Suppose L is linear, let j ∈ Z, and let M = Hom(L−(j+1),L−j).
Then, for all i ∈ Z, there is a canonical isomorphism of bimodules

Ψi : M i∗ ∼=→ Hom(L−j−(i+1),L−j−i)
where the bimodule structure on Hom(L−j−(i+1),L−j−i) is given by the appropriate
composition of maps Φl defined in Lemma 4.5(3). Furthermore,

Qi ⊂ ker(Ψi ⊗Ψi+1).

Corollary 5.5. Suppose L is linear, and let i ∈ Z. Then Hi,i+1 is admissible and
there is a k-linear Z-algebra homomorphism

(5-1) Snc(H01)→ H

which is an isomorphism in degrees zero and one.

Proof. By Proposition 5.3, Hi,i+1 is admissible. The rest of the result follows
immediately from Proposition 5.4. �

5.2. Proof of Theorem 4.2(1)-(4). In this section we retain the notation from
Section 4. Our goal is to prove Theorem 4.2(1)-(4). We begin by noting that
Theorem 4.2(1) follows from Corollary 5.5. Theorem 4.2(2) follows easily from the
next result.

Lemma 5.6. Suppose L is linear and satisfies property (6) from Section 4. Then,
for each i ∈ Z and j > i+ 1, the map

Hom(Lj−1,Lj)⊗ · · · ⊗Hom(Li,Li+1)→ Hom(Li,Lj)
induced by composition is surjective.

Proof. Let j > i + 1 and apply Hom(Li,−) to the j − 2th Euler sequence. Since

Ext1(Li,Lj−2) = 0 by property (6) of L, the induced map Hom(Li,L
lj−2

j−1 ) →
Hom(Li,Lj) is surjective. Therefore, the map

(5-2) Hom(Lj−1,Lj)⊗Hom(Li,Lj−1)→ Hom(Li,Lj)
induced by composition is surjective.

We now proceed to prove the lemma by induction on j. If j = i+ 2, surjectivity
of (5-2) implies the base case. If j > i + 2, surjectivity of (5-2) together with the
induction hypothesis implies the result. �

Proposition 5.7. If L is linear and satisfies (6) and (7), and j ∈ Z, then

(1) Hj,j+1 is 2-periodic, and
(2) Hj,j+1 is not of type (1, 1), (1, 2) or (1, 3).

Proof. To prove the first assertion, we note that Hj,j+1 is admissible by Corollary
5.5. Furthermore

ldimHi∗
j,j+1 = ldim Hom(L−j−(i+1),L−j−i)

= l−j−(i+1)

= r−j−(i+2)

= rdim Hom(L−j−(i+2),L−j−(i+1))

= rdimHi+1∗
j,j+1

where the first and last equality follow from Proposition 5.4, while the third equality
follows from property (7) of L. Therefore, Hj,j+1 is 2-periodic.
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We next show that if L satisfies properties (1)-(7), then H01 is not of type (1, 3).
By 2-periodicity of H01, it will follow that Hj,j+1 is not of type (1, 3). The rest of
the proof is similar (but easier) and omitted.

Suppose H01 is of type (1, 3). We first assume l−1 = 1 while r−1 = 3. Then by
2-periodicity of H01 and Proposition 5.4, if i has odd parity then li = 1 and ri = 3,
while if i has even parity, then li = 3 and ri = 1.

Suppose, first, that i has odd parity. Then the −ith Euler sequence has the form

0→ L−i → L−i+1 → L−i+2 → 0.

Applying Hom(L−i,−), we deduce, by property (6) of L, that

(5-3) rdim Hom(L−i,L−i+2) = 2.

Next, applying Hom(L−i,−) to the −i+ 1st Euler sequence

0→ L−i+1 → L3
−i+2 → L−i+3 → 0

and using (5-3) allows us to deduce, by property (6) of L, that

rdim Hom(L−i,L−i+3) = 3.

Similarly, rdim Hom(L−i,L−i+4) = 1 and thus rdim Hom(L−i,L−i+5) = 0. But
now applying Hom(L−i,−) to

0→ L−i+4 → L−i+5 → L−i+6 → 0.

allows us to deduce that Hom(L−i,L−i+4) is zero, a contradiction.
One obtains a similar contradiction in the case that i has even parity. �

In light of Proposition 5.7, Theorem 4.2(3) and Theorem 4.2(4) will follow from
the next

Proposition 5.8. If L is linear and satisfies (6) and (7), then the homomorphism

Snc(H01)→ H

from Corollary 5.5 is an isomorphism.
If L is a helix then the isomorphism above induces an equivalence

Pnc(H01)→ C.

