GRASSMANNIANS OF TWO-SIDED VECTOR SPACES

ADAM NYMAN

Abstract

Let $k \subset K$ be an extension of fields, and let $A \subset M_{n}(K)$ be a k-algebra. We study parameter spaces of m-dimensional subspaces of K^{n} which are invariant under A. The space $\mathbb{F}_{A}(m, n)$, whose R-rational points are A-invariant, free rank m summands of R^{n}, is well known. We construct a distinct parameter space, $\mathbb{G}_{A}(m, n)$, which is a fiber product of a Grassmannian and the projectivization of a vector space. We then study the intersection $\mathbb{F}_{A}(m, n) \cap \mathbb{G}_{A}(m, n)$, which we denote by $\mathbb{H}_{A}(m, n)$. Under suitable hypotheses on A, we construct affine open subschemes of $\mathbb{F}_{A}(m, n)$ and $\mathbb{H}_{A}(m, n)$ which cover their K-rational points. We conclude by using $\mathbb{F}_{A}(m, n), \mathbb{G}_{A}(m, n)$, and $\mathbb{H}_{A}(m, n)$ to construct parameter spaces of two-sided subspaces of two-sided vector spaces.

Contents

1. Introduction 1
2. Subfunctors of the Grassmannian 4
3. Representability of $G_{A}(m, n)$ and $H_{A}(m, n)$ 7
4. Affine open subschemes of $\mathbb{F}_{A}(m, n)$ and $\mathbb{H}_{A}(m, n)$ 10
5. Two-sided vector spaces 15
6. Parameter spaces of two-sided subspaces of V 16
6.1. The functors $F_{\phi}([W], V), G_{\phi}([W], V)$, and $H_{\phi}([W], V)$ 16
6.2. $\quad F$-rational points of $G_{\phi}([S], V)$ and $H_{\phi}([S], V)$ 19
6.3. The geometry of $\mathbb{F}_{\phi}([W], V), \mathbb{G}_{\phi}([W], V)$, and $\mathbb{H}_{\phi}([W], V)$ 21
References 23

1. Introduction

Throughout this paper, $k \subset K$ is an extension of fields. By a two-sided vector space we mean a k-central $K-K$-bimodule V which is finite-dimensional as a left K-module. Thus, a two-sided vector space on which K acts centrally is just a finite-dimensional vector space over K. The purpose of this paper is to continue the classification of two-sided vector spaces begun in [4] by constructing and studying parameter spaces of two-sided subspaces of V.

Date: August 14, 2006.
Key words and phrases. Grassmannian, two-sided vector space, noncommutative vector bundle, bimodule.

2000 Mathematics Subject Classification. Primary 15A03, 14M15, 16D20; Secondary 14A22.
The author was partially supported by the University of Montana University Grant program and by National Security Agency grant H98230-05-1-0021.

Instead of focusing exclusively on parameter spaces of two-sided subspaces of V, we take a more general perspective. Let $A \subset M_{n}(K)$ be a k-algebra, and let R be a K-algebra. The functor $F_{A}(m, n): K$ alg \rightarrow Sets defined on objects by

$$
F_{A}(m, n)(R)=\left\{\text { free rank } m \text { direct summands of } R^{n} \text { which are } A \text {-invariant }\right\}
$$

and on morphisms by pullback is representable by a subscheme, $\mathbb{F}_{A}(m, n)$, of the Grassmannian of m-dimensional subspaces of $K^{n}, \mathbb{G}(m, n)$ [3]. The scheme $\mathbb{F}_{A}(m, n)$ is related to two-sided vector spaces as follows. Suppose $\phi: K \rightarrow M_{n}(K)$ is a k-central ring homomorphism and K^{n} is made into a two-sided vector space, K_{ϕ}^{n}, via $v \cdot x:=v \phi(x)$. Then the K-rational points of the scheme $\mathbb{F}_{\mathrm{im} \phi}(m, n)$ parameterize the two-sided m-dimensional subspaces of K_{ϕ}^{n}.

There are other subschemes of $\mathbb{G}(m, n)$ which parameterize two-sided vector spaces as well. In this paper, we study the geometry of $\mathbb{F}_{A}(m, n)$ and two other subschemes of $\mathbb{G}(m, n), \mathbb{G}_{A}(m, n)$ and $\mathbb{H}_{A}(m, n)$, which have the same K-rational points as $\mathbb{F}_{A}(m, n)$. Our justification for studying $\mathbb{G}_{A}(m, n)$ is that we are able to give a global description of it as an intersection of $\mathbb{G}(m, n)$ and the projectivization of a vector space (Theorem 3.3). Our justification for studying $\mathbb{H}_{A}(m, n)$ is that it is a subscheme of $\mathbb{G}_{A}(m, n)$ which has a smooth, reduced, irreducible open subscheme which covers its K-rational points (Theorem 4.9).

We now describe $\mathbb{G}_{A}(m, n)$ by its functor of points, $G_{A}(m, n)$. The R-rational points of this functor are the free rank m summands of R^{n}, M, which have the property that the image of $\bigwedge^{m} M$ under the composition

$$
\bigwedge^{m} R^{n} \xlongequal{\cong} \bigwedge^{m}\left(R \otimes_{K} K^{n}\right) \stackrel{\cong}{\rightrightarrows} R \otimes_{K} \bigwedge^{m} K^{n}
$$

has an R-module generator of the form

$$
\sum_{i} r_{i} \otimes v_{i 1} \wedge \cdots \wedge v_{i m}
$$

where $\operatorname{Span}_{K}\left\{v_{i 1}, \ldots, v_{i m}\right\}$ is A-invariant for all i (see Definition 2.3). The motivation behind this definition is that when $A-\{0\} \subset G L_{n}(K)$ and K^{n} is homogeneous as a $K \otimes_{k} A$-module (see Section 2 for a description of the action of $K \otimes_{k} A$ on $\left.K^{n}\right), G_{A}(m, n)$ solves the same parameterization problem that $F_{A}(m, n)$ does, in the sense that $G_{A}(m, n)(K)=F_{A}(m, n)(K)$. Although it is not clear from the definitions, the functors $G_{A}(m, n)$ and $F_{A}(m, n)$ are distinct (Example 6.7).

We prove in Section 3 that $G_{A}(m, n)$ has a simple global description (Theorem 3.3):

Theorem. Let
$\bigwedge_{A}^{m}=\operatorname{Span}_{K}\left\{v_{1} \wedge \cdots \wedge v_{m} \mid v_{1}, \ldots, v_{m}\right.$ is a basis for an A-invariant subspace of $\left.K^{n}\right\}$.
The functor $G_{A}(m, n)$ is represented by the pullback of the diagram

$$
\begin{array}{r}
\mathbb{P}_{K}\left(\left(\bigwedge_{A}^{m}\right)^{*}\right) \\
\stackrel{\downarrow}{\mathbb{G}(m, n) \longrightarrow \mathbb{P}_{K}\left(\left(\bigwedge^{m} K^{n}\right)^{*}\right)}
\end{array}
$$

whose horizontal is the canonical embedding, and whose vertical is induced by the inclusion $\bigwedge_{A}^{m} \rightarrow \bigwedge^{m} K^{n}$.

To the authors knowledge, there is no similar description of $\mathbb{F}_{A}(m, n)$. The functorial description of $\mathbb{G}_{A}(m, n)$ allows us to describe the tangent space to $\mathbb{G}_{A}(m, n)$ (Theorem 3.6).

We define $\mathbb{H}_{A}(m, n)$ to be the pullback of the diagram

Suppose $S \subset K^{n}$ is a simple $K \otimes_{k} A$-module such that $\operatorname{dim}_{K} S=m$, and K^{n} is S-homogeneous and semisimple as a $K \otimes_{k} A$-module. In Section 4, we construct an affine open cover of the K-rational points of $\mathbb{F}_{A}(m, n)$. Furthermore, when K is infinite and A is commutative, we construct an affine open cover of the K-rational points of $\mathbb{H}_{A}(m, n)$. As a consequence, we prove the following (Theorem 4.9):

Theorem. Suppose $K^{n} \cong S^{\oplus l}$ as $K \otimes_{k} A$-modules. Then $\mathbb{F}_{A}(m, n)$ contains an open subscheme which is smooth, reduced, irreducible, of dimension $l m-m$ and has the same K-rational points as $\mathbb{F}_{A}(m, n)$. Furthermore, if K is infinite and A is commutative, then $\mathbb{H}_{A}(m, n)$ contains an open subscheme which is smooth, reduced, irreducible, of dimension $l m-m$ and has the same K-rational points as $\mathbb{H}_{A}(m, n)$.

Now, let $V=K_{\phi}^{n}$ and let W be a two-sided vector space. In Section 6, we use $\mathbb{F}_{A}(m, n), \mathbb{G}_{A}(m, n)$, and $\mathbb{H}_{A}(m, n)$ to construct three parameter spaces of two-sided subspaces of V of rank [W] (see Section 5 for the definition of rank). We denote these parameter spaces by $\mathbb{F}_{\phi}([W], V), \mathbb{G}_{\phi}([W], V)$, and $\mathbb{H}_{\phi}([W], V)$. We then provide examples to show that, although $\mathbb{F}_{\phi}([W], V), \mathbb{G}_{\phi}([W], V)$, and $\mathbb{H}_{\phi}([W], V)$ have the same K-rational points, $\mathbb{F}_{\phi}([W], V) \neq \mathbb{G}_{\phi}([W], V)$ and $\mathbb{F}_{\phi}([W], V) \neq \mathbb{H}_{\phi}([W], V)$ for certain $[W]$ and V. As a consequence, $\mathbb{F}_{A}(m, n) \neq \mathbb{G}_{A}(m, n)$ and $\mathbb{F}_{A}(m, n) \neq$ $\mathbb{H}_{A}(m, n)$ for certain A, m, and n.

We then show that, if F is an extension field of K, then every element of $G_{\phi}([S], V)(F)$ and of $H_{\phi}([S], V)(F)$ is isomorphic to $F \otimes_{K} S$ as $F \otimes_{k} K$-modules (Theorem 6.10).

We conclude by studying the geometry of the parameter spaces $\mathbb{F}_{\phi}([W], V)$, $\mathbb{G}_{\phi}([W], V)$, and $\mathbb{H}_{\phi}([W], V)$ in two cases. In case K / k is finite and Galois, we prove that the three spaces are equal to each other, and equal to the product of Grassmannians (Corollary 6.12). In case K is infinite, $\left\{S_{i}\right\}_{i=1}^{r}$ consists of nonisomorphic simples with $\operatorname{dim} S_{i}=m_{i}$, and V is semisimple with l_{i} factors of S_{i}, we prove the following (Corollary 6.15):

Theorem. $\mathbb{F}_{\phi}\left(\left[S_{1}\right]+\cdots+\left[S_{r}\right], V\right)$ and $\mathbb{H}_{\phi}\left(\left[S_{1}\right]+\cdots+\left[S_{r}\right], V\right)$ contain smooth, reduced, irreducible open subschemes of dimension $\sum_{i=1}^{r} l_{i} m_{i}-m_{i}$ which cover their K-rational points.

Aside from their significance as generalizations of Grassmannians, parameter spaces of two-sided subspaces of V, or Grassmannians of two-sided subspaces of V, are related to classification questions in noncommutative algebraic geometry. The subject of noncommutative algebraic geometry is concerned, among other things, with classifying noncommutative projective surfaces (see [7] for an introduction to this subject). One important class of noncommutative surfaces, the class of noncommutative ruled surfaces, is constructed from noncommutative vector bundles.

Let U and X be schemes, and let X be a U-scheme. By a " U-central noncommutative vector bundle over X ", we mean an \mathcal{O}_{U}-central, coherent sheaf $X-X$-bimodule which is locally free on the right and left [8 , Definition 2.3 , p. 440].

Two-sided vector spaces are related to noncommutative vector bundles as follows. If \mathcal{E} is a noncommutative vector bundle over an integral scheme X, \mathcal{E}_{η} is a two-sided vector space over $k(X)$. In addition, if $U=\operatorname{Spec} k$ and $X=\operatorname{Spec} K$, a U-central noncommutative vector bundle over X is just a two-sided vector space.

Let \mathcal{E} be a (commutative) vector bundle over X. An important problem in algebraic geometry is to parameterize quotients of \mathcal{E} with fixed Hilbert polynomial, and study the resulting parameter space. We are interested in the analogous problem in noncommutative algebraic geometry: to parameterize U-central quotients of a U-central noncommutative vector bundle over X with fixed invariants, and study the resulting parameter space. Thus, the results in this paper address this problem when $U=\operatorname{Spec} k$ and $X=\operatorname{Spec} K$.

