Species and noncommutative projective lines over non-algebraic bimodules

Adam Nyman (Joint work with Daniel Chan)

Western Washington University

January 9, 2016

The Kronecker Algebra
$K=$ field, $V:=K x \oplus K y$
The Kronecker Algebra \wedge

$$
\Lambda=\left(\begin{array}{cc}
K & V \\
0 & K
\end{array}\right)
$$

The Kronecker Algebra
$K=$ field, $V:=K x \oplus K y$
The Kronecker Algebra \wedge

$$
\Lambda=\left(\begin{array}{ll}
K & V \\
0 & K
\end{array}\right)
$$

(Right) \wedge-module

The Kronecker Algebra
$K=$ field, $V:=K x \oplus K y$
The Kronecker Algebra \wedge

$$
\Lambda=\left(\begin{array}{cc}
K & V \\
0 & K
\end{array}\right)
$$

(Right) \wedge-module

$\left(N_{0}, N_{1}\right)$ and $x, y \in \operatorname{Hom}_{K}\left(N_{0}, N_{1}\right) w / m u l t$

$$
\left(n_{0}, n_{1}\right) \cdot\left(\begin{array}{cc}
a & c x+d y \\
0 & b
\end{array}\right):=\left(n_{0} a, n_{0} c x+n_{0} d y+n_{1} b\right)
$$

The Kronecker Algebra
$K=$ field, $V:=K x \oplus K y$
The Kronecker Algebra \wedge

$$
\Lambda=\left(\begin{array}{ll}
K & V \\
0 & K
\end{array}\right)
$$

(Right) Λ-module

(N_{0}, N_{1}) and $x, y \in \operatorname{Hom}_{K}\left(N_{0}, N_{1}\right) \mathrm{w} / \mathrm{mult}$

$$
\begin{aligned}
\left(n_{0}, n_{1}\right) \cdot\left(\begin{array}{cc}
a & c x+d y \\
0 & b
\end{array}\right) & :=\left(n_{0} a, n_{0} c x+n_{0} d y+n_{1} b\right) \\
& \longleftrightarrow
\end{aligned}
$$

$\left(N_{0}, N_{1}\right)$ w/linear map $N_{0} \otimes_{K} V \rightarrow N_{1}$

The Kronecker Algebra
$K=$ field, $V:=K x \oplus K y$
The Kronecker Algebra \wedge

$$
\Lambda=\left(\begin{array}{ll}
K & V \\
0 & K
\end{array}\right)
$$

(Right) Λ-module

$\left(N_{0}, N_{1}\right)$ and $x, y \in \operatorname{Hom}_{K}\left(N_{0}, N_{1}\right) \mathrm{w} /$ mult

$$
\left(n_{0}, n_{1}\right) \cdot\left(\begin{array}{cc}
a & c x+d y \\
0 & b
\end{array}\right):=\left(n_{0} a, n_{0} c x+n_{0} d y+n_{1} b\right)
$$

$\left(N_{0}, N_{1}\right)$ w/linear map $N_{0} \otimes_{K} V \rightarrow N_{1}$ Notation: $N_{0} \xrightarrow[y]{x} N_{1}$

Indecomposable \wedge-modules

Indecomposable ^-modules

If $a, b \in K$ not both zero,

$$
K \xrightarrow[b]{\stackrel{a}{\longrightarrow}} K
$$

is indecomposable.

Indecomposable ^-modules

If $a, b \in K$ not both zero,

$$
K \xrightarrow[b]{\stackrel{a}{\longrightarrow}} K
$$

is indecomposable. If $c \neq 0$, then isomorphic to

$$
K \xrightarrow[c b]{\stackrel{c a}{\longrightarrow}} K
$$

Indecomposable Λ-modules

If $a, b \in K$ not both zero,

$$
K \xrightarrow[b]{\stackrel{a}{\longrightarrow}} K
$$

is indecomposable. If $c \neq 0$, then isomorphic to

$$
K \xrightarrow[c b]{\stackrel{c a}{\longrightarrow}} K
$$

Heuristic

Points of $\mathbb{P}(V) \rightarrow$ Indecomposable Λ-modules

Beilinson's Theorem

Theorem (Beilinson 1978)