Proof. To prove the first result, it suffices, by Theorem 4.2(2), to show that for all
i, j ∈ Z, the right dimension of Hij equals that of Aij := Snc(H01). By definition
of the noncommutative symmetric algebra, and by properties (2) and (4) of L, Hij

and Aij have right-dimension zero if j < i. Furthermore, by Corollary 5.5, the
result holds if j − i equals 0 or 1. Now we prove the result by induction on the
difference of indices. By properties (4) and (6) of L, we have an exact sequence of
right D−j-modules

0→ Hij → H
⊕l−i

i−1,j → Hi−2,j → 0.

On the other hand, by Corollary 3.5, we have an exact sequence of right-Ajj ∼= D−j-
modules

0→ Aij → A
⊕rdim Ai−2,i−1

i−1,j → Ai−2,j → 0

since j ≥ i + 2. Now, l−i = r−i−1 by (7), while by Proposition 5.1, l−i = r−i+1,
so that r−i−1 is the right-dimension of Hom(L−i+1,L−i+2) = Hi−2i−1. Finally, by
Proposition 5.4, Hi−2,i−1

∼= Ai−2,i−1. The first result now follows by induction.
Now we prove the second result. Suppose L is a helix. Since (8) and (9) hold,

the indicated equivalence follows from the first part and Theorem 2.3. �
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5.3. The finite over k case. We say L is finite over k if it satisfies (1) and each
Di is finite-dimensional over k.

Theorem 1.2 follows from the next

Lemma 5.9. Suppose L is finite over k and dimkDi = dimkDi+2 for all i. Suppose
further that L satisfies properties (2), (4), and (8). Then L satisfies properties (3),
(5), and (7).

Proof. By property (8), Hom(Li,Li+1) is finite-dimensional on the right. Hence, it
is finite-dimensional over k on the left and therefore finite-dimensional over Di+1

on the left so that (3) holds.
Property (5) holds since, by Lemma 4.5(3), Φi is a k-algebra injection and, by

hypothesis, dimkDi = dimkDi+2.
Finally, we check (7). Let mi denotes the dimension of Di over k. Then

rimi = limi+1

= ri+1mi+1

= li+1mi+2,

where the second equality follows from Proposition 5.1. The result follows. �

The next result follows immediately.

Corollary 5.10. Suppose L is such that End(Li) = k for all i, and satisfies (2),
(4) and (8). Then L satisfies (3), (5) and (7).

6. Internal Hom functors and their derived functors

To complete the proof of Theorem 4.2, it remains to prove Theorem 4.2(5). To
this end, we show that noncommutative projective lines are homologically well-
behaved. More specifically, in Section 7, we prove that if D0 and D1 are division
rings over k, M is a k-central D0−D1-bimodule such that M is 2-periodic and not
of type (1, 1), (1, 2) or (1, 3), then Snc(M) is Gorenstein (Corollary 7.3). This will
allow us to prove homological results about Pnc(M), Corollary 7.4, Theorem 7.5,
and Lemma 7.6 that we will need to prove Theorem 4.2(5).

In this section we will describe many of the homological preliminaries we will
need in Section 7: in Section 6.1 we recall the definition and basic properties of
the internal Hom functor introduced in [21]. Since we work here over an affine
base, the constructions in [21] simplify considerably. For this reason, and for the
convenience of the reader, we will develop the material from first principals. Next,
in Section 6.2, we study the right-derived functors of the internal Hom functor.

Throughout this section, if R is a ring, ModR will denote the category of right
R-modules. Furthermore, unless otherwise stated, A will denote a Z-algebra such
that, for all i, Aii is a division ring with k in its center. To define the internal Hom
functor, we will need the following

Definition 6.1. Let BimodA−A denote the category defined as follows:

• an object of BimodA−A is a triple

(C = {Cij}i,j∈Z, {µijk}i,j,k∈Z, {ψijk}i,j,k∈Z)

where Cij is an Aii − Ajj-bimodule and µijk : Cij ⊗ Ajk → Cik and ψijk :
Aij ⊗ Cjk → Cik are morphisms of Aii − Akk-bimodules making C both a
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graded right and left A-module such that the actions are compatible in the
usual sense.
• A morphism φ : C → D between objects in BimodA − A is a collection
{φij}i,j∈Z, where φij : Cij → Dij are morphisms of Aii − Ajj-bimodules
which respect the A−A-bimodule structure on C and D.

