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−⊗R F : ModR → ModS

F =“integral kernel”

Theorem (Eilenberg, Watts 1960)

Every F ∈ Bimodk(ModR ,ModS) is an integral transform. More
generally, F 7→ −⊗R F induces an equivalence

Mod(Rop ⊗k S) → Bimodk(ModR ,ModS).

Adam Nyman



Integral Transforms and Bimod: A Generalization of
Example 1

A = cocomplete abelian cat.

Adam Nyman



Integral Transforms and Bimod: A Generalization of
Example 1

A = cocomplete abelian cat.

RA = cat. of left R-objects in A

Adam Nyman



Integral Transforms and Bimod: A Generalization of
Example 1

A = cocomplete abelian cat.

RA = cat. of left R-objects in A

ob RA : (F , ρ) where F ∈ obA, ρ : R → EndA F

Adam Nyman



Integral Transforms and Bimod: A Generalization of
Example 1

A = cocomplete abelian cat.

RA = cat. of left R-objects in A

ob RA : (F , ρ) where F ∈ obA, ρ : R → EndA F

Remark: AR defined similarly

Adam Nyman



Integral Transforms and Bimod: A Generalization of
Example 1

A = cocomplete abelian cat.

RA = cat. of left R-objects in A

ob RA : (F , ρ) where F ∈ obA, ρ : R → EndA F

Remark: AR defined similarly

e.g.

if A = ModS then RA ≡ Mod(Rop ⊗k S).

Adam Nyman



Integral Transforms and Bimod: A Generalization of
Example 1

A = cocomplete abelian cat.

RA = cat. of left R-objects in A

ob RA : (F , ρ) where F ∈ obA, ρ : R → EndA F

Remark: AR defined similarly

e.g.

if A = ModS then RA ≡ Mod(Rop ⊗k S).

For F ∈ RA, define

Adam Nyman



Integral Transforms and Bimod: A Generalization of
Example 1

A = cocomplete abelian cat.

RA = cat. of left R-objects in A

ob RA : (F , ρ) where F ∈ obA, ρ : R → EndA F

Remark: AR defined similarly

e.g.

if A = ModS then RA ≡ Mod(Rop ⊗k S).

For F ∈ RA, define

−⊗R F : ModR → A

Adam Nyman



Integral Transforms and Bimod: A Generalization of
Example 1

A = cocomplete abelian cat.

RA = cat. of left R-objects in A

ob RA : (F , ρ) where F ∈ obA, ρ : R → EndA F

Remark: AR defined similarly

e.g.

if A = ModS then RA ≡ Mod(Rop ⊗k S).

For F ∈ RA, define

−⊗R F : ModR → A

as left adjoint to

HomA(F ,−) : A → ModR
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If f : Y → X is a morphism of schemes then
f ∗ : QcohX → QcohY is an integral transform.

e.g.

Let X = P
1 and Y = Spec k, F = OX .

H1(X ,−) ∈ Bimodk(QcohX ,QcohY ) is not an integral
transform.

Int. trans. not always rt exact: π∗(τ
∗(−) ⊗OX

F) ∼= Γ(P1,−).
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Example 3

k a field, X , Y finite type over k

A finite OX -algebra, B finite OY -algebra

Theorem (Artin-Zhang 1994)

If F : modA → modB is an equivalence then

F ∼= π∗(τ
∗(−) ⊗τ∗A F)

for some F ∈ mod(Aop ⊗k B).
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Integral Transforms and Bimod: Examples

Problems

1 Find notion of integral transform generalizing examples

2 When is an integral transform a bimodule i.e. when is it rt.
exact?

3 When is a bimodule an integral transform? If it is not, how
close is it to being an integral transform?

“Classical”=not between derived or dg or ∞-categories
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Non-commutative Algebraic Geometry: Noncommutative
Spaces

Non-commutative Space := Grothendieck Category =

(k-linear) abelian category with

exact direct limits and

a generator.

Notation: Y geometry or ModY category theory

The following are non-commutative spaces:

Mod R , R a ring

Qcoh X

Proj A := GrA/TorsA where A is Z-graded
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f
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ModY
f∗
⇋

f ∗
ModZ

Motivation

If f : Y → X is a morphism of commutative schemes, (f ∗, f∗) is an
adjoint pair.

Adjoint functor theorem ⇒

Morphisms f : Y → Z ↔ Bimodk(ModZ ,ModY ).
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Non-commutative Algebraic Geometry: Morphisms
Between Noncommutative Spaces

e.g.

