THE EILENBERG-WATTS THEOREM OVER SCHEMES

A. NYMAN

ABSTRACT. We study obstructions to a direct limit preserving right exact
functor F' between categories of quasi-coherent sheaves on schemes being iso-
morphic to tensoring with a bimodule. When the domain scheme is affine, or
if F' is exact, all obstructions vanish and we recover the Eilenberg-Watts The-
orem. This result is crucial to the proof that the noncommutative Hirzebruch
surfaces constructed in [6] are noncommutative P!-bundles in the sense of [10].
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In this paper we describe a version of the Filenberg-Watts Theorem over schemes.
In order to motivate our results we first recall the Eilenberg-Watts Theorem proved
independently by Eilenberg [3] and Watts [11]:

Theorem 1.1. Let k be a commutative ring, let R and S be k-algebras and let ModR
(resp. ModS) denote the category of right R-modules (resp. right S-modules). If
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F : ModR — ModS is a k-linear right exact functor commuting with direct limits,
then there exists a k-central R — S-bimodule M such that F = — Qr M.

The bimodule M in the previous theorem is easy to describe. M = F(R) as a
right-module, and its left-module structure is defined as follows: for each r € R,
we let ¢, € Hompg(R, R) denote left multiplication by r. For m € M, we define
r-m:= F(¢r)m.

It is natural to ask if such a result holds when the categories ModR and ModS
are replaced by categories of quasi-coherent sheaves on schemes X and Y, Qcoh X
and QcohY . In order to precisely pose the question in this context, we need to
introduce some notation. To this end, if Z is a scheme, X and Y are Z-schemes,
£ is a quasi-coherent Oxx ,y-module, and the projections X xz Y — XY are
denoted pr; and pr,, we define

M ®oy € := pry,(pr; M QOxx,v &).
We make the further assumption that
— ®oy € : QcohX — QcohY,

which is automatic if X — Z is quasi-compact, separated and Z is affine.

Now let k be a commutative ring and let Z = Speck. Although the functor
— ®ox € 1 QcohX — QcohY is not always right exact, it is locally right exact in
the sense that if w : U — X is an open immersion from an affine scheme to X,
then u.(—) ®oy, € : QcohU — QcohY is right exact (see the proof that (2) is an
isomorphism in Section 3). This suggests that a natural generalization of Theorem
1.1 to the case of functors between quasi-coherent sheaves on schemes would involve
a characterization of locally right exact k-linear functors F' : QcohX — QcohY
commuting with direct limits. However, since (globally) right exact functors F' :
QcohX — QcohY appear naturally in the construction of certain non-commutative
ruled surfaces (see the remark following Theorem 1.6 for more details), and since
our motivation for studying generalizations of Theorem 1.1 comes from attempts
to better understand these constructions, we specialize our study to right exact
functors. It is thus natural for us to ask the following

Question 1.2. Let F' : QcohX — QcohY denote a k-linear, right exact functor
commuting with direct limits. Is F' isomorphic to tensoring with a bimodule, i.e.
does there exist an object £ of QcohOx « ,yv such that F = — ®p, €7

When X is affine, we recall in Proposition 2.2 that the answer to this question
is yes. Proposition 2.2 follows from a generalization of Theorem 1.1 proved in [7].
In general, the answer to this question is no, as the following example illustrates.

Example 1.3. [10, Example 3.1.3] Suppose k is a field, X = P} and Y = Z =
Speck. If F = HY(X,—), then F is k-linear, right exact, and commutes with
direct limits. However, as we will prove in Proposition 5.4, F' is not isomorphic to
tensoring with a bimodule.

The purpose of this paper is to study the obstructions to a k-linear right exact
functor F': QcohX — QcohY which commutes with direct limits being isomorphic
to tensoring with a bimodule. In order to state our main result, we introduce
notation and conventions which will be employed throughout the paper.
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We let k denote a commutative ring, Z = Speck and we assume all schemes and
products of schemes are over Z. We assume X is a quasi-compact and separated
scheme and Y is a separated scheme.

We note that the category

Funct(QcohX, QcohY)

of functors from QcohX to QcohY is abelian, and we denote the full subcategory

of k-linear functors (see Section 2 for a precise definition of k-linear functor) in
Funct(QcohX, QcohY) by

Funct, (QcohX, QcohY).

The category Funct(QcohX, QcohY') is abelian as well. We denote the full subcat-
egory of Funct(QcohX, QcohY’) consisting of right exact functors commuting with
direct limits by

Bimodi (X —Y).
We denote the full subcategory of Bimod (X —Y) consisting of functors which take
coherent objects to coherent objects by

bimod, (X —Y).
The following definition, studied in Section 4, plays a central role in our theory.

Definition. An object F of Functy(QcohX, QcohY) is totally global if for every
open immersion v : U — X with U affine, Fu, = 0.

The functor F' in Example 1.3 is totally global.
In order to generalize the Eilenberg-Watts Theorem, we first study an assign-
ment, which we call the FEilenberg- Watts functor,

W : Bimody (X —Y) — QcohX XY,

whose construction was sketched in [10, Lemma 3.1.1]. We prove that it is functorial
(Subsection 5.2), left-exact (Proposition 5.1), compatible with affine localization
(Proposition 5.2), and has the property that if FF &2 — @, F then W(F) = F
(Proposition 5.4). It follows from Propostion 2.2 that if X is affine, then F &
— Qo W(F).

We then work towards our main result, established in Section 6:

Theorem 1.4. If F' € Bimody (X —Y), then there exists a natural transformation
I'r: F— —Qoy W(F)

such that kerT'p and cokT'p are totally global (Corollary 6.7). Furthermore, T'p is
an isomorphism if

(1) X is affine or

(2) F is exact (Corollary 6.8) or

(3) F = —®o, F for some object F in QcohX x Y (Proposition 6.4).

As a consequence, if F' € Bimody (X —Y), then —®p, W(F') serves as the “best”
approximation of F' by tensoring with a bimodule in the following sense (Corollary
6.5):

Corollary. Let F' be an object of QcohX x Y and suppose F' := — Qp, F' is an
object in Bimody(X —Y). If ® : F — F' is a morphism in Bimody (X —Y), then
D factors through I'p.
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In order to describe necessary and sufficient conditions for I'r to be an isomor-
phism, we introduce some notation: Let {U;} be a finite affine open cover of X, let
U;j :=U;NUj, and let u; : U; — X and uZJ : U;; — U; denote inclusions. If M is
an object of QcohX, there is a canonical morphism (defined by (37))

I Bt M — Bicjuinug ugiu; M

which is essentially the beginning of the sheafified Cech complex. We prove the
following (Corollary 6.2):

Theorem 1.5. If F € Bimod,(X —Y) then T'r is an isomorphism if and only if

(1) for all flat objects L in QcohX, the canonical map Fkerdy — ker Fo. is
an tsomorphism, and
(2) —®oyx W(F) is right exact.

The first item in Theorem 1.5 says that F' must be close to being flat-acyclic,
hence close to being a tensor product. The second item in Theorem 1.5 implies
that — ®o, W(F') is in Bimod, (X —Y).

Theorem 1.4 suggests that in order to obtain more precise information about
objects in Bimody (X —Y") one must have a better understanding of the structure of
totally global functors. While a general structure theory of totally global functors
seems far off, we begin a very specialized investigation of this subject in Section
7. In particular, we classify totally global functors in bimody (P! — P°) when & is

an algebraically closed field. Our result in this direction is the following (Corollary
7.13):

Theorem 1.6. If F' € bimody (P* — P%) is totally global, then F is a direct sum of
cohomologies, i.e. there exist integers m,n; > 0 such that

F=oX_ H (P, (-)@)*".

We conclude the introduction by mentioning an application of Theorem 1.4(2).
In [6], Ingalls and Patrick show that the blow-up of a noncommutative weighted
projective space is a noncommutative Hirzebruch surface in an appropriate sense.
More precisely, they show that the blow-up is a projectivization of an exact functor
F : QcohP! — QcohP! which commutes with direct limits. It follows from Theorem
1.4(2) that F' = — ®p,, F where F is a quasi-coherent Op:,pi-module. This
provides a crucial step in the proof that the noncommutative Hirzeburch surface
Ingalls and Patrick construct is a noncommutative ruled surface in the sense of [10].

An apology for including proofs that diagrams commute: This paper contains a
number of “technical” proofs that various diagrams commute. While some readers
may frown upon the practice of including such proofs, we thought it wise to include
them for the following reasons:

First, we are interested in proving a version of Theorem 1.4 in which Y is a non-
commutative space (see [9, Section 1.2] for the definition of quasi-scheme, which
is what we mean by non-commutative space). The proof of such a result will
require the proof that diagrams similar to those in this paper commute. Since
local arguments are often unavailable in the non-commutative setting, it will be
important to have a careful record of which proofs of commutativity can be reduced
to arguments global on Y (which should carry over without change to the non-
commutative setting), and which are local on Y (which will have to be replaced by
global arguments in the non-commutative setting).
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Second, it is sometimes very difficult, even for extremely experienced mathe-
maticians, to decide which diagrams commute for elementary reasons and which
commute for deeper reasons. This fact is evidenced by the need for [2] to fill gaps
in [5]. The gaps were not widely recognized as substantial until many years after
the publication of [5]. Although the diagrams appearing in this paper are far less
complicated than those studied in [2], we felt it important to save the skeptical
reader from reconstructing the often tedious arguments on their own.

Acknowledgements: 1 am grateful to S. Paul Smith for numerous helpful conver-
sations, for clarifying the proof of Proposition 2.2 and for allowing me to include
some of his results in Section 7. I am also grateful to Daniel Chan for showing me
how to generalize an earlier version of Theorem 1.4(2).

Finally, I thank Quan Shui Wu for hosting me at Fudan University during the
2006-2007 academic year, during which parts of this paper were written.

2. THE EILENBERG-WATTS THEOREM

The purpose of this section is to recall the naive generalization of the Eilenberg-
Watts Theorem that holds when the domain scheme is affine (see Proposition 2.2
for a precise formulation of this statement). The result is used implicitly in [10,
Example 3.1.3]. We first recall the following definition, which is invoked in the
statement of Proposition 2.2.

Definition 2.1. Recall that Z = Speck, let f : X — Z denote the k-scheme
structure map for X and let g : Y — Z denote the k-scheme structure map for Y.
An element F' € Funct(QcohX, QcohY) is k-linear if the diagram

k x Home,, (M, N)—k x Home, (FM, FN)

! !

Homp, (M,N) — Homp, (FM,FN)

whose horizontal arrows are induced by F', and whose vertical arrows are induced
by the k-module structure on Homep, (M, N) coming from global sections of the
structure maps Oy — f.Ox and Oz — ¢.Oy respectively, commutes.

Proposition 2.2. [7, Example 4.2] If X is affine, then the inclusion functor
Qcoh(X x Y) — Bimodi (X —Y)
induced by the assignment F — — Qo F is an equivalence of categories.

Proposition 2.2 follows from a general form of the Eilenberg-Watts Theorem [7,
Theorem 3.1] characterizing right exact functors F' : ModR — A commuting with
direct limits, where R is a ring, Mod R denotes the category of right R-modules and
A is an abelian category.

We recall the proof that the inclusion functor in Proposition 2.2 is essentially
surjective since we will invoke it in the sequel. We first construct an object, F, of
Qcoh(X x Y') whose image is isomorphic to F' € Bimod; (X —Y) as follows: Let
X = Spec R, and let U C Y be affine open. We first define an R®y, Oy (U)-module,
N. We let N have underlying set and right-module structure equal to F(Ox)(U).
We let

tr € Home, (Ox,Ox)
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correspond to multiplication by » € R = T'(X,Ox), and we give N an R-module
structure by defining r - n := F(p,)(U)n for n € F(Ox)(U). It remains to show
that N is k-central, but this follows directly from the fact that F' is k-linear. We
conclude that N is an R ® Oy (U)-module, hence corresponds to a quasi-coherent
Ox xu-module, Fyy. It is straightforward to check that the sheaves Fi; glue to give
a quasi-coherent Ox xy-module, which we call F.