We omit the routine verification that BimodA−A is abelian.

6.1. Internal Hom. We begin by defining the internal Hom functor. For C an
object in BimodA−A and M an object in GrA,

• we let
HomGrA(eiC,M)

denote the right Aii-module with underlying set HomGrA(eiC,M) and with
Aii-action induced by the left action of Aii on eiC, and
• we let

HomGrA(C,M)

denote the object in GrA with ith component HomGrA(eiC,M) and with
multiplication induced by left-multiplication of A on C.

Lemma 6.2. The assignment

HomGrA(−,−) : (BimodA−A)op × GrA→ GrA

is a bifunctor in the sense of [14, Chapter 20.8]. Furthermore,

(1) for each M in GrA, there is a natural isomorphism HomGrA(A,M) ∼= M ,
and

(2) HomGrA(−,−) is left exact in each variable, and for each injective I in
GrA, HomGrA(−, I) is exact.

Proof. The fact that HomGrA(−,−) is a bifunctor follows easily from the fact that
HomGrA(−,−) is a bifunctor. The proof of the first item is routine while the second
follows from properties of HomGrA(−,−). �

If C is an object of BimodA−A, then we define two associated functors

−⊗Aii
eiC : ModAii → GrA,

and
HomGrA(eiC,−) : GrA→ ModAii.

As one can check, the pair (− ⊗Aii eiC,HomGrA(eiC,−)) has a canonical adjoint
structure. This is exploited in the proof of the following

Theorem 6.3. Suppose F is an Ajj − Aii-bimodule of finite dimension on either
side, and let F ⊗Aii eiC denote the object of BimodA−A such that

(F ⊗Aii eiC)lm =

{
F ⊗Aii

Cim if l = j

0 otherwise,

endowed with the obvious bimodule structure. Let M be an object of GrA. Then

(1) there is a natural isomorphism of ModAjj-valued functors

HomGrA(F ⊗ eiC,−) ∼= HomGrA(eiC,−)⊗Aii
F ∗,

and
(2) the functor HomGrA(F ⊗ eiA,−) : GrA→ ModAjj is exact.



AN ABSTRACT CHARACTERIZATION OF NONCOMMUTATIVE PROJECTIVE LINES 21

Proof. By adjointness, there is a canonical isomorphism

HomGrA(F ⊗ eiC,M)→ HomModAii(F,HomGrA(eiC,M))

where F is considered as an Aii-module. Furthermore, as one can check, this iso-
morphism is compatible with right Ajj-module structure. Finally, by the Eilenberg-
Watts theorem, there is a natural isomorphism

HomModAii
(F,HomGrA(eiC,M))→ HomGrA(eiC,M)⊗Aii

F ∗

of right Ajj-modules, completing the proof of the first assertion.
The proof of the second assertion follows from the first, in light of the fact that

the functor −⊗Aii F
∗ : ModAii → ModAjj is exact (see, for example, [24, Section

2.1]), and that HomGrA(eiA,−) ∼= (−)i.
�

6.2. Internal Ext. Let C ∈ BimodA−A. In this section we study the right derived
functors of HomGrA(C,−) and HomGrA(ejC,−). The fact that HomGrA(C,−) and
HomGrA(ejC,−) have right derived functors follows from Lemma 6.2(2). We denote

them by ExtiGrA(C,−) and ExtiGrA(ejC,−). We note that since taking the jth degree
part of an object of GrA is an exact functor from GrA to ModAjj , we have

(ExtiGrA(C,M))j ∼= ExtiGrA(ejC,M).

In order to state the next lemma, we need to introduce some terminology. We
say an object C of BimodA − A is left-bounded by degree l if for each i, Cij 6= 0
implies j ≥ i+ l. For n a nonnegative integer, we let A≥n denote the subobject of
A in BimodA−A given by ⊕j−i≥nAij .

