A Structure Theorem for \mathbb{P}^1 – Spec *k*-bimodules

Adam Nyman

Western Washington University

March 4, 2012

イロト イヨト イヨト イヨト

æ

Adam Nyman

Conventions and Notation

Adam Nyman

<ロト <回ト < 回ト

< ≣ >

æ

• always work over commutative ring k,

個 と く ヨ と く ヨ と

- always work over commutative ring k,
- X is (comm.) quasi-compact separated k-scheme

- always work over commutative ring k,
- X is (comm.) quasi-compact separated k-scheme
- Bimod_k(C, D)=category of k-linear right exact F : C → D commuting with direct limits

伺 ト イヨト イヨト

- always work over commutative ring k,
- X is (comm.) quasi-compact separated k-scheme
- Bimod_k(C, D)=category of k-linear right exact F : C → D commuting with direct limits

Our main result concerns the structure of objects in $Bimod_k(Qcoh \mathbb{P}^1_k, Modk)$ when $k = \overline{k}$.

R, S rings, \mathcal{F} an R - S-bimodule

 $-\otimes_R \mathcal{F}:\mathsf{Mod}R o\mathsf{Mod}S$

イロト イヨト イヨト イヨト

2

R, S rings, \mathcal{F} an R - S-bimodule

 $-\otimes_R \mathcal{F}:\mathsf{Mod}R o\mathsf{Mod}S$

Theorem (Eilenberg, Watts 1960)

Every $F \in \text{Bimod}_k(\text{Mod}R, \text{Mod}S)$ is an integral transform.

R, S rings, \mathcal{F} an R - S-bimodule

 $-\otimes_R \mathcal{F}:\mathsf{Mod}R o\mathsf{Mod}S$

Theorem (Eilenberg, Watts 1960)

Every $F \in \text{Bimod}_k(\text{Mod}R, \text{Mod}S)$ is an integral transform.

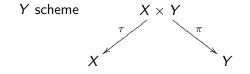
Still true if ModS is replaced by QcohY where Y is a scheme.

・日・ ・ヨ・ ・ヨ・

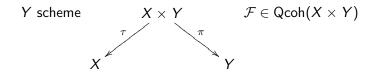
Y scheme

<ロ> <問> <問> < 国> < 国> < 国>

臣



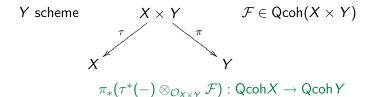
(4回) (日) (日)



Adam Nyman

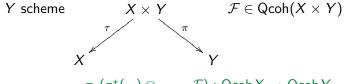
@ ▶ ∢ ≣ ▶

-≣->



/⊒ ▶ ∢ ≣ ▶

∢ ≣⇒



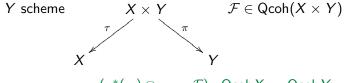
 $\pi_*(\tau^*(-)\otimes_{\mathcal{O}_{X\times Y}}\mathcal{F}):\operatorname{\mathsf{Qcoh}} X\to\operatorname{\mathsf{Qcoh}} Y$

e.g.

If $f: Y \to X$ is a morphism of schemes then

 f^* : Qcoh $X \rightarrow$ QcohY is an integral transform.

個 と く ヨ と く ヨ と



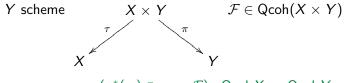
 $\pi_*(\tau^*(-)\otimes_{\mathcal{O}_{X\times Y}}\mathcal{F}):\operatorname{\mathsf{Qcoh}} X\to\operatorname{\mathsf{Qcoh}} Y$

e.g.

If $f: Y \to X$ is a morphism of schemes then $f^*: \operatorname{Qcoh} X \to \operatorname{Qcoh} Y$ is an integral transform.

e.g.

Let
$$X = \mathbb{P}^1$$
 and $Y = \operatorname{Spec} k$. Then



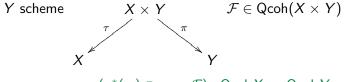
 $\pi_*(\tau^*(-)\otimes_{\mathcal{O}_{X\times Y}}\mathcal{F}):\operatorname{\mathsf{Qcoh}} X\to\operatorname{\mathsf{Qcoh}} Y$

e.g.

If $f: Y \to X$ is a morphism of schemes then $f^*: \operatorname{Qcoh} X \to \operatorname{Qcoh} Y$ is an integral transform.

e.g.

Let $X = \mathbb{P}^1$ and $Y = \operatorname{Spec} k$. Then $H^1(X, -) \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y)$ is not an integral transform.



 $\pi_*(\tau^*(-)\otimes_{\mathcal{O}_{X\times Y}}\mathcal{F}):\operatorname{\mathsf{Qcoh}} X\to\operatorname{\mathsf{Qcoh}} Y$

e.g.

If $f: Y \to X$ is a morphism of schemes then $f^*: \operatorname{Qcoh} X \to \operatorname{Qcoh} Y$ is an integral transform.

e.g.

Let $X = \mathbb{P}^1$ and $Y = \operatorname{Spec} k$. Then $H^1(X, -) \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y)$ is not an integral transform.

Problem



 $\pi_*(\tau^*(-)\otimes_{\mathcal{O}_{X\times Y}}\mathcal{F}):\operatorname{\mathsf{Qcoh}} X\to\operatorname{\mathsf{Qcoh}} Y$

e.g.