The functor $R H o m(\mathcal{O} \oplus \mathcal{O}(1),-)$ gives an equivalence

$$
D^{b}(\operatorname{coh} \mathbb{P}(V)) \rightarrow D^{b}(\bmod \Lambda)
$$

Beilinson's Theorem

Theorem (Beilinson 1978)

The functor $\mathrm{RHom}(\mathcal{O} \oplus \mathcal{O}(1),-)$ gives an equivalence

$$
D^{b}(\operatorname{coh} \mathbb{P}(V)) \rightarrow D^{b}(\bmod \Lambda)
$$

Consequence
Indecomposables in $\operatorname{coh} \mathbb{P}(V) \longleftrightarrow$ Indecomposables in $\bmod \Lambda$

Beilinson's Theorem

Theorem (Beilinson 1978)

The functor $\mathrm{RHom}(\mathcal{O} \oplus \mathcal{O}(1),-)$ gives an equivalence

$$
D^{b}(\operatorname{coh} \mathbb{P}(V)) \rightarrow D^{b}(\bmod \Lambda)
$$

Consequence

Indecomposables in cohP $(V) \longleftrightarrow$ Indecomposables in $\bmod \Lambda$

Remark

- indecomp. vector bundles \longleftrightarrow modules of dimension type $(a, b),|a-b|=1$.
- indecomp. torsion modules \longleftrightarrow modules of dimension type (n, n)

Bimodule Species

Definition

K_{0}, K_{1} fields (with char $\neq 2$), $V=K_{0}-K_{1}$-bimodule with left-right dimension two. The bimodule species corresponding to V is the algebra

$$
\Lambda(V):=\left(\begin{array}{cc}
K_{0} & V \\
0 & K_{1}
\end{array}\right)
$$

Bimodule Species

Definition

K_{0}, K_{1} fields (with char $\neq 2$), $V=K_{0}-K_{1}$-bimodule with left-right dimension two. The bimodule species corresponding to V is the algebra

$$
\Lambda(V):=\left(\begin{array}{cc}
K_{0} & V \\
0 & K_{1}
\end{array}\right)
$$

$\Lambda(V)$-modules

Bimodule Species

Definition

K_{0}, K_{1} fields (with char $\neq 2$), $V=K_{0}-K_{1}$-bimodule with left-right dimension two. The bimodule species corresponding to V is the algebra

$$
\Lambda(V):=\left(\begin{array}{cc}
K_{0} & V \\
0 & K_{1}
\end{array}\right)
$$

$$
\Lambda(V) \text {-modules }
$$

$\left(N_{0}, N_{1}\right)$ w/ K_{1}-linear map $N_{0} \otimes_{K_{0}} V \rightarrow N_{1}$

Bimodule Species

Definition

K_{0}, K_{1} fields (with char $\neq 2$), $V=K_{0}-K_{1}$-bimodule with left-right dimension two. The bimodule species corresponding to V is the algebra

$$
\Lambda(V):=\left(\begin{array}{cc}
K_{0} & V \\
0 & K_{1}
\end{array}\right)
$$

$\Lambda(V)$-modules

$\left(N_{0}, N_{1}\right)$ w/ K_{1}-linear map $N_{0} \otimes_{K_{0}} V \rightarrow N_{1}$

Question

What are the indecomposable $\Lambda(V)$-modules?

Ringel's Results

Definition

V algebraic if there is subfield k of K_{0} and K_{1} which acts centrally on V and such that K_{i} / k is finite.

Ringel's Results

Definition

V algebraic if there is subfield k of K_{0} and K_{1} which acts centrally on V and such that K_{i} / k is finite.

Ringel classifies indecomposables of $\Lambda(V)$ in the algebraic case and in the non-simple non-algebraic case.

Ringel's Results

Definition

V algebraic if there is subfield k of K_{0} and K_{1} which acts centrally on V and such that K_{i} / k is finite.