Notation and conventions: We let Sets denote the category of sets and K - alg denote the category of commutative K-algebras. For any scheme Y over Spec K, we let h_{Y} denote the functor of points of Y, i.e. the functor h_{Y} from the category $K-$ alg to the category Sets is the functor $\operatorname{Hom}_{\text {Spec } K}(\mathrm{Spec}-, Y)$. Unless otherwise specified, all unlabeled isomorphisms are assumed to be canonical. Finally, we suppose throughout that $A \subset M_{n}(K)$ is a k-algebra and R is a commutative K algebra.

Other notation and conventions will be introduced locally.
Acknowledgments: I thank W. Adams, B. Huisgen-Zimmermann, C. Pappacena and N. Vonessen for helpful conversations, I thank A. Magidin for proving Lemma 6.5 , and I thank S.P. Smith for a number of helpful comments regarding an earlier draft of this paper.

2. Subfunctors of the Grassmannian

Recall that the functor of points of the Grassmannian over Spec K is the functor $G(m, n): K-$ alg \rightarrow Sets defined on R as the set of free rank m summands of R^{n}, and defined on morphisms as the pullback [2, Exercise VI-18, p. 261].

In this section, we define three subfunctors of $G(m, n), F_{A}(m, n), G_{A}(m, n)$, and $H_{A}(m, n)$. We will see that $F_{A}(m, n)$ and $H_{A}(m, n)$ parameterize m-dimensional subspaces of K^{n} which are invariant under the action of A, and $G_{A}(m, n)$ does so under suitable hypotheses on A.

Let $m=\sum_{i=1}^{n} r_{i} e_{i} \in R^{n}$, where e_{i} is the standard unit vector. We note that the action $r \otimes a \cdot m=\sum_{i=1}^{n} r r_{i} e_{i} a$ makes R^{n} an $R \otimes_{k} A$-module. We say that $M \subset R^{n}$ is A-invariant if M is an $R \otimes_{k} A$-submodule.

Definition 2.1. Suppose m is a nonnegative integer. Let $F_{A}(m, n)(-): K-\operatorname{alg} \rightarrow$ Sets denote the assignment defined on the object R as

$$
\{M \in G(m, n)(R) \mid M \text { is } A \text {-invariant }\}
$$

and on morphisms $\delta: R \rightarrow T$ as the pullback. That is, $F_{A}(m, n)(\delta)(M)$ equals the image of the map

$$
\begin{equation*}
T \otimes_{R} M \rightarrow T \otimes_{R} R^{n} \xlongequal{\rightrightarrows} T^{n} \tag{1}
\end{equation*}
$$

whose left arrow is induced by inclusion $M \subset R^{n}$.
The proof of the following result is straightforward, so we omit it.

Lemma 2.2. The assignment $F_{A}(m, n): K-\operatorname{alg} \rightarrow$ Sets is a functor.
We call elements of $F_{A}(m, n)(R)$ free rank m-invariant families over $\operatorname{Spec} R$, or free A-invariant families when m, n and R are understood.

Definition 2.3. Let $M \subset R^{n}$ be a free rank m summand. We say M is generated by A-invariants over $\operatorname{Spec} R$ or is generated by A-invariants if R is understood, if $\bigwedge^{m} M$ maps, under the composition

$$
\begin{equation*}
\bigwedge^{m} M \rightarrow \bigwedge^{m} R^{n} \xrightarrow{\cong} \bigwedge^{m}\left(R \otimes_{K} K^{n}\right) \stackrel{\cong}{\leftrightarrows} R \otimes_{K} \bigwedge^{m} K^{n} \tag{2}
\end{equation*}
$$

whose left arrow is induced by inclusion, to an R-module with generator of the form

$$
\begin{equation*}
\sum_{i} r_{i} \otimes v_{i 1} \wedge \cdots \wedge v_{i m} \tag{3}
\end{equation*}
$$

where, for all $i,\left\{v_{i 1}, \ldots, v_{i m}\right\}$ is a basis for a rank $m A$-invariant subspace of K^{n}.
For a discussion of the motivation behind this definition, see Remark 2.9.
Lemma 2.4. Let $\delta: R \rightarrow T$ be a homomorphism of K-algebras, and let M be a free rank m summand of R^{n} which is generated by A-invariants over $\operatorname{Spec} R$. Then the image of $T \otimes_{R} M$ under (1) is a free rank m summand of T^{n} which is generated by A-invariants over $\operatorname{Spec} T$.

Proof. Suppose M has basis $w_{1}, \ldots, w_{m} \in R^{n}$, and $w_{1} \wedge \cdots \wedge w_{m}$ maps to

$$
\sum_{i} r_{i} \otimes v_{i 1} \wedge \cdots \wedge v_{i m}
$$

under (2). Then $1 \otimes w_{1}, \ldots, 1 \otimes w_{m} \in T \otimes_{R} M$ are generators of $T \otimes_{R} M$, and, if we let $\overline{w_{1}}, \ldots, \overline{w_{m}}$ denote the images of $1 \otimes w_{1}, \ldots, 1 \otimes w_{m}$ under (1), then $\overline{w_{1}}, \ldots, \overline{w_{m}}$ generates the image of $T \otimes_{R} M$ under (1). We claim $\overline{w_{1}} \wedge \cdots \wedge \overline{w_{m}} \in \bigwedge^{m} T^{n}$ maps to $\sum_{i} \delta\left(r_{i}\right) \otimes v_{i 1} \wedge \cdots \wedge v_{i m}$ under the composition

$$
\begin{equation*}
\bigwedge^{m} T^{n} \xlongequal{\rightrightarrows} \bigwedge^{m}\left(T \otimes_{K} K^{n}\right) \stackrel{\cong}{\rightrightarrows} T \otimes_{K} \bigwedge^{m} K^{n} \tag{4}
\end{equation*}
$$

To prove the claim, we first note that a straightforward computation implies that

commutes (recall our convention about unlabeled isomorphisms). Furthermore, the image of $1 \otimes w_{1} \wedge \cdots \wedge w_{m} \in T \otimes_{R} \wedge^{m} R^{n}$ under the right-hand route of (5) equals $\sum_{i} \delta\left(r_{i}\right) \otimes v_{i 1} \wedge \cdots \wedge v_{i m}$. Therefore, the image of $1 \otimes w_{1} \wedge \cdots \wedge w_{m} \in T \otimes_{R} \wedge^{m} R^{n}$ under the left-hand route of (5) equals $\sum_{i} \delta\left(r_{i}\right) \otimes v_{i 1} \wedge \cdots \wedge v_{i m}$. Finally, the image of $1 \otimes w_{1} \wedge \cdots \wedge w_{m} \in T \otimes_{R} \wedge^{m} R^{n}$ under the first two maps of the left-hand route of (5) equals $\overline{w_{1}} \wedge \cdots \wedge \overline{w_{m}} \in \bigwedge^{m} T^{n}$. The claim, and hence the lemma, follows from the fact that the composition of the third and fourth arrows of the left-hand route of (5) is the composition (4).

Definition 2.5. Let $G_{A}(m, n)(-): K-\operatorname{alg} \rightarrow$ Sets denote the assignment defined on the object R as

$$
\{M \in G(m, n)(R) \mid M \text { is generated by } A \text {-invariants }\}
$$

and on morphisms as the pullback.
The next result follows immediately from Lemma 2.4.
Lemma 2.6. $G_{A}(m, n): K-$ alg \rightarrow Sets is a functor.
We call elements of $G_{A}(m, n)(R)$ free rank m families generated by A-invariants over $\operatorname{Spec} R$, or free families generated by A-invariants when m, n and R are understood.

Remark 2.7. It follows immediately from Definition 2.3 that

$$
F_{A}(m, n)(K) \subset G_{A}(m, n)(K)
$$

We now find sufficient conditions under which $F_{A}(m, n)(K)=G_{A}(m, n)(K)$.
Lemma 2.8. Let M be a free rank m family generated by A-invariants over $\operatorname{Spec} R$. If $M_{\mathfrak{m}}$ is A-invariant for every maximal ideal \mathfrak{m} of R, then M is A-invariant. If R is a field, $A-\{0\} \subset G L_{n}(K)$, and K^{n} is homogeneous as a $K \otimes_{k} A$-module, then M is A-invariant.

Proof. Suppose \mathfrak{m} is a maximal ideal of R, a is an element of A, and $N=M a+M$. The diagram

whose left horizontals and left vertical are induced by inclusion, commutes, and the left horizontals are injective since localization is exact. By Lemma 2.4, the image, \bar{M}, of the top horizontal composition is generated by A-invariants. Thus, by hypothesis, \bar{M} is A-invariant. Hence, the left vertical is surjective, and so the map

$$
M_{\mathfrak{m}} \rightarrow N_{\mathfrak{m}}
$$

induced by inclusion is an epimorphism. It follows from [1, Corollary 2.9, p. 68] that $M=N$, and hence that M is A-invariant.

Next, suppose R is a field, $A-\{0\} \subset G L_{n}(K), K^{n}$ is homogeneous as a $K \otimes_{k} A$ module, and M has basis $w_{1}, \ldots, w_{m} \in R^{n}$. If M were not A-invariant, then there would exist an $1 \leq i \leq m$ and an $a \in A$ such that $w_{i} a$ is not an element of M. Thus, since a is invertible, $w_{1} a \wedge \cdots \wedge w_{m} a$ would not be proportional to $w_{1} \wedge \cdots \wedge w_{m}$.

On the other hand, since K^{n} is homogeneous, the determinant of the matrix corresponding to $a \in A$ acting on an m-dimensional, A-invariant, subspace V is independent of V. Thus, since M is generated by A-invariants, $w_{1} a \wedge \cdots \wedge w_{m} a=$ $c w_{1} \wedge \cdots \wedge w_{m}$ for some nonzero $c \in K$. We conclude that M is A-invariant.

Remark 2.9. As a consequence of Lemma 2.8, if $A-\{0\} \subset G L_{n}(K)$, and K^{n} is homogeneous as a $K \otimes_{k} A$-module,

$$
G_{A}(m, n)(K)=F_{A}(m, n)(K)
$$

Thus, these two functors parameterize the same object. On the other hand, we will see in Theorem 3.3 that the scheme representing $G_{A}(m, n)$ has a simple global description as a pullback of $\mathbb{G}(m, n)$ and the projectivization of a vector space. These two facts provide motivation for Definition 2.3.
Definition 2.10. Let $H_{A}(m, n)(-): K-$ alg \rightarrow Sets denote the fibered product of functors $F_{A}(m, n) \times{ }_{G(m, n)} G_{A}(m, n)$ induced by inclusion of $F_{A}(m, n)$ and $G_{A}(m, n)$ in $G(m, n)$ [2, Definition VI-4, p. 254].

We call elements of $H_{A}(m, n)(R)$ free rank m-invariant families generated by A-invariants over $\operatorname{Spec} R$, or free A-invariant families generated by A-invariants when m, n, and R are understood.
Remark 2.11. It follows from Remark 2.7 that $H_{A}(m, n)(K)=F_{A}(m, n)(K)$.

3. Representability of $G_{A}(m, n)$ and $H_{A}(m, n)$

It was proven in [3] that $F_{A}(m, n)$ is representable by a subscheme of the Grassmannian $\mathbb{G}(m, n)$. The main result of this section is that $G_{A}(m, n)$ is representable by the intersection of $\mathbb{G}(m, n)$ and the projectivization of a vector space. It will follow easily that $H_{A}(m, n)$ is representable as well. We conclude the section by computing the tangent space to $G_{A}(m, n)$.

Let $\mathbb{P}(-)$ denote the projectivization functor. That is, if M is a K-module, we let $\mathbb{P}(M)$ denote the scheme whose R-rational points equal equivalence classes of epimorphisms $\tau: R \otimes_{K} M \rightarrow L$, where L is an invertible R-module, such that $\tau_{1}: R \otimes_{K} M \rightarrow L_{1}$ is equivalent to $\tau_{2}: R \otimes_{K} M \rightarrow L_{2}$ iff there exists an isomorphism $\psi: L_{1} \rightarrow L_{2}$ such that $\tau_{2}=\psi \tau_{1}$.

Before proving that $G_{A}(m, n)$ is representable, we recall two preliminary facts.
Lemma 3.1. Let U be a subspace of $\bigwedge^{m} K^{n}$. There is a natural isomorphism

$$
R \otimes_{K}(U)^{*} \xrightarrow{\cong}\left(R \otimes_{K} U\right)^{*},
$$

and the canonical isomorphism $\bigwedge^{m} R^{n} \longrightarrow R \otimes_{K} \bigwedge^{m} K^{n}$ induces an isomorphism

$$
\left(R \otimes_{K} \bigwedge^{m} K^{n}\right)^{*} \xrightarrow{\cong}\left(\bigwedge^{m} R^{n}\right)^{*}
$$

We omit the straightforward proof of the next result.
Lemma 3.2. Let F denote the full subcategory of the category of R-modules consisting of finitely generated free R-modules. Then the functor

$$
\operatorname{Hom}_{R}(-, R): \mathrm{F} \rightarrow \mathrm{~F}
$$

is full and faithful.
We let
$\bigwedge_{A}^{m}=\operatorname{Span}_{K}\left\{v_{1} \wedge \cdots \wedge v_{m} \mid v_{1}, \ldots, v_{m}\right.$ is a basis for an A-invariant subspace of $\left.V\right\}$.
Theorem 3.3. The functor $G_{A}(m, n)$ is represented by the pullback of the diagram

whose horizontal is the canonical embedding, and whose vertical is induced by the inclusion $\bigwedge_{A}^{m} \rightarrow \bigwedge^{m} K^{n}$.