If $f: Y \to X$ is a morphism of schemes then $f^*: \operatorname{Qcoh} X \to \operatorname{Qcoh} Y$ is an integral transform.

e.g.

Let $X = \mathbb{P}^1$ and $Y = \operatorname{Spec} k$. Then $H^1(X, -) \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y)$ is not an integral transform.

Problem

When is $F \in \text{Bimod}_k(\text{Qcoh}X, \text{Qcoh}Y)$ an integral transform?

Non-commutative Space := Grothendieck Category

Non-commutative Space := Grothendieck Category =

• (k-linear) abelian category with

Non-commutative Space := Grothendieck Category =

- (k-linear) abelian category with
- exact direct limits and

Non-commutative Space := Grothendieck Category =

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Non-commutative Space := Grothendieck Category =

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Notation: Y geometry

Non-commutative Space := Grothendieck Category =

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Notation: Y geometry or ModY category theory

Non-commutative Space := Grothendieck Category =

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Notation: Y geometry or ModY category theory

The following are non-commutative spaces:

Non-commutative Space := Grothendieck Category =

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Notation: Y geometry or ModY category theory

The following are non-commutative spaces:

• Qcoh X

Non-commutative Space := Grothendieck Category =

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Notation: Y geometry or ModY category theory

The following are non-commutative spaces:

- Qcoh X
- Mod R, R a ring

Non-commutative Space := Grothendieck Category =

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Notation: Y geometry or ModY category theory

The following are non-commutative spaces:

- Qcoh X
- Mod R, R a ring
- Proj A := GrA/TorsA where A is Z-graded

Y, Z non-commutative spaces

@ ▶ ∢ ≣ ▶

 $Y,\ Z$ non-commutative spaces $Y\xrightarrow{f} Z$ denotes adjoint pair $\left(f^*,f_*\right)$ in the diagram

$$\operatorname{Mod} Y \rightleftharpoons_{f^*}^{f_*} \operatorname{Mod} Z$$

Y, Z non-commutative spaces $Y \xrightarrow{f} Z$ denotes adjoint pair (f^*, f_*) in the diagram

$$\operatorname{Mod} Y \stackrel{f_*}{\underset{f^*}{\rightleftharpoons}} \operatorname{Mod} Z$$

Motivation

If $f: Y \to X$ is a morphism of schemes, (f^*, f_*) is an adjoint pair.

▲圖▶ ▲屋▶ ▲屋▶

Y, Z non-commutative spaces $Y \xrightarrow{f} Z$ denotes adjoint pair (f^*, f_*) in the diagram

$$\operatorname{\mathsf{Mod}} Y \stackrel{f_*}{\underset{f^*}{\rightleftharpoons}} \operatorname{\mathsf{Mod}} Z$$

Motivation

If $f: Y \to X$ is a morphism of schemes, (f^*, f_*) is an adjoint pair.

Adjoint functor theorem \Rightarrow

Morphisms $f: Y \to Z \quad \leftrightarrow \quad \text{Bimod}_k(\text{Mod}Z, \text{Mod}Y).$

(4回) (4回) (4回)

e.g.

Let $f : Y \to X$ denote a morphism of schemes such that $(f^*, f_*, f^!)$ is an adjoint triple (e.g. a closed immersion of varieties).

e.g.

Let $f: Y \to X$ denote a morphism of schemes such that $(f^*, f_*, f^!)$ is an adjoint triple (e.g. a closed immersion of varieties). Then

$$\operatorname{Qcoh} Y \stackrel{f_*}{\underset{f^*}{\rightleftharpoons}} \operatorname{Qcoh} X$$

and

$$\operatorname{Qcoh} X \stackrel{f^!}{\underset{f_*}{\rightleftharpoons}} \operatorname{Qcoh} Y$$

are morphisms of noncommutative spaces $Y \rightarrow X$ and $X \rightarrow Y$.

e.g.

Let $f: Y \to X$ denote a morphism of schemes such that $(f^*, f_*, f^!)$ is an adjoint triple (e.g. a closed immersion of varieties). Then

$$\operatorname{Qcoh} Y \stackrel{f_*}{\underset{f^*}{\rightleftharpoons}} \operatorname{Qcoh} X$$

and

$$\operatorname{Qcoh} X \stackrel{f^!}{\underset{f_*}{\rightleftharpoons}} \operatorname{Qcoh} Y$$

個 と く ヨ と く ヨ と

are morphisms of noncommutative spaces $Y \rightarrow X$ and $X \rightarrow Y$.

The latter may not come from a morphism of schemes.

The Eilenberg-Watts Theorem over Schemes I: The Eilenberg-Watts Functor

回 と く ヨ と く ヨ と

Y a scheme

Adam Nyman

回 と く ヨ と く ヨ と

Y a scheme

Question

Given $F \in \text{Bimod}_k(\text{Qcoh}X, \text{Qcoh}Y)$, which integral transform is closest to F?

Y a scheme

Question

Given $F \in \text{Bimod}_k(\text{Qcoh}X, \text{Qcoh}Y)$, which integral transform is closest to F?

 $v: V \rightarrow X$ denotes inclusion of affine open

Y a scheme

Question

Given $F \in \text{Bimod}_k(\text{Qcoh}X, \text{Qcoh}Y)$, which integral transform is closest to F?

