The Geometry of (Some) Noncommutative Projective Lines

Adam Nyman

Western Washington University

July 2, 2013

Adam Nyman

Conventions and Notation

Adam Nyman

<ロト <回ト < 回ト

< ≣ >

æ

• k a perfect field

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

æ

- k a perfect field
- L/k finite extension

イロト イヨト イヨト イヨト

臣

- k a perfect field
- L/k finite extension
- \overline{L} an algebraic closure of L

ar ► < E

<u>Part 1</u>

Noncommutative Projective Lines

・ロン ・聞 と ・ ヨ と ・ ヨ と

æ

Adam Nyman

∰ ▶ € ▶

-≣->

• (k-linear) abelian category with

/⊒ ▶ ∢ ≣ ▶

- (k-linear) abelian category with
- exact direct limits and

- (k-linear) abelian category with
- exact direct limits and
- a generator.

_∢ ≣ ≯

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

イロン イヨン イヨン イヨン

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

• Mod R, R a ring

<ロ> <同> <同> < 同> < 同> < 同><<

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

- Mod R, R a ring
- Qcoh X

イロト イヨト イヨト イヨト

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

- Mod R, R a ring
- Qcoh X
- Proj A := GrA/TorsA where A is \mathbb{Z} -graded

- 4 回 2 - 4 □ 2 - 4 □

Adam Nyman

▲□ ▶ ▲ □ ▶ ▲ □ ▶

(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n -grading:

個 と く ヨ と く ヨ と

(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n -grading:

 $|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n -grading: $|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$

$$\mathbb{V}_n^1 := \operatorname{Gr} k[x_1, \dots, x_n] / \{ \operatorname{Kdim} \le n - 2 \}$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n -grading: $|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$

$$\mathbb{V}_n^1 := \operatorname{Gr} k[x_1, \dots, x_n] / \{\operatorname{Kdim} \le n - 2\}$$

The noncommutative space \mathbb{V}_n^1

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n -grading: $|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$

$$\mathbb{V}_n^1 := \operatorname{Gr} k[x_1, \dots, x_n] / \{\operatorname{Kdim} \le n - 2\}$$

The noncommutative space \mathbb{V}_n^1

• is locally noetherian,

(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n -grading: $|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$

$$\mathbb{V}_n^1 := \operatorname{Gr} k[x_1, \dots, x_n] / \{\operatorname{Kdim} \le n - 2\}$$

The noncommutative space \mathbb{V}_n^1

- is locally noetherian,
- is Ext-finite

個 と く ヨ と く ヨ と

(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n -grading: $|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$

$$\mathbb{V}_n^1 := \operatorname{Gr} k[x_1, \dots, x_n] / \{\operatorname{Kdim} \le n - 2\}$$

The noncommutative space \mathbb{V}_n^1

- is locally noetherian,
- is Ext-finite

• has homological dimension 1,

□ > < ⊇ > <

(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n -grading: $|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$

$$\mathbb{V}_n^1 := \operatorname{Gr} k[x_1, \dots, x_n] / \{\operatorname{Kdim} \le n - 2\}$$

The noncommutative space \mathbb{V}_n^1

- is locally noetherian,
- is Ext-finite
- has homological dimension 1,
- does **not** satisfy Serre duality unless n = 1 or 2.

(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n -grading: $|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$

$$\mathbb{V}_n^1 := \operatorname{Gr} k[x_1, \dots, x_n] / \{\operatorname{Kdim} \le n - 2\}$$

The noncommutative space \mathbb{V}_n^1

- is locally noetherian,
- is Ext-finite
- has homological dimension 1,
- does **not** satisfy Serre duality unless n = 1 or 2.

Significance

(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n -grading: $|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$

$$\mathbb{V}_n^1 := \operatorname{Gr} k[x_1, \dots, x_n] / \{\operatorname{Kdim} \le n - 2\}$$

The noncommutative space \mathbb{V}_n^1

- is locally noetherian,
- is Ext-finite
- has homological dimension 1,
- does **not** satisfy Serre duality unless n = 1 or 2.

Significance

If X is noncommutative space, Y is a regularly embedded hypersurface, and C is a curve which is 'in good position' w.r.t. Y, then

(Commutative) polynomial ring $k[x_1, \ldots, x_n]$ has \mathbb{Z}^n -grading: $|x_i| = (0, \ldots, 0, 1, 0, \ldots, 0).$

$$\mathbb{V}_n^1 := \operatorname{Gr} k[x_1, \dots, x_n] / \{\operatorname{Kdim} \le n - 2\}$$

The noncommutative space \mathbb{V}_n^1

- is locally noetherian,
- is Ext-finite
- has homological dimension 1,
- does **not** satisfy Serre duality unless n = 1 or 2.

Significance

If X is noncommutative space, Y is a regularly embedded hypersurface, and C is a curve which is 'in good position' w.r.t. Y, then $C \equiv \mathbb{V}_n^1$.

Adam Nyman

æ

《口》 《聞》 《臣》 《臣》

Suppose A is connected graded over k having the following properties:

個 と く ヨ と く ヨ と

Suppose A is connected graded over k having the following properties:

• A is generated in degree 1 by $n \ge 2$ generators over k,

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \ge 2$ generators over k,
- A is regular, and

- < 토 ▶ < 토 ▶

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \ge 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \ge 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n.

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \ge 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For n > 2, A is coherent

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \ge 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For n > 2, A is coherent but not noetherian.

個 と く ヨ と く ヨ と

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \ge 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For n > 2, A is coherent but not noetherian.

 \mathbb{P}_n^1 is any category of the form $\operatorname{proj} A := \operatorname{gr} A/\operatorname{tors} A$ for some A satisfying the above conditions with *n* generators.

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \ge 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For n > 2, A is coherent but not noetherian.

 \mathbb{P}_n^1 is any category of the form $\operatorname{proj} A := \operatorname{gr} A/\operatorname{tors} A$ for some A satisfying the above conditions with *n* generators. It

• is Ext-finite
Piontkovski's Noncommutative \mathbb{P}^1 's (2008)

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \ge 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For n > 2, A is coherent but not noetherian.

 \mathbb{P}_n^1 is any category of the form $\operatorname{proj} A := \operatorname{gr} A/\operatorname{tors} A$ for some A satisfying the above conditions with *n* generators. It

- is Ext-finite
- satisfies Serre duality, and

Piontkovski's Noncommutative \mathbb{P}^1 's (2008)

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \ge 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For n > 2, A is coherent but not noetherian.

 \mathbb{P}_n^1 is any category of the form $\operatorname{proj} A := \operatorname{gr} A/\operatorname{tors} A$ for some A satisfying the above conditions with *n* generators. It

- is Ext-finite
- satisfies Serre duality, and
- has homological dimension 1.

Adam Nyman

個 と く ヨ と く ヨ と

Kussin studies categories similar to $\operatorname{coh}\mathbb{P}^1$,

▶ < 토▶ < 토▶

Kussin studies categories similar to $\operatorname{coh}\mathbb{P}^1$, i.e. abelian categories P such that P

• consists of noetherian objects,

- consists of noetherian objects,
- is Ext-finite,

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
- has infinitely many non-isomorphic simple objects, and

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
- has infinitely many non-isomorphic simple objects, and
- has a tilting object,

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
- has infinitely many non-isomorphic simple objects, and
- \bullet has a tilting object, i.e. an object ${\mathcal T}$ such that
 - $\operatorname{Ext}^1_P(\mathcal{T},\mathcal{T}) = 0$, and

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
- has infinitely many non-isomorphic simple objects, and
- ullet has a tilting object, i.e. an object ${\mathcal T}$ such that
 - $\operatorname{Ext}^1_P(\mathcal{T},\mathcal{T}) = 0$, and
 - whenever $\text{Hom}_{\mathbb{P}^1}(\mathcal{T}, \mathcal{M}) = 0 = \text{Ext}_{P}^1(\mathcal{T}, \mathcal{M})$ we have $\mathcal{M} = 0$.