We next construct an isomorphism © : — ®o, F — F as follows: Let M be
an Ox-module and let U C Y be an affine open subset. We define a morphism
OmU) : M0, F(U) — FM(U). To this end, we note that

M®@oy, F(U) = pry(priM @Ox vy F)(U)
= (priM®oy,y F)X xU)
= M(X)®r F(Ox)(U).
Hence, in order to define ©(U), it suffices to construct an Oy (U)-module map
w: M(X)®gr F(Ox)(U) - FM(U). This is constructed as in the proof of the

Eilenberg-Watts Theorem, as follows. Suppose m € M(X), n € F(Ox)(U), r € R,
and

m € Home (Ox, ./\/l)
corresponds to the homomorphism in Hompg (R, M (X)) sending 1 to m. Then

F(um) S Homoy (F(Ox), FM)

and
Flpmr)(U)(n) = F(pmpr)(U)(n)
= Flpm)(U)F (pr)(U)(n)
= F(um)(U)(rn)
Hence, the function w(m ® n) := F(um)(U)(n) extends to a well defined homo-

morphism of Oy (U)-modules w : M(X) @r F(Ox)(U) — FM(U), which in turn
corresponds to a map of Oy (U)-modules Op(U) : M @0 F(U) = FM(U). It is
straightforward to show that the maps © ,((U) glue to give a map of Oy-modules

Orm: Mo, F— FM

and that © 4 is an isomorphism which is natural in M.
In the sequel, we will often refer to © as the canonical isomorphism in the proof
of Proposition 2.2.

3. BASECHANGE, THE PROJECTION FORMULA, AND COMPATIBILITIES

Our construction of the Eilenberg-Watts functor and our proof of Theorem 1.4
depends, in a fundamental way, on the existence and properties of two canonical
isomorphisms which are constructed using basechange and the projection formula.
The purpose of this section is to describe these isomorphisms as well as several
fundamental compatibilities involving them.

Throughout this section, we let U denote an affine scheme, we let u : U — X
denote an open immersion, we let v = u X idy, and we let p,q : U XY — U, Y
denote projections.
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We begin with some preliminary observations. We note that the diagram

UxY-2U

X xY—X

pry

is a fiber square. We claim the basechange and projection formula morphisms
* * * = * % *
DIl Usx — VU PI] Us — Ve U Uy — VP
and
* = * *
Vs = Q@0xxy = = VsV (U*_®0x><y_) - U*(U Vs — @0y «y ¥ _) - U*(_®OU><YU*_)

induced by unit and counit morphisms of (u*, u.) and (v*, v.), and by the distribu-
tivity of pullbacks over tensor products, are isomorphisms. To this end, we note
that it suffices to prove that they are isomorphisms over subsets of the form V x W
where V. C X and W C Y are open affine subsets. This reduces the claim to a
straightforward affine computation, which we omit.

Let £ € QecohU x Y and F € QcohX x Y. We define canonical isomorphisms

(1) U*(—) R0y € — — oy V€

and

(2) u*(_) ®ox F— - Koy ’U*]:,

natural in £ and F, as follows: The map (1) is defined to be the composition
u*(_) Xoy & qx (p*u* - ®OU><Y5)

3« (V" pr] — ®oy .y €)
Pro, U« (V7 Pr] — @0y .y )
Pro. (Pr] — @0x v V+E)

— oy V€

l\l lHZ ll\ lHZ l\l

where the second morphism comes from the equality pr; v = up and the fourth
morphism is the projection formula.
We define the map (2) as the composition

u*(_) Qox F — pr2*(pr*{ Wy — ®OX><Y‘7:)
Proy (’U*p* - ®OX><Y'7:)
PTo, Us (p* - ®OUXYU*]:)
qx (p* - ®0nyv*-7:)
where the second morphism is basechange and the third morphism is the projection
formula.
Naturality of (1) and (2) follows from naturality of basechange and the projection
formula.
The remainder of this section is devoted to the proof that (1) and (2) satisfy

three compatibilities. The first says that (1) and (2) are compatible with the units
and counits of the adjoint pairs (u*, u,) and (v*,v,) (Lemma 3.1). The second says

ll\ l\ll l\ll

that if U — U is an open affine immersion and & = @ x idy, then (1) and (2)
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* AU

are compatible with the canonical isomorphisms (u@)* 2 @*u* and (v0)* = v*v*
(Lemma 3.2). The third says that (1) and (2) are compatible with affine basechange
(Lemma 3.3).

Lemma 3.1. Consider the following diagram

—Qox F — —Qoy vV F

(3) | |
uu*(—) Qo F—u*(—) Qo, v*F

whose top horizontal and left vertical are induced by unit morphisms, whose right
vertical is the inverse of (1) and whose bottom horizontal is induced by (2). Then
this diagram commutes.

Similarly, consider the following diagram

—RQo, € — —Qo, v

(4) | |
Uy (=) oy E—us(—) Boy V:E

whose top horizontal and left vertical are induced by counit morphisms, whose bot-
tom horizontal is induced by the inverse of (1), and whose right vertical is (2).
Then this diagram commutes.

Proof. We first show that (3) commutes. Consider the following diagram

prjls(_) POxxy F — prjls(_) POxxy VU F

| !

(5) pI‘T u*u*(_) ROxxy F v*(v* prf(—) ROuxy v*f)

! !

'U*p*U*(_) Qoxxy F — v*(p*u*(—) Royyy ’U*‘F)

whose top horizontal and upper-left vertical are induced by unit morphisms, whose
upper-right vertical and bottom horizontal are induced by the projection formula,
whose bottom-left vertical is basechange and whose bottom-right vertical is canon-
ical. It suffices to show that this diagram commutes.

To this end, we consider the following diagram

pry — U U* pry
(6) pri w,u* vep*u*

| l

VU PIT U — v p* v u u™

whose top horizontal, left verticals and bottom-right vertical are induced by unit
morphisms, and whose bottom horizontal and upper-right vertical are canonical.
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We claim that this diagram commutes. The claim follows by splitting (6) into two
subdiagrams via the morphism

0, 0% pr] — v U" pri uu”

induced by the unit of (u*,u.), and noticing that each commutes by the naturality
of the unit.
Next consider the following diagram

pr’{(—) RDOxxy F — pl“T(—) RDOxxy vVt F

l !

(7) v v* pri(—) QOxxy F—v.(v* pri(-) Qoyxy v*F)

VP U () ®ox iy F = 1P U (=) ®0y oy V' F)

whose top horizontal and top-left vertical are induced by unit morphisms, whose
top-right vertical and middle and bottom horizontals are induced by the projection
formula, and whose bottom verticals are canonical. The claim implies that, in order
to show (5) commutes, it suffices to show that both squares of (7) commute. The
bottom square of (7) commutes by the naturality of the projection formula.

We next prove that the top square of (7) commutes. To this end, consider the
following diagram

— QO0xxy — —  — ®0xxy ’U*’U*(—)

(8) | |
020* (=) B0y —— (U (=) B0 oy *(=))

whose right vertical and bottom horizontal are projection formulas, and whose left
vertical and top horizontal are induced by units. In order to prove that the top
square of (7) commutes, it suffices to show that (8) commutes. To prove this, we
note that the bottom route of (8) equals the bottom route in the diagram

—QO0xxy = — ’U*v*(_®OX><Y _) I v*(v*(_)®OU><YU*(_))

o) | | |

VU — ®OX><Y__VU*U*(’U*U* - ®OXXY_)—W* (v*v*v*(—) DO0uxy ’U*(—))

whose left arrows are unit morphisms, whose right horizontals are induced by dis-
tributivity of pullbacks over tensor products

(10) V(= ®0xny =) — V(=) ®0yxy V7 (~)

and whose right horizontal is the counit morphism. We claim that (9) commutes.
It will follow from the claim that the bottom route of (8) equals the composite
of the top horizontals in (9). Similarly, the top route of (8) equals the composite
of the top horizontals in (9). Therefore, the commutativity of (8), and hence the
commutativity of (3) will follow from the commutativity of (9). We establish this
now.
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The left square of (9) commutes by naturality of the unit morphism. To prove
the right square of (9) commutes, we consider the following diagram

U*’U*(_ ROxxy _) — U« (’U*(_) Xoyyy U*(_))

l l

RN (’U*’U* - ®OX><Y_)—>U* (’U*’U*’U*(_) DOuxy U*(_))

whose verticals are induced by units and whose horizontals are (10). This diagram
commutes by naturality of (10). It follows from this that the right square of (9)
commutes as well.

The proof that (4) commutes is similar to the proof that (3) commutes, and we
omit it. 0

Lemma 3.2. Suppose UcCU are open affine subschemes of X, with inclusion
morphisms : U — U and u : U — X. Let v = u X idy, let v = u x idy, and let
F be an object of QcohX x Y. Consider the following diagram

- ®Of1 v F — ﬂ,*(—) Roy v*F

(1) | |

- ®ij (U{))*}-—)(Uﬂ)*(_) ®ox F
whose horizontals and right vertical are induced by the inverse of (2) and whose left

vertical is induced by the canonical isomorphism v*v* = (v0)*. Then this diagram
commautes.
Similarly, consider the following diagram

— ®OX 'U*'D*]: —’u*(_) ®(’)U 17*‘7"

(12 I I
(uit)* (=) ®o, F—it*u*(=) @0, F

whose top horizontal and verticals are induced by the inverse of (1), and whose
bottom horizontal is induced by the canonical isomorphism (ut)* = a*u*. Then
this diagram commutes.

Proof. Let p,q : U xY — U)Y and p,q : UxY — ﬁ,Y denote projections.
Consider the diagram
(13)

pr’{(uﬁ)*(—) QOxxy F —VU*p*’EL*(—) Qoxxy F— ’U*(p*ﬁ*(—) XOyxy ’U*]:)
_) ROxxy F i»v*f)*f)*(—) ROxxy F— ’U*(’D*ﬁ*(_) ROy xy v*]:)

! l

(00).(7"(-) Bo,,, (9)"F) — 0.5, (=) B0y, 70" F)

(v0)£p"(

whose top-left horizontal and top verticals are induced by basechange, whose top-
right horizontal, middle-right horizontal and bottom verticals are induced by the
projection formula, and whose bottom isomorphism is induced by the canonical
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isomorphism (vd)* =, §*v*. Since q = pryv and ¢ = pry v0, in order to prove (11)
commutes, it suffices to show that (13) commutes.

The upper-right square of (13) commutes by the naturality of the projection
formula. The fact that the upper-left square of (13) commutes follows from the
commutativity of the diagram

pri (uil) s ——Pr s

(1) ~| |=

(V0)p" — VP Ui

whose non-trivial isomorphisms are induced by basechange. The commutativity of
(14) can be checked affine locally and we omit the routine verification.

The commutativity of the bottom rectangle of (13) follows from the commuta-
tivity of the diagram

(09)x(=) ®0xry F — vu(0u(=) ®0y .y v*F)

(15) ~| =

(09)+((=) ®oy,,, (V) F)—vau((-) R0y, TV F)

U

whose bottom horizontal is induced by the canonical isomorphism (vd)* =5 5o
and whose other arrows are induced by the projection formula. The commutativity
of (15) again follows from a routine affine computation, which we omit.