 $v: V \to X$ denotes inclusion of affine open $Fv_* \in \operatorname{Bimod}_k(\operatorname{Qcoh} V, \operatorname{Qcoh} Y) \Rightarrow$

$$\mathsf{Fv}_*\cong -\otimes_{\mathcal{O}_V}\mathcal{F}_V$$

個 と く ヨ と く ヨ と

for some $\mathcal{F}_V \in \operatorname{Qcoh} V \times Y$.

Y a scheme

Question

Given $F \in \text{Bimod}_k(\text{Qcoh}X, \text{Qcoh}Y)$, which integral transform is closest to F?

 $v: V \to X$ denotes inclusion of affine open $Fv_* \in \operatorname{Bimod}_k(\operatorname{Qcoh} V, \operatorname{Qcoh} Y) \Rightarrow$

$$\mathsf{Fv}_*\cong -\otimes_{\mathcal{O}_V}\mathcal{F}_V$$

for some $\mathcal{F}_V \in \operatorname{Qcoh} V \times Y$.

Theorem (Van den Bergh, N.)

The collection \mathcal{F}_V induces (via gluing) a functor

W(-): Bimod_k(QcohX, QcohY) \rightarrow QcohX \times Y

個 と く ヨ と く ヨ と

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y)$ totally global if W(F) = 0

個 と く ヨ と く ヨ と

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y)$ totally global if W(F) = 0

e.g. $F = H^1(\mathbb{P}^1, -) \in \mathsf{Bimod}_k(\mathsf{Qcoh}\mathbb{P}^1, \mathsf{Mod}k)$ is totally global.

(4回) (1日) (日)

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y)$ totally global if W(F) = 0

e.g. $F = H^1(\mathbb{P}^1, -) \in \operatorname{Bimod}_k(\operatorname{Qcoh}\mathbb{P}^1, \operatorname{Mod} k)$ is totally global.

Proposition

- 4 回 > - 4 回 > - 4 回 >

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y)$ totally global if W(F) = 0

e.g.

 $F = H^1(\mathbb{P}^1, -) \in \operatorname{Bimod}_k(\operatorname{Qcoh}\mathbb{P}^1, \operatorname{Mod} k)$ is totally global.

Proposition

Let $F \in \text{Bimod}_k(\text{Qcoh}X, \text{Qcoh}Y)$ be totally global.

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y)$ totally global if W(F) = 0

e.g.

 $F = H^1(\mathbb{P}^1, -) \in \mathsf{Bimod}_k(\mathsf{Qcoh}\mathbb{P}^1, \mathsf{Mod}_k)$ is totally global.

Proposition

Let $F \in \text{Bimod}_k(\text{Qcoh}X, \text{Qcoh}Y)$ be totally global. If X is noeth. and $\text{Supp }\mathcal{M}$ lies in open affine subscheme of X,

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y)$ totally global if W(F) = 0

e.g.

 $F = H^1(\mathbb{P}^1, -) \in \operatorname{Bimod}_k(\operatorname{Qcoh}\mathbb{P}^1, \operatorname{Mod} k)$ is totally global.

Proposition

Let $F \in \text{Bimod}_k(\text{Qcoh}X, \text{Qcoh}Y)$ be totally global. If X is noeth. and $\text{Supp} \mathcal{M}$ lies in open affine subscheme of X, then $F\mathcal{M} = 0$.

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y)$ totally global if W(F) = 0

e.g.

 $F = H^1(\mathbb{P}^1, -) \in \operatorname{Bimod}_k(\operatorname{Qcoh}\mathbb{P}^1, \operatorname{Mod} k)$ is totally global.

Proposition

Let $F \in \text{Bimod}_k(\text{Qcoh}X, \text{Qcoh}Y)$ be totally global. If X is noeth. and $\text{Supp} \mathcal{M}$ lies in open affine subscheme of X, then $F\mathcal{M} = 0$.

Theorem (N-Smith, 2008)

 $k = \overline{k}, F \in \mathsf{Bimod}_k(\mathsf{Qcoh}\mathbb{P}^1,\mathsf{Mod}k).$ If

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y)$ totally global if W(F) = 0

e.g.

 $F = H^1(\mathbb{P}^1, -) \in \operatorname{Bimod}_k(\operatorname{Qcoh}\mathbb{P}^1, \operatorname{Mod} k)$ is totally global.

Proposition

Let $F \in \text{Bimod}_k(\text{Qcoh}X, \text{Qcoh}Y)$ be totally global. If X is noeth. and $\text{Supp}\mathcal{M}$ lies in open affine subscheme of X, then $F\mathcal{M} = 0$.

Theorem (N-Smith, 2008)

$$k = \overline{k}, F \in \mathsf{Bimod}_k(\mathsf{Qcoh}\mathbb{P}^1, \mathsf{Mod}k).$$
 If

• F is totally global and

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y)$ totally global if W(F) = 0

e.g.

 $F = H^1(\mathbb{P}^1, -) \in \operatorname{Bimod}_k(\operatorname{Qcoh}\mathbb{P}^1, \operatorname{Mod} k)$ is totally global.