Proof. By [2, p. 260], it suffices to prove that the functor $G_{A}(m, n)$ is the pullback of functors

$$
\begin{equation*}
h_{\mathbb{G}(m, n)} \times_{h_{\mathbb{P}\left(\left(\Lambda^{m} K^{n}\right)^{*}\right)}} h_{\mathbb{P}\left(\left(\bigwedge_{A}^{m}\right)^{*}\right)} \tag{7}
\end{equation*}
$$

induced by (6).
Let $M \subset R^{n}$ be a free rank m summand. We recall a preliminary fact. The map $\bigwedge^{m} M \rightarrow \bigwedge^{m} R^{n}$ induced by the inclusion of M in R^{n} identifies $\bigwedge^{m} M$ with a summand of $\bigwedge^{m} R^{n}$. Thus, the induced map

$$
\psi:\left(\bigwedge^{m} R^{n}\right)^{*} \longrightarrow\left(\bigwedge^{m} M\right)^{*}
$$

is an epimorphism.
We now prove that $G_{A}(m, n)$ equals (7). We note that a free rank m summand $M \subset R^{n}$ is an R-rational point of (7) iff the epimorphism

$$
\begin{equation*}
R \otimes_{K}\left(\bigwedge^{m} K^{n}\right)^{*} \xrightarrow{\cong}\left(\bigwedge^{m} R^{n}\right)^{*} \xrightarrow{\psi}\left(\bigwedge^{m} M\right)^{*} \tag{8}
\end{equation*}
$$

whose left arrow is the map from Lemma 3.1, factors through the map

$$
\begin{equation*}
R \otimes_{K}\left(\bigwedge^{m} K^{n}\right)^{*} \longrightarrow R \otimes_{K}\left(\bigwedge_{A}^{m}\right)^{*} \tag{9}
\end{equation*}
$$

induced by the inclusion $\bigwedge_{A}^{m} \subset \bigwedge^{m} K^{n}$. Thus, to prove the result, it suffices to show that (8) factors through (9) iff M is generated by A-invariants. Now, (8) factors through (9) iff there exists a map $\gamma^{*}:\left(R \otimes_{K} \bigwedge_{A}^{m}\right)^{*} \longrightarrow\left(\bigwedge^{m} M\right)^{*}$ making the diagram

whose left and middle vertical are induced by inclusion, and whose top horizontals and bottom left horizontal are from Lemma 3.1, commute. By Lemma 3.1, the left square of (10) commutes. Thus, by Lemma 3.2, there exists a map γ^{*} making (10) commute iff there exists a map $\gamma: \bigwedge^{m} M \rightarrow R \otimes_{K} \bigwedge_{A}^{m}$ making the diagram

$$
\begin{gather*}
R \otimes_{K} \bigwedge^{m} K^{n} \cong \bigwedge^{m} R^{n} \\
\uparrow \uparrow \tag{11}\\
R \otimes_{K} \bigwedge_{A}^{m} \stackrel{\gamma}{\longleftarrow} \bigwedge^{m} M
\end{gather*}
$$

whose verticals are inclusions, commute. This occurs iff M is generated by A invariants, i.e. iff $M \in G_{A}(m, n)(R)$.

We denote the pullback of (6) by $\mathbb{G}_{A}(m, n)$. The following result is now immediate:
Corollary 3.4. $\mathbb{G}_{A}(m, n)$ is a projective subscheme of $\mathbb{G}(m, n)$.
We also note that $H_{A}(m, n)$ is representable:
Corollary 3.5. $H_{A}(m, n)$ is represented by the pullback of the diagram

whose arrows are induced by the inclusion of functors $G_{A}(m, n) \subset G(m, n)$ and $F_{A}(m, n) \subset G(m, n)$.

Proof. Since $H_{A}(m, n)$ is defined as the fibered product $F_{A}(m, n) \times{ }_{G(m, n)} G_{A}(m, n)$ induced by the inclusion of functors $G_{A}(m, n) \subset G(m, n)$ and $F_{A}(m, n) \subset G(m, n)$, the result follows immediately from [2, p. 260].

We end the section by computing the Zariski tangent space to $\mathbb{G}_{A}(m, n)$ at the K-rational point $E=\operatorname{Span}_{K}\left\{e_{1}, \ldots, e_{m}\right\} \in G_{A}(m, n)(K)$. Recall that if

$$
\Psi: G_{A}(m, n)\left(K[\epsilon] /\left(\epsilon^{2}\right)\right) \rightarrow G_{A}(m, n)(K)
$$

is the map induced by the quotient $K[\epsilon] /\left(\epsilon^{2}\right) \rightarrow K$ sending ϵ to 0 , the Zariski tangent space to $\mathbb{G}_{A}(m, n)$ at the K-rational point $E \in G_{A}(m, n)(K)$ is the set

$$
T_{E}=\left\{M \in G_{A}(m, n)\left(K[\epsilon] /\left(\epsilon^{2}\right)\right) \mid \Psi(M)=E\right\}
$$

with vector space structure defined as follows: Suppose $\left\{f_{i}\right\}_{i=1}^{m}$ and $\left\{g_{i}\right\}_{i=1}^{m}$ are subsets of K^{n}. If $M \in T_{E}$ has basis $\left\{e_{i}+\epsilon f_{i}\right\}_{i=1}^{m}, M^{\prime} \in T_{E}$ has basis $\left\{e_{i}+\epsilon g_{i}\right\}_{i=1}^{m}$, and $a, b \in K$, we let $a M+b M^{\prime} \in T_{E}$ denote the family with basis $\left\{e_{i}+\epsilon\left(a f_{i}+b g_{i}\right)\right\}$. It is straightforward to check that the vector space structure is independent of choices made.

We define a map

$$
d: \operatorname{Hom}_{K}\left(E, K^{n}\right) \rightarrow \operatorname{Hom}_{K}\left(\bigwedge^{m} E, \bigwedge^{m} K^{n}\right)
$$

as follows. For $\psi \in \operatorname{Hom}_{K}\left(E, K^{n}\right)$, we define $d(\psi)$ on totally decomposable wedges as

$$
d(\psi)\left(e_{1} \wedge \cdots \wedge e_{m}\right)=\sum_{i=1}^{m} e_{1} \wedge \cdots \wedge e_{i-1} \wedge \psi\left(e_{i}\right) \wedge e_{i+1} \wedge \cdots \wedge e_{m}
$$

and extend linearly. It is straightforward to check that d is K-linear.
Theorem 3.6. Suppose $V=E \oplus L$ as a K-module for some K-submodule L of K^{n}. The tangent space to $\mathbb{G}_{A}(m, n)$ at $E \in \mathbb{G}_{A}(m, n)(K)$ is isomorphic to

$$
S_{E}=\left\{\psi \in \operatorname{Hom}_{K}(E, L) \mid \operatorname{im} d(\psi) \subset \bigwedge_{A}^{m}\right\}
$$

Proof. We define a map

$$
\Phi: T_{E} \rightarrow S_{E}
$$

as follows: let $M \in T_{E}$ have basis $\left\{e_{i}+\epsilon\left(s_{i}+t_{i}\right)\right\}_{i=1}^{m}$ where $\left\{e_{1}, \ldots, e_{m}\right\}$ is a basis for $E, s_{i} \in E$, and $t_{i} \in L$. Define $\psi \in \operatorname{Hom}_{K}\left(E, K^{n}\right)$ by $\psi\left(e_{i}\right)=t_{i}$. We let $\Phi(M)=\psi$, and we omit the straightforward proof of the fact that the definition of Φ is independent of choices made.

Step 1: We prove Φ is a well defined map of vector spaces. We omit the straightforward proof of the fact that as a map to $\operatorname{Hom}_{K}\left(E, K^{n}\right), \Phi$ is K-linear. It remains to show that $\Phi(M) \in S_{E}$, i.e. that $\operatorname{im} d(\psi) \subset \bigwedge_{A}^{m}$. Since M is generated by A invariants, $\left(e_{1}+\epsilon\left(s_{1}+t_{1}\right)\right) \wedge \cdots \wedge\left(e_{m}+\epsilon\left(s_{m}+t_{m}\right)\right) \in \bigwedge^{m} M$ maps, under (2) to

$$
\begin{equation*}
\sum_{i} r_{i} \otimes v_{i_{1}} \wedge \cdots \wedge v_{i_{m}} \tag{12}
\end{equation*}
$$

where $r_{i} \in K[\epsilon] /(\epsilon)^{2}$ and $v_{i_{1}} \wedge \cdots \wedge v_{i_{m}} \in \bigwedge_{A}^{m}$. Thus,

$$
\left(s_{1}+t_{1}\right) \wedge e_{2} \wedge \cdots \wedge e_{m}+\cdots+e_{1} \wedge \cdots \wedge e_{m-1} \wedge\left(s_{m}+t_{m}\right)=\sum_{j} a_{j} w_{j_{1}} \wedge \cdots \wedge w_{j_{m}}
$$

where $a_{j} \in K$ and $w_{j_{1}} \wedge \cdots \wedge w_{j_{m}} \in \bigwedge_{A}^{m}$. This implies
$s_{1} \wedge e_{2} \wedge \cdots \wedge e_{m}+\cdots+e_{1} \wedge \cdots \wedge e_{m-1} \wedge s_{m}+t_{1} \wedge e_{2} \wedge \cdots \wedge e_{m}+\cdots+e_{1} \wedge \cdots \wedge e_{m-1} \wedge t_{m}$
is in \bigwedge_{A}^{m}. Since $s_{i} \in E$, each of the first m terms of (13) is either 0 or a multiple of $e_{1} \wedge \cdots \wedge e_{m}$, which is in \bigwedge_{A}^{m}. Thus,

$$
t_{1} \wedge e_{2} \wedge \cdots \wedge e_{m}+\cdots+e_{1} \wedge \cdots \wedge e_{m-1} \wedge t_{m} \in \bigwedge_{A}^{m}
$$

i.e. $d(\psi)\left(e_{1} \wedge \cdots \wedge e_{m}\right) \in \bigwedge_{A}^{m}$ as desired.

Step 2: We prove Φ is one-to-one and onto. If $\Phi(M)=0$ then M has a basis $\left\{e_{i}\right\}_{i=1}^{m}$, and thus M is the identity element of T_{E}. This establishes the fact that Φ is one-to-one.

Let $\psi \in S_{E}$, and let $M \in T_{E}$ have basis $\left\{e_{i}+\epsilon \psi\left(e_{i}\right)\right\}_{i=1}^{m}$. To prove Φ is onto, we must prove that M is generated by A-invariants. By hypothesis,

$$
\psi\left(e_{1}\right) \wedge e_{2} \wedge \cdots \wedge e_{m}+\cdots+e_{1} \wedge \cdots \wedge e_{m-1} \wedge \psi\left(e_{m}\right)=\sum_{j} b_{j} u_{j_{1}} \wedge \cdots \wedge u_{j_{m}}
$$

where $b_{j} \in K$ and $u_{j_{1}} \wedge \cdots \wedge u_{j_{m}} \in \bigwedge_{A}^{m}$, and thus the image of $\left(e_{1}+\epsilon \psi\left(e_{1}\right)\right) \wedge \cdots \wedge$ $\left(e_{m}+\epsilon \psi\left(e_{m}\right)\right)$ maps, under (2), to

$$
\sum_{i} r_{i} v_{i_{1}} \wedge \cdots \wedge v_{i_{m}}
$$

where $r_{i} \in K[\epsilon] /(\epsilon)^{2}$ and $v_{i_{1}} \wedge \cdots \wedge v_{i_{m}} \in \bigwedge_{A}^{m}$. Hence, $M \in T_{E}$, as desired.

4. Affine open subschemes of $\mathbb{F}_{A}(m, n)$ and $\mathbb{H}_{A}(m, n)$

Suppose $S \subset K^{n}$ is a simple $K \otimes_{k} A$-module such that $\operatorname{dim}_{K} S=m$. In this section, we assume K^{n} is S-homogeneous and semisimple as a $K \otimes_{k} A$-module. We study the subspace $\bigwedge_{A}^{m} \subset \bigwedge^{m} K^{n}$ in order to find conditions under which a free rank $m A$-invariant family is generated by A-invariants. We use our results in order to construct affine open subschemes of $\mathbb{F}_{A}(m, n)$ and $\mathbb{H}_{A}(m, n)$ which cover their K-rational points.