Kussin studies categories similar to $\mathsf{coh}\mathbb{P}^1,$ i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
- has infinitely many non-isomorphic simple objects, and
- ullet has a tilting object, i.e. an object ${\mathcal T}$ such that
 - $\operatorname{Ext}^{1}_{\mathsf{P}}(\mathcal{T},\mathcal{T}) = 0$, and
 - whenever $\text{Hom}_{\mathbb{P}^1}(\mathcal{T},\mathcal{M}) = 0 = \text{Ext}_{\mathsf{P}}^1(\mathcal{T},\mathcal{M})$ we have $\mathcal{M} = 0$.

Kussin studies categories similar to $\mathsf{coh}\mathbb{P}^1,$ i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
- has infinitely many non-isomorphic simple objects, and
- ullet has a tilting object, i.e. an object ${\mathcal T}$ such that
 - $\operatorname{Ext}^{1}_{\mathsf{P}}(\mathcal{T},\mathcal{T}) = 0$, and
 - whenever $\text{Hom}_{\mathbb{P}^1}(\mathcal{T},\mathcal{M}) = 0 = \text{Ext}_{\mathsf{P}}^1(\mathcal{T},\mathcal{M})$ we have $\mathcal{M} = 0$.

Kussin studies categories similar to $\mathsf{coh}\mathbb{P}^1,$ i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
- has infinitely many non-isomorphic simple objects, and
- ullet has a tilting object, i.e. an object ${\mathcal T}$ such that
 - $\operatorname{Ext}^1_P(\mathcal{T},\mathcal{T}) = 0$, and
 - whenever $\text{Hom}_{\mathbb{P}^1}(\mathcal{T},\mathcal{M}) = 0 = \text{Ext}_P^1(\mathcal{T},\mathcal{M})$ we have $\mathcal{M} = 0$.

- $coh \mathbb{P}^1$
- Weighted projective lines (Geigle-Lenzing)

Kussin studies categories similar to $\mathsf{coh}\mathbb{P}^1,$ i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,
- has infinitely many non-isomorphic simple objects, and
- ullet has a tilting object, i.e. an object ${\mathcal T}$ such that
 - $\operatorname{Ext}^1_P(\mathcal{T},\mathcal{T}) = 0$, and
 - whenever $\text{Hom}_{\mathbb{P}^1}(\mathcal{T},\mathcal{M}) = 0 = \text{Ext}_{\mathsf{P}}^1(\mathcal{T},\mathcal{M})$ we have $\mathcal{M} = 0$.

- $coh\mathbb{P}^1$
- Weighted projective lines (Geigle-Lenzing)
- Arithmetic noncommutative projective lines

Adam Nyman

∰ ▶ € ▶

- ∢ ≣ ▶

Spaces of form $\operatorname{Proj}\mathbb{S}^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

2

Spaces of form $\operatorname{Proj}\mathbb{S}^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where

• V is a two-sided vector space

個 ト くき ト くきト

Spaces of form $\operatorname{Proj}\mathbb{S}^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where

- V is a two-sided vector space
- $\mathbb{S}^{n.c.}(V)$ is noncommutative symmetric algebra of V

白 と く ヨ と く ヨ と …

Spaces of form $\operatorname{Proj}\mathbb{S}^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where

- V is a two-sided vector space
- $\mathbb{S}^{n.c.}(V)$ is noncommutative symmetric algebra of V

• $\operatorname{Proj} A = \operatorname{Gr} A / \operatorname{Tors} A$.

<回と < 回と < 回と

Spaces of form $\operatorname{Proj}\mathbb{S}^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where

- V is a two-sided vector space
- $\mathbb{S}^{n.c.}(V)$ is noncommutative symmetric algebra of V
- $\operatorname{Proj} A = \operatorname{Gr} A / \operatorname{Tors} A$.

Theme of talk

イロン イ部ン イヨン イヨン 三日

Spaces of form $\operatorname{Proj}\mathbb{S}^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where

- V is a two-sided vector space
- $\mathbb{S}^{n.c.}(V)$ is noncommutative symmetric algebra of V
- $\operatorname{Proj} A = \operatorname{Gr} A / \operatorname{Tors} A$.

Theme of talk

Study $V \rightsquigarrow \mathbb{P}^{n.c.}(V)$

《口》《聞》《臣》《臣》 三臣

Spaces of form $\operatorname{Proj}\mathbb{S}^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where

- V is a two-sided vector space
- $\mathbb{S}^{n.c.}(V)$ is noncommutative symmetric algebra of V
- $\operatorname{Proj} A = \operatorname{Gr} A / \operatorname{Tors} A$.

Theme of talk

Study $V \rightsquigarrow \mathbb{P}^{n.c.}(V)$

◆□> ◆□> ◆三> ◆三> ● 三 のへの

Initial Motivation: The noncommutative geometry of $\mathbb{P}^{n.c.}(V)$ is well understood.

Spaces of form $\operatorname{Proj}\mathbb{S}^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where

- V is a two-sided vector space
- $\mathbb{S}^{n.c.}(V)$ is noncommutative symmetric algebra of V
- $\operatorname{Proj} A = \operatorname{Gr} A / \operatorname{Tors} A$.

Theme of talk

Study $V \rightsquigarrow \mathbb{P}^{n.c.}(V)$

Initial Motivation: The noncommutative geometry of $\mathbb{P}^{n.c.}(V)$ is well understood.

Remark

The classification of noncommutative curves due to Reiten and Van den Bergh (2002) is over $k = \overline{k}$.

(ロ) (同) (E) (E) (E)

Spaces of form $\operatorname{Proj}\mathbb{S}^{n.c.}(V) =: \mathbb{P}^{n.c.}(V)$ where

- V is a two-sided vector space
- $\mathbb{S}^{n.c.}(V)$ is noncommutative symmetric algebra of V
- $\operatorname{Proj} A = \operatorname{Gr} A / \operatorname{Tors} A$.

Theme of talk

Study $V \rightsquigarrow \mathbb{P}^{n.c.}(V)$

Initial Motivation: The noncommutative geometry of $\mathbb{P}^{n.c.}(V)$ is well understood.

Remark

The classification of noncommutative curves due to Reiten and Van den Bergh (2002) is over $k = \overline{k}$. In this case $\mathbb{P}^{n.c.}(V) \equiv \operatorname{Qcoh}\mathbb{P}^1$.

