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Noncommutative Space := Grothendieck Category =

(k-linear) abelian category with

exact direct limits and

a generator.

Examples

Mod R , R a ring

Qcoh X

Proj A := GrA/TorsA where A is Z-graded
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Curves on Quasischemes (Smith and Zhang (1998))

(Commutative) polynomial ring k[x1, . . . , xn] has Zn-grading:

|xi | = (0, . . . , 0, 1, 0, . . . , 0).

V1
n := Grk[x1, . . . , xn]/{Kdim ≤ n − 2}

The noncommutative space V1
n

is locally noetherian,

is Ext-finite

has homological dimension 1,

does not satisfy Serre duality unless n = 1 or 2.

Significance

If X is noncommutative space, Y is a regularly embedded
hypersurface, and C is a curve which is ‘in good position’ w.r.t. Y,
then C ≡ V1

n.
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properties:

A is generated in degree 1 by n ≥ 2 generators over k,

A is regular, and

A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For n > 2, A is coherent
but not noetherian.

P1
n is any category of the form projA := grA/torsA for some A

satisfying the above conditions with n generators. It

is Ext-finite

satisfies Serre duality, and
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Kussin studies categories similar to cohP1, i.e. abelian categories P
such that P

consists of noetherian objects,

is Ext-finite,

has a Serre functor,

has homological dimension 1,

has infinitely many non-isomorphic simple objects, and

has a tilting object, i.e. an object T such that

Ext1P(T , T ) = 0, and
whenever HomP1(T ,M) = 0 = Ext1P(T ,M) we have M = 0.

Examples

1 cohP1

2 Weighted projective lines (Geigle-Lenzing)

3 Arithmetic noncommutative projective lines
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Spaces of form ProjSn.c.(V ) =: Pn.c.(V ) where

V is a two-sided vector space

Sn.c.(V ) is noncommutative symmetric algebra of V

ProjA = GrA/TorsA.

Theme of talk

Study V  Pn.c.(V )

Initial Motivation: The noncommutative geometry of Pn.c.(V ) is
well understood.

Remark

The classification of noncommutative curves due to Reiten and Van
den Bergh (2002) is over k = k. In this case Pn.c.(V ) ≡ QcohP1.
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A two-sided vector space of rank n is a

k-central L-L-bimodule V such that

dimL(LV ) = dimL(VL) = n.

Example 1

k = R, L = C, V = C, σ = complex conjugation x · v := xv

v · x := vσ(x) Notation: Cσ

Example 2

V = Ln, φ : L → Mn(L) x · v = xv v · x = vφ(x) Notation: Ln
φ
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Theorem (Patrick 2000)

Suppose char k 6= 2. If V has rank 2, either

1 V ∼= L2
φ where φ(x) =

(

σ(x) 0
0 σ(x)

)

where σ(x) ∈ Gal(L/k),

2 V ∼= L2
φ where φ(x) =

(

σ(x) 0
0 τ(x)
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and τ 6= σ, or

3 V is simple. In this case V ∼= L2
φ where

φ(x) =

(

a(x) b(x)
mb(x) a(x)

)

and where b is a nonzero

(a, a)-derivation, m ∈ L is not a perfect square, and
a(xy) = a(x)a(y) + mb(x)b(y).
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Simple Two-sided Vector Spaces I: Classification

Emb(L) = {k − linear embeddings L → L}
G = Gal(L/L)

G acts on Emb(L): g · λ := g ◦ λ. λG = orbit of λ

Orb(L) = {finite G -orbits of Emb(L)}
Simp(L) = {∼= classes of k-central simples of finite rank/L}

Theorem (N. and Pappacena 2007)

There is a bijection

Φ : Orb(L) → Simp(L)

and rank(Φ(λG )) = |λG |

Notation: Φ(λG ) = [V (λ)].

Remark

The result holds even if L/k is infinite
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Construction of V (λ)

What is V (λ)?

V (λ) := 1L ∨ λ(L)λ

Action defined as a · v · b := avλ(b).
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√

2)

G -action = Gal(L(ζ)/L)-action

Gal(L(ζ)/L) = {σi |1 ≤ i ≤ p − 1} where σi(ζ) = ζ i

Emb(L) = {id, σ1λ, . . . , σp−1λ} where λ(p
√

2) = ζ(p
√

2)

Orb(L) = {{id}, {σiλ|1 ≤ i ≤ p − 1}}

Simp(L) = {Q(p
√

2)id,V (λ)}
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Duals

Right dual of V

V ∗ := HomL(VL,L) with action (a · ψ · b)(x) = aψ(bx).