The proof that (12) commutes is similar and may be reduced to the commuta-
tivity of a diagram of the form (15) as well. We leave the details to the reader. O

Lemma 3.3. Let Uy,Us; C X be affine open subschemes, let Uyo := Uy N Us with
inclusions

“12
Ui2—U;

2
“12J] lul

U2 —X.
U2

For i = 1,2, let v; = u; x idy and let viy = uiy x idy. Let € be an object of
QcohU; x Y, and consider the diagram

UTUQ*(_) ®(’)U1 8—)’(1,%2*11,%;(—) ®OU1 €

I l

2 1

U2+ (=) ®ox v1x€ U3 (=) oy, V15€
2 1

— ®0y, V301xE — — 0y, Vi2.V15E

whose horizontals are induced by basechange, and whose verticals are induced by (1)
and (2). Then this diagram commutes.
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Proof. Consider the following diagram
(16)
U2+ (—) ®ox UI*U%Q*UEg—’UTU%( ) Koy, U%2*U125—>u12“1“2*(

)
I l
)

Xoy,, U12

1,1
— ®oy, V3V1:V19,V75E U12“2“2*( Koy, V 55
— Roy, V3U1:E — = Qoyp, V39,015 —uuz.(—) R0y, Vi, v15E
Oy, V2V1x Ou, Y12xV12 2 W2 Ou, Y12+ V12

whose top horizontals and bottom-right vertical are induced by (1), whose bottom-
left horizontal is induced by basechange, whose bottom-right horizontal is induced
by a counit, whose bottom-left vertical is induced by a unit, whose top-left vertical
is induced by the inverse of (2), and whose top-right vertical is canonical. By the
naturality of units, counits and the morphisms (1) and (2), and by the commuta-
tivity of (3), it suffices to prove that (16) commutes. To this end, we consider the
diagram

1 2 1x *
- ®oy, U2U1*U12*U125<_ Xoy, U12*U12U12* 25

I I

2 1
— ®oy, v3uE e— — Qoy, Vi, V15E

whose verticals are induced by units and whose horizontals are induced by basechange.
By the naturality of basechange, this diagram commutes. Hence, to prove that (16)
commutes, it suffices to prove that if F := v{3&, then the followmg diagram

Ui (=) @0y V14019, F— Ut (=) @0y, Vig, F—ruisufus.(—) @0y, F

I l

1 2

(17) — ®0y, VaV1xV12,F uisusuz(—) R0y, F
2 1x,,1 2 * 2

— ®oy, Vi, V15V 9, F — — Qoy, Vg F  e—usug.(—) Koy, vig F

whose bottom-left vertical is induced by basechange, whose bottom-left horizontal
is induced by a counit, and whose other maps are identical to the maps in (16),
commutes.

We complete the proof by showing that the diagram (17) commutes. To this end,
we note that (17) can be broken into the following four subdiagrams: the diagram

1 = 2
— Q0p, V301:V19.F —— 0y, V302012, F

= | !

2 1x,1 2
— Q0y, Vi2:V12Vi2sF —  — @0y, VigF
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whose left vertical is induced by basechange and whose right vertical and bottom
horizontal are counits, the diagram

Ui (=) ®0x V14019, F—Uftns(—) @0y, Vig, F—ruibufus.(—) @0y, F

(19) -| =

Ui (=) @0y V2xVTa, F— bl (—) @0y, Vig, F—ulsubus.(—) @0y, F

whose horizontals are induced by the inverse of (1) and whose right vertical is
canonical, the diagram

2 2
— ®0y, V30202, F —U24(—) @Oy V24012, F

0 ! |

2 2
- ®OU2 ’012*‘7: U‘;’U’Q*(_) ®OU2 ’012*‘7:

whose top horizontal is (2), whose right vertical is (1) and whose other arrows are
counits, and the diagram

UQ*(—) ®OX vl*v%Q*‘FiU&*(_) ®(’)X UQ*’U%%F]—"

g T w

1 = 2
— ®0y, V3V1:Vi9. F — — R0y, V3V2:072, F

whose verticals are induced by the inverse of (2). It suffices to show that these
subdiagrams commute. The fact that diagram (18) commutes is left as an exercise
to the reader. The fact that diagram (19) commutes follows from Lemma 3.2. The
fact that diagram (20) commutes follows from Lemma 3.1, and the commutativity
of (21) is trivial. O

4. ToTtaLLy GLOBAL FUNCTORS

Our goal in this section is to define and study elementary properties of totally
global functors.

Definition 4.1. We say F' € Functy(QcohX, QcohY') is totally global if for any open
immersion v : U — X with U affine, Fu, = 0.

We note that this definition makes sense. For, v : U — X is an affine morphism
since X is separated [4, II, ex. 4.3], so that u is quasi-compact and separated
[4, II, ex. 5.17b]. Hence, u, takes quasi-coherent Ox-modules to quasi-coherent
Ox-modules [4, I, Prop. 5.8c|.

The following lemma explains the motivation behind the use of the term totally
global.

Lemma 4.2. Suppose X is noetherian. If F is totally global and M is a quasi-
coherent Ox-module whose support lies in an affine open subset U of X (included
via u), then FM = 0.

Proof. Since F' commutes with direct limits and X is noetherian, it suffices to prove
that FM = 0 for M coherent. Let ¢ : Supp M — X and ¢’ : Supp M — U denote
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inclusions, so that ¢ = ui’. Since 7 is a closed immersion, the unit map M — i,:* M
is an isomorphism. Thus,

FM 2~ Fii*M
= F(ui')i* M
= Fu,d'i*M
0.
O

Example 4.3. Let W be a noetherian scheme. Then, for ¢ > 0 the functor
H*(W, —) is totally global by [4, III, ex. 8.2].

Proposition 4.4. If F is an object of QcohX x Y and F = — Qo F is totally
global then F = 0.

Proof. Suppose U is an affine scheme, v : U — X is an open immersion, v = u X idy
and p,q: U xY — U,Y are projections. The map (2) induces an isomorphism,
ue(—) ®oy F = - Roy V' F

— ¢.(p"(=) @0y .y V' F)

Since F' is totally global,
0 = Fu,Op

g« v*F

= pro. (v:v*F).
Thus, if W is an affine open subset of Y, v*F(U x W) = 0. Therefore, v*F = 0

since its sections on an affine open cover are 0. We conclude that if p € U x Y,
then F, = 0. Since U is arbitrary, F = 0 as desired. O

Il

For the remainder of this section, we take affine open cover of X to mean a set
of pairs {(U;,u;)} where u; : U; — X is inclusion of an affine open subset U; of X
such that every point of X is contained in some U;.

Proposition 4.5. If F € Bimod, (X —Y) and {(U;,u;)} is an affine open cover of
X such that Fu =0 for all i, then F s totally global.

Proof. We first prove that if X is affine, {(W;, w;)} is an affine open cover of X,
and E € Functy(X —Y) is such that Ew;. = 0 for all ¢, then E = 0. Since X is
affine, F = — ®p, £ for some object £ of QcohX x Y by Proposition 2.2. Thus, if
p,q: W; xY — W, Y are projections and v; = w; x idy, then by (2),

Ewi* = Q*(p* - ®Owixyvi*g)'
The vanishing of Ew;, for all ¢ implies that g,v;*€ = 0 for all i. Therefore, for all
7 and all W C Y open affine,
Uz*g(Wl X W) =0.

This implies that v;*€ = 0 for all ¢ which implies that £, and hence E, is 0.

Now we prove that for any X and any affine open cover {(V},v;)} of X, Fv;, =0
for all j. The proposition will follow. Let F' and {(U;,u;)} be as in the statement
of the Proposition. Let w;; : U; N V; — Vj and wj; : U; NV; — U; denote
inclusions. Then Fuvj.wijx = Fupwi;, = 0 for all i by hypothesis. But V; is
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affine, Fvj,. € Bimody(V; X Y) since v, is right exact by the affineness of v; [4, III,
Prop. 8.1 and Remark 3.5.1], and 20 := {(U; N V;,w;;)}; is an affine open cover
of V;. Hence the argument of the first paragraph applies to the functor £ = Fvj,
and the open cover 20 of Vj, so that Fv;, = 0. (|

5. THE EILENBERG-WATTS FUNCTOR

In this section we review the construction of an assignment
W : Bimodi(X —Y) — QcohX x Y

sketched in [10, Lemma 3.1.1], and prove it is functorial (Subsection 5.2), left-exact
(Proposition 5.1), and compatible with affine localization (Proposition 5.2). We will
show in Corollary 6.5 that if F' € Bimodi(X —Y) then — ®p, W(F) serves as a
“best” approximation to F' by tensoring with a bimodule. In order to prove this, we
will need the fact, proven in Proposition 5.4, that if F =2 —®p, F then W (F) = F.
We end the section by showing that if F' is exact, then pri(—)®oy,, W(F) is exact
(Corollary 5.5). This result is used in Section 6 to prove that if F' is exact then
F~—®o, W(F) (Corollary 6.8).

5.1. Preliminaries. Before defining the functor W, we describe conventions we
will employ throughout the rest of this paper.

Let {U;}icr be a collection of open subschemes of X (we identify the underlying
set of U; with a subset of the underlying set of X'). For any finite subset {i1,...,in}
of I, we let

Ui.t), = U, NN U;

n in

and we let
Ugy -4,y - U“ln — X
denote the inclusion morphism. For any inclusion {j1,...,5m} C {1,...,in} of
finite subsets of I, we let
uilli:ln : Uil"'in — Ujl"'jm

denote the inclusion morphism. Similar conventions apply when the open sub-
schemes are labelled {V;} or {Wy}, etc. We denote the open cover {U;}icr by
.
For i, j with j # i, we let
Tk

i i
Ni; = 1dQeoht; — Ujj,Ui;

ul

denote the canonical unit of the adjoint pair (u}},uj;,).

ij0

5.2. Definition of the Eilenberg-Watts Functor. Let F be an object in the
category Bimod (X —Y'). Our goal in this subsection is to associate to F' an object
W(F) € QcohX x Y, and show the assignment F' — W (F) is functorial. To this
end, we first choose a finite affine open cover of X, 4 = {U; }iey with I ={1,...,n}.
Recall that X is quasi-compact, so such an open cover exists.

For each i € I, the proof of Proposition 2.2 gives us an F; € QcohU; x Y and a
canonical isomorphism F'u;, = ®0y, Fi.

Now let V; = U; x Y. Recalling our notational conventions about open covers of
X x Y in Section 5.1, we claim that there exists a canonical isomorphism

(22) ’lﬁij : ’U;;]:l — Uf-;—k]:j.
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To prove the claim, we note that there are isomorphisms

- ®OU ]: — uz;*( ) ®0Ui Fi

ugj* (_) ®OU

lHZ lI\Z l\l lHZ

J*
_ ®0Uij v;; F;,

the first is the inverse of (2), the second is from the definition of F; and the fourth
and fifth are defined similarly. The map );; corresponds to the composition above
under the equivalence from Proposition 2.2.

Next, for each pair 7,5 € I with j > ¢, we let

z*]_-

i
o7 v T —>’Uz*’U]* ii

K3

denote the morphism induced by nfj and we define

ij . i 7%
(bj .’Uj*]:‘ — U U i 1]‘7:

as the composition of the morph1sm v Fj — vj*vfj*vw F; = vl*vu*vw }' induced
by nl-j and the morphism vi*v”* i PF — ViV ZJ]: induced by 1/1
Finally, since I is finite, in order to specify a morphism

@ivinFi — i< Ui}y, V5 Fi,
it suffices to define a morphism

]:
for all 7, j,k € I with j < k. We define such a morphism as

ik .
0;" : vinFi — UJ*UJk* i

o ifi=j,
(23) 07" = —¢f" ifi=k, and
0 otherwise.

The morphisms {6’ "1 induce a morphism
(24) 9}7‘ @1U1*fz E— @Z<JU1*U 1*]_-

’L_]* ’L_]
We define
Wy (F) :=ker0p.
We next note that Wy (F) is an object of QcohX x Y. For, since vi*vfj* = Vjjx IS
an affine morphism, it is quasi-compact and separated by [4, II, ex. 5.17b]. Hence
if M is an object of QcohU;; x Y then v;;.M is an object of QcohX x Y by [4, II,
Prop. 5.8¢|.