< □ > < @ > < 注 > < 注 > ... 注

<u>Part 2</u>

Two-sided Vector Spaces

æ

Adam Nyman

Adam Nyman

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

A two-sided vector space of rank n is a

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

A two-sided vector space of rank n is a

• k-central L-L-bimodule V such that

個 と く ヨ と く ヨ と

A two-sided vector space of rank n is a

• k-central L-L-bimodule V such that

•
$$\dim_L(_LV) = \dim_L(V_L) = n.$$

個 と く ヨ と く ヨ と

A two-sided vector space of rank n is a

- k-central L-L-bimodule V such that
- $\dim_L(_LV) = \dim_L(V_L) = n.$

Example 1

イロト イヨト イヨト イヨト

A two-sided vector space of rank n is a

• k-central L-L-bimodule V such that

•
$$\dim_L(_LV) = \dim_L(V_L) = n.$$

Example 1

 $k = \mathbb{R}, L = \mathbb{C}, V = \mathbb{C}, \sigma =$ complex conjugation

<ロ> (日) (日) (日) (日) (日)

A two-sided vector space of rank n is a

- k-central L-L-bimodule V such that
- $\dim_L(_LV) = \dim_L(V_L) = n.$

Example 1

 $k = \mathbb{R}, \ L = \mathbb{C}, \ V = \mathbb{C}, \ \sigma = \text{complex conjugation } x \cdot v := xv$

イロン イヨン イヨン イヨン

2

A two-sided vector space of rank n is a

• k-central L-L-bimodule V such that

•
$$\dim_L(_LV) = \dim_L(V_L) = n.$$

Example 1

 $k = \mathbb{R}, L = \mathbb{C}, V = \mathbb{C}, \sigma = \text{complex conjugation } x \cdot v := xv$ $v \cdot x := v\sigma(x)$

<ロ> (日) (日) (日) (日) (日)
A two-sided vector space of rank n is a

• k-central L-L-bimodule V such that

•
$$\dim_L(_LV) = \dim_L(V_L) = n.$$

Example 1

 $k = \mathbb{R}, L = \mathbb{C}, V = \mathbb{C}, \sigma = \text{complex conjugation } x \cdot v := xv$ $v \cdot x := v\sigma(x)$ Notation: \mathbb{C}_{σ}

A two-sided vector space of rank n is a

- k-central L-L-bimodule V such that
- $\dim_L(_LV) = \dim_L(V_L) = n.$

Example 1

 $k = \mathbb{R}, L = \mathbb{C}, V = \mathbb{C}, \sigma = \text{complex conjugation } x \cdot v := xv$ $v \cdot x := v\sigma(x)$ Notation: \mathbb{C}_{σ}

Example 2

イロン イ部ン イヨン イヨン 三日

A two-sided vector space of rank n is a

• k-central L-L-bimodule V such that

•
$$\dim_L(_LV) = \dim_L(V_L) = n.$$

Example 1

 $k = \mathbb{R}, L = \mathbb{C}, V = \mathbb{C}, \sigma = \text{complex conjugation } x \cdot v := xv$ $v \cdot x := v\sigma(x)$ Notation: \mathbb{C}_{σ}

Example 2

 $V = L^n, \phi: L \to M_n(L)$

イロト イヨト イヨト イヨト

2

A two-sided vector space of rank n is a

• k-central L-L-bimodule V such that

•
$$\dim_L(_LV) = \dim_L(V_L) = n.$$

Example 1

 $k = \mathbb{R}, L = \mathbb{C}, V = \mathbb{C}, \sigma = \text{complex conjugation } x \cdot v := xv$ $v \cdot x := v\sigma(x)$ Notation: \mathbb{C}_{σ}

Example 2

$$V = L^n$$
, $\phi : L \to M_n(L) \times v = xv$

イロト イヨト イヨト イヨト

A two-sided vector space of rank n is a

• k-central L-L-bimodule V such that

•
$$\dim_L(_LV) = \dim_L(V_L) = n.$$

Example 1

 $k = \mathbb{R}, L = \mathbb{C}, V = \mathbb{C}, \sigma = \text{complex conjugation } x \cdot v := xv$ $v \cdot x := v\sigma(x)$ Notation: \mathbb{C}_{σ}

Example 2

$$V = L^n$$
, $\phi: L \to M_n(L) \times v = xv \ v \cdot x = v\phi(x)$

イロト イヨト イヨト イヨト

2

A two-sided vector space of rank n is a

• k-central L-L-bimodule V such that

•
$$\dim_L(_LV) = \dim_L(V_L) = n.$$

Example 1

 $k = \mathbb{R}, L = \mathbb{C}, V = \mathbb{C}, \sigma = \text{complex conjugation } x \cdot v := xv$ $v \cdot x := v\sigma(x)$ Notation: \mathbb{C}_{σ}

Example 2

$$V = L^n$$
, $\phi : L \to M_n(L) \times v = xv \ v \cdot x = v\phi(x)$ Notation: L^n_{ϕ}

イロン イヨン イヨン イヨン

2

Classification of Rank 2 Two-sided Vector Spaces

Adam Nyman

臣

個 と く ヨ と く ヨ と

Suppose char $k \neq 2$. If V has rank 2, either

<**●** ► < **■** ►

Suppose char $k \neq 2$. If V has rank 2, either

$$\bullet \ V \cong L^2_\phi \text{ where } \phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \sigma(x) \end{pmatrix} \text{ where } \sigma(x) \in \mathsf{Gal}(L/k),$$

Image: A ten i

Suppose char $k \neq 2$. If V has rank 2, either

•
$$V \cong L^2_{\phi}$$
 where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \sigma(x) \end{pmatrix}$ where $\sigma(x) \in \text{Gal}(L/k)$,
• $V \cong L^2_{\phi}$ where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \tau(x) \end{pmatrix}$, $\sigma(x), \tau(x) \in \text{Gal}(L/k)$,
and $\tau \neq \sigma$, or

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

Suppose char $k \neq 2$. If V has rank 2, either

•
$$V \cong L^2_{\phi}$$
 where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \sigma(x) \end{pmatrix}$ where $\sigma(x) \in \text{Gal}(L/k)$,
• $V \cong L^2_{\phi}$ where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \tau(x) \end{pmatrix}$, $\sigma(x), \tau(x) \in \text{Gal}(L/k)$,
and $\tau \neq \sigma$, or
• V is simple.

- 4 回 2 - 4 □ 2 - 4 □

Suppose char $k \neq 2$. If V has rank 2, either

•
$$V \cong L^2_{\phi}$$
 where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \sigma(x) \end{pmatrix}$ where $\sigma(x) \in \text{Gal}(L/k)$,
• $V \cong L^2_{\phi}$ where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \tau(x) \end{pmatrix}$, $\sigma(x), \tau(x) \in \text{Gal}(L/k)$,
and $\tau \neq \sigma$, or

◆□→ ◆ □ → ◆ □ → …

• V is simple. In this case $V \cong L^2_{\phi}$ where $\phi(x) = \begin{pmatrix} a(x) & b(x) \\ mb(x) & a(x) \end{pmatrix}$

Suppose char $k \neq 2$. If V has rank 2, either

•
$$V \cong L^2_{\phi}$$
 where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \sigma(x) \end{pmatrix}$ where $\sigma(x) \in \operatorname{Gal}(L/k)$,
• $V \cong L^2_{\phi}$ where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \tau(x) \end{pmatrix}$, $\sigma(x), \tau(x) \in \operatorname{Gal}(L/k)$,
and $\tau \neq \sigma$, or

御 と くき とくき とうき

• V is simple. In this case $V \cong L^2_{\phi}$ where $\phi(x) = \begin{pmatrix} a(x) & b(x) \\ mb(x) & a(x) \end{pmatrix}$ and where b is a nonzero (a, a)-derivation,

Suppose char $k \neq 2$. If V has rank 2, either

•
$$V \cong L^2_{\phi}$$
 where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \sigma(x) \end{pmatrix}$ where $\sigma(x) \in \text{Gal}(L/k)$,
• $V \cong L^2_{\phi}$ where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \tau(x) \end{pmatrix}$, $\sigma(x), \tau(x) \in \text{Gal}(L/k)$,
and $\tau \neq \sigma$, or

□ > < ⊇ > <

• V is simple. In this case $V \cong L^2_{\phi}$ where $\phi(x) = \begin{pmatrix} a(x) & b(x) \\ mb(x) & a(x) \end{pmatrix}$ and where b is a nonzero (a, a)-derivation, $m \in L$ is not a perfect square,

Suppose char $k \neq 2$. If V has rank 2, either

•
$$V \cong L^2_{\phi}$$
 where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \sigma(x) \end{pmatrix}$ where $\sigma(x) \in \operatorname{Gal}(L/k)$,
• $V \cong L^2_{\phi}$ where $\phi(x) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & \tau(x) \end{pmatrix}$, $\sigma(x), \tau(x) \in \operatorname{Gal}(L/k)$,
and $\tau \neq \sigma$, or

個 と く ヨ と く ヨ と

• V is simple. In this case $V \cong L^2_{\phi}$ where $\phi(x) = \begin{pmatrix} a(x) & b(x) \\ mb(x) & a(x) \end{pmatrix}$ and where b is a nonzero (a, a)-derivation, $m \in L$ is not a perfect square, and a(xy) = a(x)a(y) + mb(x)b(y).