We suppose $K^{n}=S^{\oplus l}$, and we let $\pi_{i}: R^{l m} \rightarrow R^{m}$ denote projection onto the $(i-1) m+1$ through the $i m$ th coordinates.

Lemma 4.1. Suppose $M \subset R^{l m}$ is A-invariant. If M is principally generated as an $R \otimes_{k} A$-module by f, and if $\pi_{i}(f) \in K^{m}$ for some $1 \leq i \leq l$, then M is a free rank m summand of $R^{l m}$, and M is generated, as an R-module, by $f a_{1}, \ldots, f a_{m}$ for some $a_{1}, \ldots, a_{m} \in A$.

Proof. Suppose $\pi_{i}(f)=v \in K^{m}$. Since K^{n} is S-homogeneous, S is simple, and $\operatorname{dim}_{K} S=m$, there exist $a_{1}, \ldots, a_{m} \in A$ such that

$$
\left\{v a_{1}, \ldots, v a_{m}\right\}
$$

is independent over K. Thus, the R-module generated by $f a_{1}, \ldots, f a_{m}$, which we denote by $\left\langle f a_{1}, \ldots, f a_{m}\right\rangle$, is a free rank m summand of $R^{l m}$. To complete the proof of the lemma, it suffices to prove that $\left\langle f a_{1}, \ldots, f a_{m}\right\rangle$ is A-invariant. To this end, we first prove $\left.\pi_{i}\right|_{M}$ is injective. Suppose $\pi_{i}(x f)=0$ for $x \in R \otimes_{k} A$. Since $K^{n}=S^{\oplus l}, \pi_{i}(x f)=x \pi_{i}(f)$. Thus, $x v=0$ in $R \otimes_{K} S$, so that $x \in \operatorname{ann} R \otimes_{K} S$. Thus $x \in \operatorname{ann} R \otimes_{K} V$, again since $K^{n}=S^{\oplus l}$, so that $x f=0$.

Now, suppose $a \in A$. We prove $f a \in\left\langle f a_{1}, \ldots, f a_{m}\right\rangle$. For,

$$
\begin{aligned}
\pi_{i}(f a) & =\pi_{i}(f) a \\
& =v a \\
& =b_{1} v a_{1}+\cdots+b_{m} v a_{m} \\
& =\pi\left(b_{1} f a_{1}+\cdots b_{m} f a_{m}\right)
\end{aligned}
$$

where $b_{1}, \ldots, b_{m} \in K$. Since $\left.\pi_{i}\right|_{M}$ is injective, we must have $f a=b_{1} f a_{1}+\cdots+$ $b_{m} f a_{m}$, and the assertion follows.

For the remainder of Section 4, we suppose $w_{i} \in S^{\oplus l}$ has one nonzero projection, $v_{i} \in S$, and $a_{1}, \ldots, a_{m} \in A$ are such that

$$
\left\{v_{1} a_{1}, \ldots, v_{1} a_{m}\right\}
$$

is independent (such a_{1}, \ldots, a_{m} exist since S is simple).
Lemma 4.2. Suppose A is commutative, $b_{1}, \ldots, b_{r} \in K$, and consider the set

$$
\begin{equation*}
\left\{b_{1} w_{1} a_{1}+\cdots+b_{r} w_{r} a_{1}, \ldots, b_{1} w_{1} a_{m}+\cdots+b_{r} w_{r} a_{m}\right\} \tag{14}
\end{equation*}
$$

If (14) is nonzero, then (14) is a basis for an A-invariant subspace of K^{n} of rank m.

Proof. We first note that, if $u \in S$ and $u \neq 0$, then $\left\{u a_{1}, \ldots, u a_{m}\right\}$ is independent iff $\left\{v_{1} a_{1}, \ldots, v_{1} a_{m}\right\}$ is independent. For, since S is a simple $K \otimes_{k} A$-module, there exists an $r \in K \otimes_{k} A$ such that $r u=v_{1}$. Thus, since $K \otimes_{k} A$ is commutative, any dependence relation among $u a_{1}, \ldots, u a_{m}$ is a dependence relation among $v_{1} a_{1}, \ldots, v_{1} a_{m}$ and conversely. Since we have assumed above that $\left\{v_{1} a_{1}, \ldots, v_{1} a_{m}\right\}$ is independent, we may conclude that if $u \in S$ is nonzero then $\left\{u a_{1}, \ldots, u a_{m}\right\}$ is independent.

Suppose (14) is nonzero. The fact that the set (14) is independent follows from the fact that some projection of (14) to a summand S of $K^{n}=S^{\oplus l}$ is independent by the argument in the first paragraph. To prove that the K-module generated by (14) is A-invariant, we note that the K-module generated by (14) is contained in the $K \otimes_{k} A$-module, M, generated by $b_{1} w_{1}+\cdots+b_{r} w_{r}$. On the other hand, by Lemma 4.1, M is a free rank m summand of $K^{m l}$. Since the K-module generated by (14) is a free rank m summand of K^{n}, it must equal M.

Proposition 4.3. Let

$$
I=\left\{\mathbf{n}=\left(n_{1}, \cdots, n_{r}\right) \in \mathbb{Z}_{\geq 0}^{r} \mid n_{1}+\cdots+n_{r}=m\right\},
$$

let $\left\{n_{1} \cdot 1, \ldots, n_{r} \cdot r\right\}$ denote the multiset with n_{i} copies of i, and let

$$
w_{\mathbf{n}}=\sum_{\left\{\left(s_{1}, \ldots, s_{m}\right) \mid\left\{s_{i}\right\}_{i=1}^{m}=\left\{n_{1} \cdot 1, \ldots, n_{r} \cdot r\right\}\right\}} w_{s_{1}} a_{1} \wedge \cdots \wedge w_{s_{m}} a_{m} .
$$

If K is infinite, then $w_{\mathbf{n}}$ is an element of \bigwedge_{A}^{m} for all $\mathbf{n} \in I$.
Proof. If $r=1$, then $w_{\mathbf{n}}=w_{1} a_{1} \wedge \cdots \wedge w_{1} a_{m}$, and the result follows from Lemma 4.2.

Now suppose $r \geq 2$, so that $|I|=D=\binom{m+r-1}{m} \geq 2$. We begin the proof of the case $r \geq 2$ with two preliminary observations. First, each choice of $\left[\left(c_{1}, \ldots, c_{r}\right)\right] \in$ \mathbb{P}_{K}^{r-1} corresponds, via the m th Veronese map ν_{m}, to a point in \mathbb{P}_{K}^{D-1}. Since K is infinite, no $D-2$ plane of \mathbb{P}_{K}^{D-1} contains the image of ν_{m}.

If $\mathbf{b} \in K^{r}$ with $\mathbf{b}=\left(b_{1}, \ldots, b_{r}\right)$, we let $b^{\mathbf{n}}=b_{1}^{n_{1}} \cdots b_{r}^{n_{r}}$. Our second preliminary observation is that, for each $i_{0} \leq D$, there exist $\mathbf{b}_{1}, \ldots, \mathbf{b}_{i_{0}} \in K^{r}$ with $\mathbf{b}_{i}=$ $\left(b_{i 1}, \ldots, b_{i r}\right)$, such that $\left\{\left(b_{i}^{\mathbf{n}}\right)_{\mathbf{n} \in I}\right\}_{i=1}^{i_{0}} \subset K^{D}$ is independent. We prove this by induction on $i_{0} \geq 1$. The case $i_{0}=1$ is trivial. Now suppose the result holds for $1 \leq i_{0}$, where $i_{0}<D$. Then there exist $\mathbf{b}_{1}, \ldots, \mathbf{b}_{i_{0}} \subset K^{r}$ such that $\left\{\left(b_{i}^{\mathbf{n}}\right)_{\mathbf{n} \in I}\right\}_{i=1}^{i_{0}} \subset$ K^{D} is independent. Thus, since $\nu_{m}\left(\left[\mathbf{b}_{i}\right]\right)=\left[\left(b_{i}^{\mathbf{n}}\right)_{\mathbf{n} \in I}\right]$, the subspace of \mathbb{P}_{K}^{D-1} spanned by $\nu_{m}\left(\left[\mathbf{b}_{1}\right]\right), \ldots, \nu_{m}\left(\left[\mathbf{b}_{i_{0}}\right]\right)$ is an $i_{0}-1$-plane. Since $i_{0}<D$, the argument of the first paragraph implies there exists a $\mathbf{b}_{i_{0}+1} \subset K^{r}$ such that $\nu_{m}\left(\left[\mathbf{b}_{i_{0}+1}\right]\right)$ is not contained in the $i_{0}-1$-plane spanned by $\nu_{m}\left(\left[\mathbf{b}_{1}\right]\right), \ldots, \nu_{m}\left(\left[\mathbf{b}_{i_{0}}\right]\right)$. Thus, $\left\{\left(b_{i}^{\mathbf{n}}\right)_{\mathbf{n} \in I}\right\}_{i=1}^{i_{0}+1} \subset K^{D}$ is independent, as desired. We conclude that there exist $\mathbf{b}_{1}, \ldots, \mathbf{b}_{D} \in K^{r}$, such that $\left\{\left(b_{i}^{\mathbf{n}}\right)_{\mathbf{n} \in I}\right\}_{i=1}^{D} \subset K^{D}$ is independent.

We now prove the proposition. For all $1 \leq i \leq D$, the vector

$$
\begin{equation*}
\left(b_{i 1} w_{1} a_{1}+\cdots+b_{i r} w_{r} a_{1}\right) \wedge \cdots \wedge\left(b_{i 1} w_{1} a_{m}+\cdots+b_{i r} w_{r} a_{m}\right) \tag{15}
\end{equation*}
$$

is A-invariant by Lemma 4.2. Thus, by Remark 2.7, (15) is an element of \bigwedge_{A}^{m}. In addition, (15) equals $\sum_{\mathbf{n} \in I} b_{i}^{\mathbf{n}} w_{\mathbf{n}}$. Thus, it suffices to prove that $w_{\mathbf{n}} \in \operatorname{Span}\left\{\sum_{\mathbf{n} \in I} b_{i}^{\mathbf{n}} w_{\mathbf{n}}\right\}_{i=1}^{D}$ for all $\mathbf{n} \in I$. To prove this, we note that since $\left\{\left(b_{i}^{\mathbf{n}}\right)_{\mathbf{n} \in I}\right\}_{i=1}^{D} \subset K^{D}$ is independent, $\left\{\sum_{\mathbf{n} \in I} b_{i}^{\mathbf{n}} w_{\mathbf{n}}\right\}_{i=1}^{D}$ is a set of D independent vectors in $\operatorname{Span}\left\{w_{\mathbf{n}} \mid \mathbf{n} \in I\right\}$. Since $|I|=D$, $\left\{\sum_{\mathbf{n} \in I} b_{i}^{\mathbf{n}} w_{\mathbf{n}}\right\}_{i=1}^{D}$ forms a basis for $\operatorname{Span}\left\{w_{\mathbf{n}} \mid \mathbf{n} \in I\right\}$. Thus, $w_{\mathbf{n}} \in \operatorname{Span}\left\{\sum_{\mathbf{n} \in I} b_{i}^{\mathbf{n}} w_{\mathbf{n}}\right\}_{i=1}^{D}$ for all $\mathbf{n} \in I$, and the proof of the proposition follows.

Corollary 4.4. Suppose K is infinite, A is commutative, and $M \subset R^{l m}$ is A invariant. If M is principally generated as an $R \otimes_{k} A$-module by f, and if $\pi_{i}(f) \in$ K^{m} for some $1 \leq i \leq l$, then M is a free rank m family generated by A-invariants over Spec R.