We define Wy on morphisms as follows. Let A : E — F be a morphism in
Bimody (X —Y) and let A * u;y : Euje — Fugs denote the horizontal composition
of the natural transformations A and id,,,. By the proof of Proposition 2.2, there
are canonical isomorphisms Fu;, — — R0y, & and Fu;, — — R0y, F;. Hence,
A x u; induces, via these isomorphisms, a morphism

— ®oy, & — — Qoy, Fi-
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Therefore, by Proposition 2.2, there is an induced morphism
The fact that the maps {d;}ic; induce a morphism § : Wy (E) — Wy (F) now
follows from the naturality of 77% and of 1;;. We leave it as a straightforward
exercise for the reader to check that the naturality of v;; follows from the naturality
of (1) and (2).

We define

Wy(A) := 6.

It is straightforward to complete the verification that Wy is a functor and we omit
it.

5.3. Properties of the Eilenberg-Watts Functor. The following result will not
be used in the sequel.

Proposition 5.1. The functor Wy : Bimodi(X —Y) — QcohX x Y is left-exzact
in the sense that if F', F, F" € Bimody(X —Y) are such that

(25) 0-FAFEF 0
is exzact in Functy(QcohX, QcohY’), then
0 — Wu(F) "N wy(F) " (e

18 exact in QcohX x Y.
Proof. Exactness of (25) implies that, for all u;,
0 — Fluj. A Fui, 5 F'up — 0

is exact in Funct,(U; — Y'). Thus, this sequence is exact in Bimody(U; —Y). By
Proposition 2.2, the induced sequence

0—=F —=F, —=F'—=0

K2 3

is exact in QcohU; x Y. Therefore the induced sequences

0— @ivi*]—"{ — BviF; — @ivi*}'-” —0

K2

and
7 R ik 7 Tk 7 (A il
0— @i<j’Ui*’Uij*’UijJ'—'vi — ®i<jvi*vij*vij]:i — @Kjvi*vij*vij]—"i — 0

are exact since v; and v}, are affine and v}; is an open immersion. There is thus a
commutative diagram with exact rows

0— ®vinF] - Dt - @unF —0

o | or | [ e

% % T/ 7 7% 7 % !/
0—=@i<j Vi Vi, Vjj Fs = DicjVin Vi, Vi Fi= @i jVin Vi, 035 Fig =0
Left-exactness of Wy follows from the Snake Lemma. [l

Proposition 5.2. The functor Wy is compatible with affine localization in the
sense that if N Uy denotes the affine open cover {Ui}icr of Uy, then

VVL[QU,C (Fuk*) =t UZWL[(F)

naturally in F.
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Proof. We prove the result in several steps.
Step 1: We note that the canonical basechange morphisms

* k 7%
VgVix — VigxVig

and

[EPN ik 7] %
vzkvlg* vljk*vz]k

associated to the diagrams

U x Y 25U, x Y

k )
vikl J/'lh

U, xY —XxY
Vg

and

'L]

Uijr Y—>Uw xY

ik | [
Ui xY —U; XY
Vik
are isomorphisms. This follows from a routine affine computation, which we omit.
Step 2: Consider the composition

k k % k ik 7% g% k ik tkx  i%
Uik zk — Ujkx 1kvu*vz; - vzk*vljk*vukvz; - vlk*vljk*vljk Uik

whose left arrow is induced by the unit of the adjoint pair (v v, vij*) whose middle

arrow is induced by the second basechange isomorphism from Step 1, and whose
right arrow is induced from the canonical isomorphism
ik, 1%

(26) ”g:“g - (U’Ljvzjk)* = (U;kvzjk)* - U’L]kvlk

We note that this composition is equal to the morphism induced by the unit of the

adjoint pair (vjf,j, Uffk*) In order to prove this fact, consider the following diagram
ik Tk
Uik - vzkvz]*vz]
ik ik, 0% ik gk gk
vzgk*vz]kvzk_)vzgk*vzgkvw

whose top horizontal and left vertical are induced by canonical units, whose right
vertical is induced by basechange isomorphisms from Step 1, and whose bottom
horizontal is induced by the inverse of (26). It suffices to prove that this diagram
commutes. The verification of this fact follows from a routine affine computation,
which we omit.

Step 3: Let F be an object of Bimody (X —Y') and consider the morphism §

. k 7% ikx %
d: @ivik*vik]_—i Di<jv zk* z]k* z]kvzk]:
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defined by the composition

= *
®D;v k* zk]: — @ivkvi*}‘i

v R «

- EBK]‘UkUW J*’U”]:

= o i 0BT

i<yl zk* zk ij*Vij

= ik ik i
EBZ<] zk* Uk* ’ijv ‘7:

= ikx

- ®1<J zk* Uk* Ukvzk]:

whose first and third and fourth arrows are basechange isomorphisms from Step 1,
and whose fifth arrow is induced by the canonical isomorphism (26). Let 5171 denote
the component of & from the ith summand to the jlth summand, i.e.

Gl . k%o k Jk* J*
8" v ViR Fi 7 UjgsV Juc* Viik Jk]:

We show that

° 5? =0 if i is not equal to j orl,
e 0. is induced by the unit of the adjoint pair (v;f,j,v;fk*), and
) 5;7 s equal to —1 times the composition

k J* ik Jk* g*
vjk*vjkfﬂ v_]k:* ijk* z_]k: _]k:]: vzk*vz]k* z_]k:vzkf

whose left arrow is induced by the unit of the adjoint pair (vfjk; , vffk*) and

whose right arrow corresponds, under the equivalence of Proposition 2.2, to
the composition of functors

— Qoy,,, U Uk Jk]: — uz]k*( )®(’)Uj,C v;;fj
= U;k*ufjkk*(_) ®oy, Fj
(27) = Pujuuly,uly,

ikx
_®OU ik 1gkvzk]:

whose first two arrows are induced by the inverse of (2), whose third arrow
is the canonical isomorphism from the proof of Proposition 2.2, and whose
last arrow is defined analogously to the composition of the first three arrows.

The fact that (5fl =0 if i is not equal to j or [ follows from the definition of 6.
The assertion regarding d;” follows from Step 2.
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It remains to verify the description of 517 . Consider the following diagram

vkvj*vlj* w]: — vkvz*vw*vwf
k J*,.J % k Px
U]k*vgkvlj*vlj]: Uzk*vzkvu* 1]‘7:
(28) | |
k ik w* ]* vk ik i%
U]k*vuk* ijk ‘7: zk*vz]k* z;kv ‘7:

! !

;Ck* z]k*vzjjk; 51:‘7: —>Uzkk*vz;€k*1)115; ik
whose top horizontal is induced by the map t;; defined in (22), whose bottom
horizontal is induced by the morphism corresponding to (27) and whose verticals
are induced by basechange isomorphisms from Step 1 and by canonical morphisms
of the form (26). By Step 2, it suffices to prove that this diagram commutes. To
this end, consider the diagrams

J
vkvﬂ*vz]* — ’Uk’Ul*’UU*
k J*,J k Q%0
(29) Uiken Vg Vi Vikx Vik Vi«
Ik i ik 0%
_]k:* zgk*vz]k: vzk* z_]k:*vz]k:

whose verticals are induced by basechange morphisms, and the diagram

’L]*w
1% Jk ) Vijk Wit 17 z*
Z]kv'LJ J zgkv ‘T:

. L

Jhx ]* ikx V¥
vz;k Jk]: vz;k zk]:

v

whose verticals are induced by canonical morphisms of the form (26) and whose
bottom horizontal is the morphism corresponding to (27). In order to prove that
(28) commutes, it suffices to prove that (29) and (30) commute.

The commutativity of (29) follows from a straightforward affine computation,
which we omit. To prove that (30) commutes, we first note that v”kz/in corre-
sponds to the composition (27) by the naturality of (2). Hence, a straightforward
computation shows that the commutativity of (30) follows from the commutativity
of four ”corner” subdiagrams. The upper-left such diagram, for example, is the
diagram

VR J J i
- ®0Uijk vq,_]k;vz_] ‘T: uz]k*( )®OU ’U ‘T: uz]*uz]k*( ) ®0Uj ‘FJ

| l-

_ ®OU (vJ vz;k)*fj Em— (uzjugk) ( )®OU]- .7:j

ijk
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whose horizontals are induced by the isomorphisms (2) and whose left vertical is
induced by the canonical isomorphism

I EWES % (

U’ijvlj

U’Lj Uz;k ) "

These corner subdiagrams commute by Lemma 3.2.

Step 4: Let & € QcohU;, XY denote the object corresponding to the functor Fu;g. €
Bimody (U;x, — Y') in the proof of Proposition 2.2. Consider the following diagram

pIE* % ik
zgk ]kf U’ij zk

o I

zjjk;g — ’U;;CI:E
whose top horizontal is the map (27), whose bottom horizontal is the map j; defined
by (22) but corresponding to the functor Fuy., whose left vertical is induced by the
composition

ik
U (=) ®oy,, &

_]k?* j* = ik J*
= Qou,,, Vijk VirFi ’ uijk*(_) ®ou,, Uikt
Jk‘* ’L]k*( )®OU ‘7:j
~ ik
uj*ujk* z;k*
- Fujk*uijk*
=,
=,

Jhkx )
_ ®0Uijk Ui ik g]

whose first, second, and sixth morphisms are induced by (2), and whose third and
fifth morphisms are the canonical ones constructed in Proposition 2.2, and whose
right vertical is defined similarly. Then this diagram commutes. Upon expanding
the rows and columns of the diagram, the proof is seen to follow from the trivial
commutativity of the diagram

ik ik
Fu]*ugk* ijk* Ful*uzk* 15k

:l l:

YL ) ik
Fqu*uijk* —_ Fuipsuggy, -

Step 5: We show that ker § = ker 0p,, . We retain the notation from Step 4. It
suffices to show that, for all ¢, j,[, the diagram

87t
k
zk* zk]: — Vjkex ¥ ]kl* sz gk]:
(32) | l
kL& — Vi €
ikx &1 ) gk* ]kl* ]kl

(GFuk* )Zl
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whose verticals correspond, under the equivalence of Proposition 2.2, to the com-
position of functors

~ B0y, Vi — Ui (=) ®oy, Fi
= Fugsttjy,
—  Fuij.
= - Qoy,, i
commutes.
If i # j and i # [, both routes of (32) are 0 by definition of 6 and 6. If i = j,

both the top and bottom of (32) are induced by the unit of (vj’,jl* , vgllzl*) so that (32)

commutes in this case as well. It remains to prove that the diagram
ij

L L E ik ik
Ujk:*vjk]:.] Uiikox z]k*vz]kvzk

(33) | l

k k zk*
v E; — &
Jkx%J ij Uikox z_]k:* z_]k:

( Fup, ) :
whose verticals equal those of (32), commutes.
By Step 3, (33) may be broken up into the diagram

] Jk* g*
_]k:* Uk* z_]k: _]k:]:

o 1 !

ko ko ks
Jk* Uk*vz]kg

k0%
vjk*vjkfj—w

v;‘ck*gj - v
whose horizontals are induced by units, to the left of the diagram

k Jk ]k* J* k zk ik
gk* ijk* ’ij jk]: Uik ljk*vljkvlk

w | |

k ik gk ko ik giksg

gk*vuk* 1jk5 ViV ijk* ’ij

v

which is vfjk* applied to (31). The commutativity of (34) is elementary, while the
commutativity of (35) follows from Step 4.

Step 6: Retain the notation from Step 5. We prove that there is an isomorphism
P Wynu, (Fugs) — viWy(F) making the diagram

Wynu, (Fuge)— @ivf &

L

(36) pJ{ 691 1hkx zk
UZWH(F) — @ivzvi*fi

whose top vertical is induced by the inverse of the left vertical in (32) and whose
bottom wertical is induced by basechange, commute. The proof will follow.
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By Step 5 there is an isomorphism p; : Wy, (Fug.) — ker d making the dia-
gram
Wynu, (Fuge)— @vf &

"] l

ker & —>@ivfk*vf7$ i
whose right vertical is the upper right vertical in (36), commute. By Step 3, there
is an isomorphism ps : ker § — v} Wy (F') making the diagram

ok ix T
keréd —@;v}, viF;

-] l

VpWy(F)— ®ivpviFi
whose right vertical is induced by basechange, commute. We let p = pap;. Natu-
rality of p in F is a straightforward but tedious exercise, which we omit. (I

We now work towards a proof of Proposition 5.4. We begin by introducing some
notation and proving a preliminary lemma.