Let f : Y → X denote a morphism of schemes such that (f ∗, f∗, f
!)

is an adjoint triple (e.g. a closed immersion of varieties).
Then

QcohY
f∗
⇋

f ∗
QcohX

and

QcohX
f !

⇋

f∗
QcohY

are morphisms of noncommutative spaces Y → X and X → Y .

The latter may not come from a morphism of schemes.
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Integral Transforms in Semi-commutative Algebraic
Geometry w/ D. Chan in case A = OX

An Integral Transform is a functor of the form

π∗(−⊗A F) : ModA → ModY

where

F is a “left A-object” in ModY

−⊗A F denotes tensoring a right A-module with F and

π∗ is semi-comm. analogue of the pushforward of
π : X × Y → Y

Main Idea (Artin-Zhang 2001)

Constructions from commutative algebraic geometry which are
local only over X exist in semi-commutative setting.
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Integral Transforms in Semi-commutative Algebraic
Geometry: Left A-objects

A left A-object in Y , denoted M, consists of following data:

For U ⊂ X affine open, an object M(U) ∈ A(U)ModY

Given U × V
pr1

//

pr2
��

U

��

V // X

an isomorphism

ψU,V : pr∗1 M(U) → pr∗2 M(V ) (sat. cocycle cond.)

AModY := cat. of left A-objects in Y

e.g.

X = Spec k, A ↔ R ⇒ AModY ≡ RModY
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Geometry: Tensor products with Left A-objects

If F ∈ AModY define

−⊗A F : ModA → ModYOX

over open affine U ⊂ X by

(N ⊗A F)(U) := N (U) ⊗A(U) F(U)

Define gluing isomorphisms locally as well.

F is flat/A ⇔ −⊗A F is exact.

Adam Nyman
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Integral Transforms in Semi-commutative Algebraic
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N (Ui0 ∩ · · · ∩ Uip)

d : Cp(U,N ) → Cp+1(U,N ) defined via restriction as usual

Ri π∗N := Hi(C �(U,N ))
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Refined Problems

1 Find notion of integral transform in the semi-comm. setting,
i.e. from ModA to ModY .

2 When is an integral transform in Bimodk(ModA,ModY ) i.e.
when does π∗(−⊗A F) induce a morphism of
noncommutative spaces

Y → (X ,A)?

3 When is F ∈ Bimodk(ModA,ModY ) an integral transform?
If it isn’t, how close is it to being an integral transform?
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Part 4

Semi-commutative Algebraic Geometry: Maps from
n.c. spaces to curves (w/D. Chan)
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Semi-commutative Algebraic Geometry: Maps from n.c.
spaces to curves (w/D. Chan)

Commutative example

X =smooth curve
f : Y → X is comm. ruled surface with fiber C .
If Γ ⊂ Y × X = graph of f , then

1 comp. of Hilb OY corresponding to C is X

2 OΓtr = corresponding universal quotient of OY , and

3 If π : X × Y → Y is projection, then f ∗ ∼= π∗(−⊗OX
OΓtr ).

Problem

To what extent do 1-3 hold in the semi-commutative setting?
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A = Skl(a, b, c) :=
k〈x0, x1, x2〉

(axixi+1 + bxi+1xi + cx2
i+2 : i = 1, 2, 3 mod 3)

for generic (a : b : c) ∈ P
2. Then ProjA is a n.c. smooth proper

2-fold.

e.g.

Homogenized U(sl2) =

A =
k〈e, f , h, z〉

(ef − fe − zh, eh − he − 2ze, fh − hf + 2zf , z central)
.

ProjA is a n.c. smooth proper 3-fold. Given t ∈ Z (A)2, ProjA/(t)
is a n.c. smooth proper 2-fold.
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machinery

Y = ProjA n.c. smooth proper surface w/ struct. sheaf OY := πA

For M,N ∈ modY let

H
i (M) := ExtiY (OY ,M).

Theorem (Artin-Zhang 1994)

H i (M) and more generally ExtiY (M,N ) are finite dimensional.

Thus intersection defined (Mori-Smith 2001) by

M.N := −
2
Σ
i=0

(−1)i dimExtiY (M,N )

is well defined.
Remark: This specializes to the intersection product for curves on
a comm. surface.
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Y = n.c. smooth proper d-fold.

