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I. MORI AND A. NYMAN

Abstract. The statements of Theorem 6.11 and Theorem 7.8 in the published
paper are not correct: each have a missing hypothesis which is needed for their

proof. We restate both theorems (with the required extra hypothesis), and give

corrected proofs of each.

1. Notation and Terminology

Throughout this note, k will denote a field over which all objects are defined.
We adopt the same terminology and notation as in [3].

2. Replacement for Theorem 6.11

The proof of [3, Theorem 6.11] is not correct, as the expression M⊗L
A R τ(A)

which appears in the second paragraph of the proof of [3, Theorem 6.11], is un-
defined if R τ(A) isn’t bounded above. However, the proof is correct with the
additional hypothesis that τ has finite cohomological dimension. This hypothesis
is used in exactly the same way as it is used in the proof of [4, Theorem 5.1], as
we describe below. In fact, with this additional hypothesis, a slightly more general
version of [3, Theorem 6.11] holds:

Theorem 2.1. Let A be a right Ext-finite connected Z-algebra, and suppose τ
has finite cohomological dimension as a functor on GrA. Let M• be an object in
D−(Bimod(K −A)). Then

DR τ(M•) ∼= RHomA(M•, DR τ(A))

in D(Bimod(A−K)).

Proof. Since τ has finite cohomological dimension as a functor on GrA, it’s extension
to Bimod(K−A) also has finite cohomological dimension by [3, Lemma 5.9]. Thus,
although M• is in D−(Bimod(K −A)), DR τ(M•) is defined by [1, p. 57].

Next, we let E• denote an injective resolution of A in Bimod(A − A), which
exists by [3, Proposition 2.2(1)]. Then, following the proof of [4, Theorem 5.1],
since the cohomological dimension of τ is finite, we may take a standard truncation
F • of E• in such a way that F • is bounded, F • consists of τ -acyclic terms, and
F • is quasi-isomorphic to E•. It follows that DR τ(A) = Dτ(F •). Furthermore, if
L• ∈ D−(Bimod(K−A)) is a projective resolution of M• of the form specified in the
first paragraph of the proof of [3, Theorem 6.11], then Tot(L•⊗AF

•) is a bounded
above complex of τ -acyclic terms by the proof of [3, Lemma 6.9]. Moreover, by [3,
Proposition 6.8], Tot(L•⊗AF

•) is quasi-isomorphic to M•. Thus, by the hypothesis
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on τ and [1, p. 57], R τ(M•) may be computed via the complex τ Tot(L•⊗AF
•) ∼=

Tot(L•⊗Aτ(F •)), where the last isomorphism is by [3, Lemma 6.10].
Thus, by [3, Corollary 6.2],

RHomA(M•, DR τ(A)) ∼= Hom•
A(L•, Dτ(F •))

∼= D(Tot(L•⊗Aτ(F •)))
∼= DR τ(M•).

�

We let cd τ denote the cohomological dimension of τ , and we define the small
global dimension of A by sgldimA := sup{pd eiA0 | i ∈ Z}. We note that if A is
a connected, Ext-finite Z-algebra which is either AS-regular ([3, Definition 7.1]) or
ASF-regular ([3, Definition 7.5]), then sgldimA <∞ by definition.

Lemma 2.2. Suppose A is a connected, Ext-finite Z-algebra such that sgldimA <
∞. Then cd τ <∞.

Proof. In light of [3, Lemma 5.8], the proof is the same as the proof of the first
assertion in [3, Proposition 7.3]. �

It follows from Lemma 2.2 that the proof of [3, Theorem 7.10], which relies on
[3, Theorem 6.11], is correct as originally written.

3. Replacement for Theorem 7.8

The proof of [3, Theorem 7.8] is incomplete. The issue is that it is unclear
whether the isomorphism given in the second paragraph of the proof is natural with
respect to maps eiA → ejA. In order for this to be the case, it would suffice for

the isomorphism Rd τ(eiA) ∼= D(Aei−l) given in [3, Definition 7.5] to be suitably
natural. Without an additional hypothesis on A (for example that there is an
isomorphism of Z-algebras A→ A(−l), where A(−l) is defined below), it is unclear
what the correct notion of naturality would be. However, inspired by [2, Theorem
3.3], we replace [3, Theorem 7.8] with Theorem 3.7 below, in which the ASF-regular
hypothesis is replaced by a stronger hypothesis. In the Z-graded case, this stronger
hypothesis holds for noetherian AS-regular k-algebras [2, Theorem 1.2]. Before
stating the definition of this stronger regularity condition in Definition 3.1, we
introduce some terminology.