Let S be a scheme with finite open cover {W;}ier where I = {1,...,n} and let
F be an object of QcohS. Let

denote the canonical isomorphism, let

7

ij . . * . Tk ok
O T wiw; F— wiw;; wiiw; F

be induced by the unit of (w}?,w,

), and let ¢;j = W;;xYPji 0 qsf We define

(37) OF : @lwl*wff — EBKjwi*w;j*w;;—‘wf]:

via its components

Tk o) T Ea®
0"t wipw; F — wjwj wipwi F

as follows:
off ifi=j,
(38) 8= —¢" ifi=k, and
0 otherwise.

Lemma 5.3. The map F — ®Qwiw;F induced by the units of {(wf,wi)}i is a
kernel of dr.

Proof. Let nr : F — ®;wiwiF be induced by the units of {(w},w;.)}; and let
¢ N — @lwl*wz*]:

be a morphism such that dr¢ = 0. We must show that there exists a unique
¥ : N — F such that nr¢ = ¢.
For each ¢, ¢ has a component

¢i N — wpw! F.
By adjointness of (w}, w;«), there exists a morphism

it wi N — wiF
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such that ¢; is the composition

N — wjwiN == ey wiw] F.

whose left map is the unit.

Step 1: We show that there exists a unique morphism ¢ : N — F such that
wiy = 1 for all i. Tt suffices, by [1, Section 6.1], to show that, for all pairs i, j,
the diagram

(wiw};)* N—>wz*w*./\/ s wl Wi F— (w;w! v

) -| |-

(wjw )*./\/—»w”w*./\/ — w] w*f—»(ijgj)*f
J
wy ;b

1]

whose unlabelled arrows are canonical, commutes. To this end, we note that since
0p¢ = 0, the diagram

w . .
N —wjwiN 5 Wi W; F——Wis Wy Wi Wi F

(10) -| =

N—wjwiN — wj,wiF—wj,w]

. ijj]:
NER ]

ij
whose right vertical is canonical and whose other unlabelled morphisms are units,
commutes for all pairs ¢, j.

Applying w;; to (40) yields the commutative diagram

W wixt;
* U
wi N —wiwuwi N Wi Wi w; F—wiwiwj, wi wis F
(41) :J F
wi N —wiwjwiN — wiwjw} f—>ij]*w T wJ JwiF.
wiwixY;
Consider the following diagram
. ww Wi . .
Lk ok * vyt PEEY * PEREY
wiwiwiwi N wiiwiwpwi F o —wiiwiF
wiwi N wiwiwswl, wiiw; F —wiiwi F
(42) = = =
J* )k J*, ko 0 J* J*
wy; wiN wy; Wiwjw; g, wiwi F—w; wi F
VEI * VEI * VLI
wi wiwjwiN - wi wiwjwi F wi;wiF

wiwiwg;

whose unadorned arrows are induced by units and counits, and whose unlabelled
isomorphisms are canonical. It follows from a straightforward computation that
the commutativity of (41) implies the commutativity of (42). As one can check,
the outside circuit of this diagram starting at w;} w*/\/ equals (39).
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Step 2: We show that the map ¢ : N — F from Step 1 is unique such that the
diagram

(43) wl lwi*wi

]—'—>wi*w;‘]—'

whose horizontals are units, commutes for all i. We first note that 1) makes (43)
commute by naturality of the unit of (w}, w;.), since 1 = w};.

We next note that if v : N' — F replacing ¢ in (43) makes (43) commute for
all 4, the commutativity of the diagram constructed by applying w; to (43) and
composing on the right with the counit w;w;» — idqeohs implies that w;vy = ;.
Step 1 tells us that v is unique with this property. Therefore v = 1.

Step 3: We complete the proof. By Step 2, ¥ : N — F is unique making the
diagram

N— Wi W] N

wl lwi*d/’i

F—@wiw; F.
nr

whose top horizontal is induced by units, commute. By the construction of v;, the
top route of this diagram is ¢. The result follows. (|

Proposition 5.4. If F is an object of the category QcohX xY and F' is an object
of the category Bimodi(X —Y) such that F = — @, F, then Wy(F) = F.

Proof. Since Wy is a functor, we may assume without loss of generality that F' =
—®oy F. Let ¢, : F; — v} F correspond, via Proposition 2.2, to the composition

- ®OU¢ .7:1' i> Fuz-*

o~

- - ®OU¢ U;kf
whose first arrow is the canonical isomorphism from the proof of Proposition 2.2,
and whose third arrow is (2).
By Lemma 5.3, it suffices to prove that the diagram

6F y y
* 7 Tk, %k
Divixv; F —>®i<jvi*vij*vij v; F

—1 % ik, —1
Divixth; l l®i<jvi*vij*”ij P,

7 Tk
DivixFi _0 ’ @i<jvi*vij*vij-7:i
F

commutes, where we specialize the notation for the definition of dr preceding
Lemma 5.3 to our situation by setting S =X xY, W, =U; XY, and w; = v;.

We recall that 5? denotes the component of § from the ith summand to the
1, jth summand, and 9? is defined similarly. The verification that

b dx =1 i pij =1
ViV Vi P 00 = 07 o vt
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is trivial, so that it remains to check that the diagram

* Vij«Pji
v« Fj —>vj*vj v F; — VUL VT

Z]* ¥} ’L_]* Z]
vj*wjl vjevd oI, l l vty
J * *
V5V ]—"—wj*vw*vl] v]]-" — vz*vw* U i F

whose unadorned arrows are induced by units, whose unlabelled isomorphism is
canonical, and whose upper right horizontal is defined by (22), commutes. The left
square commutes by naturality of units, while to prove the right square commutes,
it suffices to prove that the square

o Vi .
’Uq-]:j — Uf;f]:i

ij
(44) ol s l [tz

U ]*.7: ?vgvf F
whose unlabeled isomorphism is canonical, commutes. To prove that (44) com-
mutes, it suffices, by Proposition 2.2, to prove that the diagram resulting in ap-
plying the functor — ®oy, (=) to (44) commutes. Upon expanding the resulting
diagram, it is straightforward to check that the commutativity of (44) follows from
the commutativity of the diagram

- ®OU Uz; ’U]*]:—m“*( )®OU *f—)uj*uzj*( )®Ox F

() | I-

_®OU Ui;”ff 7,_]*( )®OU v; f—)ul*UZJ*( )®0x F

whose left vertical is canonical and whose horizontal isomorphisms are induced by
the inverse of (2). The commutativity of (45) follows from Lemma 3.2. O

Corollary 5.5. If F € Bimody(X —Y) is exact, then pri(—) ®oy.y Wul(F) is
exact.

Proof. We first claim that — ®o,,, v; Wy(F) is exact. To prove the claim, we note
that by Proposition 2.2, Fu;x = — ®0o,,, F for some quasi-coherent Oy, xy-module
F. Thus, by Proposition 5.4 and Proposition 5.2, Fu;. = — ®o,, viWu(F). The
claim follows.

We now proceed to prove the corollary. Let p,q : U; x Y — U,;,Y denote
projections. It suffices to show that, for all i, v} (prj(—) ®o,., Wu(F)) is exact.
We note that

’U;F(pr*{(—) QOxxy WH(F)) = U;( pI"T(—) ®0U7_»><Y U;(WH(F)
P*Uf(—) ®0Ui><y ’U?WH(F)'
Thus, to complete the proof, it suffices to show that if ¢ : M — A is monic

and V' C Y is affine open, then g.(p*u;(¢) ®oy, . v; Wu(F))(V') is monic. But
g«(p*uf (=) ®oy, v v Wu(F)) is exact by the claim and the corollary follows. [

Il
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6. THE EILENBERG-WATTS TRANSFORMATION

Our goal in this section is to prove the generalization of the Eilenberg-Watts
Theorem mentioned in Section 1 (Theorem 1.4). Throughout this section, we use
the fact that since X is separated, every object of QcohX is a quotient of a flat
object [8, Lemma 1.1.4]. We begin by constructing, for each F in Bimody (X —Y),
a natural transformation

FFZF—>—®OX WH(F)

which we show is natural in F'.

The construction of I'p will allow us to describe obstructions to its being an
isomorphism (Corollary 6.2). It will also follow readily from the construction of I'p
that if F = — ®p, F for some object F in QcohX x Y then I'r is an isomorphism
(Proposition 6.4), and T is compatible with affine localization (Proposition 6.6). As
a consequence of this last property, we show that the kernel and cokernel of I'r are
totally global (Corollary 6.7). It follows immediately that I'r is an isomorphism if
X is affine or if I is exact.

6.1. Construction of the Eilenberg-Watts Transformation. Let F' be an ob-
ject of Bimod,(X —Y'). We construct a natural transformation

Tp:F— —®0, Wy(F)

and show it is natural in F.
Step 1: We note that for any morphism A : M — N in QcohX, the canonical
morphism coming from the universal property of the kernel

7 : F(ker \) — ker F'A

is natural in the sense that if

M2N

.
MITN/

commutes, then the induced maps ¢ : F(ker\) — F(ker ') and ¢/ : ker FA —
ker F X' make the diagram
F(ker \) — ker F'A

Ll l“
F(ker \')—ker FX

whose horizontals are the canonical morphisms, commute.
Step 2: Let L be a flat object in QcohX . We construct a morphism

Tpe: F(ﬁ) — Loy WL[(F)

in the category QcohY . Specialize the notation preceding Lemma 5.3 to the case
that S = X and W; = U;. By Lemma 5.3, the morphism

L — Qupul L
induced by unit morphisms is a kernel of
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Let
7 F(L) — ker F(dz)
denote the morphism from Step 1. Let ; denote the composition
Fui*ufﬁ — ufﬁ ®0Ui Fi — L Koy Vix T

whose left arrow is the canonical isomorphism from Proposition 2.2 and whose right
arrow is induced by (1). Let «;; denote the composition

Fugul, uu' L — ul ul £®@U Fi

5% g i 1% ig U;
= ululL ®oy, v F;
i u'£®OU- fg* 2;‘7:
=, L®oy vl*vw* Z;f

whose first arrow is from Proposition 2.2, whose second arrow is induced by (2) and
whose third and fourth arrows are induced by (1).
We first claim

(46) vij 0 Fo = L ®oy 67 0,

for all ¢ < j, where 9? is defined in (23). To prove the claim, consider the following
diagram

. * Tk, k
Fuguil —  Fupaulufui L

l l

ui L ®@oy, Fi —sul ul ui L ®@oy, Fi

j* g U;

l I

L R0y VixFi uu L ®oy,, vijFi

l I

L R0y Vit *.7-'—>u*£®(9U Lo F

Z]* ’L_] Z]* ’L_]
whose two top horizontals and bottom-left vertical are induced by the units, whose
top verticals are from Proposition 2.2, whose left-middle vertical is induced by (1),
whose right-middle vertical is induced by (2), whose right-bottom vertical is induced
by (1) and whose bottom horizontal is induced by the inverse of (1). The claim will
follow from the commutativity of this diagram. The top square commutes by the
naturality of the canonical isomorphism from Proposition 2.2. To show that the
bottom rectangle commutes, we first split it down the diagonal via the morphism

u; £ ®0y, Fi — ui L oy, v, 05 Fi

ij* l]

induced by the unit of (v* Vit U*) The resulting left subdiagram commutes by the
naturality of (1), while the right subdiagram commutes by the commutativity of
(3)-
We next claim
Vij oF(S;-j =L R0y H;j o
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To prove the claim, consider the following diagram

J J* ) ik, ok
Fuj*uw*uwujﬁ — Ful*uw*uwuzﬁ

J J* ) X i ik, .
ws s ws s us L ®ov, F; ujpuiiur £ ®oy, Fi

J* i
uil ®0Uij Vs ]:j ui}‘ufﬁ ®0Uij vt F;

1] )

* JoJ% . * b pt*
ujﬁ ®0Uj Ui+ Vij '7:J uiﬁ ®OU ij% zgf

P Fj—— L ®0y Vvl I F;

£®OX UJ*U ijx Vij

77% zg
whose top horizontal is induced by the canonical 1som0rph1srn

uljui = (wjuly)" = (ugul;)” = uful

whose verticals are induced by (2) and (1), and whose bottom horizontal is induced
by the map
’lﬁji : ’Ug;]:j i) ’U;;]:l
defined after (22). Since (46) holds when ¢ and j are interchanged, the proof of the
claim follows from the commutativity of this diagram. This follows easily from the
definition of ;.
Next, consider the following diagram

Fér
F(@upuil) =5 F(®icjuiul,uju; L)
QiFuu; L — @KjFuz*ulJ*uz;ufﬁ
(47) Divi Di<ivij

oL Rox v Fi ®i<j‘c ®ox UZ*Uzg* z;]:

L ®0X (@ivi*]:i)L: — £®0x (EBZ<]UZ*U'LJ* z;]:)

oxOr

whose second horizontal is induced by the maps F' 5{ k, whose third horizontal is
induced by the maps £ ®0 Gg * and whose corner verticals are canonical isomor-
phisms. It follows from the claims that the center square in the diagram commutes.
Since the top and bottom square of (47) commute, there is an induced isomorphism

o : ker F'op =, ker(£ ®oy 0F).
Finally, since £ is flat and pr,, is left-exact, there is a canonical isomorphism

73 : ker(£L ®oy OF) = ®oy kerOp.
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We define
Tpp = mymamy.