Left dual of V
∗V := HomL(LV ,L) with action (a · φ · b)(x) = bφ(xa).

Example

If σ ∈ Gal(L/k) then ∗Lσ ∼= Lσ
∗ ∼= Lσ−1

Theorem (Hart and N. 2012)

Suppose V ∼= V (λ), and let λ : L → L be a lift of λ. Let
µ := (λ)−1|L. Then

∗V ∼= V ∗ ∼= V (µ).

Adam Nyman
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Theme Revisited

If V is not simple, study

{σ, τ} Pn.c.(Lσ ⊕ Lτ )

If V is simple, study
λ Pn.c.(V (λ))

Arithmetic  Noncommutative geometry

Questions

1 For which arithmetic data are associated spaces isomorphic?

2 If they are isomorphic, what are the isomorphisms?

3 What is the relationship between the arithmetic data and the
automorphism groups?

Adam Nyman
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Goal

Suppose
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{x , y} is simultaneous basis for V .

Construct n.c. ring Sn.c.(V ) which specializes to

S(V ) :=
L ⊕ V ⊕ V⊗2 ⊕ · · ·

(x ⊗ y − y ⊗ x)

when V is L-central.

Should have expected left and right Hilbert series
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Too many relations.
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Attempt 2

There exists canonical η0 : L → V ⊗L V ∗: If δx ∈ HomL(VL,L) is
dual to x etc. then

η0(a) := a(x ⊗ δx + y ⊗ δy ).

η0 independent of choices. Define

Sn.c.(V ) := L ⊕ V ⊕ V ⊗L V ∗

im η0
⊕ V ⊗ V ∗ ⊗ V ∗∗

im η0 ⊗ V ∗∗ + V ⊗ im η1
⊕ · · ·

Problem

No natural multiplication: if x , y ∈ V , x · y not in V⊗V ∗

im η0
.
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Z-algebras (Bondal and Polishchuk (1993))

A ring A is a Z-algebra if

∃ vector space decomp A = ⊕i ,j∈ZAij ,

AijAjk ⊂ Aik ,

AijAkl = 0 for k 6= j , and

the subalgebra Aii contains a unit, ei .

Remark: A does not have a unity and is not a domain.

Example

If (O(n))n∈Z is seq. of objects in a category A, then

Aij = HomA(O(−j),O(−i))

with mult. = composition makes ⊕i ,j∈ZAij a Z-algebra
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Attempt 3: Sn.c .(V ) is a Z-algebra

Definition of Sn.c.(V ) (Van den Bergh (2000))

Sn.c.(V )ij = V i∗⊗L···⊗LV
j−1∗

relns. gen. by ηi
for j > i ,

Sn.c.(V )ii = L,

Sn.c.(V )ij = 0 if i > j ,

multiplication induced by ⊗L.

More generally, if

X is a smooth scheme of finite type over a k

E is a locally free rank n OX -bimodule

Van den Bergh defines Sn.c.(E).
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Relation to S(V )

If V is L-central, Sn.c.(V ) 6= S(V ).

If A is a Z-algebra,

if i ∈ Z let A(i)jk := Aj+i ,k+i .

A is i-periodic if A ∼= A(i).

If B is Z-graded algebra, define B̌ij := Bj−i .

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a Z-graded ring B such that
A ∼= B̌, and GrA ≡ GrB . It follows that if V is L-central, then

GrSn.c.(V ) ≡ GrS(V ).
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Basic Properties

V a rank 2 (k-central) two-sided vector space /L

TorsSn.c.(V ) = full subcat. of GrSn.c.(V ) of direct limits of
right bounded modules

Pn.c.(V ) := GrSn.c.(V )/TorsSn.c.(V ),

Theorem

The noncommutative space Pn.c.(V )

is a locally noetherian category (Van den Bergh (2000)),

is Ext-finite (N. (2004)),

has a Serre functor (Chan and N. (2009)) induced by
[−2] : GrSn.c.(V ) → GrSn.c.(V ),

has homological dimension 1 (Chan and N. (2009)), and

has a tilting object T .
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Motivation: Birational Classification of Noncommutative
Surfaces

Conjecture (Artin)

Every noncommutative surface not finite over its center is
birational to a noncommutative ruled surface.

If C ,C ′ are Z-graded,

ProjC birational to ProjC ′

means deg. 0 comp. of skew field of C equals that of C ′.