Proof. Throughout this proof, we let $[p]$ denote the set $\{1, \ldots, p\}$. Let $\pi_{i}(f)=$ $v \in K^{m}$. By Lemma 4.1, there exist $a_{1}, \ldots, a_{m} \in A$ such that M is a free rank m summand of $R^{l m}$ and M is generated as an R-module by $f a_{1}, \ldots, f a_{m}$. Thus, $\bigwedge^{m} M$ is generated by $f a_{1} \wedge \cdots \wedge f a_{m}$ as an R-module. On the other hand, $f=x_{1} u_{1}+\cdots+x_{l} u_{l}$ where $u_{i}=\left(0, \cdots, 0, v_{i}, 0, \cdots, 0\right) \in S^{\oplus l}$ has i th nonzero projection to S, and

$$
x_{i}=\sum_{j=1}^{n} r_{i j} \otimes b_{i j} \in R \otimes_{k} A .
$$

Thus, $\bigwedge^{m} M$ is generated by $\left(\sum_{i=1}^{l} x_{i} u_{i}\right) a_{1} \wedge \cdots \wedge\left(\sum_{i=1}^{l} x_{i} u_{i}\right) a_{m}$ which equals

$$
\sum_{\left(i_{1}, \ldots, i_{m}\right) \in[l]^{m}} x_{i_{1}} u_{i_{1}} a_{1} \wedge \cdots \wedge x_{i_{m}} u_{i_{m}} a_{m}
$$

Expanding further, we find the expression above equals

$$
\sum_{\left(i_{1}, \ldots, i_{m}\right) \in[l]^{m}}\left(\sum_{\left(j_{1}, \ldots, j_{m}\right) \in[n]^{m}}\left(r_{i_{1} j_{1}} \otimes b_{i_{1} j_{1}}\right) \cdot u_{i_{1}} a_{1} \wedge \cdots \wedge\left(r_{i_{m} j_{m}} \otimes b_{i_{m} j_{m}}\right) \cdot u_{i_{m}} a_{m}\right)
$$

which equals

$$
\begin{equation*}
\sum_{J} r_{i_{1} j_{1}} \cdots r_{i_{m} j_{m}} u_{i_{1}} b_{i_{1} j_{1}} a_{1} \wedge \cdots \wedge u_{i_{m}} b_{i_{m} j_{m}} a_{m} \tag{16}
\end{equation*}
$$

where $J=([l] \times[n])^{m}$. In order to prove M is generated by A-invariants, it suffices to prove (16) is an element in the image of the composition

$$
\begin{equation*}
R \otimes_{K} \bigwedge_{A}^{m} \rightarrow R \otimes_{K} \bigwedge^{m} K^{l m} \xlongequal{\cong} \bigwedge^{m} R^{l m} \tag{17}
\end{equation*}
$$

whose left arrow is induced by inclusion.
Let S_{m} denote the m th symmetric group. We note that S_{m} acts on J via $\sigma \cdot\left(\left(i_{1}, j_{1}\right), \ldots,\left(i_{m}, j_{m}\right)\right)=\left(\left(i_{\sigma(1)}, j_{\sigma(1)}\right), \ldots,\left(i_{\sigma(m)}, j_{\sigma(m)}\right)\right)$, and so J is partitioned into the orbits of this action. Thus, in order to prove (16) is an element in the image of (17), it suffices to show

$$
w=\sum_{\sigma \in \mathrm{S}_{m}} u_{i_{\sigma(1)}} b_{i_{\sigma(1)} j_{\sigma(1)}} a_{1} \wedge \cdots \wedge u_{i_{\sigma(m)}} b_{i_{\sigma(m)} j_{\sigma(m)}} a_{m}
$$

is an element of \bigwedge_{A}^{m}, since (16) is an R-linear combination of images of terms of the form $1 \otimes_{K} w$ under (17). If we let $w_{q}=u_{i_{q}} b_{i_{q} j_{q}}$ for $1 \leq q \leq m$, and we let $\mathbf{n}=(1, \ldots, 1) \in \mathbb{Z}_{\geq 0}^{m}, w$ is of the form $w_{\mathbf{n}}$ (defined in Proposition 4.3). Since K is infinite, the corollary follows from Proposition 4.3.

We end this section by constructing collections of affine open subfunctors of $F_{A}(m, n)$ and $H_{A}(m, n)$ which cover their K-rational points.

For the remainder of this section, B will denote the K-algebra $K\left[x_{1}, \ldots, x_{l m-m}\right]$, and

$$
\left\langle\left(r_{1}, \ldots, r_{l m}\right)\right\rangle \subset R^{l m}
$$

will denote the $R \otimes_{k} A$-submodule of $R^{l m}$ generated by $\left(r_{1}, \ldots, r_{l m}\right)$. We will abuse notation as follows: if C and D are K-algebras and $\psi \in h_{\operatorname{Spec} C}(D)$, we let $\psi: C \rightarrow D$ denote the induced map of rings.

For each $1 \leq i \leq l$, and each R, we define a map

$$
\Phi_{i R}: h_{\operatorname{Spec} B}(R) \rightarrow G(m, n)(R)
$$

as follows: if $\psi \in h_{\text {Spec } B}(R)$, let
(18) $\Phi_{i R}(\psi)=\left\langle\left(\psi\left(x_{1}\right), \ldots, \psi\left(x_{(i-1) m}\right), 1,0, \ldots, 0, \psi\left(x_{(i-1) m+1}\right), \ldots, \psi\left(x_{l m-m}\right)\right)\right\rangle$.

Lemma 4.5. $\Phi_{i R}$ is a well defined map of sets, and induces a natural transformation $\Phi_{i}: h_{\text {Spec } B} \rightarrow G(m, n)$ which factors through the inclusion $F_{A}(m, n) \rightarrow$ $G(m, n)$. Furthermore, if K is infinite and A is commutative, then Φ_{i} factors through the inclusion $H_{A}(m, n) \rightarrow G(m, n)$.

Proof. Suppose $\psi \in h_{\text {Spec } B}(R)$. By Lemma 4.1, $\Phi_{i_{R}}(\psi)$ is a free rank $m A$-invariant submodule of $R^{l m}$, whence the first assertion. The proof that $\Phi_{i_{R}}$ induces a natural transformation $\Phi_{i}: h_{\text {Spec } B} \rightarrow G(m, n)$ follows from a routine computation, which we omit. Since $\Phi_{i_{R}}(\psi)$ is A-invariant, Φ_{i} factors through the inclusion $F_{A}(m, n) \rightarrow$ $G(m, n)$. If K is infinite and A is commutative, Corollary 4.4 implies that $\Phi_{i R}(\psi)$ is generated by A-invariants. Thus, Φ_{i} factors through the inclusion $H_{A}(m, n) \rightarrow$ $G(m, n)$.

We abuse notation by denoting both factors in the above lemma by Φ_{i}.
Lemma 4.6. $\Phi_{i}: h_{\mathrm{Spec} B} \rightarrow F_{A}(m, n)$ is an open subfunctor. Furthermore, if K is infinite and A is commutative, then $\Phi_{i}: h_{\operatorname{Spec} B} \rightarrow H_{A}(m, n)$ is an open subfunctor.

Proof. Suppose $\Psi: h_{\operatorname{Spec} R} \rightarrow F_{A}(m, n)$ is a natural transformation. By Lemma 4.5 , we must prove that, if $h_{\text {Spec } B, \Psi}$ is the pullback in the diagram

then the induced map $\Gamma: h_{\operatorname{Spec} B, \Psi} \rightarrow h_{\operatorname{Spec} R}$ corresponds to the inclusion of an affine open subscheme of Spec R.

By [2, Exercise VI-6, p. 254], this is equivalent to showing that there exists some ideal I of R such that, for any K-algebra T,

$$
\begin{equation*}
\operatorname{im} \Gamma_{T}=\left\{\delta \in h_{\operatorname{Spec} R}(T) \mid \delta(I) T=T\right\} \tag{19}
\end{equation*}
$$

Let $f_{1}, \ldots, f_{m} \in R^{l m}$ denote a basis for $\Psi\left(\mathrm{id}_{R}\right)$, and suppose f_{j} has i th coordinate $f_{i j}$. Let a denote the $m \times m$-matrix whose p th column is $\left(f_{(i-1) m+1, p}, \ldots, f_{i m, p}\right)^{t}$, and let $I=\langle\operatorname{det} a\rangle$. We prove that I satisfies (19). That is, we prove that a homomorphism $\delta: R \rightarrow T$ has the property that

$$
\begin{equation*}
\Psi(\delta)=\left\langle\left(\beta\left(x_{1}\right), \ldots, \beta\left(x_{(i-1) m}\right), 1,0, \ldots, 0, \beta\left(x_{(i-1) m+1}\right), \ldots, \beta\left(x_{l m-m}\right)\right)\right\rangle \tag{20}
\end{equation*}
$$

for some $\beta: B \rightarrow T$ iff $\delta(I) T=T$.
Since I is principle, $\delta: R \rightarrow T$ is such that $\delta(I) T=T \operatorname{iff} \delta(\operatorname{det} a)$ is a unit in T, which occurs iff the $m \times m$-matrix whose p th column is $\left(\delta\left(f_{(i-1) m+1, p}\right), \ldots, \delta\left(f_{i m, p}\right)\right)^{t}$ is invertible. By naturality of $\Psi, \Psi(\delta)$ is the image of the composition

$$
T \otimes_{R} \Psi\left(\mathrm{id}_{R}\right) \rightarrow T \otimes_{R} R^{n} \rightarrow T^{n}
$$

whose left arrow is induced by inclusion $\Psi\left(\mathrm{id}_{R}\right) \rightarrow R^{n}$. Thus, if $\delta\left(f_{j}\right)$ denotes $\left(\delta\left(f_{1 j}\right), \ldots, \delta\left(f_{l m, j}\right)\right)^{t} \in T^{l m}$, then $\delta\left(f_{1}\right), \ldots, \delta\left(f_{m}\right)$ is a basis for $\Psi(\delta)$. This implies that the $m \times m$-matrix whose p th column is $\left(\delta\left(f_{(i-1) m+1, p}\right), \ldots, \delta\left(f_{i m, p}\right)\right)^{t}$ is invertible iff the projection of $\Psi(\delta)$ to the $(i-1) m+1$ through the $i m$ th factors is onto. This occurs iff

$$
N=\left\langle\left(\beta\left(x_{1}\right), \ldots, \beta\left(x_{(i-1) m}\right), 1,0, \ldots, 0, \beta\left(x_{(i-1) m+1}\right), \ldots, \beta\left(x_{l m-m}\right)\right)\right\rangle \subset \Psi(\delta)
$$

for some $\beta: B \rightarrow T$. By Lemma 4.1, N is a free rank m summand of $R^{m l}$. We claim $N=\Psi(\delta)$. For, if \mathfrak{m} is a maximal ideal of T, it follows from Nakayama's Lemma [1, Corollary 4.8, p. 124] that $N_{\mathfrak{m}}=\Psi(\delta)_{\mathfrak{m}}$. Hence, $N=\Psi(\delta)$, and the first assertion follows. To prove the second assertion, we note that the previous argument holds, mutatis mutandis, after replacing $F_{A}(m, n)$ by $H_{A}(m, n)$.

Corollary 4.7. The open subfunctors Φ_{i} of $F_{A}(m, n)$ cover the K-rational points of $F_{A}(m, n)$. That is,

$$
F_{A}(m, n)(K)=\cup_{i} \Phi_{i}\left(h_{\operatorname{Spec} B}(K)\right) .
$$

Furthermore, if K is infinite and A is commutative, the open subfunctors Φ_{i} of $H_{A}(m, n)$ cover the K-rational points of $H_{A}(m, n)$.

Proof. By Lemma 4.6, the functors $\Phi_{i}: h_{\operatorname{Spec} B} \rightarrow F_{A}(m, n)$ are open. If M is a free rank m summand of $K^{m l}$ which is A-invariant, then there exists an i such that
some element of M has nonzero projection onto the $(i-1) m+1$ through the $i m$ th coordinates. Hence, since S is simple, M contains the submodule

$$
\left\langle\left(b_{1}, \ldots, b_{(i-1) m}, 1,0, \ldots, 0, b_{(i-1) m+1}, \ldots, b_{l m-m}\right)\right\rangle \subset K^{l m}
$$

where $b_{1}, \ldots, b_{l m-m} \in K$. Thus, by Lemma 4.1,

$$
M=\left\langle\left(b_{1}, \ldots, b_{(i-1) m}, 1,0, \ldots, 0, b_{(i-1) m+1}, \ldots, b_{l m-m}\right)\right\rangle,
$$

so that $M \in \Phi_{i}\left(h_{\operatorname{Spec} B}(K)\right)$. To prove the second assertion, we note that when K is infinite and A is commutative, Lemma 4.6 implies that Φ_{i} is an open subfunctor of $H_{A}(m, n)$. Thus, the second assertion follows from the first assertion and Remark 2.11.

We will use the following lemma to prove Theorem 4.9. The proof of the lemma is straightforward, so we omit it.

Lemma 4.8. Let X be a topological space with open cover $\left\{A_{i}\right\}_{i \in I}$. If A_{i} is irreducible for all i and $A_{i} \cap A_{j}$ is nonempty for all $i, j \in I$, then X is irreducible.

Theorem 4.9. Let \mathbb{F} denote the open subscheme of $\mathbb{F}_{A}(m, n)$ obtained by glueing the open subschemes of $\mathbb{F}_{A}(m, n)$ defined by Φ_{i} for $1 \leq i \leq l$. Then \mathbb{F} is smooth, reduced, irreducible, of dimension $l m-m$ and has the same K-rational points as $\mathbb{F}_{A}(m, n)$. If K is infinite and A is commutative, $\mathbb{H}_{A}(m, n)$ contains a smooth, reduced, irreducible, open subscheme of dimension $l m-m$ which has the same K rational points as $\mathbb{H}_{A}(m, n)$.

Proof. The fact that $\mathbb{A}_{K}^{l m-m}$ is smooth, reduced and has dimension $l m-m$ implies that \mathbb{F} is smooth, reduced and has dimension $l m-m$. The fact that $\mathbb{F}_{A}(m, n)$ and \mathbb{F} have the same K-rational points follows from Corollary 4.7.