Adam Nyman

(本部) (本語) (本語)

• $\mathsf{Emb}(L) = \{k - \text{linear embeddings } L \to \overline{L}\}$

ヘロト 人間 とくほとくほとう

2

(本部) (本語) (本語)

- Emb(L) = {k linear embeddings $L \to \overline{L}$ }
- $G = \operatorname{Gal}(\overline{L}/L)$
- G acts on Emb(L): $g \cdot \lambda := g \circ \lambda$. $\lambda^{G} = \text{orbit of } \lambda$

(4回) (4回) (4回)

- Emb(L) = {k linear embeddings $L \to \overline{L}$ }
- $G = \operatorname{Gal}(\overline{L}/L)$
- G acts on Emb(L): $g \cdot \lambda := g \circ \lambda$. $\lambda^{G} = \text{orbit of } \lambda$
- Orb(L) = {finite G-orbits of Emb(L)}

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶

- $\mathsf{Emb}(L) = \{k \text{linear embeddings } L \to \overline{L}\}$
- $G = \operatorname{Gal}(\overline{L}/L)$
- G acts on Emb(L): $g \cdot \lambda := g \circ \lambda$. λ^{G} = orbit of λ
- Orb(L) = {finite G-orbits of Emb(L)}
- Simp(L) = {≅ classes of k-central simples of finite rank/L}

- $\mathsf{Emb}(L) = \{k \text{linear embeddings } L \to \overline{L}\}$
- $G = \operatorname{Gal}(\overline{L}/L)$
- G acts on Emb(L): $g \cdot \lambda := g \circ \lambda$. $\lambda^{G} = \text{orbit of } \lambda$
- Orb(L) = {finite G-orbits of Emb(L)}
- Simp(L) = {≅ classes of k-central simples of finite rank/L}

Theorem (N. and Pappacena 2007)

There is a bijection

$$\Phi: \operatorname{Orb}(L) \to \operatorname{Simp}(L)$$

- 4 回 2 - 4 回 2 - 4 回 2 - 4

- $\mathsf{Emb}(L) = \{k \text{linear embeddings } L \to \overline{L}\}$
- $G = \operatorname{Gal}(\overline{L}/L)$
- G acts on Emb(L): $g \cdot \lambda := g \circ \lambda$. $\lambda^{G} = \text{orbit of } \lambda$
- Orb(L) = {finite G-orbits of Emb(L)}
- Simp(L) = {≅ classes of k-central simples of finite rank/L}

Theorem (N. and Pappacena 2007)

There is a bijection

$$\Phi: \mathsf{Orb}(L) \to \mathsf{Simp}(L)$$

and rank $(\Phi(\lambda^{G})) = |\lambda^{G}|$

- $\mathsf{Emb}(L) = \{k \text{linear embeddings } L \to \overline{L}\}$
- $G = \operatorname{Gal}(\overline{L}/L)$
- G acts on Emb(L): $g \cdot \lambda := g \circ \lambda$. $\lambda^{G} = \text{orbit of } \lambda$
- Orb(L) = {finite G-orbits of Emb(L)}
- Simp(L) = {≅ classes of k-central simples of finite rank/L}

Theorem (N. and Pappacena 2007)

There is a bijection

$$\Phi: \mathsf{Orb}(L) \to \mathsf{Simp}(L)$$

and rank($\Phi(\lambda^G)$) = $|\lambda^G|$

Notation: $\Phi(\lambda^G) = [V(\lambda)].$

- $\mathsf{Emb}(L) = \{k \text{linear embeddings } L \to \overline{L}\}$
- $G = \operatorname{Gal}(\overline{L}/L)$
- G acts on Emb(L): $g \cdot \lambda := g \circ \lambda$. $\lambda^{G} = \text{orbit of } \lambda$
- Orb(L) = {finite G-orbits of Emb(L)}
- Simp(L) = {≅ classes of k-central simples of finite rank/L}

Theorem (N. and Pappacena 2007)

There is a bijection

$$\Phi: \mathsf{Orb}(L) \to \mathsf{Simp}(L)$$

and rank($\Phi(\lambda^{G})$) = $|\lambda^{G}|$

Notation: $\Phi(\lambda^G) = [V(\lambda)].$

Remark

The result holds even if L/k is infinite

Construction of $V(\lambda)$

Adam Nyman

《曰》《聞》《臣》《臣》

Construction of $V(\lambda)$

What is $V(\lambda)$?

《曰》《聞》《臣》《臣》

What is $V(\lambda)$?

$V(\lambda) := {}_1L \lor \lambda(L)_{\lambda}$

・ロト ・四ト ・ヨト ・ヨト

æ

Action defined as $a \cdot v \cdot b := av\lambda(b)$.

Adam Nyman

(4回) (日) (日)

Example 1

•
$$k = \mathbb{R}, L = \mathbb{C}, G = \operatorname{Gal}(\overline{L}/L) = {\operatorname{id}}$$

(4回) (日) (日)

Example 1

•
$$k = \mathbb{R}, L = \mathbb{C}, G = \operatorname{Gal}(\overline{L}/L) = {\operatorname{id}}$$

•
$$\mathsf{Emb}(L) = \{\mathsf{id}, \sigma\}$$

- 4 副 🖌 4 国 🕨 - 4 国 🕨

Example 1

- $k = \mathbb{R}, L = \mathbb{C}, G = \operatorname{Gal}(\overline{L}/L) = {\operatorname{id}}$
- $\mathsf{Emb}(L) = \{\mathsf{id}, \sigma\}$
- $Orb(L) = \{\{id\}, \{\sigma\}\}$

▲圖▶ ▲屋▶ ▲屋▶

2

Example 1

- $k = \mathbb{R}, L = \mathbb{C}, G = \operatorname{Gal}(\overline{L}/L) = {\operatorname{id}}$
- $\operatorname{Emb}(L) = {\operatorname{id}, \sigma}$
- $\mathsf{Orb}(L) = \{\{\mathsf{id}\}, \{\sigma\}\} \Rightarrow \mathsf{Simp}(L) = \{\mathbb{C}_{\mathsf{id}}, \mathbb{C}_{\sigma}\}$

▲御▶ ▲理▶ ▲理▶

Example 1

•
$$k = \mathbb{R}, L = \mathbb{C}, G = \operatorname{Gal}(\overline{L}/L) = {\operatorname{id}}$$

•
$$\mathsf{Emb}(L) = \{\mathsf{id}, \sigma\}$$

•
$$\mathsf{Orb}(L) = \{\{\mathsf{id}\}, \{\sigma\}\} \Rightarrow \mathsf{Simp}(L) = \{\mathbb{C}_{\mathsf{id}}, \mathbb{C}_{\sigma}\}$$

Example 2

 $p \geq 3$ prime, $\zeta = a$ primative pth root of unity.

