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Example 1
R, S rings, F an R — S-bimodule

— ®r F : ModR — ModS

F ="integral kernel”

Theorem (Eilenberg, Watts 1960)

Every F € Bimodx(ModR, ModS) is an integral transform. More
generally, F — — ®g F induces an equivalence

Mod(R? ® S) — Bimodx(ModR, ModS).
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Integral Transforms and Bimod: A Generalization of

Example 1

@ A = cocomplete abelian cat.
@ RA = cat. of left R-objects in A

obrA : (F,p) where F € obA,p: R — Endpa F

Remark: Ag defined similarly

if A = ModS then RA = Mod(RP ® S).

For F € RA, define

— ®r F : ModR — A

as left adjoint to

Homa(F, —) : A — ModR
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Integral Transforms and Bimod: Examples
Example 2 Y scheme XxY F € Qeoh(X x Y)
X Y
T (T5(—) @0y .y F) : QcohX — QcohY

If f:Y — X is a morphism of schemes then
f*: QcohX — QcohY is an integral transform.

Let X = P! and Y = Speck, F = Ox.

o HY(X, —) € Bimod,(QcohX, QcohY) is not an integral
transform.

o Int. trans. not always rt exact: m.(7%(—) ®o, F) = (P, -).

v
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Integral Transforms and Bimod: Examples

Example 3
@ k a field, X, Y finite type over k
o A finite Ox-algebra, B finite Oy-algebra

Theorem (Artin-Zhang 1994)

If F: modA — modB is an equivalence then

F2m(r'(-) 8u F)

for some F € mod( A% @y B).
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Integral Transforms and Bimod: Examples

© Find notion of integral transform generalizing examples

@ When is an integral transform a bimodule i.e. when is it rt.
exact?

© When is a bimodule an integral transform? If it is not, how
close is it to being an integral transform?

“Classical” =not between derived or dg or oo-categories
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Non-commutative Algebraic Geometry: Noncommutative

Spaces

Non-commutative Space := Grothendieck Category =
@ (k-linear) abelian category with
@ exact direct limits and
@ a generator.

Notation: Y geometry or ModY category theory

The following are non-commutative spaces:

® Mod R, R aring
@ Qcoh X
@ Proj A := GrA/TorsA where A is Z-graded
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Non-commutative Algebraic Geometry: Morphisms

Between Noncommutative Spaces

Y, Z non-commutative spaces
Y L. Z denotes adjoint pair (f*, f.) in the diagram

fi
ModY = ModZ

If f:Y — X is a morphism of commutative schemes, (f*,f.) is an
adjoint pair.

Adjoint functor theorem =

Morphisms f : Y — Z . Bimodx(ModZ, ModY)).
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Non-commutative Algebraic Geometry: Morphisms
Between Noncommutative Spaces

Let f : Y — X denote a morphism of schemes such that (f*, f,, f')
is an adjoint triple (e.g. a closed immersion of varieties).
Then

fi
QcohY f;‘ Qcoh X

and
f!
Qcoh X f: QcohY

are morphisms of noncommutative spaces Y — X and X — Y.

The latter may not come from a morphism of schemes.

Adam Nyman
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@ A = quasi-coherent sheaf of Ox-algebras (throughout)

@ Y = non-commutative space

Semi-comm. Alg. Geom. = Study of mapsY — (X, .A)
= Study of Bimodi(Mod.A, ModY)

Examples in Part 1 are semi-commutative

© Example 1: F: ModR — ModY.

If X = Speck, A < R then ModR = ModA.
Q@ Example 2: F : QcohX — QcohY.

If A= 0Ox QcohX = ModA. Let ModY = QcohY.
© Example 3: F: ModA — ModB.

Let ModY = ModB.
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Integral Transforms in Semi-commutative Algebraic

Geometry w/ D. Chan in case A = Ox

An Integral Transform is a functor of the form
T«(— ®4 F) : ModA — ModY

where
o Fis a “left A-object” in ModY
@ — ® 4 F denotes tensoring a right A-module with F and

@ m, is semi-comm. analogue of the pushforward of
T: XxY =Y

Main Idea (Artin-Zhang 2001)

Constructions from commutative algebraic geometry which are
local only over X exist in semi-commutative setting.
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Integral Transforms in Semi-commutative Algebraic

Geometry: Left A-objects

A left A-object in Y, denoted M, consists of following data:
@ For U C X affine open, an object M(U) € 4y)ModY

o Given Ux Vs U an isomorphism

N

X
Yy,v 1 pri M(U) — pry M(V) (sat. cocycle cond.)