Lemma 6.4. For C ∈ BimodA−A and M ∈ GrA,

(1) the sequence ExtiGrA(−,M) forms a δ-functor,
(2) if M is right-bounded by degree r and C is left-bounded by degree l, then
ExtiGrA(C,M) is right-bounded by degree r − l, and

(3) if M is right-bounded then for all j ≥ 1, the right bound of ExtjGrA(A/A≥n,M)
tends to −∞ as n→∞.

Proof. The first result follows directly from [14, Proposition 8.4, p. 810] in light of
Lemma 6.2(2).

To prove the second result, we adapt the proof of [4, Proposition 3.1(2)] to
our context. To this end, we claim that ExtiGrA(ejC,M) = 0 if and only if

ExtiGrA(ejC,M) = 0. This follows from the fact that if i∗ : ModAjj → Modk
is the restriction of scalars functor, then i∗HomGrA(ejC,−) ∼= HomGrA(ejC,−).
The claim implies that the argument in the proof of [4, Proposition 3.1(2)] may be
used to prove the second result.

The third result is the Z-algebra version of [4, Proposition 3.1(5)], and we recount
the proof for the convenience of the reader. By part (1), the functor HomGrA(−,M)
applied to the short exact sequence in BimodA−A

(6-1) 0→ A≥n → A→ A/A≥n → 0

induces a long-exact sequence. Since, by Lemma 6.2(1), HomGrA(A,−) is exact, it
thus suffices to show that, for i ≥ 0, ExtiGrA(A≥n,M) is right-bounded by r − n,
where r is the right-bound of M . This is exactly part (2) so the result follows. �
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Lemma 6.5. Suppose F is an Ajj − Aii-bimodule of finite dimension on either
side, and let F ⊗Aii

eiC denote the object of BimodA−A defined in Theorem 6.3.
If M be an object of GrA, then there is a natural isomorphism of ModAjj-valued
functors

ExtjGrA(F ⊗ eiC,−) ∼= ExtjGrA(eiC,−)⊗ F ∗.

Proof. The j = 0 case follows from Theorem 6.3(1).
By Lemma 6.4(1), and the fact that the composition of a δ-functor with an exact

functor is a δ-functor, the sequence ExtjGrA(−,M) is a δ-functor. Furthermore, for

M injective and j > 0, ExtjGrA(−,M) = 0 by Lemma 6.2(2). The result now follows
from [11, Theorem 1.3A, p. 206]. �

Suppose λ, ρ ∈ Z with λ ≤ ρ and let M ∈ GrA. We write M ⊂ [λ, ρ] if Mi

nonzero implies that λ ≤ i ≤ ρ. Similarly, suppose l, r ∈ Z with l ≤ r and let
C ∈ BimodA. We write C ⊂ [l, r] if Cij nonzero implies l ≤ j − i ≤ r. We say C is
concentrated in degree m if C ⊂ [m,m]. We let A0 denote the quotient A/A≥1 in
BimodA−A.

Lemma 6.6. Let i be a nonnegative integer, let C ∈ BimodA be such that C ⊂ [l, r],
and let M ∈ GrA be such that

ExtjGrA(A0,M) ⊂ [λ, ρ]

for all j ≥ i. Then, for j ≥ i,

ExtjGrA(C,M) ⊂ [λ− r, ρ− l].

Proof. First, assume C is concentrated in degree m. By Lemma 6.5,

ExtiGrA(C,M)n ∼= ExtiGrA(A0,M)n+m ⊗ C∗n,n+m.

Thus, since ExtjGrA(A0,M) ⊂ [λ, ρ] for j ≥ i, we have ExtjGrA(C,M) ⊂ [λ−m, ρ−m]
for j ≥ i.

Now suppose C ⊂ [l, r] and define a subobject, C ′ of C by letting enC
′ = Cn,n+r.

Then we have an exact sequence

(6-2) 0→ C ′ → C → C/C ′ → 0.

Furthermore, by construction, C/C ′ ⊂ [l, r − 1]. We now prove the result by
induction on r − l, the case r = l being proven above.

Suppose the result holds when r − l < m and let C ∈ BimodA be such that
C ⊂ [l, r], with r − l = m. The long exact sequence for HomGrA(−,M) applied to
(6-2) contains

ExtjGrA(C/C ′,M)→ ExtjGrA(C,M)→ ExtjGrA(C ′,M).

If j ≥ i, then the left module is contained in [λ − r + 1, ρ − l], whereas the right
module is in [λ− r, ρ− r], so that the assertion follows. �

For the remainder of this section, we assume A is a connected Z-algebra, finitely
generated in degree one, so that ProjA, as well as the functors π, τ, and ω, are
defined.