We denote the topological space of the open subscheme of \mathbb{F} corresponding to Φ_{i} by \mathbb{A}_{i}. For any i, j, the set $\mathbb{A}_{i} \cap \mathbb{A}_{j}$ is nonempty. For example, if $i<j$, the intersection contains the point $(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{A}_{i}$, where the nonzero entry occurs in the $(j-2) m+1$ position. The fact that \mathbb{F} is irreducible now follows from Lemma 4.8. The proof of the second assertion is similar, and we omit it.

5. Two-Sided vector spaces

In this section, we describe our notation and conventions regarding two-sided vector spaces, and we define the notion of rank of a two-sided vector space. We end the section by reviewing facts about simple two-sided vector spaces which are employed in the sequel.

Let V be a two-sided vector space. That is, V is a k-central $K-K$-bimodule which is finite-dimensional as a left K-module. Right multiplication by $x \in K$ defines an endomorphism $\phi(x)$ of ${ }_{K} V$, and the right action of K on V is via the k algebra homomorphism $\phi: K \rightarrow \operatorname{End}\left({ }_{K} V\right)$. This motivates the following definition.

Definition 5.1. Let $\phi: K \rightarrow M_{n}(K)$ be a nonzero homomorphism. We denote by K_{ϕ}^{n} the two-sided vector space of left dimension n, where the left action is the usual one and the right action is via ϕ; that is,

$$
\begin{equation*}
x \cdot\left(v_{1}, \ldots, v_{n}\right)=\left(x v_{1}, \ldots, x v_{n}\right), \quad\left(v_{1}, \ldots, v_{n}\right) \cdot x=\left(v_{1}, \ldots, v_{n}\right) \phi(x) \tag{21}
\end{equation*}
$$

We shall always write scalars as acting to the left of elements of K_{ϕ}^{n} and matrices acting to the right.

If V is a two-sided vector space, we let $\operatorname{dim}_{K} V$ denote the dimension of V as a left K-module. If $\operatorname{dim}_{K} V=n$, then choosing a left basis for V shows that $V \cong K_{\phi}^{n}$ for some homomorphism $\phi: K \rightarrow M_{n}(K)$. Throughout the rest of this paper, V will denote the two-sided vector space K_{ϕ}^{n}, W will denote a two-sided vector space and S will denote a simple two-sided vector space.

We denote the category of two-sided vector spaces by Vect K. We shall denote by $K_{i}^{B}(K)$ the Quillen K-theory of $\operatorname{Vect}(K)$ (the superscript stands for "bimodule"). The groups $K_{i}^{B}(B)$ were computed in [4, Theorem 4.1].

Definition 5.2. The rank of a two-sided vector space W, denoted [W], is the class of W in $K_{0}^{B}(K)$.

Thus, the rank of W is just the sums of the ranks of the simples (with multiplicity) appearing in the composition series of W.

We conclude this section with a description of the simple objects in Vect K. Let \bar{K} denote an algebraic closure of K. We write $\operatorname{Emb}(K)$ for the set of k-linear embeddings of K into \bar{K}, and $G=G(K)$ for the group $\operatorname{Aut}(\bar{K} / K)$.

The group G acts on $\operatorname{Emb}(K)$ by left composition. Given $\lambda \in \operatorname{Emb}(K)$, we denote the orbit of λ under this action by λ^{G}, and we write $K(\lambda)$ for the composite field $K \vee \operatorname{im}(\lambda)$.

We denote the set of finite orbits of $\operatorname{Emb}(K)$ under the action of G by $\Lambda(K)$. The following is a consequence of the proof of [4, Theorem 3.2]:

Theorem 5.3. If K is perfect, there is a bijection from simple objects in $\operatorname{Vect}(K)$ to $\Lambda(K)$. Moreover, if V is a simple two-sided vector space mapping to $\lambda^{G} \in \Lambda(K)$, and if $\lambda^{G}=\left\{\sigma_{1} \lambda, \ldots, \sigma_{m} \lambda\right\}$, then $\operatorname{dim}_{K} V=\left|\lambda^{G}\right|$ and there is a basis for the image of the composition

$$
K(\lambda) \otimes_{K} V \xrightarrow{=} K(\lambda) \otimes_{K} K^{n} \xrightarrow{\cong} K(\lambda)^{n}
$$

in which ϕ is a diagonal matrix with entries $\sigma_{1} \lambda, \ldots, \sigma_{m} \lambda$.
We denote the simple two-sided vector space corresponding to λ^{G} under the bijection in Theorem 5.3 by $V(\lambda)$.

We will need the following Corollary to [6, Lemma 3.13]:
Lemma 5.4. Let F denote an extension field of k. If S and S^{\prime} are left finitedimensional, non-isomorphic simple $F \otimes_{k} K$-modules, then $\operatorname{Ext}_{F \otimes_{k} K}^{1}\left(S, S^{\prime}\right)=0$.

Since a two-sided vector space is just a $K \otimes_{k} K$-module, Lemma 5.4 implies that $V \cong V_{1} \oplus \cdots \oplus V_{r}$, where V_{i} is S_{i}-homogeneous for some simple S_{i}.

6. Parameter spaces of two-sided subspaces of V

The purpose of this section is to use $\mathbb{F}_{A}(m, n), \mathbb{G}_{A}(m, n)$, and $\mathbb{H}_{A}(m, n)$ to construct and study parameter spaces of two-sided subspaces of V.

6.1. The functors $F_{\phi}([W], V), G_{\phi}([W], V)$, and $H_{\phi}([W], V)$.

Definition 6.1. If V is S-homogeneous and W is a two-sided vector space of rank $q[S]$, we let $F_{\phi}([W], V)(-): K-\operatorname{alg} \rightarrow$ Sets denote the functor $F_{\mathrm{im} \phi}(q m, n)$.

If W is not S-homogeneous, we let $F_{\phi}([W], V)(R)=\emptyset$.

Now suppose $V=V_{1} \oplus \cdots \oplus V_{r}$, where V_{i} is S_{i}-homogeneous and S_{i} is simple, $\phi_{i}(x)$ is the restriction of $\phi(x)$ to V_{i}, and $[W]=q_{1}\left[S_{1}\right]+\cdots+q_{r}\left[S_{r}\right]$. We let $F_{\phi}([W], V)(-): K-$ alg \rightarrow Sets denote the functor

$$
F_{\phi_{1}}\left(q_{1}\left[S_{1}\right], V_{1}\right) \times \cdots \times F_{\phi_{r}}\left(q_{r}\left[S_{r}\right], V_{r}\right)
$$

where the product is taken over $h_{\text {Spec } K}$.
If W has a composition factor not in $\left\{S_{1}, \ldots, S_{r}\right\}$, we let $F_{\phi}([W], V)(R)=\emptyset$.
We call elements of $F_{\phi}([W], V)(R)$ free rank $[W] \phi$-invariant families over $\operatorname{Spec} R$, or free ϕ-invariant families when W and R are understood.

Definition 6.2. If V is S-homogeneous and W is a two-sided vector space of rank $q[S]$, we let $G_{\phi}([W], V)(-): K-$ alg \rightarrow Sets denote the functor $G_{\mathrm{im} \phi}(q m, n)$.

If W is not S-homogeneous, we let $G_{\phi}([W], V)(R)=\emptyset$.
Now suppose $V=V_{1} \oplus \cdots \oplus V_{r}$, where V_{i} is S_{i}-homogeneous and S_{i} is simple, $\phi_{i}(x)$ is the restriction of $\phi(x)$ to V_{i}, and $[W]=q_{1}\left[S_{1}\right]+\cdots+q_{r}\left[S_{r}\right]$. We let $G_{\phi}([W], V)(-): K-$ alg \rightarrow Sets denote the functor

$$
G_{\phi_{1}}\left(q_{1}\left[S_{1}\right], V_{1}\right) \times \cdots \times G_{\phi_{r}}\left(q_{r}\left[S_{r}\right], V_{r}\right)
$$

where the product is taken over $h_{\text {Spec } K}$.
If W has a composition factor not in $\left\{S_{1}, \ldots, S_{r}\right\}$, we let $G_{\phi}([W], V)(R)=\emptyset$.
We call elements of $G_{\phi}([W], V)(R)$ free rank $[W]$ families generated by ϕ-invariants over $\operatorname{Spec} R$, or free families generated by ϕ-invariants when W and R are understood.

Definition 6.3. If V is S-homogeneous and W is a two-sided vector space of rank $q[S]$, we let $H_{\phi}([W], V)(-): K-$ alg \rightarrow Sets denote the functor $H_{\mathrm{im} \phi}(q m, n)$.

If W is not S-homogeneous, we let $H_{\phi}([W], V)(R)=\emptyset$.
Now suppose $V=V_{1} \oplus \cdots \oplus V_{r}$, where V_{i} is S_{i}-homogeneous and S_{i} is simple, $\phi_{i}(x)$ is the restriction of $\phi(x)$ to V_{i}, and $[W]=q_{1}\left[S_{1}\right]+\cdots+q_{r}\left[S_{r}\right]$. We let $H_{\phi}([W], V)(-): K-$ alg \rightarrow Sets denote the functor

$$
H_{\phi_{1}}\left(q_{1}\left[S_{1}\right], V_{1}\right) \times \cdots \times H_{\phi_{r}}\left(q_{r}\left[S_{r}\right], V_{r}\right)
$$

where the product is taken over $h_{\text {Spec } K}$.
If W has a composition factor not in $\left\{S_{1}, \ldots, S_{r}\right\}$, we let $H_{\phi}([W], V)(R)=\emptyset$.
We call elements of $H_{\phi}([W], V)(R)$ free rank $[W] \phi$-invariant families generated by ϕ-invariants over Spec R, or free ϕ-invariant families generated by ϕ-invariants when W and R are understood.

Lemma 6.4. The K-rational points of $F_{\phi}([W], V), G_{\phi}([W], V)$, and $H_{\phi}([W], V)$ are equal to the set of two-sided rank $[W]$ subspaces of V.

Proof. We first show that the three functors above have the same K-rational points. From the definitions of $F_{\phi}([W], V), G_{\phi}([W], V)$, and $H_{\phi}([W], V)$, it suffices to prove the result when V is homogeneous. Thus, it suffices to prove

$$
F_{\mathrm{im} \phi}(m, n)(K)=G_{\mathrm{im} \phi}(m, n)(K)=H_{\mathrm{im} \phi}(m, n)(K)
$$

when K^{n} is homogeneous as a $K \otimes_{k}$ im ϕ-module. Since $\phi: K \rightarrow M_{n}(K)$ is a ring homomorphism, $\operatorname{im} \phi-\{0\} \subset G L_{n}(K)$. Thus, the assertion follows from Remark 2.9 and Remark 2.11.

To complete the proof of the lemma, it suffices to prove that

$$
F_{\phi}([W], V)(K)=\{\text { two-sided rank }[W] \text { subspaces of } V\}
$$

If V is homogeneous, this follows immediately from the definition of $F_{\operatorname{im} \phi}(m, n)$. If V is not homogeneous, the result follows from the fact that V, and any two-sided subspace of V, has a direct sum decomposition into its homogeneous components.

We now find conditions under which $F_{\phi}([S], V) \neq G_{\phi}([S], V)$ and $F_{\phi}([S], V) \neq$ $H_{\phi}([S], V)$.
Lemma 6.5. Suppose $\lambda_{1}, \ldots, \lambda_{m} \in \operatorname{Emb}(K)$ are distinct and $|k|>m$. If

$$
\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, m\}
$$

is a multiset with repetitions, then there exists an $a \in K$ such that

$$
\begin{equation*}
\prod_{j=1}^{m} \lambda_{j}(a) \neq \prod_{i=1}^{m} \lambda_{i_{j}}(a) \tag{22}
\end{equation*}
$$

Proof. First we claim that there exists an element $b \in K$ such that there is an inequality of multisets

$$
\left\{\lambda_{1}(b), \ldots, \lambda_{m}(b)\right\} \neq\left\{\lambda_{i_{1}}(b), \ldots, \lambda_{i_{m}}(b)\right\}
$$

If not, we would have

$$
\sum_{j=1}^{m} \lambda_{j}=\sum_{j=1}^{m} \lambda_{i_{j}}
$$

which is a nontrivial dependency relation among $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ as k-linear functions from K to \bar{K}. This contradicts the linear independence of characters from K to \bar{K}, which establishes our claim.