Example 1

- $k = \mathbb{R}, L = \mathbb{C}, G = \operatorname{Gal}(\overline{L}/L) = {\operatorname{id}}$
- $\mathsf{Emb}(L) = \{\mathsf{id}, \sigma\}$
- $\mathsf{Orb}(L) = \{\{\mathsf{id}\}, \{\sigma\}\} \Rightarrow \mathsf{Simp}(L) = \{\mathbb{C}_{\mathsf{id}}, \mathbb{C}_{\sigma}\}$

Example 2

- $p \ge 3$ prime, $\zeta = a$ primative *p*th root of unity.
 - $k = \mathbb{Q}, L = \mathbb{Q}(p\sqrt{2})$

Example 1

- $k = \mathbb{R}, L = \mathbb{C}, G = \operatorname{Gal}(\overline{L}/L) = {\operatorname{id}}$
- $\mathsf{Emb}(L) = \{\mathsf{id}, \sigma\}$
- $\mathsf{Orb}(L) = \{\{\mathsf{id}\}, \{\sigma\}\} \Rightarrow \mathsf{Simp}(L) = \{\mathbb{C}_{\mathsf{id}}, \mathbb{C}_{\sigma}\}$

Example 2

- $p \geq 3$ prime, $\zeta = a$ primative pth root of unity.
 - $k = \mathbb{Q}, L = \mathbb{Q}(p\sqrt{2})$
 - G-action = $Gal(L(\zeta)/L)$ -action
Example 1

- $k = \mathbb{R}, L = \mathbb{C}, G = \operatorname{Gal}(\overline{L}/L) = {\operatorname{id}}$
- $\mathsf{Emb}(L) = \{\mathsf{id}, \sigma\}$
- $\mathsf{Orb}(L) = \{\{\mathsf{id}\}, \{\sigma\}\} \Rightarrow \mathsf{Simp}(L) = \{\mathbb{C}_{\mathsf{id}}, \mathbb{C}_{\sigma}\}$

Example 2

- $p \geq 3$ prime, $\zeta =$ a primative pth root of unity.
 - $k = \mathbb{Q}, L = \mathbb{Q}(p\sqrt{2})$

• G-action = Gal(
$$L(\zeta)/L$$
)-action

• Gal $(L(\zeta)/L) = \{\sigma_i | 1 \le i \le p-1\}$ where $\sigma_i(\zeta) = \zeta^i$

Example 1

- $k = \mathbb{R}, L = \mathbb{C}, G = \operatorname{Gal}(\overline{L}/L) = {\operatorname{id}}$
- $\mathsf{Emb}(L) = \{\mathsf{id}, \sigma\}$
- $\mathsf{Orb}(L) = \{\{\mathsf{id}\}, \{\sigma\}\} \Rightarrow \mathsf{Simp}(L) = \{\mathbb{C}_{\mathsf{id}}, \mathbb{C}_{\sigma}\}$

Example 2

 $p \geq 3$ prime, $\zeta = a$ primative pth root of unity.

•
$$k = \mathbb{Q}, L = \mathbb{Q}(p\sqrt{2})$$

• G-action = Gal(
$$L(\zeta)/L$$
)-action

• Gal
$$(L(\zeta)/L) = \{\sigma_i | 1 \le i \le p-1\}$$
 where $\sigma_i(\zeta) = \zeta^i$

• Emb(L) = {id, $\sigma_1 \lambda, \dots, \sigma_{p-1} \lambda$ } where $\lambda({}^p \sqrt{2}) = \zeta({}^p \sqrt{2})$

Example 1

- $k = \mathbb{R}, L = \mathbb{C}, G = \operatorname{Gal}(\overline{L}/L) = {\operatorname{id}}$
- $\mathsf{Emb}(L) = \{\mathsf{id}, \sigma\}$
- $\mathsf{Orb}(L) = \{\{\mathsf{id}\}, \{\sigma\}\} \Rightarrow \mathsf{Simp}(L) = \{\mathbb{C}_{\mathsf{id}}, \mathbb{C}_{\sigma}\}$

Example 2

 $p \geq 3$ prime, $\zeta =$ a primative pth root of unity.

•
$$k = \mathbb{Q}, L = \mathbb{Q}(p\sqrt{2})$$

• G-action =
$$Gal(L(\zeta)/L)$$
-action

- $Gal(L(\zeta)/L) = \{\sigma_i | 1 \le i \le p-1\}$ where $\sigma_i(\zeta) = \zeta^i$
- Emb(L) = {id, $\sigma_1 \lambda, \dots, \sigma_{p-1} \lambda$ } where $\lambda({}^p \sqrt{2}) = \zeta({}^p \sqrt{2})$
- Orb(*L*)

Example 1

- $k = \mathbb{R}, L = \mathbb{C}, G = \operatorname{Gal}(\overline{L}/L) = {\operatorname{id}}$
- $\mathsf{Emb}(L) = \{\mathsf{id}, \sigma\}$
- $\mathsf{Orb}(L) = \{\{\mathsf{id}\}, \{\sigma\}\} \Rightarrow \mathsf{Simp}(L) = \{\mathbb{C}_{\mathsf{id}}, \mathbb{C}_{\sigma}\}$

Example 2

 $p \geq 3$ prime, $\zeta =$ a primative pth root of unity.

•
$$k = \mathbb{Q}, L = \mathbb{Q}(p\sqrt{2})$$

• *G*-action =
$$Gal(L(\zeta)/L)$$
-action

- Gal $(L(\zeta)/L) = \{\sigma_i | 1 \le i \le p-1\}$ where $\sigma_i(\zeta) = \zeta^i$
- Emb(L) = {id, $\sigma_1 \lambda, \dots, \sigma_{p-1} \lambda$ } where $\lambda({}^p \sqrt{2}) = \zeta({}^p \sqrt{2})$

•
$$Orb(L) = \{ \{ id \}, \{ \sigma_i \lambda | 1 \le i \le p - 1 \} \}$$

Example 1

•
$$k = \mathbb{R}, L = \mathbb{C}, G = \operatorname{Gal}(\overline{L}/L) = {\operatorname{id}}$$

•
$$\mathsf{Emb}(L) = \{\mathsf{id}, \sigma\}$$

•
$$\mathsf{Orb}(L) = \{\{\mathsf{id}\}, \{\sigma\}\} \Rightarrow \mathsf{Simp}(L) = \{\mathbb{C}_{\mathsf{id}}, \mathbb{C}_{\sigma}\}$$

Example 2

 $p \geq 3$ prime, $\zeta = a$ primative pth root of unity.