Lemma 6.7. There is an isomorphism of functors τ(−) ∼= lim
n→∞

HomGrA(A/A≥n,−).
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Proof. Let M ∈ GrA. By Lemma 6.2(1) the canonical map A → A/A≥n induces
an inclusion

lim
n→∞

HomGrA(A/A≥n,M)→M

natural in M . It is a routine verification to prove that the image of this map is
exactly τ(M) and the result follows easily from this. �

Theorem 6.8. Suppose that for all n ≥ 0 and all j ∈ Z, ejA/ejA≥n has a finite
resolution by objects C ∈ BimodA − A such that HomGrA(ejC,−) is exact. Let N
be a graded A-module. For j ≥ 1, we have

Rjω(π(N)) ∼= lim
n→∞

ExtjGrA(A≥n, N).

Furthermore, for i ≥ 1, the right-derived functors of τ and ω satisfy

Ri+1τ(N) ∼= Riω(π(N)),

and, for each N ∈ GrA, there is an exact sequence

0→ τN → N → ωπN → R1τN → 0,

whose central arrow is natural.

Proof. We adapt the proof of [5, Lemma 4.1.5 and Lemma 4.1.6] to our context.
We first claim, as in [5, Lemma 4.1.3], that for T ∈ GrA a torsion module, we have
Riτ(T ) = 0 for i > 0. To prove the claim, it suffices, by Lemma 6.7, to prove that

lim
n→∞

ExtiGrA(ejA/ejA≥n, T ) = 0

for i > 0 and all j. By [14, Proposition 8.2, p. 809], ExtiGrA(ejA/ejA≥n,−) can be
computed as the nth cohomology of HomGrA(−,−) applied to the finite resolution
of ejA/ejA≥n which exists by hypothesis. Therefore, the functor

lim
n→∞

ExtiGrA(ejA/ejA≥n,−)

commutes with direct limits, so that we may assume, without loss of generality,
that T is right-bounded by degree r. The claim now follows from Lemma 6.4(3).

We next claim that ωπN ∼= lim
n→∞

HomGrA(A≥n, N). To prove this, we note that

by the first claim, and by the fact that A is a connected Z-algebra, finitely generated
in degree one, we can copy the proof of [5, Lemma 4.1.4].

Now we prove the theorem. The first statement follows from the second claim,
together with the fact, proven in [5, Lemma 4.1.6], that Ri(ωπ) ∼= Riω ◦ π. The
second statement comes the long exact sequence constructed by applying

lim
n→∞

HomGrA(−, N)

to the short exact sequence (6-1). �

If D0 and D1 are division rings over k, and A = Snc(M) where M is a 2-
periodic D0-D1-bimodule over k not of type (1, 1), (1, 2) or (1, 3), then A is a
connected Z-algebra, finitely generated in degree one. Furthermore, it follows from
Corollary 3.5 and Theorem 6.3(2) that for all n ≥ 0 and all j ∈ Z, ejA/ejA≥n has
a finite resolution by objects C ∈ BimodA−A such that HomGrA(ejC,−) is exact.
Therefore, the hypotheses of Theorem 6.8 hold for A.
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7. Relative local cohomology of noncommutative symmetric
algebras

In this section we show that noncommutative symmetric algebras are Gorenstein
(Theorem 7.1), and apply this result to the computation of the right derived func-
tors of the torsion functor τ (Corollary 7.3). This allows us to compute certain
cohomology groups over Pnc(M), and these computations are used to complete the
proof of Theorem 4.2 in Section 7.2.

We assume throughout this section that D0 and D1 are division rings over k,
M is a 2-periodic D0-D1 k-central bimodule not of type (1, 1), (1, 2) or (1, 3), and
A = Snc(M).

7.1. Snc(M) is Gorenstein. By the remarks preceding Theorem 6.8, the derived
functors of HomGrA(A/A≥1,−) and HomGrA(A/A≥1,−) may be computed using
the Euler sequence from Corollary 3.5. This fact will be utilized in the proof of the
next

Theorem 7.1. Let i ≥ 0 and let l and j be integers. Then

ExtiGrA(A/A≥1, elA) = 0 for i 6= 2

and

Ext2GrA(A/A≥1, elA)j ∼=

{
Al−2,l−2 if j = l − 2,

0 otherwise.