Ringel classifies indecomposables of $\Lambda(V)$ in the algebraic case and in the non-simple non-algebraic case.

Theorem (Ringel 1976)

Suppose V is non-simple.

Ringel's Results

Definition

V algebraic if there is subfield k of K_{0} and K_{1} which acts centrally on V and such that K_{i} / k is finite.

Ringel classifies indecomposables of $\Lambda(V)$ in the algebraic case and in the non-simple non-algebraic case.

Theorem (Ringel 1976)

Suppose V is non-simple.

- \exists ! indecomposable of dim. type (a, b) for each pair with $|a-b|=1$.

Ringel's Results

Definition

V algebraic if there is subfield k of K_{0} and K_{1} which acts centrally on V and such that K_{i} / k is finite.

Ringel classifies indecomposables of $\Lambda(V)$ in the algebraic case and in the non-simple non-algebraic case.

Theorem (Ringel 1976)

Suppose V is non-simple.

- \exists ! indecomposable of dim. type (a, b) for each pair with $|a-b|=1$.
- All others have type (n, n). They form category equivalent to

$$
T \times F
$$

T uniserial w/ one simple object, $F=$ f.l. modules over $K_{0}[x ; \sigma, \delta]$.

Our Main Idea

We prove there is a correspondence

Indecomposables in coh $\mathbb{P}^{n c}(V) \longleftrightarrow$ Indecomposables in $\bmod \Lambda(V)$

Our Main Idea

We prove there is a correspondence

Indecomposables in cohP $\mathbb{P}^{n c}(V) \longleftrightarrow$ Indecomposables in $\bmod \Lambda(V)$
$\mathbb{P}^{n c}(V)=$ noncommutative projective line (M. Van den Bergh $)$.

Our Main Idea

We prove there is a correspondence

Indecomposables in coh $\mathbb{P}^{n c}(V) \longleftrightarrow$ Indecomposables in $\bmod \Lambda(V)$
$\mathbb{P}^{n c}(V)=$ noncommutative projective line (M. Van den Bergh $)$.

Under correspondence

Our Main Idea

We prove there is a correspondence

Indecomposables in coh $\mathbb{P}^{n c}(V) \longleftrightarrow$ Indecomposables in $\bmod \Lambda(V)$
$\mathbb{P}^{n c}(V)=$ noncommutative projective line (M. Van den Bergh).

Under correspondence

- indecomp. vector bundles over $\mathbb{P}^{n c}(V) \longleftrightarrow$ modules of dimension type $(a, b),|a-b|=1$.
- indecomp. torsion modules over $\mathbb{P}^{n c}(V) \longleftrightarrow$ modules of dimension type (n, n)

What is $\mathbb{P}^{n c}(V)$? Part I

What is $\mathbb{P}^{n c}(V)$? Part I

Definition (Artin-Zhang 1994)
Let A be a \mathbb{Z}-graded ring.

What is $\mathbb{P}^{n c}(V)$? Part I

Definition (Artin-Zhang 1994)
Let A be a \mathbb{Z}-graded ring.

$$
\operatorname{proj} A:=\operatorname{gr} A / \operatorname{tors} A
$$

What is $\mathbb{P}^{n c}(V)$? Part I

Definition (Artin-Zhang 1994)

Let A be a \mathbb{Z}-graded ring.

$$
\operatorname{proj} A:=\operatorname{gr} A / \operatorname{tors} A
$$

where

- $\operatorname{gr} A$ is category of f.g. graded A-modules and
- $\operatorname{tors} A$ is the full subcategory of modules which are zero in high degree.

What is $\mathbb{P}^{n c}(V)$? Part I

Definition (Artin-Zhang 1994)

Let A be a \mathbb{Z}-graded ring.

$$
\operatorname{proj} A:=\operatorname{gr} A / \operatorname{tors} A
$$

where

- $\operatorname{gr} A$ is category of f.g. graded A-modules and
- $\operatorname{tors} A$ is the full subcategory of modules which are zero in high degree.