•
$$k = \mathbb{Q}, L = \mathbb{Q}(p\sqrt{2})$$

• *G*-action =
$$Gal(L(\zeta)/L)$$
-action

• Gal
$$(L(\zeta)/L) = \{\sigma_i | 1 \le i \le p-1\}$$
 where $\sigma_i(\zeta) = \zeta^i$

• Emb(L) = {id,
$$\sigma_1 \lambda, \dots, \sigma_{p-1} \lambda$$
} where $\lambda(p\sqrt{2}) = \zeta(p\sqrt{2})$

•
$$Orb(L) = \{ \{ id \}, \{ \sigma_i \lambda | 1 \le i \le p - 1 \} \}$$

$$\operatorname{Simp}(L) = \{\mathbb{Q}({}^{p}\sqrt{2})_{\operatorname{id}}, V(\lambda)\}$$

Adam Nyman

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

Right dual of V

 $V^* := \operatorname{Hom}_L(V_L, L)$

Right dual of V

 $V^* := \operatorname{Hom}_L(V_L, L)$ with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Right dual of V

$$V^* := \operatorname{Hom}_L(V_L, L)$$
 with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

* $V := \operatorname{Hom}_{L}(_{L}V, L)$ with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Right dual of V

$$V^* := \operatorname{Hom}_L(V_L, L)$$
 with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

* $V := \operatorname{Hom}_{L}(_{L}V, L)$ with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Example

If $\sigma \in \operatorname{Gal}(L/k)$ then

Right dual of V

$$V^* := \operatorname{Hom}_L(V_L, L)$$
 with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

* $V := \operatorname{Hom}_{L}(_{L}V, L)$ with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Example

If $\sigma \in \operatorname{Gal}(L/k)$ then ${}^*L_{\sigma} \cong L_{\sigma}{}^* \cong L_{\sigma^{-1}}$

Right dual of V

$$V^* := \operatorname{Hom}_L(V_L, L)$$
 with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

* $V := \operatorname{Hom}_{L}(_{L}V, L)$ with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Example

If $\sigma \in \mathsf{Gal}(L/k)$ then ${}^*L_{\sigma} \cong L_{\sigma}{}^* \cong L_{\sigma^{-1}}$

Theorem (Hart and N. 2012)

Adam Nyman

イロン イヨン イヨン イヨン

Right dual of V

$$V^* := \operatorname{Hom}_L(V_L, L)$$
 with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

* $V := \operatorname{Hom}_{L}(_{L}V, L)$ with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Example

If $\sigma \in \mathsf{Gal}(L/k)$ then ${}^*L_{\sigma} \cong L_{\sigma}{}^* \cong L_{\sigma^{-1}}$

Theorem (Hart and N. 2012)

Adam Nyman

イロン イヨン イヨン イヨン

Right dual of V

$$V^* := \operatorname{Hom}_L(V_L, L)$$
 with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

* $V := \operatorname{Hom}_{L}(_{L}V, L)$ with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Example

If
$$\sigma \in \mathsf{Gal}(L/k)$$
 then ${}^*L_{\sigma} \cong L_{\sigma}{}^* \cong L_{\sigma^{-1}}$

Theorem (Hart and N. 2012)

Suppose $V \cong V(\lambda)$,

Adam Nyman

Right dual of V

$$V^* := \operatorname{Hom}_L(V_L, L)$$
 with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

* $V := \operatorname{Hom}_{L}(_{L}V, L)$ with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Example

If
$$\sigma \in \operatorname{Gal}(L/k)$$
 then ${}^*L_{\sigma} \cong L_{\sigma}{}^* \cong L_{\sigma^{-1}}$

Theorem (Hart and N. 2012)

Suppose $V \cong V(\lambda)$, and let $\overline{\lambda} : \overline{L} \to \overline{L}$ be a lift of λ . Let $\mu := (\overline{\lambda})^{-1}|_L$. Then

Adam Nyman

イロト イヨト イヨト イヨト

Right dual of V

$$V^* := \operatorname{Hom}_L(V_L, L)$$
 with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

* $V := \operatorname{Hom}_{L}(_{L}V, L)$ with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Example

If
$$\sigma \in \operatorname{Gal}(L/k)$$
 then ${}^*L_{\sigma} \cong L_{\sigma}{}^* \cong L_{\sigma^{-1}}$

Theorem (Hart and N. 2012)

Suppose $V \cong V(\lambda)$, and let $\overline{\lambda} : \overline{L} \to \overline{L}$ be a lift of λ . Let $\mu := (\overline{\lambda})^{-1}|_L$. Then

$$^*V \cong V^* \cong V(\mu).$$

イロト イヨト イヨト イヨト

æ

Adam Nyman

Adam Nyman

・ロ・ ・ 日・ ・ 日・ ・ 日・

If V is not simple,

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

If V is not simple, study

$$\{\sigma,\tau\} \rightsquigarrow \mathbb{P}^{n.c.}(L_{\sigma} \oplus L_{\tau})$$

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

If V is not simple, study

$$\{\sigma,\tau\} \rightsquigarrow \mathbb{P}^{n.c.}(\mathcal{L}_{\sigma} \oplus \mathcal{L}_{\tau})$$

If V is simple,

・ロト ・日下・ ・ ヨト

- ∢ ≣ ▶

If V is not simple, study

$$\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{n.c.}(L_{\sigma} \oplus L_{\tau})$$

If V is simple, study

$$\lambda \rightsquigarrow \mathbb{P}^{n.c.}(V(\lambda))$$

臣

-≣->

₽ > < €

If V is not simple, study

$$\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{n.c.}(L_{\sigma} \oplus L_{\tau})$$

If V is simple, study

 $\lambda \rightsquigarrow \mathbb{P}^{n.c.}(V(\lambda))$

Arithmetic

臣

-≣->

If V is not simple, study

$$\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{n.c.}(L_{\sigma} \oplus L_{\tau})$$

If V is simple, study

$$\lambda \rightsquigarrow \mathbb{P}^{n.c.}(V(\lambda))$$

Arithmetic ~> Noncommutative geometry

If V is not simple, study

$$\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{n.c.}(L_{\sigma} \oplus L_{\tau})$$

If V is simple, study

$$\lambda \rightsquigarrow \mathbb{P}^{n.c.}(V(\lambda))$$

Arithmetic ~ Noncommutative geometry

Adam Nyman

If V is not simple, study

$$\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{n.c.}(L_{\sigma} \oplus L_{\tau})$$

If V is simple, study

$$\lambda \rightsquigarrow \mathbb{P}^{n.c.}(V(\lambda))$$

Arithmetic ~> Noncommutative geometry

Questions

• For which arithmetic data are associated spaces isomorphic?

A (1) > A (1) > A

- ∢ ⊒ →

If V is not simple, study

$$\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{n.c.}(L_{\sigma} \oplus L_{\tau})$$

If V is simple, study

$$\lambda \rightsquigarrow \mathbb{P}^{n.c.}(V(\lambda))$$

Arithmetic ~> Noncommutative geometry

Questions

• For which arithmetic data are associated spaces isomorphic?

If they are isomorphic, what are the isomorphisms?

If V is not simple, study

$$\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{n.c.}(L_{\sigma} \oplus L_{\tau})$$

If V is simple, study

$$\lambda \rightsquigarrow \mathbb{P}^{n.c.}(V(\lambda))$$

Arithmetic ~> Noncommutative geometry

Questions

- For which arithmetic data are associated spaces isomorphic?
- If they are isomorphic, what are the isomorphisms?
- What is the relationship between the arithmetic data and the automorphism groups?

<u>Part 3</u>

Noncommutative Symmetric Algebras

・ロト ・四ト・・ヨト・

Adam Nyman

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

Suppose

- V has rank two.
- $\{x, y\}$ is *simultaneous* basis for V.

・ロン ・雪 と ・ ヨ と ・ ヨ と ・

Suppose

- V has rank two.
- $\{x, y\}$ is *simultaneous* basis for V.

Construct n.c. ring $\mathbb{S}^{n.c.}(V)$ which specializes to

$$\mathbb{S}(V) := \frac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{(x \otimes y - y \otimes x)}$$

イロン イ部ン イヨン イヨン 三日

when V is L-central.

Suppose

- V has rank two.
- $\{x, y\}$ is *simultaneous* basis for V.

Construct n.c. ring $\mathbb{S}^{n.c.}(V)$ which specializes to

$$\mathbb{S}(V) := \frac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{(x \otimes y - y \otimes x)}$$

個 と く ヨ と く ヨ と

æ

when V is L-central.