Theorem (Artin-Zhang)

For P ∈ modY , there exists a Hilbert scheme Hilb P

parameterizing quotients of P . Hilb P is countable union of
projective schemes which is locally of finite type.
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Y = n.c. smooth proper surface with structure sheaf OY

Say F ∈ modY is K -non-effective rational curve with
self-intersection 0 if

1 F is 1-critical quotient of OY

2 H0(F ) = k, H1(F ) = 0, F 2 = 0

3 H0(F ⊗ ωY ) = 0

Remark: In comm. case, 1-2 ⇒ F is struct. sheaf of K -negative,
rational curve with self-intersection 0. 3 is substitute for
K -negativity, since we don’t know K .C < 0 ⇒ H0(OC ⊗ ω) = 0.

e.g.

If f : Y → X is a comm. or n.c. ruled surface then the structure
sheaf of fiber is K -non-effective rational curve with self-intersection
0.
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Suppose Y is a n.c. smooth proper surface. If

1 F is K -non-effective rational curve with F 2 = 0, and

2 for every simple 0-dim quotient P ∈ modY of F we have
F .P = 0,

then the component of Hilb OY containing F is a smooth curve X ,
and the corresponding family F over X is such that the following
is exact and preserves noetherian objects:

π∗(−⊗OX
F) : QcohX → ModY

e.g.

If X = smooth curve, f : Y → X = n.c. ruled surface and F =
struct. sheaf of fiber then F satisfies 1,2 and f ∗ ∼= π∗(−⊗OX

F).
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X=integral proj. curve

F ∈ OX
ModY flat/X .

Say F is base point free if for any simple P ∈ modY ,
HomY (F ,P) = 0 for a generic fibre F ∈ F

Theorem (Chan-N 2009)

If F is base point free then π∗(−⊗OX
F) is exact hence in

Bimodk(QcohX ,ModY ), and preserves noetherian objects.
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Semi-commutative Algebraic Geometry: Maps from n.c.
spaces to curves (w/D. Chan)

Refined Problems

1 Find notion of integral transform in the semi-comm. setting,
i.e. from ModA to ModY .

2 When is an integral transform in Bimodk(ModA,ModY ) i.e.
when does π∗(−⊗A F) induce a morphism of
noncommutative spaces

Y → (X ,A)?

3 When is F ∈ Bimodk(ModA,ModY ) an integral transform?
If it isn’t, how close is it to being an integral transform?
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∼= −⊗A(U) FU
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Theorem (Van den Bergh, Chan-N.)

The collection F ♭(U) = FU induces a functor
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Furthermore, if F = π∗(− ⊗A F) then F ♭ ∼= F .
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Integral Transforms and Bimod revisited: Totally Global
Functors

F ∈ Bimodk(ModA,ModY ) such that F ♭ = 0 are totally global

e.g.

F = H1(P1,−) ∈ Bimodk(QcohP
1,Modk) is totally global.

Theorem (N-Smith, 2008)

k = k, F ∈ Bimodk(QcohP
1,Modk). If

F is totally global and

F preserves noetherian objects, then

F ∼=
⊕∞

i=m H1(P1, (−)(i))⊕ni
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Claim A

There is a natural transformation

ΓF : F → π∗(−⊗A F
♭)

such that ker ΓF and cok ΓF are totally global.

It follows that ΓF is an isomorphism if

1 X is affine or

2 F is exact
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Integral Transforms and Bimod revisited

Remarks:

1 Claim A confirmed in case A = OX and Y = scheme (N
2009)

2 Claim A 1 confirmed (N-Smith 2008)

3 Claim A 2 confirmed in case A = OX (Chan-N 2009)

4 Test Problem: Classify noetherian preserving
F ∈ Bimodk(QcohP

1,Modk) in case k = k.
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Proof (that X affine ⇒ ΓF is an isomorphism):

Easy fact: F totally global ⇔ Fu∗ = 0 ∀ open affine u : U → X .

X affine ⇒ idX is inclusion of affine open

ker ΓF = ker ΓF ◦ idX∗

Since ker ΓF is totally global, ker ΓF ◦ idX∗ = 0.

Similarly, cok ΓF = 0.
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d : C 0(U,M) → C 1(U,M) diff. of sheafified Cech complex

Claim B

ΓF : F → π∗(−⊗A F ♭) is an isomorphism iff

1 the canonical map F (ker d) → ker(Fd) is an isomorphism for
all flat M.

2 π∗(− ⊗A F ♭) is right exact

Claim B confirmed in case A = OX and Y = scheme (N 2009)
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Thank you for your attention!
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