Relationship to Pn.c.(V )

Generic fibre of noncommutative ruled surface ∼= Pn.c.(V ) where V

is two-sided over L = function field of smooth curve

Birational invariants of noncommutative projective lines Pn.c.(V )
may suggest birational invariants of a noncommutative surface.
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Toy Models

“The motivation for a physicist to study 1-dimensional problems is
best illustrated by the story of the man who, returning home late
at night after an alcoholic evening, was scanning the ground for his
key under a lamppost; he knew, to be sure, that he had dropped it
somewhere else, but only under the lamppost was there enough
light to conduct a proper search.” –F. Calogero
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Toy Models

“The motivation for a physicist to study 1-dimensional problems is
best illustrated by the story of the man who, returning home late
at night after an alcoholic evening, was scanning the ground for his
key under a lamppost; he knew, to be sure, that he had dropped it
somewhere else, but only under the lamppost was there enough
light to conduct a proper search.” –F. Calogero

Thanks Thomas Nevins.
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Pn.c .(V ) is Integral

Let X = locally noetherian noncommutative space.

Definition (S.P. Smith (2001))

X is integral if ∃ indecomposable injective EX (a big injective)
such that

1 EndX(EX) is a division ring and

2 every object of X is a subquotient of ⊕EX.

A noetherian scheme Y is integral in the above sense iff Y is
integral in the usual sense, and EQcohY is the constant sheaf with
sections = k(Y ).

Theorem (N. 2013)

The noncommutative space Pn.c.(V ) is integral.

Adam Nyman



Classification of Vector Bundles

Adam Nyman



Classification of Vector Bundles

M ∈ X is torsion if HomX(M, EX) = 0.

Adam Nyman



Classification of Vector Bundles

M ∈ X is torsion if HomX(M, EX) = 0.

rankM := length of HomX(M, EX) as left EndX(EX)-module.

Adam Nyman



Classification of Vector Bundles

M ∈ X is torsion if HomX(M, EX) = 0.

rankM := length of HomX(M, EX) as left EndX(EX)-module.

Definition

Vector bundles/X =

Adam Nyman



Classification of Vector Bundles

M ∈ X is torsion if HomX(M, EX) = 0.

rankM := length of HomX(M, EX) as left EndX(EX)-module.

Definition

Vector bundles/X = finite rank torsion-free modules.

Adam Nyman



Classification of Vector Bundles

M ∈ X is torsion if HomX(M, EX) = 0.

rankM := length of HomX(M, EX) as left EndX(EX)-module.

Definition

Vector bundles/X = finite rank torsion-free modules.

Let eiS
n.c.(V ) := ⊕j∈ZSn.c.(V )ij ∈ GrSn.c.(V ).

Adam Nyman



Classification of Vector Bundles

M ∈ X is torsion if HomX(M, EX) = 0.

rankM := length of HomX(M, EX) as left EndX(EX)-module.

Definition

Vector bundles/X = finite rank torsion-free modules.

Let eiS
n.c.(V ) := ⊕j∈ZSn.c.(V )ij ∈ GrSn.c.(V ).

Let π : GrSn.c.(V ) → Pn.c.(V ) be the quotient functor.

Adam Nyman



Classification of Vector Bundles

M ∈ X is torsion if HomX(M, EX) = 0.

rankM := length of HomX(M, EX) as left EndX(EX)-module.

Definition

Vector bundles/X = finite rank torsion-free modules.

Let eiS
n.c.(V ) := ⊕j∈ZSn.c.(V )ij ∈ GrSn.c.(V ).

Let π : GrSn.c.(V ) → Pn.c.(V ) be the quotient functor.

Let O(i) :=

Adam Nyman



Classification of Vector Bundles

M ∈ X is torsion if HomX(M, EX) = 0.

rankM := length of HomX(M, EX) as left EndX(EX)-module.

Definition

Vector bundles/X = finite rank torsion-free modules.

Let eiS
n.c.(V ) := ⊕j∈ZSn.c.(V )ij ∈ GrSn.c.(V ).

Let π : GrSn.c.(V ) → Pn.c.(V ) be the quotient functor.

Let O(i) := π(e−iS
n.c.(V )).

Adam Nyman



Classification of Vector Bundles

M ∈ X is torsion if HomX(M, EX) = 0.

rankM := length of HomX(M, EX) as left EndX(EX)-module.

Definition

Vector bundles/X = finite rank torsion-free modules.

Let eiS
n.c.(V ) := ⊕j∈ZSn.c.(V )ij ∈ GrSn.c.(V ).

Let π : GrSn.c.(V ) → Pn.c.(V ) be the quotient functor.

Let O(i) := π(e−iS
n.c.(V )).