AModY := cat. of left A-objects in Y

X = Speck, A= R = gModY = gModY

Adam Nyman




Integral Transforms in Semi-commutative Algebraic

Geometry: Tensor products with Left A-objects

If F € 4ModY

Adam Nyman



Integral Transforms in Semi-commutative Algebraic

Geometry: Tensor products with Left A-objects

If F € 4ModY define
—®4F : ModA — ModYp,

over open affine U C X by

Adam Nyman



Integral Transforms in Semi-commutative Algebraic

Geometry: Tensor products with Left A-objects

If F € sModY define
—®4F : ModA — ModYp,
over open affine U C X by

(N @4 F)U) := N(U) @40) F(U)

Adam Nyman



Integral Transforms in Semi-commutative Algebraic

Geometry: Tensor products with Left A-objects

If F € 4ModY define
—®4F : ModA — ModYp,
over open affine U C X by
(N @4 FY(V) := N(U) @ ) F(U)

Define gluing isomorphisms locally as well.

Adam Nyman



Integral Transforms in Semi-commutative Algebraic

Geometry: Tensor products with Left A-objects

If F € 4ModY define
—®4F : ModA — ModYp,
over open affine U C X by
(N @4 FY(V) := N(U) @ ) F(U)

Define gluing isomorphisms locally as well.

Fisflat/A & — ®4 F is exact.

Adam Nyman
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Integral Transforms in Semi-commutative Algebraic

Geometry: Cech Cohomology

Define 7, : Mod Yo, — ModY via rel. Cech Cohomology:
X quasi-compact = X has finite affine open cover 4 : {U;}

For V' € ModYp,, let
o CP(U,N) = &b N(Uioﬂ---ﬂuip)

ip<ip<--<ip
o d: CP(U,N) — CPTL(U, N) defined via restriction as usual
o RN = H/(C'(4,N))

Adam Nyman
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If it isn't, how close is it to being an integral transform?
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Part 4

Semi-commutative Algebraic Geometry: Maps from
n.c. spaces to curves (w/D. Chan)

Throughout Part 4, k = k
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spaces to curves (w/D. Chan)

Commutative example

X =smooth curve
f:Y — X is comm. ruled surface with fiber C.
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X =smooth curve
f:Y — X is comm. ruled surface with fiber C.
If T C Y x X = graph of f, then

@ comp. of Hilb Oy corresponding to C is X
@ Orv = corresponding universal quotient of Oy, and
Q If 7: X x Y — Y is projection, then f* = 7. (— ®0, Ort).
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Semi-commutative Algebraic Geometry: Maps from n.c.
spaces to curves (w/D. Chan)

Commutative example

X =smooth curve
f:Y — X is comm. ruled surface with fiber C.
If T C Y x X = graph of f, then

@ comp. of Hilb Oy corresponding to C is X
@ Orv = corresponding universal quotient of Oy, and
Q If 7: X x Y — Y is projection, then f* = 7. (— ®0, Ort).

Problem
To what extent do 1-3 hold in the semi-commutative setting?
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Semi-commutative Algebraic Geometry: Examples of n.c.
smooth proper d-folds

A= Sk/(a, b’ C) = k<X0’X15X2>
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Semi-commutative Algebraic Geometry: Examples of n.c.
smooth proper d-folds

k(xo, x1, x2)

A = Skl(a, b, c) :=
(a, ,C) ax;Xii1 L in 1X; + CX-2 = 172,3 mod 3
4L + i+2

for generic (a: b: c) € P2. Then ProjA is a n.c. smooth proper
2-fold.

Homogenized U(sly) =

k{e,f, h,z)
(ef — fe — zh,eh — he — 2ze, fh — hf + 2zf, z central)’

A=

ProjA is a n.c. smooth proper 3-fold. Given t € Z(A),, ProjA/(t)
is a n.c. smooth proper 2-fold.

-
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Maps from n.c. spaces to curves (w/D. Chan): Geometric

machinery

Y = ProjA n.c. smooth proper surface w/ struct. sheaf Oy := A

For M,N € modY let
H'(M) = Ext},(Oy, M).

Theorem (Artin-Zhang 1994)

Hi(M) and more generally Ext{, (M, N) are finite dimensional.

Thus intersection defined (Mori-Smith 2001) by

2 , .
MN = — % (-1)" dimExt}) (M, N)

is well defined.

Remark: This specializes to the intersection product for curves on
a comm. surface.
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Maps from n.c. spaces to curves (w/D. Chan): Geometric

machinery

Y = n.c. smooth proper d-fold.

Theorem (Artin-Zhang)

For P € modY, there exists a Hilbert scheme Hilb P
parameterizing quotients of P. Hilb P is countable union of
projective schemes which is locally of finite type.
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Maps from n.c. spaces to curves (w/D. Chan):

K-non-effective rational curves

Y = n.c. smooth proper surface with structure sheaf Oy

Say F € modY is K-non-effective rational curve with
self-intersection 0 if

@ F is l-critical quotient of Oy
Q HY(F)=k, HY(F)=0, F?=0
Q@ HY (FRuwy)=0
Remark: In comm. case, 1-2 = F is struct. sheaf of K-negative,

rational curve with self-intersection 0. 3 is substitute for
K-negativity, since we don't know K.C <0 = H°(O¢ ® w) = 0.