Motivation:

Theorem (Serre 1955)

If k is a field, A is a f.g. commutative k-algebra generated in degree one and X is the associated scheme, then

$$
\operatorname{proj} A \equiv \operatorname{coh} X
$$

$\mathbb{S}(W)$

Recall that for W a vector space over a field K,

$$
\mathbb{S}(W):=\frac{K \oplus W \oplus W^{\otimes 2} \oplus \cdots}{\langle x \otimes y-y \otimes x\rangle}
$$

$\mathbb{S}(W)$

Recall that for W a vector space over a field K,

$$
\mathbb{S}(W):=\frac{K \oplus W \oplus W^{\otimes 2} \oplus \cdots}{\langle x \otimes y-y \otimes x\rangle}
$$

and

$$
\operatorname{proj} \mathbb{S}(W) \equiv \operatorname{coh} \mathbb{P}(W)
$$

What is $\mathbb{P}^{\text {nc }}(V)$? Part II

$\mathbb{S}(W)$

Recall that for W a vector space over a field K,

$$
\mathbb{S}(W):=\frac{K \oplus W \oplus W^{\otimes 2} \oplus \cdots}{\langle x \otimes y-y \otimes x\rangle}
$$

and

$$
\operatorname{proj} \mathbb{S}(W) \equiv \operatorname{coh} \mathbb{P}(W)
$$

Want noncommutative ring $\mathbb{S}^{n c}(V)$ depending only on $K_{0}-K_{1}$-bimodule V

What is $\mathbb{P}^{\text {nc }}(V)$? Part II

$\mathbb{S}(W)$

Recall that for W a vector space over a field K,

$$
\mathbb{S}(W):=\frac{K \oplus W \oplus W^{\otimes 2} \oplus \cdots}{\langle x \otimes y-y \otimes x\rangle}
$$

and

$$
\operatorname{proj} \mathbb{S}(W) \equiv \operatorname{coh} \mathbb{P}(W)
$$

Want noncommutative ring $\mathbb{S}^{n c}(V)$ depending only on $K_{0}-K_{1}$-bimodule V so we can define (after M. Van den Bergh)

$$
\operatorname{coh} \mathbb{P}^{n c}(V):=\operatorname{proj}^{n c}(V)
$$

Heuristic

An algebra A is a \mathbb{Z}-algebra if $A=\oplus_{(i, j) \in \mathbb{Z}} A_{i j}$ and $A_{i j} A_{j k} \subset A_{i k}$.

Heuristic

An algebra A is a \mathbb{Z}-algebra if $A=\oplus_{(i, j) \in \mathbb{Z}^{2}} A_{i j}$ and $A_{i j} A_{j k} \subset A_{i k}$.

Definition of $\mathbb{S}^{n c}(V)(V a n$ den Bergh (2000))

- $\exists \eta_{i}: K \rightarrow V^{i *} \otimes_{K} V^{i+1 *}$ where $K=K_{0}$ or K_{1}

Heuristic

An algebra A is a \mathbb{Z}-algebra if $A=\oplus_{(i, j) \in \mathbb{Z}^{2}} A_{i j}$ and $A_{i j} A_{j k} \subset A_{i k}$.
Definition of $\mathbb{S}^{n c}(V)(V a n$ den Bergh (2000))

- $\exists \eta_{i}: K \rightarrow V^{i *} \otimes_{K} V^{i+1 *}$ where $K=K_{0}$ or K_{1}
- $\mathbb{S}^{n c}(V)_{i j}=\frac{V^{i *} \otimes_{K} \cdots \otimes_{K} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,

Heuristic

An algebra A is a \mathbb{Z}-algebra if $A=\oplus_{(i, j) \in \mathbb{Z}^{2}} A_{i j}$ and $A_{i j} A_{j k} \subset A_{i k}$.
Definition of $\mathbb{S}^{n c}(V)(V a n$ den Bergh (2000))

- $\exists \eta_{i}: K \rightarrow V^{i *} \otimes_{K} V^{i+1 *}$ where $K=K_{0}$ or K_{1}
- $\mathbb{S}^{n c}(V)_{i j}=\frac{V^{i *} \otimes_{K} \cdots \otimes_{K} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,
- mult. induced by \otimes_{K}.