Should have expected left and right Hilbert series

Attempt 1

Adam Nyman

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Define

$$\mathbb{S}^{n.c.}(V) := \frac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{(x \otimes y - y \otimes x)}$$

Define

$$\mathbb{S}^{n.c.}(V) := \frac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{(x \otimes y - y \otimes x)}$$

Problem

Too many relations.

・ロ・ ・ 日・ ・ 日・ ・ 日・

Attempt 2

Adam Nyman
There exists canonical $\eta_0 : L \to V \otimes_L V^*$:

《曰》《聞》《臣》《臣》

イロト イヨト イヨト イヨト

 $\eta_0(a) := a(x \otimes \delta_x + y \otimes \delta_y).$

イロト イヨト イヨト イヨト

 $\eta_0(a) := a(x \otimes \delta_x + y \otimes \delta_y).$

 $\eta_{\rm 0}$ independent of choices.

 $\eta_0(a) := a(x \otimes \delta_x + y \otimes \delta_y).$

 $\eta_{\rm 0}$ independent of choices. Define

$$\mathbb{S}^{n.c.}(V) := L \oplus V \oplus \frac{V \otimes_L V^*}{\operatorname{im} \eta_0} \oplus \frac{V \otimes V^* \otimes V^{**}}{\operatorname{im} \eta_0 \otimes V^{**} + V \otimes \operatorname{im} \eta_1} \oplus \cdots$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

 $\eta_0(a) := a(x \otimes \delta_x + y \otimes \delta_y).$

 η_0 independent of choices. Define

$$\mathbb{S}^{n.c.}(V) := L \oplus V \oplus \frac{V \otimes_L V^*}{\operatorname{im} \eta_0} \oplus \frac{V \otimes V^* \otimes V^{**}}{\operatorname{im} \eta_0 \otimes V^{**} + V \otimes \operatorname{im} \eta_1} \oplus \cdots$$

イロト イヨト イヨト イヨト

Problem

No natural multiplication: if $x, y \in V$, $x \cdot y$ **not** in $\frac{V \otimes V^*}{\operatorname{im} m_0}$.

Adam Nyman

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

A ring A is a \mathbb{Z} -algebra if

▲圖▶ ▲屋▶ ▲屋▶

A ring A is a \mathbb{Z} -algebra if

• \exists vector space decomp $A = \bigoplus_{i,j \in \mathbb{Z}} A_{ij}$,

A ring A is a \mathbb{Z} -algebra if

• \exists vector space decomp $A = \bigoplus_{i,j \in \mathbb{Z}} A_{ij}$,

•
$$A_{ij}A_{jk} \subset A_{ik}$$
,

A ring A is a \mathbb{Z} -algebra if

• \exists vector space decomp $A = \bigoplus_{i,j \in \mathbb{Z}} A_{ij}$,

•
$$A_{ij}A_{jk} \subset A_{ik}$$
,

•
$$A_{ij}A_{kl} = 0$$
 for $k \neq j$, and

A ring A is a \mathbb{Z} -algebra if

• \exists vector space decomp $A = \bigoplus_{i,j \in \mathbb{Z}} A_{ij}$,

•
$$A_{ij}A_{jk} \subset A_{ik}$$
,

- $A_{ij}A_{kl} = 0$ for $k \neq j$, and
- the subalgebra A_{ii} contains a unit, e_i .

個 と く ヨ と く ヨ と

A ring A is a \mathbb{Z} -algebra if

• \exists vector space decomp $A = \bigoplus_{i,j \in \mathbb{Z}} A_{ij}$,

•
$$A_{ij}A_{jk} \subset A_{ik}$$
,

- $A_{ij}A_{kl} = 0$ for $k \neq j$, and
- the subalgebra A_{ii} contains a unit, e_i.

Remark: A does not have a unity and is not a domain.

個 と く ヨ と く ヨ と

A ring A is a \mathbb{Z} -algebra if

• \exists vector space decomp $A = \oplus_{i,j \in \mathbb{Z}} A_{ij}$,

•
$$A_{ij}A_{jk} \subset A_{ik}$$
,

- $A_{ij}A_{kl} = 0$ for $k \neq j$, and
- the subalgebra A_{ii} contains a unit, e_i.

Remark: A does not have a unity and is not a domain.

Example

If $(\mathcal{O}(n))_{n\in\mathbb{Z}}$ is seq. of objects in a category A, then

$$A_{ij} = \operatorname{Hom}_{\mathsf{A}}(\mathcal{O}(-j), \mathcal{O}(-i))$$

with mult. = composition makes $\bigoplus_{i,j\in\mathbb{Z}}A_{ij}$ a \mathbb{Z} -algebra

Adam Nyman

《曰》《聞》《臣》《臣》

•
$$\mathbb{S}^{n.c.}(V)_{ij} = \frac{V^{i*} \otimes_L \cdots \otimes_L V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$$

イロト イヨト イヨト イヨト

•
$$\mathbb{S}^{n.c.}(V)_{ij} = \frac{V^{i*} \otimes_L \cdots \otimes_L V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$$

• $\mathbb{S}^{n.c.}(V)_{ii} = L,$

ヘロト 人間 とくほとくほとう

•
$$\mathbb{S}^{n.c.}(V)_{ij} = \frac{V^{i*} \otimes_L \cdots \otimes_L V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$$

•
$$\mathbb{S}^{n.c.}(V)_{ii} = L$$
,

•
$$S^{n.c.}(V)_{ij} = 0$$
 if $i > j$,

《口》《聞》《臣》《臣》 三臣

- $\mathbb{S}^{n.c.}(V)_{ij} = \frac{V^{i*} \otimes_L \cdots \otimes_L V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$
- $\mathbb{S}^{n.c.}(V)_{ii} = L$,
- $S^{n.c.}(V)_{ij} = 0$ if i > j,
- multiplication induced by \otimes_L .

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

•
$$\mathbb{S}^{n.c.}(V)_{ij} = \frac{V^{i*} \otimes_L \cdots \otimes_L V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$$

•
$$\mathbb{S}^{n.c.}(V)_{ii} = L$$
,

•
$$S^{n.c.}(V)_{ij} = 0$$
 if $i > j$,

• multiplication induced by \otimes_L .

More generally, if

(4回) (4回) (4回)

•
$$\mathbb{S}^{n.c.}(V)_{ij} = \frac{V^{i*} \otimes_L \cdots \otimes_L V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$$

•
$$\mathbb{S}^{n.c.}(V)_{ii} = L$$
,

•
$$S^{n.c.}(V)_{ij} = 0$$
 if $i > j$,

• multiplication induced by \otimes_L .

More generally, if

• X is a smooth scheme of finite type over a k

個 と く ヨ と く ヨ と

•
$$\mathbb{S}^{n.c.}(V)_{ij} = \frac{V^{i*} \otimes_L \cdots \otimes_L V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$$

•
$$\mathbb{S}^{n.c.}(V)_{ii} = L$$
,

•
$$S^{n.c.}(V)_{ij} = 0$$
 if $i > j$,

• multiplication induced by \otimes_L .

More generally, if

- X is a smooth scheme of finite type over a k
- \mathcal{E} is a locally free rank $n \mathcal{O}_X$ -bimodule

•
$$\mathbb{S}^{n.c.}(V)_{ij} = \frac{V^{i*} \otimes_L \cdots \otimes_L V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$$

•
$$\mathbb{S}^{n.c.}(V)_{ii} = L$$
,

•
$$S^{n.c.}(V)_{ij} = 0$$
 if $i > j$,

• multiplication induced by \otimes_L .

More generally, if

- X is a smooth scheme of finite type over a k
- \mathcal{E} is a locally free rank $n \mathcal{O}_X$ -bimodule

Van den Bergh defines $\mathbb{S}^{n.c.}(\mathcal{E})$.