Proposition

Let $F \in \text{Bimod}_k(\text{Qcoh}X, \text{Qcoh}Y)$ be totally global. If X is noeth. and $\text{Supp}\mathcal{M}$ lies in open affine subscheme of X, then $F\mathcal{M} = 0$.

Theorem (N-Smith, 2008)

- $k = \overline{k}, F \in \operatorname{Bimod}_k(\operatorname{Qcoh}\mathbb{P}^1, \operatorname{Mod} k)$. If
 - F is totally global and
 - F preserves noetherian objects, then

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y)$ totally global if W(F) = 0

e.g.

 $F = H^1(\mathbb{P}^1, -) \in \operatorname{Bimod}_k(\operatorname{Qcoh}\mathbb{P}^1, \operatorname{Mod} k)$ is totally global.

Proposition

Let $F \in \text{Bimod}_k(\text{Qcoh}X, \text{Qcoh}Y)$ be totally global. If X is noeth. and $\text{Supp} \mathcal{M}$ lies in open affine subscheme of X, then $F\mathcal{M} = 0$.

Theorem (N-Smith, 2008)

$$k = \overline{k}, F \in \mathsf{Bimod}_k(\mathsf{Qcoh}\mathbb{P}^1,\mathsf{Mod}k).$$
 If

- F is totally global and
- F preserves noetherian objects, then

$$F \cong \bigoplus_{i=m}^{\infty} \mathsf{H}^1(\mathbb{P}^1, (-)(i))^{\oplus n_i}$$

Adam Nyman

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y),$

- 4 回 ト - 4 回 ト

2

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y), \ \tau, \pi : X \times Y \to X, Y$ projections

▲圖▶ ▲ 国▶ ▲ 国▶ -

$F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y), \ \tau, \pi : X \times Y \to X, Y$ projections

Theorem (N)

There is a natural transformation

$$\Gamma_F: F \to \pi_*(\tau^* - \otimes_{\mathcal{O}_{X \times Y}} W(F))$$

個 と く ヨ と く ヨ と

2

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y), \ \tau, \pi : X \times Y \to X, Y$ projections

Theorem (N)

There is a natural transformation

$$\Gamma_F: F \to \pi_*(\tau^* - \otimes_{\mathcal{O}_{X \times Y}} W(F))$$

such that ker Γ_F and cok Γ_F are totally global.

個 と く ヨ と く ヨ と …

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y), \ \tau, \pi : X \times Y \to X, Y$ projections

Theorem (N)

There is a natural transformation

$$\Gamma_F: F \to \pi_*(\tau^* - \otimes_{\mathcal{O}_{X \times Y}} W(F))$$

such that ker Γ_F and cok Γ_F are totally global.

It follows that Γ_F is an isomorphism if

白 ト イヨト イヨト

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y), \ \tau, \pi : X \times Y \to X, Y$ projections

Theorem (N)

There is a natural transformation

$$\Gamma_F: F \to \pi_*(\tau^* - \otimes_{\mathcal{O}_{X \times Y}} W(F))$$

such that ker Γ_F and cok Γ_F are totally global.

It follows that Γ_F is an isomorphism if X is affine or

白 ト イヨト イヨト

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y), \ \tau, \pi : X \times Y \to X, Y$ projections

Theorem (N)

There is a natural transformation

$$\Gamma_F: F \to \pi_*(\tau^* - \otimes_{\mathcal{O}_{X \times Y}} W(F))$$

such that ker Γ_F and cok Γ_F are totally global.

It follows that Γ_F is an isomorphism if X is affine or F is exact.

白 と く ヨ と く ヨ と …

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y), \ \tau, \pi : X \times Y \to X, Y$ projections

Theorem (N)

There is a natural transformation

$$\Gamma_F: F \to \pi_*(\tau^* - \otimes_{\mathcal{O}_{X \times Y}} W(F))$$

such that ker Γ_F and cok Γ_F are totally global.

It follows that Γ_F is an isomorphism if X is affine or F is exact.

Problem

・日・ ・ ヨ ・ ・ ヨ ・

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y), \ \tau, \pi : X \times Y \to X, Y$ projections

Theorem (N)

There is a natural transformation

$$\Gamma_F: F \to \pi_*(\tau^* - \otimes_{\mathcal{O}_{X \times Y}} W(F))$$

such that ker Γ_F and cok Γ_F are totally global.

It follows that Γ_F is an isomorphism if X is affine or F is exact.

Problem

What is the structure of obstructions ker Γ_F and cok Γ_F ?

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y), \ \tau, \pi : X \times Y \to X, Y$ projections

Theorem (N)

There is a natural transformation

$$\Gamma_F: F \to \pi_*(\tau^* - \otimes_{\mathcal{O}_{X \times Y}} W(F))$$

such that ker Γ_F and cok Γ_F are totally global.

It follows that Γ_F is an isomorphism if X is affine or F is exact.

Problem

What is the structure of obstructions ker Γ_F and cok Γ_F ? If $X = \mathbb{P}^1_k$?

▲御★ ▲注★ ▲注★

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y), \ \tau, \pi : X \times Y \to X, Y$ projections

Theorem (N)

There is a natural transformation

$$\Gamma_F: F \to \pi_*(\tau^* - \otimes_{\mathcal{O}_{X \times Y}} W(F))$$

such that ker Γ_F and cok Γ_F are totally global.