Geometry of $\mathbb{P}^{p c}(V)$

Geometry of $\mathbb{P}^{n c}(V)$

Theorem (Chan-N.)

- Every object of coh $\mathbb{P}^{n c}(V)$ is a direct sum of a torsion sheaf and a torsion free sheaf.

Geometry of $\mathbb{P}^{n c}(V)$

Theorem (Chan-N.)

- Every object of coh $\mathbb{P}^{n c}(V)$ is a direct sum of a torsion sheaf and a torsion free sheaf.
- There exist torsion free sheaves $\mathcal{O}(i)$ on $\mathbb{P}^{n c}(V)$, and every torsion-free sheaf is a direct sum of these.

Geometry of $\mathbb{P}^{n c}(V)$

Theorem (Chan-N.)

- Every object of coh $\mathbb{P}^{n c}(V)$ is a direct sum of a torsion sheaf and a torsion free sheaf.
- There exist torsion free sheaves $\mathcal{O}(i)$ on $\mathbb{P}^{n c}(V)$, and every torsion-free sheaf is a direct sum of these.
- $\operatorname{RHom}(\mathcal{O} \oplus \mathcal{O}(1),-)$ gives an equivalence

$$
D^{b}\left(\operatorname{coh} \mathbb{P}^{n c}(V)\right) \rightarrow D^{b}(\bmod \Lambda(V))
$$

Geometry of $\mathbb{P}^{n c}(V)$

Theorem (Chan-N.)

- Every object of coh $\mathbb{P}^{n c}(V)$ is a direct sum of a torsion sheaf and a torsion free sheaf.
- There exist torsion free sheaves $\mathcal{O}(i)$ on $\mathbb{P}^{n c}(V)$, and every torsion-free sheaf is a direct sum of these.
- $\operatorname{RHom}(\mathcal{O} \oplus \mathcal{O}(1),-)$ gives an equivalence

$$
D^{b}\left(\operatorname{coh} \mathbb{P}^{n c}(V)\right) \rightarrow D^{b}(\bmod \Lambda(V))
$$

Consequence

Indecomposables in cohP $\mathbb{P}^{n c}(V) \longleftrightarrow$ Indecomposables in $\bmod \Lambda(V)$

Ringel's Theorem Revisited

Ringel's Theorem Revisited

- $\mathbb{S}^{n c}(V)$ has normal "element" g
- $g=0$ corresponds to commutative point in $\mathbb{P}^{n c}(V)$

Ringel's Theorem Revisited

- $\mathbb{S}^{n c}(V)$ has normal "element" g
- $g=0$ corresponds to commutative point in $\mathbb{P}^{n c}(V)$

Theorem (Chan-N)

Torsion sheaves in coh $\mathbb{P}^{n c}(V)=\mathrm{T} \times \mathrm{F}$ where

- T is uniserial with one simple object and
- $\mathrm{F} \cong$ category of finite length $\mathbb{S}^{n c}(V)\left[g^{-1}\right]_{00-m o d u l e s . ~}^{\text {a }}$

Ringel's Theorem Revisited

- $\mathbb{S}^{n c}(V)$ has normal "element" g
- $g=0$ corresponds to commutative point in $\mathbb{P}^{n c}(V)$

Theorem (Chan-N)

Torsion sheaves in coh $\mathbb{P}^{n c}(V)=\mathrm{T} \times \mathrm{F}$ where

- T is uniserial with one simple object and
- $\mathrm{F} \cong$ category of finite length $\mathbb{S}^{n c}(V)\left[g^{-1}\right]_{00-m o d u l e s . ~}^{\text {. }}$

Heuristic

T corresponds to sheaves supported on $g=0$ while F corresponds to sheaves supported on the (affine open) complement $g \neq 0$.

Thank you for your attention!