If f: Y — Xisacomm. or n.c. ruled surface then the structure

sheaf of fiber is K-non-effective rational curve with self-intersection
0.
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More generally:
@ Y=n.c. smooth proper d-fold
@ X=integral proj. curve
o F € p,ModY flat/X.

Say F is base point free if for any simple P € modY,
Homy (F, P) = 0 for a generic fibre F € F

Theorem (Chan-N 2009)

If F is base point free then m,(— ®o, F) is exact hence in
Bimod(Qcoh X, ModY), and preserves noetherian objects.

Adam Nyman



Semi-commutative Algebraic Geometry: Maps from n.c.
spaces to curves (w/D. Chan)

Refined Problems

Adam Nyman



Semi-commutative Algebraic Geometry: Maps from n.c.
spaces to curves (w/D. Chan)

Refined Problems

@ Find notion of integral transform in the semi-comm. setting,
i.e. from ModA to ModY'.

Adam Nyman



Semi-commutative Algebraic Geometry: Maps from n.c.
spaces to curves (w/D. Chan)

Refined Problems

@ Find notion of integral transform in the semi-comm. setting,
i.e. from ModA to ModY'.

© When is an integral transform in Bimod,(Mod.A, ModY')

Adam Nyman



Semi-commutative Algebraic Geometry: Maps from n.c.
spaces to curves (w/D. Chan)

Refined Problems

@ Find notion of integral transform in the semi-comm. setting,
i.e. from ModA to ModY'.

© When is an integral transform in Bimod,(Mod.A, ModY) i.e.
when does 7, (— ® 4 F) induce a morphism of
noncommutative spaces

Y = (X,A)?

Adam Nyman



Semi-commutative Algebraic Geometry: Maps from n.c.
spaces to curves (w/D. Chan)

Refined Problems

@ Find notion of integral transform in the semi-comm. setting,
i.e. from ModA to ModY'.

© When is an integral transform in Bimod,(Mod.A, ModY) i.e.
when does 7, (— ® 4 F) induce a morphism of
noncommutative spaces

Y = (X,A)?

© When is F € Bimod,(ModA, ModY') an integral transform?

Adam Nyman



Semi-commutative Algebraic Geometry: Maps from n.c.
spaces to curves (w/D. Chan)

Refined Problems

@ Find notion of integral transform in the semi-comm. setting,
i.e. from ModA to ModY'.

© When is an integral transform in Bimod,(Mod.A, ModY) i.e.
when does 7, (— ® 4 F) induce a morphism of
noncommutative spaces

Y = (X,A)?

© When is F € Bimod,(ModA, ModY') an integral transform?
If it isn't, how close is it to being an integral transform?
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@ u: U — X denotes inclusion of affine open

Fu, € Bimodx(ModA(U),ModY) =
Fu, =2 — ®A(U) Fu

for some Fy € 4yyModY.
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Let F € Bimod,(Mod.A, ModY).
@ Find relationship between F and 7,(— @4 F?)
@ Find necessary and sufficient conditions for F 2 7, (— @4 F”)
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Functors

F € Bimod,(Mod.A, ModY)) such that F> = 0 are totally global

F = HY(P!, —) € Bimod,(QcohP!, Modk) is totally global.

Theorem (N-Smith, 2008)
k =k, F € Bimod,(QcohP!, Modk). If
@ F is totally global and

@ [ preserves noetherian objects, then

F =@, HI (P, (=)()®"
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Throughout F € Bimod,(Mod.A, ModY)).

There is a natural transformation

Me: F — m(—®4 F)

such that ker 'r and cok ¢ are totally global.

It follows that 'r is an isomorphism if
@ X is affine or
Q F is exact
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Integral Transforms and Bimod revisited

Remarks:

© Claim A confirmed in case A = Ox and Y = scheme (N
2009)

@ Claim A 1 confirmed (N-Smith 2008)
© Claim A 2 confirmed in case A = Ox (Chan-N 2009)

©Q Test Problem: Classify noetherian preserving
F e Bimodk(QcohIP’l, Modk) in case k = k.
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Integral Transforms and Bimod revisited

Proof (that X affine = 'r is an isomorphism):

Easy fact: F totally global < Fu, = 0V open affine u: U — X.
@ X affine = idx is inclusion of affine open
o kerl'F = kerlF oidx.
@ Since ker £ is totally global, ker 'F o idx, = 0.
@ Similarly, cokI'r = 0.
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Integral Transforms and Bimod revisited

o Y = finite affine open cover of X
@ M € ModA
o d: CO(U, M) — CL(uh, M) diff. of sheafified Cech complex

e F— m(—®4 Fl’) is an isomorphism iff

Q the canonical map F(ker d) — ker(Fd) is an isomorphism for
all flat M.

Q m.(— @4 F°) is right exact

Claim B confirmed in case A = Ox and Y = scheme (N 2009)
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Thank you for your attention!
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