Step 3: We show I'r is natural on flats, i.e. we show that if
VL — L
is a morphism of flat objects in QcohX then the diagram
FL v, FL'

(48) Trc l J{FFC’

L®o, Wy(F L R0, Wy(F
Ox L[( )w®ox—>Wu(F) Ox Ll( )

commutes. We leave it as an easy exercise for the reader to check that the diagram

F(®uiufL) Fog F(Bicjupmul  ultui L)

7% ig

! !

F(@iui*ufﬁ’)z? F(@Kjui*ui ubur L")
L/

7% ig

whose verticals are induced by v, commutes. Therefore, by Step 1, the induced
morphism v’ : ker F'6; — ker 6, makes the diagram

FL=Fkerd, —ker Fo,

o] Jv
FE/ = errég—>kerF5g

whose horizontals are canonical, commute. Thus, the top square in the diagram
err5£ ﬂ erI‘(Sg/

T ™1
ker Fé, ? ker Fé,/

2 ™2

ker(£ ®p, 0r)—ker(L ®o, OF)

3 ™3

Lo, kerfp — L @0, kerbp
whose verticals are defined in Step 2 and whose bottom two horizontals are induced
by v, commutes. The proofs that the middle and bottom squares of this diagram
commute are left as straightforward exercises.
Step 4: We show that, for each M in QcohX and each flat presentation
(49) £ <5 Ly 25 M,
there exists a unique morphism

VM : FM — M @0, Wy(F)
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making
FLo I FM
(50) FFLOl l’)’FM
Lo R0, Wy (F M®@o, Wy(F
0 Box Wl )50®oﬁ/u(F) ox Wu(F)

commute. Applying F to the flat presentation (49) yields the first row in the
diagram

FL Fa FLo Py FM
(51) FFﬁll lFFﬂo
L1 R0y Wy(F Lo R0y Wy(F Mo, Wy(F
1 Qo0x u( )£1®0X—V’VM(F) 0 WOx u( )£0®OX—V’VM(F) Ox u( )

which commutes by Step 3. Thus, there exists a unique morphism
YEm : FM — M R0, Wy (F)

making (50) commute.
We will show, in Step 6, that vp 4 is independent of presentation chosen.
Step 5: We show that if ¢ : M — N is a morphism in QcohX, then the diagram

FM 4, FN
'YFMJ J,’YFN
M@0, Wy — N®(’)X Wy
P00 Wy (F)

commutes. Suppose

L — ) N
is a flat presentation for N' and let vpnr : FN — N ®o, Wy(F) denote the
corresponding morphism constructed in Step 4. Then there exists a flat presentation
(52) L—s Loa L) "0 N

for N, and the corresponding morphism v}, constructed in Step 4 makes the outer
circuit of the diagram
(53)
F(r®id,,) o
F(Lo & L)) L FMarcy 9% gy

F(LoéBLf))l FF(M@%)J lvﬁw

(Lo ® L)) oy Wy(F) — ML) o, Wu(F) — N o, Wy(F)

r

whose bottom-left horizontal is induced by 7 @ id.; and whose bottom-right hori-
zontal is induced by ¢ @ 7/, commute.



32 A. NYMAN

It follows from the commutativity of the outer circuit of (53) and from Step 3
that the outer circuit of the diagram constructed by placing the diagram
(54)
Frdidp,/
FLy® FL| —° FM @& FL

FFL()@FFg{)J( 'YFMGBFFEBl

(Lo ®ox Wu(F)) ® (L ®ox Wu(F)) — (Mo, Wu(F)) @ (L ®ox Wu(F))

whose bottom horizontal is (7 ®0, Wu(F)) @ (idz, ®o, Wu(F)), to the left of the
diagram

FMe FL) Poelx"  par
(55) YPMOT Py J{ l'y}:N

(M@0, Wy(F)) ® (L) Qo Wu(F)) — N ®o, Wy(F)

whose bottom horizontal is induced by ¢ ®o, Wy (F) and 7’ ®0, Wy(F'), com-
mutes. We note also that the diagram (54) commutes since Step 4 implies that (50)
commutes. Since the top horizontal in (54) is an epimorphism, it follows that (55)
commutes as well. By restricting both routes of (55) to F£{ and using the fact,
established in Step 4, that ygas is unique making the diagram

FL) L FN

FF[,()J( l'YFN

Ly ®ox Wy(F N @0 Wu(F
0 ®ox Wl )w'®ojvu(F) ox Wu(F)

commute, we have ypar = 75, On the other hand, restricting both routes of (55)
to FM allows us to conclude that

(¢ ®ox WulF))vrm = Yen F'o.

Step 5 follows.
Step 6: We show that ypaq is independent of presentation. Let vp, . : FM —
Mo, Wy (F) denote the morphism constructed in Step 4 using a flat presentation

Ly — Ly — M.
Now apply Step 5 to conclude that the diagram
Fid
—

FM FM

'YFMJ{ J{'Y/FM

Mo, Wy(F Mo, Wy(F
Ox Ll( )idm®:Wu(F) Ox Ll( )

commutes. Step 6 follows.
We define

Lrm = Yrm-

Step 7: We show that I'r is natural in M. This follows from Step 5 in light of the
definition of I'p a4 given in Step 6.
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Step 8: We show I'r is natural in F'. It suffices to check that if £ is a flat object
in QcohX and 7 : F — G is a morphism in Bimod (X — Y') then the diagram

F(L) e, G(L)

(56) Fre l lFGE

L& Wy (F — L® W (G
ox Wu( )£®oXWu(77) ox Wu(G)

commutes. Sufficiency follows from the right exactness of F. The proof that (56)
commutes is straightforward, and we omit it.

6.2. Properties of the Eilenberg-Watts Transformation. As in the previous
subsection, we specialize the notation preceding Lemma 5.3 to the case that S = X
and W; = U;. Let M be an object in QcohX. By Lemma 5.3, the morphism

induced by unit morphisms is a kernel of

uui M.

OM @ Bitistly M — B jUint U Uy

Throughout this subsection, F' is assumed to be an object in Bimod,(X —Y).

Proposition 6.1. If L is a flat object in QcohX, then I'p, is an isomorphism if
and only if the canonical map F ker §, — ker F'd, is an isomorphism.

Proof. The map I'p, is a composition of the canonical map Fkerd, — ker Fo.
and two isomorphisms, by Step 2 of the construction of I'. O

The next result follows from Proposition 6.1 and a straightforward diagram
chase.

Corollary 6.2. If F € Bimody(X —Y) then T'r is an isomorphism if and only if
(1) for all flat objects L in QcohX, the canonical map Fkerd, — ker Fo, is

an isomorphism, and
(2) — ®oyx Wy(F) is right exact.

Corollary 6.3. Let F' be a totally global, exact functor such that — ®o, Wy (F) is
right exact. Then F = 0.

Proof. Since F' is exact and — ®@p, Wy (F) is right exact, F & — ®0, Wy(F) by
Corollary 6.2. Thus, since F' is totally global, F' = 0 by Proposition 4.4. O

Proposition 6.4. If F'~ — @0, F for some object F in QcohX x Y, then I'p is
an isomorphism.

Proof. By the naturality of T' (noted in Step 8 of the construction of T') we may
assume without loss of generality that F' = —®p, F. By Proposition 5.4, Wy (F) =
F. Since F is right exact, so is — ®o, Wy (F). Hence, by Corollary 6.2, it suffices
to show that if £ is a flat object in QcohX, then the canonical map F (L) =
F(ker ;) — ker Fé, is an isomorphism. To prove this, we note that in Step 2 of
the construction of I" we constructed an isomorphism

(57) 7T2_17T3_1 : (kerég) ®Rox F — ker(dz ®oy .7:)
Hence, to complete the proof of the proposition, it suffices to prove that (57) is the

canonical map induced by the universal property of the kernel. This fact follows
from Lemma 3.1, as one can check. [l
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Corollary 6.5. Let F' be an object of QcohX X Y such that F' := — @0, F' is an
object in Bimody(X —Y). If ® : F — F' is a morphism in Bimody (X —Y), then
® factors through I'p.

Proof. Since I' is natural in G, the diagram

F 2, F
FFJ{ JFF/
— Qo Wy(F — Qo Wy(F'
Ox Ll( >—®OX—V‘>/u(‘1>) Ox L[( )

commutes. Since I'p/ is an isomorphism by Proposition 6.4, the assertion follows.
O

Proposition 6.6. Let I'r % ug. denote the horizontal composition of the natural
transformations I'r and idy,,. Then I'r is compatible with affine localization, i.e.
the diagram

Fups Fw*uk*(—) R0y Wy (F)
(58) ppuk*l l
— ®oy, Wunu,(Fuks) —  — ®oy, v Wu(F)

whose bottom horizontal is induced by the isomorphism constructed in Proposition
5.2 and whose right vertical is induced by the isomorphism (2), commutes for all k.

Proof. We prove the result in several steps.

Step 1: We show that it suffices to prove that (58) commutes when applied to flat
objects of QcohUy. For, if m: L — M is an epimorphism in QcohUy where L flat,
then, since the arrows in (58) are natural, and since Fuy, is right exact, Step 1
follows from a standard diagram chase.

Step 2: Consider the following diagram

F — O Fugs u:‘
(59) re| ®ui(-) 8oy, Fi

l

— Qox WH(F)—’ i — ®Oxvi*fi

whose top horizontal is induced by a unit, whose top vertical is induced by the
canonical isomorphism from Proposition 2.2, whose bottom wvertical is induced by
(1), and whose bottom horizontal comes from the definition of Wy (F) as a kernel.
We note that this diagram commutes. We first note that (59) commutes on flats by
the definition of I'p. Now, if M is an object in Qcoh X, there exists an epimorphism
from a flat object £ in QcohX to M. This epimorphism induces a map from (59)
applied to £ to (59) applied to M. Since all the arrows in (59) are natural and the
induced map FL£ — FM is an epimorphism, the commutativity of (59) applied to
M follows from a routine diagram chase.
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Step 8: Consider the following diagram

kook
Fup, —  Pupaud, uy

l -

* 3 kx*
Fuu) Uy — Fugeug,, uy

l I

(60) uiug (=) oy, Fi—ul,uli (=) @oy, Fi

l l

uke(=) oy vieFi  uf (=) oy, virFi

l l

.
— ®oy, VivixFi — = B0y, Vi VikFi
k k

whose top horizontal and top-left vertical are unit morphisms, whose second verticals
are from Propostion 2.2, whose second, third and fourth horizontal are induced by
basechange, whose third left-vertical and bottom right-vertical are induced by (1),
and whose bottom-left vertical and third right-vertical are induced by (2). Then this
diagram commutes. The proof of the commutativity of the top square of (60) is
routine and left to the reader. The commutativity of the middle square of (60)
follows from the fact that the second verticals are induced by the same natural
transformations. The fact that the bottom rectangle in (60) commutes follows
from Lemma 3.3.