With b as above, we have

$$
\prod_{j=1}^{m}\left(x-\lambda_{j}(b)\right) \neq \prod_{j=1}^{m}\left(x-\lambda_{i_{j}}(b)\right)
$$

in the ring $\bar{K}[x]$. Thus

$$
f(x)=\prod_{j=1}^{m}\left(x-\lambda_{j}(b)\right)-\prod_{j=1}^{m}\left(x-\lambda_{i_{j}}(b)\right)
$$

has at most m roots. Since $|k|>m$, we may choose $c \in k$ such that $f(c) \neq 0$. Since λ_{i} is k-linear, we have

$$
\prod_{j=1}^{m}\left(\lambda_{j}(c-b)\right)-\prod_{j=1}^{m}\left(\lambda_{i_{j}}(c-b)\right)=\prod_{j=1}^{m}\left(c-\lambda_{j}(b)\right)-\prod_{j=1}^{m}\left(c-\lambda_{i_{j}}(b)\right)=f(c) \neq 0
$$

Thus (22) holds with $a=c-b$.
Corollary 6.6. Suppose $m \in \mathbb{N}$ is such that $|k|>m>1$, K is perfect and $\lambda \in \operatorname{Emb}(K)$ is such that $\left|\lambda^{G}\right|=m$ (see Section 5 for notation). If $V(\lambda)^{\oplus 2} \subset V$, then there exist free rank $[V(\lambda)] \phi$-invariant families over $\operatorname{Spec} K(\lambda)$ which are not generated by im ϕ-invariants.

Proof. Suppose $\lambda^{G}=\left\{\sigma_{1} \lambda, \ldots, \sigma_{m} \lambda\right\}$. Let M be a free rank $[V(\lambda)] \phi$-invariant family over $\operatorname{Spec} K(\lambda)$ which is generated by ϕ-eigenvectors v_{1}, \ldots, v_{m}, with eigenvalues

$$
\sigma_{i_{1}} \lambda, \ldots, \sigma_{i_{m}} \lambda
$$

respectively, such that the multiset $\left\{i_{1}, \ldots, i_{m}\right\}$ has repetitions. Then the eigenvalue of any generator of $\bigwedge^{m} M$ equals $\prod_{j} \sigma_{i_{j}} \lambda$. On the other hand, if M were generated by im ϕ-invariants, any generator of $\Lambda^{m} M$ would have eigenvalue $\prod_{j} \sigma_{j} \lambda$. Thus, by Lemma $6.5, M$ is a free rank $[V(\lambda)] \phi$-invariant family which is not generated by im ϕ-invariants.

Example 6.7. Suppose $\rho={ }^{3} \sqrt{2}, \zeta$ is a primitive 3rd root of unity, $k=\mathbb{Q}$ and $K=\mathbb{Q}(\rho)$. For $i=0,1$, let

$$
\lambda_{i}\left(\sum_{l=0}^{2} a_{l} \rho^{l}\right)=a_{i} \rho^{i}-a_{2} \rho^{2}
$$

and let $\lambda(x)=\lambda_{0}(x)+\lambda_{1}(x) \zeta$. Then $V(\lambda)$ is a two-dimensional simple two-sided vector space [4, Example 3.9], and thus, by Corollary 6.6, $V=V(\lambda)^{\oplus 2}$ contains free rank $V(\lambda) \phi$-invariant families over $\operatorname{Spec} K(\lambda)$ which are not generated by $\operatorname{im} \phi$-invariants. In other words,

$$
F_{\phi}\left([V(\lambda)], V(\lambda)^{\oplus 2}\right)(K(\lambda)) \neq H_{\phi}\left([V(\lambda)], V(\lambda)^{\oplus 2}\right)(K(\lambda))
$$

It follows immediately that

$$
F_{\phi}\left([V(\lambda)], V(\lambda)^{\oplus 2}\right)(K(\lambda)) \neq G_{\phi}\left([V(\lambda)], V(\lambda)^{\oplus 2}\right)(K(\lambda))
$$

Remark 6.8. It follows from the previous example and the definitions of $F_{\phi}([W], V)$, $G_{\phi}([W], V)$, and $H_{\phi}([W], V)$ that there exist A, m and n such that $F_{A}(m, n) \neq$ $G_{A}(m, n)$ and $F_{A}(m, n) \neq H_{A}(m, n)$.
6.2. F-rational points of $G_{\phi}([S], V)$ and $H_{\phi}([S], V)$. Let F be an extension field of K. In this subsection, we show that every element of $G_{\phi}([S], V)(F)$ and of $H_{\phi}([S], V)(F)$ is isomorphic to $F \otimes_{K} S$ as $F \otimes_{k} K$-modules. Throughout this subsection, we assume, without loss of generality, that V is S-homogeneous. Since, by Lemma 2.8, $G_{\phi}([S], V)(F)=H_{\phi}([S], V)(F)$, it suffices to prove the result for $G_{\phi}([S], V)(F)$. We assume throughout this subsection that $\operatorname{dim}_{K} S=m$.

Since the sum of all simple submodules of V is a direct summand of V as a left K-module, V has a left K-module decomposition

$$
\begin{equation*}
V=L \oplus N \tag{23}
\end{equation*}
$$

where N contains no simple two-sided subspaces of V and $L=S^{\oplus l}$ is a direct sum of simple two-sided subspaces of V.

Lemma 6.9. Every free rank $[S]$ family generated by ϕ-invariants over $\operatorname{Spec} F$ is contained in $F \otimes_{K} L$.

Proof. Assume $N \neq 0$ and suppose M is a free rank [S] family generated by ϕ invariants over $\operatorname{Spec} F$, with basis $\left\{v_{i}+w_{i}\right\}_{i=1}^{m}$, where v_{i} is an element of the image of the composition

$$
\begin{equation*}
F \otimes_{K} N \rightarrow F \otimes_{K} V \stackrel{\cong}{\rightrightarrows} F^{n} \tag{24}
\end{equation*}
$$

induced by the inclusion $N \subset V$, and w_{i} is an element of the image of the composition

$$
\begin{equation*}
F \otimes_{K} L \rightarrow F \otimes_{K} V \xrightarrow{\cong} F^{n} \tag{25}
\end{equation*}
$$

induced by the inclusion $L \subset V$. Since M is generated by im ϕ-invariants, $\wedge^{m} M$ is contained in the image of the composition

$$
F \otimes_{K} \bigwedge^{m} L \rightarrow F \otimes_{K} \bigwedge^{m} V \rightarrow \bigwedge^{m} F^{n}
$$

induced by the inclusion $\bigwedge^{m} L \rightarrow \bigwedge^{m} V$. On the other hand,
(26) $\left(v_{1}+w_{1}\right) \wedge \cdots \wedge\left(v_{m}+w_{m}\right)=w_{1} \wedge \cdots \wedge w_{m}+$ wedges with at least one v_{i}.

Since $\bigwedge^{m} M \neq 0$, this implies that $w_{1} \wedge \cdots \wedge w_{m} \neq 0$, and that the sum of the other terms on the right-hand side of (26) equals 0 . We claim each of the terms $v_{1} \wedge w_{2} \wedge \cdots \wedge w_{m}, \ldots, w_{1} \wedge \cdots \wedge w_{m-1} \wedge v_{m}$ equals zero, which would prove the assertion. To this end, let f_{1}, \ldots, f_{p} denote a basis for the image of (24), and suppose $f_{p+1}, \ldots, f_{q}, w_{1}, \ldots, w_{m}$ is a basis for the image of (25). Let

$$
\begin{gathered}
B_{1}=\left\{w_{1} \wedge \cdots \wedge w_{m}\right\} \cup\left(\bigcup_{\substack{1 \leq j_{1}<\cdots<j_{m} \leq q}}\left\{f_{j_{1}} \wedge \cdots \wedge f_{j_{m}}\right\}\right) \\
B_{2}=\bigcup_{r=2}^{m-1}\left(\underset{\substack{1 \leq i_{1}<\cdots<i_{r} \leq q \\
1 \leq i_{r+1}<\cdots<i_{m} \leq m}}{ }\left\{f_{i_{1}} \wedge \cdots \wedge f_{i_{r}} \wedge w_{i_{r+1}} \wedge \cdots \wedge w_{i_{m}}\right\}\right) \\
B_{3}=\left(\bigcup_{i=1}^{q}\left\{w_{1} \wedge f_{i} \wedge w_{3} \wedge \cdots \wedge w_{m}\right\}\right) \cup \cdots \cup\left(\bigcup_{i=1}^{q}\left\{w_{1} \wedge \cdots \wedge w_{m-1} \wedge f_{i}\right\}\right)
\end{gathered}
$$

and

$$
B_{4}=\bigcup_{i=1}^{q}\left\{f_{i} \wedge w_{2} \wedge w_{3} \wedge \cdots \wedge w_{m}\right\}
$$

The sets $B_{1}, B_{2}, B_{3}, B_{4}$ form a partition of a basis for $\bigwedge^{m} F^{n}$. Since the right-hand side of (26) equals $w_{1} \wedge \cdots \wedge w_{m}, v_{1} \wedge w_{2} \wedge \cdots \wedge w_{m}$ is a linear combination of elements in $B_{1} \cup B_{2} \cup B_{3}$. On the other hand, $v_{1} \wedge w_{2} \wedge \cdots \wedge w_{m}$ is a linear combination of elements in B_{4}. We conclude that $v_{1} \wedge w_{2} \wedge \cdots \wedge w_{m}=0$. A similar argument implies that $w_{1} \wedge \cdots \wedge w_{i-1} \wedge v_{i} \wedge w_{i+1} \wedge \cdots \wedge w_{m}=0$ for $1 \leq i \leq m$, and the result follows.

Theorem 6.10. Suppose $|k|>m, K$ is perfect, and $K \subset F$ is an extension of fields. If M is a free rank $[S]$ family generated by ϕ-invariants over $\operatorname{Spec} F$, then $M \cong F \otimes_{K} S$ as $F \otimes_{k} K$-modules .

Proof. By Lemma 6.9, we may assume M is contained in the image of the composition

$$
F \otimes_{K} L \rightarrow F \otimes_{K} V \stackrel{\cong}{\rightrightarrows} F^{n}
$$

induced by the inclusion $L \subset V$. Thus, we may assume V is semisimple.
Let \bar{F} denote an algebraic closure of F containing \bar{K}, let \bar{M} denote the image of the composition

$$
\bar{F} \otimes_{F} M \rightarrow \bar{F} \otimes_{F} F^{n} \xlongequal{\cong} \bar{F}^{n}
$$

 \bar{F}-module. By Lemma 2.4, \bar{M} is generated by $\operatorname{im} \phi$-invariants. Thus, Theorem 5.3 implies that the ϕ-eigenvalues of $w_{1} \wedge \cdots \wedge w_{m}$ must equal $\sigma_{1} \lambda(x) \cdots \sigma_{m} \lambda(x)$ for all
$x \in K$, where λ is a k-linear embedding of K into $\bar{K}, \sigma_{1}, \ldots, \sigma_{m}$ are automorphisms of \bar{K} over K, and $\left\{\sigma_{1} \lambda, \ldots, \sigma_{m} \lambda\right\}$ are distinct. By Lemma $2.8, \bar{M}$ is ϕ-invariant. Thus, \bar{M} has a ϕ-eigenvector, v_{1}. Since v_{1} is also an eigenvector in $\bar{F}^{n} \supset \bar{K}^{n}$, it must have eigenvalue $\sigma_{i_{1}} \lambda$. For $1<j \leq m$, let $v_{j} \in \bar{M}$ be such that $v_{j}+\left\langle v_{1}, \ldots, v_{j-1}\right\rangle$ is a ϕ-eigenvector for $\bar{M} /\left\langle v_{1}, v_{2}, \ldots, v_{j-1}\right\rangle$, where $\left\langle v_{1}, \ldots, v_{j-1}\right\rangle$ denotes the $\bar{F} \otimes_{k} K$ module generated by v_{1}, \ldots, v_{j-1}. Then $v_{j}+\left\langle v_{1}, \ldots, v_{j-1}\right\rangle$ has eigenvalue $\sigma_{i_{j}} \lambda$, and, thus, in the basis $\left\{v_{1}, \ldots, v_{m}\right\},\left.\phi(x)\right|_{\bar{M}}$ is upper-triangular with diagonal entries $\sigma_{i_{1}} \lambda(x), \ldots, \sigma_{i_{m}} \lambda(x)$. Therefore,

$$
\left.\operatorname{det} \phi(x)\right|_{\bar{M}}=\sigma_{i_{1}} \lambda(x) \cdots \sigma_{i_{m}} \lambda(x)
$$

By Lemma 6.5, we must have $\left\{i_{1}, \ldots, i_{m}\right\}=\{1, \ldots, m\}$. Since, by Lemma 5.4, extensions of distinct simple left finite-dimensional $\bar{F} \otimes_{k} K$-modules are split, there exists a basis for \bar{M} such that $\left.\phi(x)\right|_{\bar{M}}$ is diagonal with entries $\sigma_{1} \lambda(x), \ldots, \sigma_{m} \lambda(x)$. It follows that $\bar{F} \otimes_{F} M \cong \bar{F} \otimes_{F}\left(F \otimes_{K} S\right)$ as $\bar{F} \otimes_{k} K$-modules. Thus, by an argument similar to that given in the proof of [4, Lemma 2.4], we conclude that $M \cong F \otimes_{K} S$ as $F \otimes_{k} K$-modules.
6.3. The geometry of $\mathbb{F}_{\phi}([W], V), \mathbb{G}_{\phi}([W], V)$, and $\mathbb{H}_{\phi}([W], V)$. For the readers convenience, we collect here some consequences of our study of the geometry of $F_{A}(m, n), G_{A}(m, n)$ and $H_{A}(m, n)$ in the case that $A=\operatorname{im} \phi$, where $\phi: K \rightarrow$ $M_{n}(K)$ is a k-central ring homomorphism. We assume throughout the remainder of this section that $[V]=l_{1}\left[S_{1}\right]+\cdots+l_{r}\left[S_{r}\right]$, where S_{1}, \ldots, S_{r} are non-isomorphic simple modules with $\operatorname{dim} S_{i}=m_{i}$, and that $\phi_{i}(x)$ is the restriction of $\phi(x)$ to the S_{i}-homogeneous summand of V. Finally, we assume all products of schemes are over Spec K.