Theorem (N. 2013)

Every vector bundle over Pn.c.(V ) is a direct sum of line bundles.

Adam Nyman



Classification of Vector Bundles

M ∈ X is torsion if HomX(M, EX) = 0.

rankM := length of HomX(M, EX) as left EndX(EX)-module.

Definition

Vector bundles/X = finite rank torsion-free modules.

Let eiS
n.c.(V ) := ⊕j∈ZSn.c.(V )ij ∈ GrSn.c.(V ).

Let π : GrSn.c.(V ) → Pn.c.(V ) be the quotient functor.

Let O(i) := π(e−iS
n.c.(V )).

Theorem (N. 2013)

Every vector bundle over Pn.c.(V ) is a direct sum of line bundles.
The line bundles are {O(i)}i∈Z.
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Classification Theorem Version 1

Theorem (N. (2013))

Pn.c.(V ) ≡k Pn.c.(W ) if and only if there exists σ, τ ∈ Gal(L/k)
such that either

V ∼= Lσ ⊗L W ⊗L Lτ or V ∼= Lσ ⊗L W ∗ ⊗L Lτ .

(⇐) proven in greater generality by I. Mori.
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Theorem (N. (2013))

Suppose char k 6= 2. Then Pn.c.(V1) ≡ Pn.c.(V2) if and only if
Case 1: ∃ σi ∈ Gal(L/k) such that

Vi
∼= Lσi

⊕ Lσi
.

In this case, Pn.c.(Vi) ≡ QcohP1.
Case 2: ∃ σi , τi ∈ Gal(L/k), with σi 6= τi ,

Vi
∼= Lσi

⊕ Lτi

and under action of Gal(L/k)2 on itself defined by

(α, β) · (σ, τ) := (ασβ−1, ατβ−1)

O(σ1,τ1) ∩ {(σ2, τ2), (σ
−1
2 , τ−1

2 ), (τ2, σ2), (τ
−1
2 , σ−1

2 )} 6= ∅.
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Classification Theorem Version 2, Case 3

Theorem (cont.)

Let G := Gal(L/L). Suppose char k 6= 2. Then
Pn.c.(V1) ≡ Pn.c.(V2) if and only if
Case 3: ∃ λi ∈ Emb(L) of G -orbit size two, such that

Vi
∼= V (λi),

and under the action of Gal(L/k)2 on Emb(L) defined by

(α, β) · λ := αλβ−1,

Either

Oλ1
∩ λG

2 6= ∅ or

Oλ1
∩ µG

2 6= ∅ where µ2 = (λ2)
−1|L.
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∼=→ Sn.c.(W ).

The equivalence Φ

Definition of Φ : GrSn.c.(V ) → GrSn.c.(W ):

Φ(M)i := Mi as a set, with Sn.c.(W )-module structure

Φ(M)i ⊗ Sn.c.(W )ij
1⊗φ−1

→ Φ(M)i ⊗ Sn.c.(V )ij
µ→ Φ(M)j .

If f : M → N we define Φ(f )i (m) = f (m).

Φ descends uniquely to an equivalence Φ : Pn.c.(V ) → Pn.c.(W ).
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For i ∈ Z, let σi ∈ Gal(L/k),

Let σ := {σi}i∈Z, and

If A denotes a Z-algebra, let Aσ denote the Z-algebra with

Aσ,ij := L
σ−1

i
⊗ Aij ⊗ Lσj

and with multiplication induced by that of A.

The equivalence Tσ (Van den Bergh)

Definition of Tσ : GrA → GrAσ:

Tσ(M)i := Mi ⊗ Lσi
with multiplication induced by that of A,

and

If f : M → N we define Tσ(f )i = fi ⊗ Lσi
.

Tσ descends uniquely to an equivalence Tσ : ProjA → ProjAσ.
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A Special Twist

For δ, τ ∈ Gal(L/k)

ζi =

{

δ if i is even

τ if i is odd,

In this case there is a canonical isomorphism

Sn.c.(V )ζ → Sn.c.(Lδ−1 ⊗ V ⊗ Lτ ).

Notation

Tδ,τ : Pn.c.(V ) → Pn.c.(Lδ−1 ⊗ V ⊗ Lτ )
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Shift Functor

Definition of [i ] : GrSn.c.(V ) → GrSn.c.(V ) (i ∈ Z):

M[i ]j := Mj+i with multiplication induced from mult. on M

If f : M → N, f [i ]j = fj+i .