Step 4: We complete the proof of the proposition. Recall that & € QcohUy x Y
denotes the object corresponding to the functor Fug. € Bimodg (U —Y) in the
proof of Proposition 2.2. Consider the following commutative diagram

— ®oy, Wunv, (Fugs)— @i — Qoy, Vh,E — @l (=) oy, &

FFuk* T l

Fu, — Fup. — G%Fuk*u?k*uflf
ik
@i Fuisth] U Di Pt g, Uy,

(61) P |

@iu’{uk*(—) ®OU,L Fi @mik*uf,:(—) ®OU¢ Fi

(=) ®ox Wu(F) —@iuks(—) oy vieFi  @iufy (=) oy, vinFi

|

v
— ®oy, viWy(F) — &; — Qoup, VpVisFi — Di — ®0y, Vi VirFi

whose upper and middle-left rectangle are (59), whose lower-right rectangle is (60)
and whose lower-left square has verticals induced by (2) and horizontals induced
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by the inclusion

It follows from Step 2, Step 3, and the naturality of (2) that all squares in this
diagram commute.
Next, we consider the following commutative diagram

— ®0y, Wunu, (Fuk) —— @0y, Wunu, (Fuks)

TFFuk*

Fuk*

(63) ~eou,r | [ Free.
ks (—) ®oy Wul(F)

l

— ®oy, iWu(F) — = ®oy, vpWu(F)

whose bottom-right vertical is induced by (2). The outside of the diagram formed
by placing this diagram to the left of (61) commutes by Step 6 of Proposition 5.2.
Since (63) equals (58), and since the map

- ®0Uk ’UZWL[(F) — 691(_) ®0Uk 'Uzvi*fi

induced by (62) is monic on flat objects, we conclude, by a straightforward diagram
chase on the diagram constructed by placing (63) to the left of (61), that (58)
commutes on flat objects. The proposition follows from Step 1. O

Corollary 6.7. If F is an object of Bimodg(X —Y) then kerI'r and cokT'r are
totally global. In particular, if X is affine, then T'r is an isomorphism.

Proof. By Proposition 4.5, it suffices to show that (kerI'p)u;. and (cok I'g)u,. equal
0 for all 4. To this end, we compute

(kerTp)use = ker(Tp * uiy)
kerl“pui*
0

1%

where the second line follows from Proposition 6.6, and the third follows from the
fact that since Fu;, = — R0y, Fi by Proposition 2.2, I',,,, is an isomorphism by
Proposition 6.4.

A similar proof establishes the fact that cok I'r is totally global.

The last statement follows from the fact that if X is affine, every totally global
functor from QcohX is 0. O

From now on, we fix a finite affine open cover U of X and write W for Wy,.

Corollary 6.8. If F' is an ezact functor in Bimody(X —Y), then I'r is an isomor-
phism.
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Proof. Let M be a quasi-coherent O x-module and let

I Bt M — Bicjuinug ugiu; M

denote the morphism defined by (37). By Proposition 6.6, the natural transfor-
mation I'p applied to each term of dpq is an isomorphism. Thus, the canonical
morphism ker F((0p1) — ker(dp ® o0, W(F)) is an isomorphism. Since F is exact,
the canonical morphism F'(ker d,q) — ker F'(dr4) is an isomorphism. On the other
hand, by Corollary 5.5, F exact implies that — ®p, W(F) is left exact. There-
fore, the canonical morphism (kerdp) ®o, W(F) — ker(dpm Qo W(F)) is an
isomorphism. The result now follows from Lemma 5.3. O

7. A STRUCTURE THEOREM FOR TOTALLY GLOBAL FUNCTORS IN
bimody (P — P?)

The purpose of this section is to compute the structure of totally global functors
in bimody, (P! — P%) when k is algebraically closed.

Throughout this section, we let k£ be an algebraically closed field, we assume X
and Y are noetherian, and we let

functy (QcohX, QcohY)

denote the category of k-linear functors from QcohX to QcohY which take coherent
objects to coherent objects. If F is an object of functy(QcohX, QcohY’), we let
F|cohx denote the restriction of F' to the full subcategory of QcohX consisting of
coherent objects.

In order to simplify the exposition, we introduce the concept of an admissible
functor.

Definition 7.1. Suppose X is a projective variety with very ample invertible sheaf
O(1). A nonzero object F' in functy(QcohX, QcohY’) is called an admissible functor
if it

(1) is totally global

(2) is half-exact on vector-bundles,

(3) commutes with direct limits, and

(4) has the property that Fa is epic for all nonzero o € Hom(O(m), O(n)).

For i € Z, the functor H*(P!, (—)(i)) is admissible.
Our main result in this section (Proposition 7.6, Corollary 7.10) is that an ad-
missible functor F € funct;,(QcohP!, QcohP?) admits a split monic

A:H' (P, (-)(@) — F
for some ¢ € Z. This allows us to prove (Theorem 7.12) that every admissible
functor in functk(Qcoh]P’l, QcohIP’O) is a direct sum of cohomologies. Since a non-

zero, totally global functor F' € bimody (P! — P?) is admissible (Corollary 7.3), the
same holds for such functors.

Lemma 7.2. Let X be a projective variety with very ample invertible sheaf O(1),
and suppose F € functy,(QcohX, QcohP) is right evact and vanishes on coherent
torsion modules. Then F' satisfies (4) in Definition 7.1.

Proof. If o € Hom(O(m),O(n)) and either FO(n) = 0 or m > n, then o = 0. If
m = n, and « is not zero, them « is an isomorphism so that F« is epic. Thus,
suppose FO(n) # 0, let m < n and let o € Hom(O(m), O(n)) be nonzero. We first
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show that the kernel of o must be zero. If not, pick an affine open cover over which
both O(m) and O(n) are free. Over one of these sets, U, ker a is nonzero. Since
a(U) is just multiplication by some element of O(U), and since X is integral, a(U)
must be the zero map. Therefore, U C Supp ker a. On the other hand, since ker o
is coherent, its support is closed in X. Since X is integral, the support of ker «
must equal X. But the support of ker « is disjoint from the set of points p € X
such that ay, # 0, since this map is just multiplication by a nonzero element of a
domain. We conclude that the kernel of o equals 0.

The cokernel of oy, is a torsion Ox p-module for all p. We conclude that the
cokernel of «v is torsion. Therefore, there is an exact sequence

0—O(m) >0Mn)—T—0

with 7 torsion. Hence dim FO(m) > dim FO(n) by the right exactness of F' and
by the fact that F'7 = 0. O

Corollary 7.3. If F € bimody (P! — P%) is non-zero and totally global, then F is
admissible.

Proof. Since F € functy,(QcohP!, QcohP?) is totally global, F' vanishes on coherent
torsion modules by Lemma 4.2. Therefore, F' is admissible by Lemma 7.2. (I

7.1. Subfunctors of Admissible Functors. In this subsection we prove that
if I € functy(QcohP!, QcohP?) is admissible, it has a subfunctor isomorphic to
HY(P!, (-)(i)) for some integer i. We begin with some preliminary results.

Lemma 7.4. Let X be a projective variety with very ample invertible sheaf O(1)
such that for all i > 0, we have

dimy I'(X, O(i)) > 1.
If F € functx(QcohX, QcohP?) satisfies (4) in Definition 7.1 and FO(n) # 0 for
some n € Z, then
dimy FO(m) > dimg FO(n)

for all m < n.

Proof. Let n be such that FO(n) # 0 and suppose that for all nonzero o €
Hom(O(m), O(n)) with m < n we have Fa epic. To prove the assertion, we must
exclude the possibility that there exists some m < n such that dimyg FO(m) =
dimy FO(n). Suppose to the contrary that for some m < n, dimy FO(m) = d =
dimy FO(n) # 0. Then, for all nonzero & € Hom(O(m),O(n)), Fa is an iso-
morphism. Pick a basis aq, ..., a, for Hom(O(m),O(n)) and let zo, ..., z, denote
indeterminates. Note that by hypothesis, > 0. Since

det(zoFag + -+ + 2, Fa)

is a homogeneous polynomial of degree d > 0 in k[zo, ..., z,], it has a non-trivial
zero which then gives a non-zero a such that Fa is not invertible. This is a con-
tradiction. (|

The following lemma will be invoked in the proof of Proposition 7.6. Its straight-
forward proof is omitted.
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Lemma 7.5. Suppose Fy, Fy € funct(QcohX, QcohY') preserve direct limits.

If A: Filcohx — Faleohx 18 a natural transformation, then A extends uniquely
to a natural transformation A : Fy — Fy. If A is monic, i.e. if Ay, is monic for
all coherent objects M in QcohX, then A is monic in Functy(QcohX, QcohY). If
A is epic, then A is epic in Functi(QcohX, QcohY).

We introduce notation which will be used in the proof of Proposition 7.6: let
A = k[zg, 1] denote the polynomial ring in 2 variables with its usual grading, let
[—] denote the shift functor, and let f; : A[—(n+1)] — A[—n] and ¢; : A[—(n+2)] —
A[—(n 4 1)] denote multiplication by x;. Then we have a short exact sequence in

GrA:
(91,—g0) @2 fotfi
0— A[-(n+2)] "—" A[-(n+1)]¥* "— A]l-n] — k[-n] — 0
where k denotes the trivial module. This induces the short exact sequence

64) 0 — O(—(n+2)) " O(—(n +1))®2 " O(—n) — 0.

Proposition 7.6. Suppose F' € functy,(QcohP!, QcohP?) is admissible. Then the
set

{i € Z|FO(i) # 0}
has a maximum, v, and there is a monic morphism
AH' P (=) (=2-1) = F
in Functy,(QcohP!, QcohP?).

Proof. We first show that r is well defined. Since F' is non-zero and totally global,
FO(n) # 0 for some n. Then dim FO(n) > dim FO(n + 1) by Lemma 7.4, so
FO(i) = 0 for all i >> 0. Hence, the set {i € Z|FO(i) # 0} indeed has a
maximum.

We let H := HY(P!,(—)(—=2 — 7)) and note that HO(r) = H'(P',O(-2)) = k.
We first define a natural transformation A : H|hpr — F|conpr by defining A » for
each indecomposable coherent sheaf F. If F is torsion or isomorphic to O(i) with
i > 1 we define Ay = 0, and we define Ay (,y : HO(r) — FO(r) to be any nonzero
map. Now suppose we have defined Ay ;) for all ¢ > m such that each such Ay,
is injective and such that

HOG)TLHOG + 1)
éoml léou#l)
N Fy .
FO(j)—FO(j +1)

commutes for j > ¢ and ¢ € Homp1 (O(j),O(j + 1)). We construct an injective
homomorphism 6 : HO(m) — FO(m) such that

HOm)ZEHOm + 1)
(65> Hl léomwl)
FOm) L5 FO(m + 1)
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commutes for ¢ = ¢g, ¢1 (see (64) for a definition of these maps). To this end, we
apply both H and F' to the exact sequence (64) with n := —m — 2 to get a diagram

HOm) "= 1O (m 4 1)e2 T O 4 2)

(66) ég?nwrl) léo(ﬂﬂr?)