Proof. By the comment preceding the theorem, we may compute

ExtiGrA(A/A≥1, elA)m

by taking the cohomology of the sequence
(7-1)

HomGrA(emA, elA)
d0→ HomGrA(Am,m+1⊗em+1A, elA)

d1→ HomGrA(Qm⊗em+2A, elA)

coming from the application of HomGrA(−, elA) to the truncation of the exact
sequence

Qm ⊗ em+2A→ Am,m+1 ⊗ em+1A→ emA

from Corollary 3.5. In particular, we have

Ext0GrA(A/A≥1, elA)m = ker d0,

Ext1GrA(A/A≥1, elA)m =
ker d1

im d0
,

Ext2GrA(A/A≥1, elA)m =
HomGrA(Qm ⊗ em+2A, elA)

im d1

and ExtiGrA(A/A≥1, elA)m = 0 for i > 2.
If m < l − 2 it follows from Theorem 6.3 that all terms in (7-1) are zero so that

the indicated groups are zero. Similarly, if m = l − 2, the first two terms of (7-1)
vanish. Therefore, Ext0GrA(A/A≥1, elA)l−2 = Ext1GrA(A/A≥1, elA)l−2 = 0 and

Ext2GrA(A/A≥1, elA)l−2
∼= All = Al−2,l−2

by Theorem 6.3. Therefore, to establish the theorem, we must prove that the
sequence (7-1) is exact for m > l − 2.
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We first show ker d0 = 0. If m = l − 1, this holds since the left-most term of
(7-1) is zero. Next, suppose f : emA→ elA, and let

µ : Am,m+1 ⊗ em+1A→ emA

denote multiplication. If m = l, then either f = 0 or f is an isomorphism. In the
latter case, since multiplication µ is nonzero, d0(f) 6= 0. Therefore, the result holds
in this case. Thus, we suppose m > l. If d0(f) = 0, then since µ is surjective in
degree ≥ m+ 1, it suffices to show that if f is left-multiplication by x ∈ Alm, then
xy = 0 for all y ∈ Am,m+1 implies that x = 0. This follows from Lemma 3.6.

Next, we prove that if m > l − 2, then ker d1 = im d0. It suffices to prove that
ker d1 ⊂ im d0. Suppose g : Am,m+1 ⊗ em+1A → elA is in ker d1. Then g has a
factorization

Am,m+1 ⊗ em+1A
µ→ (emA)≥m+1

f→ elA.

Thus, to complete the proof of the result in this case, we must show that f extends
to a right A-module map f̃ : emA → elA. Suppose x1, . . . , xn is a right basis for
Am,m+1 with associated right duals x∗1, . . . , x

∗
n ∈ Am+1,m+2. Then∑

p

f(xp)x
∗
p = f(

∑
p

xpx
∗
p)

= 0.

It thus follows from Theorem 3.4 that
∑
p f(xp) ⊗ x∗p ∈ Al,m+1 ⊗ Am+1,m+2 is an

element of the image of Alm ⊗ Qm under the left map of (3-5). Therefore, there

exists a y ∈ Alm such that, for all p, f(xp) = yxp. We let f̃ be defined by f̃(1) = y,

so that f̃ extends f as desired.
Finally, we prove that if m > l−2, then im d1 = HomGrA(Qm⊗em+2A, elA). To

this end, given a right A-module morphism f : Qm ⊗ em+2A→ elA, we must show

that it factors as Qm⊗em+2A→ Am,m+1⊗em+1A
g→ elA. With the notation as in

the previous paragraph, we note that f(
∑
p xp⊗x∗p⊗1) is in Al,m+2 so has the form∑

p ypx
∗
p for some y1, . . . , yn ∈ Al,m+1. We define g by letting g(xp ⊗ 1) = yp. �

Corollary 7.2. If n ≥ 1 and M is in GrA, then ExtiGrA(A/A≥n,M) = 0 for i > 2

and ExtiGrA(A/A≥n, elA) = 0 for i 6= 2.

Proof. We prove the result by induction on n. When n = 1, the first result follows
from the remark immediately preceding Theorem 7.1, while the second result follows
from Theorem 7.1.