Problem

If i is odd, M[i ] does not inherit Sn.c.(V )-module mult. from M!
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Shift Functor

Definition of [i ] : GrSn.c.(V ) → GrSn.c.(V ) (i ∈ Z):

M[i ]j := Mj+i with multiplication induced from mult. on M

If f : M → N, f [i ]j = fj+i .

Problem

If i is odd, M[i ] does not inherit Sn.c.(V )-module mult. from M!
But M[i ] does have a Sn.c.(V ∗)-module structure (I. Mori)

[i ] : Pn.c.(V ) →
{

Pn.c.(V ) if i is even

Pn.c.(V ∗) if i is odd
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Classification of Isomorphisms

Theorem (N. (2013))

If F : Pn.c.(V ) → Pn.c.(W ) is k-linear equivalence, there exists

i ∈ Z,

σ, τ ∈ Gal (L/k), and

an isomorphism φ : Lσ−1 ⊗L V ⊗L Lτ → W−i∗

such that
F ∼= [i ] ◦ Φ ◦ Tσ,τ .

Furthermore,

i , σ and τ are unique up to natural equivalence and

Φ ≡ Φ′ ⇔ there exist α, β ∈ L∗ such that
φ′ ◦ φ−1(w) = α · w · β for all w ∈ W−i∗

Remark

[Φ] also classified.
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Aut Pn.c .(V ), Stab V and Aut V

The group Aut Pn.c.(V )

Aut Pn.c.(V ) := the set equivalence classes of k-linear shift-free
equivalences Pn.c.(V ) → Pn.c.(V ), with composition induced by
composition of functors.

To describe it: need

Definition of Stab V

Stab V = subgroup of Gal (L/k) × Gal (L/k) consisting of (σ, τ)
such that Lσ−1 ⊗L V ⊗L Lτ ∼= V

Definition of Aut V

Aut V = the set of isomorphisms V → V modulo the relation
defined by setting φ′ ≡ φ ⇔ there exist α, β ∈ L∗ such that
φ′ ◦ φ−1(v) = α · v · β for all v ∈ V .
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The Automorphism Group

Theorem (N. (2013))

There exists homomorphism ψ : Stab V → End (Aut (V )) such
that

Aut Pn.c.(V ) ∼= Aut V ⋊ψ Stab V op.
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Automorphism Group, Case 1

Let V = Lσ ⊕ Lσ. Then

Stab V ∼= Gal (L/k) and

Aut V ∼= PGL2(L).

Then ψ : Stab V → End (Aut (V )) is the homomorphism

ψ : Gal (L/k) → End (PGL2(L))

defined by

ψ(σ)[(aij )] = [(σ(aij))]
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Automorphism Group, Case 2

Let V = Lσ ⊕ Lτ with σ 6= τ . Then

Stab V = {(g , h)|{g−1σh, g−1τh} = {σ, τ}} and

There are two types of elements in Stab V .

Aut V ∼= L∗ × L∗/{(ασ(β), ατ(β))|α, β ∈ L∗}
Then ψ : Stab V → End (Aut (V )) is defined by

ψ((g , h))[(a, b)] = [(g(a), g(b))]

if g−1σh = σ and

ψ((g , h))[(a, b)] = [(g(b), g(a))]

if g−1σh = τ and

In the special case that V is not simple and Gal(L/k) is cyclic the
result was obtained by Kussin.
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Automorphism Group, Case 3

Let V = V (λ) = 1L ∨ λ(L)λ. Then

Stab V = {(g , h) ∈ Gal (L/k) × Gal (L/k)|(g−1λh)G = λG}
and

Aut V = (L ∨ λ(L))∗/L∗λ(L)∗

Lemma

For each (g , h) ∈ Stab V , ∃! field automorphism
ψg ,h : L ∨ λ(L) → L ∨ λ(L) such that if a ∈ L then ψg ,h(a) = g(a),
and ψg ,h(λ(a)) = λ(h(a)).

Then ψ : Stab V → End (Aut (V )) is the homomorphism defined
by

ψ((g , h))[x ] = [ψg ,h(x)].
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Work in Progress

1 Pn.c.(V ) is finite over its center (Kussin). No explicit
description of center is known. Compute the center of
Pn.c.(V (λ)) as a function of λ.

2 Classify the spaces Pn.c.(V ) up to derived equivalence.

Conjecture

Db(Pn.c.(V )) ≡ Db(Pn.c.(W )) ⇒ Pn.c.(V ) ≡ Pn.c.(W )

and derived equivalences are induced by translations and
equivalences

Pn.c.(V ) → Pn.c.(W ).
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Thank you for your attention!
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