FOm) TP pom + 1)22 " po(m + 2)

with exact rows whose right square commutes.
To construct 8, choose a basis u, ..., Up—mt1 for HO(m). Now,

(H¢1, —H(bo)(ui) S kel”(H’lbo + H’@/Jl)
Thus, by the commutativity of the right-hand square of (66),

(Ao (m+1): Bo(ms1)) (Hor(ui), —H o (ui))

is in the image of (F¢1,—F¢o). Hence, there exists a v; € FO(m) such that
Foj(vi) = ApminHej(u;) for i = 1,...,r —m + 1 and j = 0,1. We de-
fine O(u;) = v;. Since F is k-linear, we conclude that (65) commutes for all
¢ € Homp: (O(m),O(m + 1)). We define Apy,,) := 6, and we note that Ay,
is monic since (H¢1, —H¢g) is monic.

Next, we define A, when F is isomorphic to O(n). Let a : F — O(n) be an
isomorphism. Define

Ay = (Fa)_l oéo(n) o Ha.

If 8: F — O(n) is another isomorphism, then 8 = A« for some 0 # A € k, whence
(FB)~! = A"} (Fa)™! and HB = AHa; thus the definition of §7 does not depend
on the choice of a.

We now define A » for arbitrary F by writing F as a direct sum of indecompos-
ables, say F = ©F;, and defining Ar := ®Ax..

To show that A is a natural transformation we must show that

HFE g

(67) arl |2
FF—FG
Ff

commutes for all 7 and G and all maps f : F — G. It suffices to check this when
F and G are indecomposable. The diagram commutes when G is torsion because
FG = 0 then. If G is torsion-free and F torsion, then f = 0 so the diagram
commutes. Thus, the only remaining case is that when F = O(i) and G = O(j)
with ¢ < j. The case i = j is straightforward and we omit the verification in this
case. Thus, we may suppose ¢ > j.

Write f = 87 lga were a : F — O(i) and 3 : G — O(j) are isomorphisms and
0#g:0(@) — O(j). We can write g as a sum of terms of the form ;1,1 - - ;11
where each ¢; : O(l — 1) — O(l) is monic. Now

ApgyoHpjo o Hippy = Fpjo---0Fipip1 0 Ay

and this implies
Apjy o Hg=FgolAp)-
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Therefore,
AgoHf = FB oAy oHBoHf
FpBto Aoy o Hgo Ha
= Fp'oFgoApyoHa
= FfoFa! oéo(i) oHa
= FfoAy,.
This shows that (67) commutes and so completes the proof that A is natural.

Finally, A r is monic for all indecomposable coherent F and hence for all coherent
F. It follows from Lemma 7.5 that A extends to a monic natural transformation

A:H-—F.
O

7.2. The Structure of Admissible Functors in funct;(QcohP!, QcohP?). In
this subsection, we work towards a proof, realized in Corollary 7.10, that the monic
A constructed in Proposition 7.6 is split. It follows (Theorem 7.12) that an admissi-
ble functor in functy (Qcoh]P’l, Qcoh]P’O) is a direct sum of cohomologies. We assume,
throughout the subsection, that X and Y are projective schemes, F,G, M € QcohX
are coherent, and F' is an object of funct;(QcohX, QcohY).

We first define a natural transformation

Qp i Fleohx — Hom(—,G)"|conx @k FG

which will be used to split the monic A constructed in Proposition 7.6. To this
end, we let

N, k — Homx (F,G)* @ Homx (F,G)
be defined as follows: nrg(a) := a(}_, f @ f;) where {fi,..., fm} is a basis for
Homx (F,G). We next note that the functor F' induces a map
(68) gb]:g :HomX(}",g) Qr FF — FG

as follows: if U is an open set in Y, and s € FF(U), we define (68) over U to be
the map

f@s—= F(f)U)(s).
We define the natural transformation
(69) Op : Fleohx — Hom(—,G)"|cohx @k F'G.

as follows:
Opr: FF — Homx (F,G)* @ FG
is defined to be the composition of
nrg Qx FF : FF — Homx (F,G)" @, Hom(F,G) @, FF
with
Homx (F,G)" ®k ¢r g : Homx (F,G)" @ Homx (F,G) @k F'F —
Homx (F,G)" @ FG.

The proof that ®r is natural is straightforward and we omit it.
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Lemma 7.7. If N is a coherent object of QcohY, G is an invertible Ox-module
and
F = HOmx(—, g)* ®k N,
then the morphism ®p s an isomorphism.
Proof. Let {f1,..., fm} be a basis for Homx (F,G) and let U be open in Y. Then
Opr(U): FF(U) — Homx (F,G)" @, FG(U)
sends s € FF(U) to Yo, fF @ F(f:)(U)(s).
Suppose s is a simple tensor, so
s=0®t e Homx (F,G)* @, N(U).
We describe F(f;)(U)(d ® t). The map f; : F — G induces the map
—o f; : Homx (G,G) — Homx (F, G).
Dualizing gives a map
Homx (F,G)" — Homx (G, )"

which sends d to d o (— o f;). Therefore, F(f;)(U)(d ®t) =do(—o f;) ®t and so
the morphism

(I)F]:(U) : HOmx(]:,g)* Rk N(U) — HOmx(f, g)* Rk HOmx(g,g)* Rk N(U)

sends 6@t to ), fF®(do(—of;))®t. Since the map do(—of;) € Homx (G,G)* =k
sends multiplication by « to multiplication by «d(f;), the function

Homx (F,G)* — Homx (F,G)* ®, Homx (G, G)*

defined by sending 0 to Y, f ®k (0 o (— o f;)) is injective and k-linear, hence an
isomorphism of vector spaces. It follows that ®p=(U) is a tensor product of two
isomorphisms, and the assertion follows. (|

Lemma 7.8. Let © : F' — F be a natural transformation between elements of

functy (QcohX, QcohY). Then the diagram
FﬁHomX(—,g)* ®r FG

° I

F'@—>Homx(—, G) @, F'g
F/

whose right vertical is induced by ©, commutes on coherent objects.
Proof. From the definition of ®, it suffices to show that the diagram
FM—Homx (M, G)* ®, Homx (M, G) @ F

(70) ox| |
F'M—Homx (M, G)* ®, Homx (M, G) Q4 F’

whose right vertical is induced by © and whose horizontals are induced by the unit
map k — Homx (—,G)* ®; Homx(—,G) commutes, and that the diagram

Homx (M, G) @, FM — FG

(71) I Jos

Homx (M, G) @, F'M—F'G
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whose left vertical is induced by © and whose horizontals are induced by evalu-
ation, commutes. The fact that (70) commutes is trivial. We check commuta-
tivity of (71). The top route of (71) evaluated on the open set U C Y sends
f®xto F(f)(U)(Om(U)(x)) while the bottom route of (71) sends f ® = to
Og(U)F'(f)(U)(x). These values are equal by the naturality of ©. O

Lemma 7.9. If F' € funct,(QcohX, QcohIP’O) is such that there exists an invertible
G € Qcoh X and a monomorphism

¥ : Homx(—,G)" — F
in functy,(Qcoh X, QcohP?), then the restriction of U to coherents,
¥ : Homx (—, G)"|cohx — F'|cohx s
splits.
Proof. Let ¢ : FG — Homx (G, G)* be a splitting of Ug. Consider the diagram

FM Tra Homy (M, G)* ®x FG
v |
Homx (M, G)* —  Homx(M,§)* ® Homx (G,G)*
(PHomX(f,g)*M

whose right vertical is induced by Wg. The bottom horizontal is an isomorphism by
Lemma 7.7, and the diagram commutes by Lemma 7.8. It follows that the diagram

FM Tru Homy (M, G)* ®x FG
vl l
Homx(M,G)*  —  Homx(M,G)* @ Homx(G,G)*
PHom x (—,6)* M
whose right vertical is induced by 1, commutes. The lemma follows. (I
Corollary 7.10. Let F € functy(QcohP!, QcohP?) be admissible. The monic
A:H' (P, (=)(-2-r) — F
constructed in Proposition 7.6 splits.
Proof. The monic A restricts to a monic
A HYPY (<)(=2 = 7))lconpr — Fleonp1-
By Serre duality, A induces a monic
A" Homg (=, O(7))"[conpr — Flconpr
which by Lemma 7.9, admits a splitting
V' Fleoppr — Homgpi (—, O(7))"|conpr -
The map ¥ induces, by Serre duality again, a splitting
W : Fleonpr — H' (P, (=) (=2 = 7)) |conpt
of A. We claim that ¥ extends to a splitting
U:F — HY(P' (=)(-2-71))
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of A. To this end, Lemma 7.5 implies that ¥ has a unique extension ¥. We also
know that WA restricts on coherent objects to the map ¥ A = idy (L, (=)(=2—1)) | coppt *
But by Lemma 7.5, ¥ A extends uniquely to a natural transformation

HY(P!, (=)(=2 = 1)) — H'(P', (=)(=2 ).
Thus, VA = id g1 (1 (—)(—2—r)), Whence the Corollary. (I
We omit the straightforward proof of the following

Lemma 7.11. Suppose F € functy,(QcohPt, QcohP?) is admissible.
If F = A® B in functy(QcohP!, QcohP?), and if A is non-zero, then A is ad-
missible as well.

Theorem 7.12. If F € functy(QcohP!, QcohP?) is admissible, then there eist
integers m,n; > 0 such that

F=eX  H'(P(-)(0)"™.

i=—m

Proof. Since F is admissible, Proposition 7.6 implies that the set {i|FO(i) # 0}
has a maximum, r. We let m = r 4+ 2. Since F' preserves coherence, the set

{n|there exists a split monomorphism H*(P*, (—)(—m))®" — F}

has a maximum, which we call ng. If we let Fy = HY(PL, (—)(—m))®"°, and we let
8o : Fy — F be a split monomorphism, then there is a sub-functor F(!) of F such
that F = Fy @ F. By Lemma 7.11, either F(!) is 0 or F(1) is admissible.

Now, given a sub-functor F() of F which is either 0 or admissible, we construct
an object F; in the category functy(QcohP!, QcohP?), a split monomorphism §; :
F; — FW_ and a sub-functor FUtY of F() which is either 0 or admissible, as
follows. We let

n; = max {n|there exists a split monomorphism H*(P!, (=)(—m +1))®" — F®},

we let F; = H' (P!, (=)(—m+1))®", and we let §; : F; — F(® be a split monomor-
phism. Then there is a sub-functor F+1 of F(®) such that F() = F; @ F(+1) By
Lemma 7.11, either F(+Y is 0, or FU+D ig admissible.

In this way we get a morphism

Ao HY P, (=) (=m +1i))®" — F.

defined by A := ®2,6;. We claim that A is an isomorphism. By Lemma 7.5, it
suffices to show that Alppr is an isomorphism. To this end, let M be a coherent
Opi-module. Then M =2 O(i1) @ --- ® O(iy,) ® T where T is coherent torsion and
11 = min{iy, ..., i, . It follows that
O H (P, M(—m +14))®™ = @, 2 T HY (P, M(—m + 1)) ®™.
By the construction of A, in order to show that A4 is an isomorphism, it suffices
to show that F(-1=1+™) (M) = 0. If not, then F(—1=%+™) is an admissible direct
summand of F. By Proposition 7.6, the set {i| F(~1=1+™ (i) # 0} has a maxi-
mum, s, and there exists a split monomorphism H* (P!, (=)(—=2—s)) — F(-1=i+m),
Since F(~1=1+m) 5 totally global and F(~1~%1+™)(M) is nonzero, it follows that
one of
FEadm O iy)), ..., FEEaEm(0(,)
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is nonzero. Hence i1 < s. Since m = r + 2 and s < r, it follows that —m < —s — 2.
Thus, we have

-m< —2—-—s<—-2—14.
This contradicts the maximality of n_o_syp. O

By Corollary 7.3, Theorem 7.12 immediately implies the following

Corollary 7.13. If F' € bimody (Pt — PY) is totally global, then F is a direct sum
of cohomologies, i.e. there exist integers m,n; > 0 such that

F=ox  H (P (-)(@)"".
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