It follows that Γ_F is an isomorphism if X is affine or F is exact.

Problem

What is the structure of obstructions ker Γ_F and cok Γ_F ? If $X = \mathbb{P}^1_k$? $Y = \operatorname{Spec} k$?

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y), \ \tau, \pi : X \times Y \to X, Y$ projections

Theorem (N)

There is a natural transformation

$$\Gamma_F: F \to \pi_*(\tau^* - \otimes_{\mathcal{O}_{X \times Y}} W(F))$$

such that ker Γ_F and cok Γ_F are totally global.

It follows that Γ_F is an isomorphism if X is affine or F is exact.

Problem

What is the structure of obstructions ker Γ_F and cok Γ_F ? If $X = \mathbb{P}^1_k$? $Y = \operatorname{Spec} k$? F preserves noetherian objects?

▲御★ ▲注★ ▲注★

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y), \ \tau, \pi : X \times Y \to X, Y$ projections

Theorem (N)

There is a natural transformation

$$\Gamma_F: F \to \pi_*(\tau^* - \otimes_{\mathcal{O}_{X \times Y}} W(F))$$

such that ker Γ_F and cok Γ_F are totally global.

It follows that Γ_F is an isomorphism if X is affine or F is exact.

Problem

What is the structure of obstructions ker Γ_F and cok Γ_F ? If $X = \mathbb{P}^1_k$? Y = Spec k? F preserves noetherian objects? $k = \overline{k}$?

▲御▶ ▲唐▶ ▲唐▶

 $F \in \operatorname{Bimod}_k(\operatorname{Qcoh} X, \operatorname{Qcoh} Y), \ \tau, \pi : X \times Y \to X, Y$ projections

Theorem (N)

There is a natural transformation

$$\Gamma_F: F \to \pi_*(\tau^* - \otimes_{\mathcal{O}_{X \times Y}} W(F))$$

such that ker Γ_F and cok Γ_F are totally global.

It follows that Γ_F is an isomorphism if X is affine or F is exact.

Problem

What is the structure of obstructions ker Γ_F and cok Γ_F ? If $X = \mathbb{P}^1_k$? $Y = \operatorname{Spec} k$? F preserves noetherian objects? $k = \overline{k}$?

e.g.

If $f: Y \to X$ is morphism of noetherian schemes, then f^* preserves noetherian objects.

Abuse of Notation

Adam Nyman

<ロ> <問> <問> < 国> < 国> < 国>

Abuse of Notation

If $Y = \operatorname{Spec} k$:

Adam Nyman

If $Y = \operatorname{Spec} k$:

• Projection $\tau: X \times Y \to X$ is isomorphism

<ロ> (日) (日) (日) (日) (日)

If $Y = \overline{\text{Spec } k}$:

- Projection $\tau: X \times Y \to X$ is isomorphism
- write W(F) instead of $\tau_*W(F)$ and

・ロト ・回ト ・ヨト

문 문 문

If $Y = \overline{\operatorname{Spec} k}$:

- Projection $\tau: X \times Y \to X$ is isomorphism
- write W(F) instead of $\tau_*W(F)$ and
- identify Qcoh(Spec k) and Modk, so

A⊒ ▶ ∢ ∃

If $Y = \operatorname{Spec} k$:

- Projection $\tau: X \times Y \to X$ is isomorphism
- write W(F) instead of $\tau_*W(F)$ and
- identify Qcoh(Spec k) and Modk, so

$$\Gamma_F: F \to \pi_*(\tau^* - \otimes_{\mathcal{O}_{X \times Y}} W(F))$$

A⊒ ▶ ∢ ∃

If $Y = \overline{\operatorname{Spec} k}$:

- Projection $\tau: X \times Y \to X$ is isomorphism
- write W(F) instead of $\tau_*W(F)$ and
- identify Qcoh(Spec k) and Modk, so

$$\Gamma_F: F \to \pi_*(\tau^* - \otimes_{\mathcal{O}_{X \times Y}} W(F)) \equiv H^0(X, - \otimes_{\mathcal{O}_X} W(F)).$$

A ► <

Adam Nyman

・ロト ・回ト ・ヨト ・ヨト

Let
$$k = \overline{k}$$
.

Adam Nyman

・ロト ・回ト ・ヨト ・ヨト

Let
$$k = \overline{k}$$
.

Theorem (N)

If $F \in \mathsf{Bimod}_k(\mathsf{Qcoh}\mathbb{P}^1_k,\mathsf{Mod}k)$ preserves noetherian objects then

・ロン ・回と ・ヨン・

Let
$$k = \overline{k}$$
.

Theorem (N)

- If $F \in \mathsf{Bimod}_k(\mathsf{Qcoh}\mathbb{P}^1_k,\mathsf{Mod}k)$ preserves noetherian objects then
 - W(F) is noetherian,

イロト イヨト イヨト イヨト

Let $k = \overline{k}$.

Theorem (N)

- If $F \in \mathsf{Bimod}_k(\mathsf{Qcoh}\mathbb{P}^1_k,\mathsf{Mod}k)$ preserves noetherian objects then
 - W(F) is noetherian,
 - $\operatorname{cok} \Gamma_F = 0$,

イロト イヨト イヨト イヨト

Let $k = \overline{k}$.