For the general case, we note that, by Lemma 6.4(1), the exact sequence

0→ A≥n/A≥n+1 → A/A≥n+1 → A/A≥n → 0

in BimodA induces a long exact sequence, of which

ExtiGrA(A/A≥n,M)→ ExtiGrA(A/A≥n+1,M)→ ExtiGrA(A≥n/A≥n+1,M)

is a part. If i > 2 the left term is zero by induction while the right term is zero
by Lemma 6.5 and induction. Therefore, the center is zero in this case. If i = 0 or
i = 1 and M = elA, the same reasoning ensures that the center is zero. �

Corollary 7.3. Suppose M is an object of GrA.

(1) For i > 2,

Riτ(M) = 0.



26 A. NYMAN

(2) For i 6= 2

Riτ(elA) = 0.

(3)

(R2τ(elA))l−2−i =

{
A∗l−2−i,l−2 if i ≥ 0

0 otherwise

Proof. By Lemma 6.7 and the fact that GrA has exact direct limits, the first two
results follow directly from Corollary 7.2.

To prove (3), we prove two preliminary results. We first claim that

Ext2GrA(A/A≥n+1, elA) ⊂ [l − 2− n, l − 2].

To this end, we note that, by Corollary 7.2, the sequence

0→ A≥n/A≥n+1 → A/A≥n+1 → A/A≥n → 0

induces an exact sequence
(7-2)
0→ Ext2GrA(A/A≥n, elA)→ Ext2GrA(A/A≥n+1, elA)→ Ext2GrA(A≥n/A≥n+1, elA)→ 0.

If n = 1 in (7-2), then the claim follows from Lemma 6.6, Theorem 7.1 and Lemma
6.5. The general case follows from the induction hypotheses and (7-2).

We next claim that Ext2GrA(A/A≥n+1, elA)l−2−n ∼= A∗l−2−n,l−2. To prove this,
we note that when n = 0, the claim follows from Theorem 7.1. For n > 0,

Ext2GrA(A/A≥n+1, elA)l−2−n ∼= Ext2GrA(A≥n/A≥n+1, elA)l−2−n
∼= A∗l−2−n,l−2

where the first isomorphism follows from the first claim and (7-2), while the second
isomorphism follows from the n = 0 case and Lemma 6.5.

Finally, we prove (3). We have

(R2τ(elA))l−2−i ∼= lim
n→∞

Ext2GrA(A/A≥n, elA)l−2−i

∼= Ext2GrA(A/A≥i+1, elA)l−2−i
∼= A∗l−2−i,l−2,

where the first isomorphism is from Lemma 6.7, the second isomorphism follows
from the first claim, and the third isomorphism follows from the second claim. �

For the rest of Section 7, in addition to our previous assumptions on A,

• we assume A is coherent,
• for each i ∈ Z, we let Ai denote π(eiA) ∈ cohprojA, and
• if ι : cohprojA → ProjA is the functor defined in Lemma 2.2, we abuse

notation by letting Ai denote ι(π(eiA)).

For the next two results, we use the fact that there are isomorphisms

HomProjA(Aj , π(−)) ∼= HomGrA(ejA,ωπ(−))
∼= (ωπ(−))j .

Corollary 7.4. There are isomorphisms of EndAi − EndAj-bimodules

ExtqcohprojA(Aj ,Ai) ∼=

{
Aij if q = 0

A∗j,i−2 if q = 1
.
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Proof. If q = 0, 1, there are isomorphisms of EndAj − EndAi-bimodules

ExtqcohprojA(Aj ,Ai) ∼= ExtqProjA(Aj ,Ai)
by Corollary 7.3 and Lemma 2.2. In addition, by the remark preceding the corollary,
for q = 0, 1 there are isomorphisms

ExtqcohprojA(Aj ,Ai) ∼= (Rqω(Ai))j .

Furthermore, by Corollary 7.3(2), τ(elA) = R1 τ(elA) = 0. Thus, by Theorem 6.8,

HomcohprojA(Aj ,Ai) ∼= Aij ,

and, by Theorem 6.8 and Corollary 7.3(3),

Ext1
cohprojA(Aj ,Ai) ∼= (R2 τ(eiA))j

∼= A∗j,i−2.

�

We now prove a generalization of Serre vanishing [22, Theorem 3.5(2)].

Theorem 7.5. If M is a coherent object of GrA,

Ext1
ProjA(Ai, π(M)) = 0

whenever i >> 0.

Proof. By the remark preceding Corollary 7.4, there is an isomorphism

Ext1
ProjA(Ai, πM)→ R1ω(π(M))i.