If A is a Z-algebra and l ∈ Z, we let A(l) denote the Z-algebra with A(l)ij :=
Ai+l,j+l and with multiplication induced by that of A. If B is a Z-algebra, M
is an object of Bimod(A − B) and r, l ∈ Z, we let M(r, l) denote the object of
Bimod(A(r)−B(l)) with M(r, l)ij := Mi+r,j+l and with multiplication induced by
that of A and B on M . If C is a Z-algebra and φ : C → B is a morphism, we
define Mφ in Bimod(A − C) as the module with the same underlying set and left
action but with right action defined by m ∗ c := mφ(c). Finally, if ψ : C → A is a
morphism of Z-algebras, we define ψM in Bimod(C −B) similarly.

Definition 3.1. A connected Z-algebra A is called regular of dimension d and of
Gorenstein parameter l if

(1) sgldimA = d <∞, and
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(2) DR τ(A) ∼= A(0,−l)ν [d] in D(Bimod(A−A)) for some isomorphism

ν : A→ A(−l)
of Z-algebras called the Nakayama isomorphism.

It is straightforward to show that if A is regular, then it is ASF-regular.
For the remainder of this section, we build towards the replacement of [3, The-

orem 7.8]. We leave the straightforward details of the next result to the reader.

Lemma 3.2. Let Φ : Bimod(A−B)→ Bimod(B̃op−Ãop) denote the functor defined
on objects by Φ(M)ij := M−j,−i and with bimodule action induced by that of A and
B, and on morphisms by Φ(f)ij = f−j,−i. Then Φ is an equivalence (in fact, an
isomorphism) of categories.

Remark 3.3. In the sequel, we will sometimes utilize the equivalence Φ of Lemma
3.2, as well as the equivalences from [3, Proposition 2.2], implicitly.

Suppose A is a Z-algebra, l ∈ Z, and ν : A → A(−l) is an isomorphism. Let

ν̃ : Ãop → Ãop(l) denote the isomorphism defined by ν̃ij = ν−j,−i. Abusing notation

slightly, ν̃−1 : Ãop → Ãop(−l).

Lemma 3.4. With the notation above, Φ(A(0,−l)ν) ∼= Ãop(0,−l)ν̃−1 .

Proof. First, we claim that Φ(A(0,−l)ν) = ν̃Ãop(l, 0). To prove the claim, we
compute

Φ(A(0,−l)ν)ij = A(0,−l)−j,−i = A−j,−i−l = Ãop(l, 0)ij .

Next, suppose x ∈ (Ãop)jk = A−k,−j . Then we have

Φ(A(0,−l)ν)ij · x = xA−j,−i−l = Ãopi+l,j · x,
while

x · Φ(A(0,−l)ν)kq = (A(0,−l)ν)−q,−k ∗ x = A−q,−l−kν(x) = ν̃(x)Ãop(l, 0)kq,

proving the claim.

To complete the proof, we note that ν̃−1 : ν̃Ãop(l, 0)→ Ãop(0,−l)ν̃−1 defines an

isomorphism of Ãop − Ãop-bimodules, as one can check. �

We define a functor I0 : GrA→ Bimod(K −A) on objects by letting

I0(M)ij =

{
Mj if i = 0

0 otherwise,

and on morphisms in the obvious way. We define functors J0 : A−Gr→ Bimod(A−
K) and Ĩ0 : GrÃop → Bimod(K − Ãop) similarly.

Remark 3.5. Suppose P is an object of Bimod(A−K) such that Pij = 0 for j 6= 0.

Then Ĩ0(Pe0) = P . A similar observation applies to morphisms between such
modules.