Theorem (N)

- If $F \in \mathsf{Bimod}_k(\mathsf{Qcoh}\mathbb{P}^1_k,\mathsf{Mod}k)$ preserves noetherian objects then
 - W(F) is noetherian,
 - $\operatorname{cok} \Gamma_F = 0$,
 - there are nonnegative integers n, n_i such that $\ker \Gamma_F = \bigoplus_{i=-n}^{\infty} H^1(\mathbb{P}^1, (-)(i))^{\oplus n_i}$, and

イロト イヨト イヨト イヨト

Let $k = \overline{k}$.

Theorem (N)

- If $F \in \mathsf{Bimod}_k(\mathsf{Qcoh}\mathbb{P}^1_k,\mathsf{Mod}k)$ preserves noetherian objects then
 - W(F) is noetherian,
 - $\operatorname{cok} \Gamma_F = 0$,
 - there are nonnegative integers n, n_i such that $\ker \Gamma_F = \bigoplus_{i=-n}^{\infty} H^1(\mathbb{P}^1, (-)(i))^{\oplus n_i}$, and
 - the short exact sequence

$$0 o {\mathsf{ker}} \ {\mathsf{\Gamma}}_F o F \stackrel{{\mathsf{\Gamma}}_F}{ o} H^0({\mathbb{P}}^1, -\otimes {\mathit{W}}(F)) o 0$$

イロト イヨト イヨト イヨト

æ

splits so that

Let $k = \overline{k}$.

Theorem (N)

- If $F \in \mathsf{Bimod}_k(\mathsf{Qcoh}\mathbb{P}^1_k,\mathsf{Mod}k)$ preserves noetherian objects then
 - W(F) is noetherian,
 - $\operatorname{cok} \Gamma_F = 0$,
 - there are nonnegative integers n, n_i such that $\ker \Gamma_F = \bigoplus_{i=-n}^{\infty} H^1(\mathbb{P}^1, (-)(i))^{\oplus n_i}$, and
 - the short exact sequence

$$0 o {\mathsf{ker}} \, {\mathsf{\Gamma}}_F o F \stackrel{{\mathsf{\Gamma}}_F}{ o} H^0({\mathbb{P}}^1, -\otimes {\mathit{W}}(F)) o 0$$

splits so that

$$F \cong \oplus_{i=-n}^{\infty} H^1(\mathbb{P}^1, (-)(i))^{\oplus n_i} \oplus H^0(\mathbb{P}^1, -\otimes W(F)).$$

イロト イヨト イヨト イヨト

Adam Nyman

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Suppose $k = \overline{k}$, $F \in \text{Bimod}_k(\text{Qcoh}\mathbb{P}^1_k, \text{Mod}k)$, and F preserves noetherian objects.

イロト イヨト イヨト イヨト

Suppose $k = \overline{k}$, $F \in \text{Bimod}_k(\text{Qcoh}\mathbb{P}^1_k, \text{Mod}k)$, and F preserves noetherian objects. Then,

イロト イヨト イヨト イヨト

Suppose $k = \overline{k}$, $F \in \text{Bimod}_k(\text{Qcoh}\mathbb{P}^1_k, \text{Mod}k)$, and F preserves noetherian objects. Then,

Corollary

F is an integral transform iff

イロト イヨト イヨト イヨト

Suppose $k = \overline{k}$, $F \in \text{Bimod}_k(\text{Qcoh}\mathbb{P}^1_k, \text{Mod}k)$, and F preserves noetherian objects. Then,

Corollary

F is an integral transform iff F is exact on vector bundles.

イロト イヨト イヨト イヨト

2

Suppose $k = \overline{k}$, $F \in \text{Bimod}_k(\text{Qcoh}\mathbb{P}^1_k, \text{Mod}k)$, and F preserves noetherian objects. Then,

Corollary

F is an integral transform iff F is exact on vector bundles.

Corollary

 $F \cong f^*$ for some $f : \operatorname{Spec} k \to X$ iff

イロト イヨト イヨト イヨト

Suppose $k = \overline{k}$, $F \in \text{Bimod}_k(\text{Qcoh}\mathbb{P}^1_k, \text{Mod}k)$, and F preserves noetherian objects. Then,

Corollary

F is an integral transform iff F is exact on vector bundles.

Corollary

 $F \cong f^*$ for some f: Spec $k \to X$ iff F is exact on vector bundles and dim_k $F(\mathcal{O}(i)) = 1$ for some i.

Suppose $k = \overline{k}$, $F \in \text{Bimod}_k(\text{Qcoh}\mathbb{P}^1_k, \text{Mod}k)$, and F preserves noetherian objects. Then,

Corollary

F is an integral transform iff F is exact on vector bundles.

Corollary

 $F \cong f^*$ for some f: Spec $k \to X$ iff F is exact on vector bundles and dim_k $F(\mathcal{O}(i)) = 1$ for some i.