By Theorem 6.8, the right-hand side is isomorphic to (R2τM)i. Since R3τ = 0 by
Corollary 7.3(1), it suffices, by considering a presentation of M , to show that, for
any j, (R2τejA)i = 0 for i >> 0. This follows immediately from Corollary 7.3. �

Lemma 7.6. If M is coherent, then (RiτM)j and (Riω(π(M))j are finite-dimensional
over Ajj for all i ≥ 0.

Proof. We first show that (RiτM)j is finite-dimensional over Ajj for all i ≥ 0. By
Corollary 7.3(2) and (3), the result holds when M ∼= ei1A ⊕ · · · ⊕ einA. Next, we
note that M coherent implies that there is a short exact sequence in GrA

0→ R→ ⊕l∈IelA→M → 0

where I is finite and R is coherent. Therefore, by Corollary 7.3(1), the first result
follows from descending induction on i as in the proof of [22, Lemma 3.2].

The second part of the lemma follows from the first part and Theorem 6.8. �

7.2. Proof of Theorem 4.2(5).

Theorem 7.7. The sequence (A−i)i∈Z in cohprojA is a helix.

Proof. Properties (1), (2), (3), and (6) follow immediately from Corollary 7.4, while
property (7) follows from the fact that A01 is 2-periodic. Property (4) follows from
(3-7) since the right-dimension of A−i−2,−i−1 equals the left-dimension of A−i−1,−i.
Property (5) follows from Proposition 3.7.

Next, we check property (8). By the remark preceding Corollary 7.4, there are
Ajj-vector space isomorphisms

HomProjA(Aj , πM) ∼= HomGrA(ejA,ωπM) ∼= (ωπM)j .
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Therefore, property (8) follows from Lemma 2.2(2) and Lemma 7.6.
It remains to check property (9). We first show the indicated sequence is pro-

jective in the sense of Section 2.3. To this end, we first claim that if f : N → M
is an epimorphism in cohprojA and N is a finite direct sum of modules of the
form Al, then there exists an n such that HomcohprojA(Ai, f) is surjective for all
i > n. By [9, Corollaire 1, p. 368] and Corollary 7.3(2), we may assume that
ker f = πK where ι(K) is torsion-free. By applying HomcohprojA(Ai,−) to this
sequence, the claim is reduced to showing that there exists an n such that for all
i > n, Ext1

cohprojA(Ai, π(K)) = 0. This last fact follows from Theorem 7.5 and
Lemma 2.2(3).

For the general case, we use the fact that there is an epimorphism from a fi-
nite direct sum of modules of the form Ai to N , which induces an epimorphism,
g, to M. The claim then implies that there is some n such that for all i > n,
HomcohprojA(Ai, g) is surjective, which then implies that HomcohprojA(Ai, f) is sur-
jective, as desired.

Finally, the fact that our sequence is ample follows from the definition of coher-
ence and property (4). �

8. An application

In this section we confirm the P1
n has a helix L. Corollary 1.3 follows as an

immediate consequence. Throughout the section, we let

A = k〈x1, . . . , xn〉/(b),
where xi has degree one for all i, and b =

∑n
i=1 xiσ(xn−i) for some graded automor-

phism σ of the free algebra. Since A is coherent by [26, Theorem 4.3], cohprojA is
abelian, and cohprojA is k-linear by [3, Proposition B8.1]. For j ∈ Z, we let [j] de-
note the shift functor on GrA, so that M [j]i := Mi+j . We let π : cohA→ cohprojA
denote the quotient functor, and we define

Li := π(A[i]).

By [26, Proposition 5.1(2)], Hom(L−1,L0) ∼= A1, and is thus an n-dimensional
vector space over k. Furthermore, by the proof of [26, Proposition 5.1(2)], EndLi =
k. Therefore, by Corollary 5.10, it suffices to confirm properties (2), (4), (6), (8)
and (9) of L. By the proof of [26, Proposition 5.1(2)], the first equality of (2) holds.
By [26, Proposition 1.5(b)], P1

n satisfies Serre duality (see [32, Section 1.3] for the
exact form of the duality). The second part of (2), as well as property (6), follows
from duality. Property (4) follows from [32, Section 1.9]. Property (8) follows
from [26, Proposition 5.1(3)]. Finally, property (9) is observed at the end of the
statement of [26, Proposition 5.1].
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