Lemma 3.6. Let A be a Z-algebra, let M denote an object of GrA and let N denote
an object of Bimod(A−A). Then

(1) evaluation induces a morphism of right A-modules

(3-1) Γ : I0(M)→ Hom
Ãop(HomA(I0(M), N), N)

which is natural in M , and compatible with finite direct sums, and
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(2) if A is connected and locally finite, i.e. Aij is finite-dimensional over Aii
and Ajj for all i, j ∈ Z, M = eiA and N = A(0,−l)ν where ν : A→ A(−l)
is an isomorphism, then (3-1) is an isomorphism.

Proof. We begin by proving the existence of (3-1), but note that some care is re-
quired, as we identify HomA(I0(M), N), an object in Bimod(A−K), with its asso-

ciated object in Bimod(K−Ãop) via the equivalence given by Lemma 3.2. A similar
comment, applied to N , holds. Thus, considering Hom

Ãop(HomA(I0(M), N), N)
as an object in Bimod(K −A), we have

Hom
Ãop(HomA(I0(M), N), N)0,i = Hom

Ãop(HomA(e0I0(M), N), ẽ−iΦ(N))

= Hom
Ãop(HomA(e0I0(M), N),⊕jN−j,i).

We define

Γi : I0(M)0,i → Hom
Ãop(HomA(e0I0(M), N),⊕jN−j,i)

by sending m ∈Mi = I0(M)0,i to the evaluation map

evm : HomA(e0I0(M), N)→ ⊕jN−j,i.

To show that this map is well defined, we note that if ψ ∈ Φ(HomA(e0I0(M), N)),
then ψl ∈ HomA(e0I0(M), e−lN) so that ψl(m) ∈ N−li ⊂ ⊕jN−j,i. Thus, to
conclude the proof that Γi is well-defined, we must show that evm respects right

multiplication by elements of Ãop. To this end, let ã ∈ (Ãop)lk, write a ∈ A−k,−l
for the corresponding element of A, and let ψ ∈ Φ(HomA(e0I0(M), N)). Then

evm(ψl · ã) = (ψl · ã)(m) = (a · ψl)(m) = a · ψl(m) = evm(ψl) · ã.
It follows that Γi is a well-defined function.

Next, we show Γ is a map of right A-modules. Let ail ∈ Ail, write ã−l,−i
for the corresponding element of (Ãop)−l,−i, and let m ∈ Mi = I0(M)0,i. Then
Γ(m · ail) = evm·ail . On the other hand,

evm · ail(ψ) = (ã−l,−i · evm)(ψ) = ã−l,−i · ψ(m) = ψ(m) · ai,l.
Since ψ ∈ HomA(e0I0(M), N), these expressions are equal. The fact that Γ is
compatible with addition is trivial. Finally, the fact that Γ is natural in M and
compatible with finite direct sums is straightforward and left to the reader.

We next prove that, in case M = eiA and N = A(0,−l)ν , then Γ is an iso-
morphism. To prove injectivity, let aik ∈ (eiA)k be nonzero. We note that
ν ∈ HomA(eiA, ei−lA(0,−l)ν), and evaik(ν) = ν(aik) 6= 0. It follows that Γ is
injective.

To prove Γ is surjective, it suffices, by the locally finite hypothesis, to show
that Hom

Ãop(HomA(I0(eiA), A(0,−l)ν), A(0,−l)ν)0,j ∼= Aij as right Ajj-modules.

This follows from the isomorphism below (and its analogous version for Ãop):

HomA(e0I0(eiA), A(0,−l)ν) ∼= J0(Aei−l) = Ĩ0(ẽ−i+lÃop)

which we leave as an exercise to the reader. �

Theorem 3.7 below should replace [3, Theorem 7.8]. To state it, we introduce
some terminology. We let Dc(GrA) denote the full subcategory of D(GrA) consist-
ing of complexes with coherent cohomology. Let Dbc(GrA), D+

c (GrA), and D−
c (GrA)

denote the intersection of Dc(GrA) with Db(GrA), D+(GrA), and D−(GrA), respec-
tively.
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Theorem 3.7. Suppose A is a connected, (left- and right-) coherent Z-algebra.