Theorem 6.11. The functors $F_{\phi}\left(q_{1}\left[S_{1}\right]+\cdots+q_{r}\left[S_{r}\right], V\right), G_{\phi}\left(q_{1}\left[S_{1}\right]+\cdots+q_{r}\left[S_{r}\right], V\right)$, and $H_{\phi}\left(q_{1}\left[S_{1}\right]+\cdots+q_{r}\left[S_{r}\right], V\right)$ are represented by

$$
\prod_{i=1}^{r} \mathbb{F}_{\operatorname{im} \phi_{i}}\left(m_{i} q_{i}, m_{i} l_{i}\right), \prod_{i=1}^{r} \mathbb{G}_{\operatorname{im} \phi_{i}}\left(m_{i} q_{i}, m_{i} l_{i}\right), \text { and } \prod_{i=1}^{r} \mathbb{H}_{\mathrm{im} \phi_{i}}\left(m_{i} q_{i}, m_{i} l_{i}\right)
$$

respectively.
Proof. Since $F_{A}(m, n), G_{A}(m, n)$, and $H_{A}(m, n)$ are representable by $\mathbb{F}_{A}(m, n)$, $\mathbb{G}_{A}(m, n)$, and $\mathbb{H}_{A}(m, n)$, the result follows from [2, p. 260].

We denote the schemes representing $F_{\phi}([W], V), G_{\phi}([W], V)$, and $H_{\phi}([W], V)$ by $\mathbb{F}_{\phi}([W], V), \mathbb{G}_{\phi}([W], V)$, and $\mathbb{H}_{\phi}([W], V)$, respectively.

Corollary 6.12. If K / k is finite and Galois then $F_{\phi}([W], V)=G_{\phi}([W], V)=$ $H_{\phi}([W], V)$ and $\mathbb{F}_{\phi}\left(q_{1}\left[S_{1}\right]+\cdots+q_{r}\left[S_{r}\right], V\right)$ equals

$$
\prod_{i=1}^{r} \mathbb{G}\left(q_{i}, l_{i}\right)
$$

Proof. We prove that $\mathbb{F}_{\phi}\left(q_{1}\left[S_{1}\right]+\cdots+q_{r}\left[S_{r}\right], V\right)=\prod_{i=1}^{r} \mathbb{G}\left(q_{i}, l_{i}\right)$. The other assertions follow similarly. By the previous result, it suffices to prove that $\mathbb{F}_{\text {im } \phi_{i}}\left(m_{i} q_{i}, m_{i} l_{i}\right)=$ $\mathbb{G}\left(q_{i}, l_{i}\right)$. The hypothesis on K / k is equivalent to K being a finite, separable extension of k such that Aut $K=\operatorname{Emb} K$. Thus, $m_{i}=1$ [4, Theorem 3.2] and $S_{i} \cong K_{\sigma_{i}}$ for some k-linear automorphism σ_{i} of K (note that, in this case, we do not require
that K be perfect to apply [4, Theorem 3.2]). Since $K \otimes_{k} K$ is semisimple, ϕ_{i} is a diagonal matrix with each diagonal entry equal to σ_{i}, and the assertion follows.

Remark 6.13. The previous result also follows from the second part of [5, Theorem 1, p. 321].

Now assume that V is semisimple. Before we state our next result, we need to introduce some notation. For $1 \leq i \leq r$, let $B_{i}=K\left[x_{i, 1}, \ldots, x_{i, l_{i} m_{i}-m_{i}}\right]$, let $B=K\left[\left\{x_{i, 1}, \ldots, x_{i, l_{i} m_{i}-m_{i}}\right\}_{i=1}^{r}\right]$ and, for each r-tuple $J=\left(j_{1}, \ldots, j_{r}\right)$ such that $1 \leq j_{i} \leq l_{i}$ define an inclusion of functors

$$
\Phi_{J}: h_{\mathrm{Spec} B_{1}} \times \cdots \times h_{\mathrm{Spec} B_{r}} \rightarrow F_{\phi_{1}}\left(\left[S_{1}\right], V_{1}\right) \times \cdots \times F_{\phi_{r}}\left(\left[S_{r}\right], V_{r}\right)
$$

by $\Phi_{J}=\Phi_{j_{1}} \times \cdots \times \Phi_{j_{r}}$, where Φ_{i} is defined by (18), and where all products are over $h_{\text {Spec } K}$. We abuse notation by letting Φ_{J} denote the induced natural transformation

$$
h_{\mathrm{Spec} B} \xlongequal{\cong} h_{\mathrm{Spec} B_{1}} \times \cdots \times h_{\mathrm{Spec} B_{r}} \xrightarrow{\Phi_{J}} F_{\phi}\left(\left[S_{1}\right]+\cdots+\left[S_{r}\right], V\right) .
$$

In a similar fashion, we can define an inclusion of functors

$$
\Phi_{J}: h_{\mathrm{Spec} B_{1}} \times \cdots \times h_{\text {Spec } B_{r}} \rightarrow H_{\phi_{1}}\left(\left[S_{1}\right], V_{1}\right) \times \cdots \times H_{\phi_{r}}\left(\left[S_{r}\right], V_{r}\right)
$$

where we have abused notation as in Section 4.
The following result is an immediate consequence of Lemma 4.6 and Corollary 4.7.

Theorem 6.14. For all r-tuples $J=\left(j_{1}, \ldots, j_{r}\right)$ such that $1 \leq j_{i} \leq l_{i}, \Phi_{J}$: $h_{\text {Spec } B} \rightarrow F_{\phi}\left(\left[S_{1}\right]+\cdots+\left[S_{r}\right], V\right)$ is an open subfunctor, and the open subfunctors Φ_{J} cover the K-rational points of $F_{\phi}\left(\left[S_{1}\right]+\cdots+\left[S_{r}\right], V\right)$. Furthermore, if K is infinite, the same result holds for $H_{\phi}\left(\left[S_{1}\right]+\cdots+\left[S_{r}\right], V\right)$ in place of $F_{\phi}\left(\left[S_{1}\right]+\cdots+\left[S_{r}\right], V\right)$.

The following follows from the above result and from an argument similar to that used to prove Theorem 4.9.

Corollary 6.15. $\mathbb{F}_{\phi}\left(\left[S_{1}\right]+\cdots+\left[S_{r}\right], V\right)$ and $\mathbb{H}_{\phi}\left(\left[S_{1}\right]+\cdots+\left[S_{r}\right], V\right)$ contain smooth, reduced, irreducible open subschemes of dimension $\sum_{i=1}^{r} l_{i} m_{i}-m_{i}$ which cover their K-rational points.

The following example illustrates the fact that the open subfunctors Φ_{J} do not always form an open cover of $F_{\phi}\left([S], S^{\oplus l}\right)$ or $H_{\phi}\left([S], S^{\oplus l}\right)$.

Example 6.16. Suppose $\rho=\sqrt{2} \sqrt{2}, \zeta$ is a primitive 3rd root of unity, $k=\mathbb{Q}$ and $K=\mathbb{Q}(\rho)$. For $i=0,1$, let

$$
\lambda_{i}\left(\sum_{l=0}^{2} a_{l} \rho^{l}\right)=a_{i} \rho^{i}-a_{2} \rho^{2}
$$

and let $\lambda(x)=\lambda_{0}(x)+\lambda_{1}(x) \zeta$. Let $V(\lambda)$ denote the corresponding two-dimensional simple $K \otimes_{k} K$-module, so that the right action of K on $V(\lambda)$ is given by $\phi(x)=$ $\left(\begin{array}{cc}\lambda_{0}(x) & -\lambda_{1}(x) \\ \lambda_{1}(x) & -\lambda_{1}(x)+\lambda_{0}(x)\end{array}\right)$ [4, Example 3.9]. Let $V=V(\lambda)^{\oplus 2}$, and let $\left\{e_{i}\right\}_{i=1}^{4}$ denote the standard unit vectors of $K(\zeta)^{4}$. Then

$$
M=\operatorname{Span}_{K(\zeta)}\left\{e_{1}+\zeta e_{2}, e_{3}+\zeta^{2} e_{4}\right\} \subset K(\zeta)^{4} \cong K(\zeta) \otimes_{K} V
$$

is a free ϕ-invariant rank $[V(\lambda)]$ family over $\operatorname{Spec} K(\zeta)$ whose projections onto the first and second coordinates of $K(\zeta)^{4}$, and onto the third and fourth coordinates of
$K(\zeta)^{4}$, are not onto. In particular, M is not an element of $\underset{J=1}{\cup} \Phi_{J}\left(h_{\operatorname{Spec} A}(K(\zeta))\right)$, and hence by [2, Exercise VI-II, p. 256], the open subfunctors Φ_{J} do not cover $F_{\phi}\left([V(\lambda)], V(\lambda)^{\oplus 2}\right)$.

We claim that M is generated by im ϕ-invariants, which would establish that the open subfunctors Φ_{J} do not cover $H_{\phi}\left([V(\lambda)], V(\lambda)^{\oplus 2}\right)$. To prove the claim, we first note that

$$
\begin{equation*}
\left(e_{1}+\zeta e_{2}\right) \wedge\left(e_{3}+\zeta^{2} e_{4}\right)=e_{1} \wedge e_{3}+\zeta^{2} e_{1} \wedge e_{4}+\zeta e_{2} \wedge e_{3}+e_{2} \wedge e_{4} \tag{27}
\end{equation*}
$$

On the other hand, if we let $w_{1}=e_{1}, w_{2}=e_{3}, a_{1}=1$ and $a_{2}=\rho$, then

$$
w_{1} \phi\left(a_{1}\right) \wedge w_{2} \phi\left(a_{2}\right)+w_{2} \phi\left(a_{1}\right) \wedge w_{1} \phi\left(a_{2}\right)=-\rho\left(e_{1} \wedge e_{4}-e_{2} \wedge e_{3}\right)
$$

is an element of $\bigwedge_{\operatorname{im} \phi}^{2}$ by Proposition 4.3. Similarly, if we let $w_{1}=e_{1}, w_{2}=e_{4}$, $a_{1}=1$ and $a_{2}=\rho$, then

$$
w_{1} \phi\left(a_{1}\right) \wedge w_{2} \phi\left(a_{2}\right)+w_{2} \phi\left(a_{1}\right) \wedge w_{1} \phi\left(a_{2}\right)=\rho\left(e_{1} \wedge e_{3}-e_{1} \wedge e_{4}-e_{4} \wedge e_{2}\right)
$$ is an element of $\bigwedge_{\operatorname{im} \phi}^{2}$ by Proposition 4.3. It follows that (27) is an element of the image of $K(\zeta) \otimes_{K} \bigwedge_{\operatorname{im} \phi}^{2} \rightarrow K(\zeta) \otimes_{K} \bigwedge^{2} K^{4} \cong \bigwedge^{2} K(\zeta)^{4}$, and hence that M is generated by im ϕ-invariants.

References

[1] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, SpringerVerlag, 1995.
[2] D. Eisenbud and J. Harris, The Geometry of Schemes, Springer-Verlag, 2000.
[3] R. Kolhatkar, Grassmann Varieties, Master's Thesis, McGill University, 2004.
[4] A. Nyman and C. J. Pappacena, Two-sided vector spaces, submitted.
[5] F. Pop and H. Pop, An extension of the Noether-Skolem theorem, J. Pure Appl. Algebra, 35 (1985), 321-328.
[6] S. P. Smith, Non-commutative algebraic geometry, unpub. notes, 1999.
[7] J. T. Stafford, M. van den Bergh, Noncommutative curves and noncommutative surfaces, Bull. Amer. Math. Soc. (N.S.) 38 (2) (2001), 171-216.
[8] M. van den Bergh, A translation principle for the four-dimensional Sklyanin algebras, J. Algebra 184 (1996), 435-490.

Department of Mathematics, University of Montana, Missoula, MT 59812-0864
E-mail address: NymanA@mso.umt.edu