Exercise

Use main result to give elementary proof of Serre Duality, i.e. $\operatorname{Hom}_{\mathcal{O}_{\mathbb{P}^1}}(-,\mathcal{O})^* \cong H^1(\mathbb{P}^1,-\otimes_{\mathcal{O}_{\mathbb{P}^1}}\mathcal{O}(-2)).$

イロト イヨト イヨト イヨト

Overview of Proof of Main Theorem

Adam Nyman

<ロ> <問> <問> < 国> < 国> < 国>

Eilenberg-Watts over Schemes $\Rightarrow \exists$

$$0 \to \ker \Gamma_F \to F \xrightarrow{\Gamma_F} H^0(\mathbb{P}^1, -\otimes W(F)) \to \operatorname{cok} \Gamma_F \to 0$$

・ロト ・聞 ト ・ 国 ト ・ 国 ト

Eilenberg-Watts over Schemes $\Rightarrow \exists$

$$0 \to \ker \Gamma_F \to F \xrightarrow{\Gamma_F} H^0(\mathbb{P}^1, -\otimes W(F)) \to \operatorname{cok} \Gamma_F \to 0$$

with ker Γ_F , cok Γ_F totally global. Then

同 と く ヨ と く ヨ と

Eilenberg-Watts over Schemes $\Rightarrow \exists$

$$0 \to \ker \Gamma_F \to F \xrightarrow{\Gamma_F} H^0(\mathbb{P}^1, -\otimes W(F)) \to \operatorname{cok} \Gamma_F \to 0$$

with ker Γ_F , cok Γ_F totally global. Then

• W(F) is noetherian,

伺 と く き と く き と

 $\mathsf{Eilenberg}\text{-Watts over Schemes} \Rightarrow \exists$

$$0 \to \ker \Gamma_F \to F \xrightarrow{\Gamma_F} H^0(\mathbb{P}^1, -\otimes W(F)) \to \operatorname{cok} \Gamma_F \to 0$$

with ker Γ_F , cok Γ_F totally global. Then

- W(F) is noetherian,
- **2** cok $\Gamma_F = 0$, and

 $\mathsf{Eilenberg}\text{-Watts over Schemes} \Rightarrow \exists$

$$0 \to \ker \Gamma_F \to F \xrightarrow{\Gamma_F} H^0(\mathbb{P}^1, -\otimes W(F)) \to \operatorname{cok} \Gamma_F \to 0$$

with ker Γ_F , cok Γ_F totally global. Then

- W(F) is noetherian,
- **2** cok $\Gamma_F = 0$, and

個 と く ヨ と く ヨ と

Adam Nyman

<ロ> <問> <問> < 国> < 国> < 国>

Let $f(n) := \dim_k \ker \Gamma_F(\mathcal{O}(n))$

・ロト ・四ト・・ヨト・

Let
$$f(n) := \dim_k \ker \Gamma_F(\mathcal{O}(n))$$

Lemma

f(n) is eventually constant. Let m = eventual dimension.

Let
$$f(n) := \dim_k \ker \Gamma_F(\mathcal{O}(n))$$

Lemma

f(n) is eventually constant. Let m = eventual dimension.

Thus either

• m = 0 in which case

ker
$$\Gamma_F = \oplus_{i=-n}^{\infty} H^1(\mathbb{P}^1, (-)(i))^{\oplus n_i}$$

個 と く ヨ と く ヨ と

by classification of totally global objects in $Bimod_k(Qcoh\mathbb{P}^1_k, Modk)$, or

Let
$$f(n) := \dim_k \ker \Gamma_F(\mathcal{O}(n))$$

Lemma

f(n) is eventually constant. Let m = eventual dimension.

Thus either

• m = 0 in which case

$$\ker \Gamma_F = \oplus_{i=-n}^{\infty} H^1(\mathbb{P}^1, (-)(i))^{\oplus n_i}$$

個 と く ヨ と く ヨ と

by classification of totally global objects in $Bimod_k(Qcoh\mathbb{P}^1_k, Modk)$, or

• m > 0. In this case a contradiction is found.

The case m > 0

Adam Nyman

< ロ > < 回 > < 注 > < 注 > <

Prove ker Γ_F is "large" enough to contain non-totally global functor.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Prove ker Γ_F is "large" enough to contain non-totally global functor.

For $q\in \mathbb{P}^1$, define R_q by

$$R_q(-) := H^0(\mathbb{P}^1, ((-)/\mathcal{H}^0_q(-))\otimes k(q)),$$

where \mathcal{H}_q^0 sends a sheaf to its subsheaf with support at q.

Prove ker Γ_F is "large" enough to contain non-totally global functor.

For $q\in \mathbb{P}^1$, define R_q by

$$R_q(-):=H^0(\mathbb{P}^1,((-)/\mathcal{H}^0_q(-))\otimes k(q)),$$

where \mathcal{H}_q^0 sends a sheaf to its subsheaf with support at q.

Lemma

・ 同・ ・ ヨ・

Prove ker Γ_F is "large" enough to contain non-totally global functor.

For $q \in \mathbb{P}^1$, define R_q by

$$R_q(-):=H^0(\mathbb{P}^1,((-)/\mathcal{H}^0_q(-))\otimes k(q)),$$

where \mathcal{H}_q^0 sends a sheaf to its subsheaf with support at q.

Lemma

• $R_q(\mathcal{T}) = 0$ for all coherent torsion modules \mathcal{T} ,

□ > < ⊇ > <

Prove ker Γ_F is "large" enough to contain non-totally global functor.

For $q \in \mathbb{P}^1$, define R_q by

$$R_q(-):=H^0(\mathbb{P}^1,((-)/\mathcal{H}^0_q(-))\otimes k(q)),$$

where \mathcal{H}_q^0 sends a sheaf to its subsheaf with support at q.