Suppose, further, that both A and Ãop are regular of dimension d and of Gorenstein
parameter l with Nakayama automorphisms ν and ν̃−1, respectively. Then

(DR τ(I0(−)))e0 : Dbc(GrA)↔ Dbc(GrÃ
op) : (DR τ̃(Ĩ0(−)))ẽ0

is a duality.

Proof. We begin by noticing that since A is coherent and connected, it is Ext-finite.
We now claim that (DR τ(I0(−)))e0 : D(GrA)op → D(A−Gr) is way-out in both

directions. Since
(−)e0 : Bimod(A−K)→ A− Gr

is exact, and D is exact, it suffices to show

R τ(I0(−)) : D(GrA)→ D(Bimod(K −A))

is way-out in both directions. To prove this assertion, we note that since τ : GrA→
GrA has finite cohomological dimension by Lemma 2.2, [3, Lemma 6.9] implies that
the same holds for τ(I0(−)), so that the claim follows from [1, Example 1, p. 68].

Next, we show that if M• is an object in Db(GrA), then (DR τ(I0(M•)))e0 is an
object in Db(A − Gr). To prove this, it suffices to show R τ(I0(M•)) is bounded.
However, as above, we note that τ(I0(−)) has finite cohomological dimension, and
so the assertion follows as in the second paragraph of the proof of Theorem 2.1.

We now claim that (DR τ(I0(−)))e0 induces a functor from D−
c (GrA)op to the

category Dc(A−Gr). To prove this, we first note that cohA is a thick subcategory of
GrA, so that Dc(GrA) and Dc(A−Gr) are well-defined full subcategories of D(GrA)
and D(A− Gr), respectively. Thus, we consider

F := (DR τ(I0(−)))e0 : D−
c (GrA)op → D(A− Gr)

and show that this factors through Dc(A−Gr). By [1, Proposition 7.3(iii), Chapter
1], it suffices to show that F (X) is an object of Dc(A− Gr) for all coherent X. By
the reversed form of [1, Proposition 7.3(iv), Chapter 1], it suffices to show that for
every free and finitely generated A-module E, F (E) is an object of Dc(A − Gr).
But

F (E) = (DR τ(I0(E)))e0 ∼= RHomA(I0(E), DR τ(A))e0
∼= HomA(E,A(0,−l)ν)[d]

where the first isomorphism is due to Theorem 2.1, and the second follows from the
definition of regularity. Since the last module is free and finitely generated as the
reader can check, it is coherent, and so the claim follows.

Finally, we show that if M• is an object of Dbc(GrA), then there is a natural
isomorphism

M• −→ (DR τ̃(Ĩ0(DR τ(I0(M•)))e0))ẽ0

To prove this, we note that

DR τ̃(Ĩ0(DR τ(I0(M•))e0)) ∼= DR τ̃(DR τ(I0(M•)))

∼= RHom
Ãop(DR τ(I0(M•)), Ãop(0,−l)ν̃−1)[d]

where the first isomorphism follows from Remark 3.5, which applies in light of the
fact that (DR τ(I0(M•)))ej = D(ej R τ(I0(M•))) = DR τ(ejI0(M•)) = 0 for every
j 6= 0, while the second isomorphism follows from Theorem 2.1 and the fact that
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Ãop is regular. By another application of Theorem 2.1, we find the last expression
is isomorphic to

(3-2) RHom
Ãop(RHomA(I0(M•), A(0,−l)ν), Ãop(0,−l)ν̃−1).

Since, by Lemma 3.4, A(0,−l)ν ∼= Ãop(0,−l)ν̃−1 as bimodules, the argument in [5,
p. 52] can be adapted to our setting (using Lemma 3.6(1)) to show that there is a
natural map from I0(M•) to (3-2), induced by evaluation. We need to show that if
M• is an object of Dbc(GrA), then this map is an isomorphism. By [1, Proposition
7.1(i), Chapter 1], it suffices to show that this is an isomorphism whenM• is a coher-
ent module M concentrated in degree zero. By the reversed form of [1, Proposition
7.1(iv), Chapter 1], it suffices to prove this when M is a finitely generated free mod-
ule. This follows from Lemma 3.6(2), since in this case, HomA(I0(M), A(0,−l)ν)e0
is a free and finitely generated right Ãop-module. �
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