Lemma

• $R_q(\mathcal{T}) = 0$ for all coherent torsion modules \mathcal{T} ,

• dim_k
$$R_q(\mathcal{O}(i)) = 1$$
 for all *i*.

▲□ ► < □ ► </p>

Prove ker Γ_F is "large" enough to contain non-totally global functor.

For $q \in \mathbb{P}^1$, define R_q by

$$R_q(-) := H^0(\mathbb{P}^1, ((-)/\mathcal{H}^0_q(-))\otimes k(q)),$$

where \mathcal{H}_q^0 sends a sheaf to its subsheaf with support at q.

Lemma

- $R_q(\mathcal{T}) = 0$ for all coherent torsion modules \mathcal{T} ,
- dim_k $R_q(\mathcal{O}(i)) = 1$ for all *i*.
- If $u: U \to \mathbb{P}^1$ is inclusion of an open affine containing q, then $R_q(u_*\mathcal{O}_U) \neq 0$

- 〈 同 〉 〈 臣 〉 〈 臣 〉 ― 臣

Prove ker Γ_F is "large" enough to contain non-totally global functor.

For $q \in \mathbb{P}^1$, define R_q by

$$R_q(-):=H^0(\mathbb{P}^1,((-)/\mathcal{H}^0_q(-))\otimes k(q)),$$

where \mathcal{H}_q^0 sends a sheaf to its subsheaf with support at q.

Lemma

- $R_q(\mathcal{T}) = 0$ for all coherent torsion modules \mathcal{T} ,
- dim_k $R_q(\mathcal{O}(i)) = 1$ for all *i*.
- If $u: U \to \mathbb{P}^1$ is inclusion of an open affine containing q, then $R_q(u_*\mathcal{O}_U) \neq 0$ Therefore, R_q not totally global.

(4回) (4回) (4回)) 回

Prove ker Γ_F is "large" enough to contain non-totally global functor.

For $q \in \mathbb{P}^1$, define R_q by

$$R_q(-) := H^0(\mathbb{P}^1, ((-)/\mathcal{H}^0_q(-))\otimes k(q)),$$

where \mathcal{H}_q^0 sends a sheaf to its subsheaf with support at q.

Lemma

• $R_q(\mathcal{T}) = 0$ for all coherent torsion modules \mathcal{T} ,

• dim_k
$$R_q(\mathcal{O}(i)) = 1$$
 for all *i*.

• If $u: U \to \mathbb{P}^1$ is inclusion of an open affine containing q, then $R_q(u_*\mathcal{O}_U) \neq 0$ Therefore, R_q not totally global.

Proposition

If
$$m > 0$$
, there exists $q \in \mathbb{P}^1$ such that $R_q \subset \ker \Gamma_F$.

Key Observation

Adam Nyman

If $F, G : \operatorname{Qcoh} \mathbb{P}^1 \to \operatorname{Mod} k$ are k-linear, direct limit preserving and G is totally global then $\Omega : F \to G$ can be constructed inductively.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

If $F, G : \operatorname{Qcoh} \mathbb{P}^1 \to \operatorname{Mod} k$ are k-linear, direct limit preserving and G is totally global then $\Omega : F \to G$ can be constructed inductively.

Lemma

Suppose $\forall n \in \mathbb{Z}$, morphisms $\underline{\Omega}_{\mathcal{O}(n)} : F(\mathcal{O}(n)) \to G(\mathcal{O}(n))$ are defined such that

If $F, G : \operatorname{Qcoh} \mathbb{P}^1 \to \operatorname{Mod} k$ are k-linear, direct limit preserving and G is totally global then $\Omega : F \to G$ can be constructed inductively.

Lemma

Suppose $\forall n \in \mathbb{Z}$, morphisms $\underline{\Omega}_{\mathcal{O}(n)} : F(\mathcal{O}(n)) \to G(\mathcal{O}(n))$ are defined such that

commutes $\forall i \in \mathbb{Z}$ and $\psi \in \operatorname{Hom}_{\mathcal{O}_{\mathbb{P}^1}}(\mathcal{O}(i), \mathcal{O}(i+1)).$

If $F, G : \operatorname{Qcoh} \mathbb{P}^1 \to \operatorname{Mod} k$ are k-linear, direct limit preserving and G is totally global then $\Omega : F \to G$ can be constructed inductively.

Lemma

Suppose $\forall n \in \mathbb{Z}$, morphisms $\underline{\Omega}_{\mathcal{O}(n)} : F(\mathcal{O}(n)) \to G(\mathcal{O}(n))$ are defined such that

commutes $\forall i \in \mathbb{Z}$ and $\psi \in \text{Hom}_{\mathcal{O}_{\mathbb{P}^1}}(\mathcal{O}(i), \mathcal{O}(i+1))$. Then $\exists !$ natural transformation $\Omega : F \to G$ extending $\underline{\Omega}$.

Question

Can we replace \mathbb{P}^1 by a smooth curve?

・ロト ・聞 と ・ 聞 と ・ 聞 と

Question

Can we replace \mathbb{P}^1 by a smooth curve?

Thank you for your attention!

イロト イヨト イヨト イヨト

æ

Adam Nyman