Adam Nyman

・ロト ・聞 ト ・ 国 ト ・ 国 ト

If V is L-central, $\mathbb{S}^{n.c.}(V) \neq \mathbb{S}(V)$.

・ロト ・聞 と ・ 聞 と ・ 聞 と

If V is L-central, $\mathbb{S}^{n.c.}(V) \neq \mathbb{S}(V)$.

If A is a \mathbb{Z} -algebra,

《曰》《聞》《臣》《臣》

If V is L-central,
$$\mathbb{S}^{n.c.}(V) \neq \mathbb{S}(V)$$
.

If A is a \mathbb{Z} -algebra,

• if
$$i \in \mathbb{Z}$$
 let $A(i)_{jk} := A_{j+i,k+i}$.

<ロ> <問> <問> < 国> < 国> < 国>

If V is L-central,
$$\mathbb{S}^{n.c.}(V) \neq \mathbb{S}(V)$$
.

If A is a \mathbb{Z} -algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
- A is *i*-periodic if $A \cong A(i)$.

- 4 回 > - 4 三 >

-≣->

If V is L-central,
$$\mathbb{S}^{n.c.}(V) \neq \mathbb{S}(V)$$
.

If A is a \mathbb{Z} -algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
- A is *i*-periodic if $A \cong A(i)$.

If B is \mathbb{Z} -graded algebra, define $\check{B}_{ij} := B_{j-i}$.

⊡ ▶ € ▶

If V is L-central,
$$\mathbb{S}^{n.c.}(V) \neq \mathbb{S}(V)$$
.

If A is a \mathbb{Z} -algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
- A is *i*-periodic if $A \cong A(i)$.

If B is \mathbb{Z} -graded algebra, define $\check{B}_{ij} := B_{j-i}$.

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a \mathbb{Z} -graded ring B such that $A \cong \check{B}$,

< ロ > < 同 > < 三 >

If V is L-central,
$$\mathbb{S}^{n.c.}(V) \neq \mathbb{S}(V)$$
.

If A is a \mathbb{Z} -algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
- A is *i*-periodic if $A \cong A(i)$.

If B is \mathbb{Z} -graded algebra, define $\check{B}_{ij} := B_{j-i}$.

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a \mathbb{Z} -graded ring B such that $A \cong \check{B}$, and $\operatorname{Gr} A \equiv \operatorname{Gr} B$.

Image: A □ > A

If V is L-central,
$$\mathbb{S}^{n.c.}(V) \neq \mathbb{S}(V)$$
.

If A is a \mathbb{Z} -algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
- A is *i*-periodic if $A \cong A(i)$.

If B is \mathbb{Z} -graded algebra, define $\check{B}_{ij} := B_{j-i}$.

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a \mathbb{Z} -graded ring B such that $A \cong \check{B}$, and $\operatorname{Gr} A \equiv \operatorname{Gr} B$. It follows that if V is L-central, then

$$\operatorname{Gr}\mathbb{S}^{n.c.}(V) \equiv \operatorname{Gr}\mathbb{S}(V).$$

<u>Part 4</u>

Arithmetic Noncommutative Projective Lines

《曰》《聞》《臣》《臣》

Basic Properties

Adam Nyman

<ロ> <問> <問> < 国> < 国> < 国>

Basic Properties

• V a rank 2 (k-central) two-sided vector space /L

- 4 回 2 - 4 □ 2 - 4 □

Basic Properties

- V a rank 2 (k-central) two-sided vector space /L
- TorsS^{n.c.}(V) = full subcat. of GrS^{n.c.}(V) of direct limits of right bounded modules
- V a rank 2 (k-central) two-sided vector space /L
- TorsS^{n.c.}(V) = full subcat. of GrS^{n.c.}(V) of direct limits of right bounded modules
- $\mathbb{P}^{n.c.}(V) := \operatorname{Gr}\mathbb{S}^{n.c.}(V)/\operatorname{Tors}\mathbb{S}^{n.c.}(V)$,

· < @ > < 문 > < 문 > · · 문

- V a rank 2 (k-central) two-sided vector space /L
- TorsS^{n.c.}(V) = full subcat. of GrS^{n.c.}(V) of direct limits of right bounded modules
- $\mathbb{P}^{n.c.}(V) := \operatorname{Gr}\mathbb{S}^{n.c.}(V)/\operatorname{Tors}\mathbb{S}^{n.c.}(V)$,

Theorem

The noncommutative space $\mathbb{P}^{n.c.}(V)$

イロン イヨン イヨン イヨン

2

- V a rank 2 (k-central) two-sided vector space /L
- TorsS^{n.c.}(V) = full subcat. of GrS^{n.c.}(V) of direct limits of right bounded modules
- $\mathbb{P}^{n.c.}(V) := \operatorname{Gr}\mathbb{S}^{n.c.}(V)/\operatorname{Tors}\mathbb{S}^{n.c.}(V)$,

Theorem

The noncommutative space $\mathbb{P}^{n.c.}(V)$

• is a locally noetherian category (Van den Bergh (2000)),

イロン イヨン イヨン イヨン

- V a rank 2 (k-central) two-sided vector space /L
- TorsS^{n.c.}(V) = full subcat. of GrS^{n.c.}(V) of direct limits of right bounded modules
- $\mathbb{P}^{n.c.}(V) := \operatorname{Gr}\mathbb{S}^{n.c.}(V)/\operatorname{Tors}\mathbb{S}^{n.c.}(V)$,

Theorem

The noncommutative space $\mathbb{P}^{n.c.}(V)$

• is a locally noetherian category (Van den Bergh (2000)),

イロト イヨト イヨト イヨト

2

• is Ext-finite (N. (2004)),

- V a rank 2 (k-central) two-sided vector space /L
- TorsS^{n.c.}(V) = full subcat. of GrS^{n.c.}(V) of direct limits of right bounded modules
- $\mathbb{P}^{n.c.}(V) := \operatorname{Gr}\mathbb{S}^{n.c.}(V)/\operatorname{Tors}\mathbb{S}^{n.c.}(V)$,

Theorem

The noncommutative space $\mathbb{P}^{n.c.}(V)$

- is a locally noetherian category (Van den Bergh (2000)),
- is Ext-finite (N. (2004)),
- has a Serre functor (Chan and N. (2009)) induced by [-2]: $Gr S^{n.c.}(V) \rightarrow Gr S^{n.c.}(V)$,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- V a rank 2 (k-central) two-sided vector space /L
- TorsS^{n.c.}(V) = full subcat. of GrS^{n.c.}(V) of direct limits of right bounded modules
- $\mathbb{P}^{n.c.}(V) := \operatorname{Gr}\mathbb{S}^{n.c.}(V)/\operatorname{Tors}\mathbb{S}^{n.c.}(V)$,

Theorem

The noncommutative space $\mathbb{P}^{n.c.}(V)$

- is a locally noetherian category (Van den Bergh (2000)),
- is Ext-finite (N. (2004)),
- has a Serre functor (Chan and N. (2009)) induced by [-2]: $Gr S^{n.c.}(V) \rightarrow Gr S^{n.c.}(V)$,
- has homological dimension 1 (Chan and N. (2009)), and

イロン イ部 とくほど くほとう ほ

- V a rank 2 (k-central) two-sided vector space /L
- TorsS^{n.c.}(V) = full subcat. of GrS^{n.c.}(V) of direct limits of right bounded modules
- $\mathbb{P}^{n.c.}(V) := \operatorname{Gr}\mathbb{S}^{n.c.}(V)/\operatorname{Tors}\mathbb{S}^{n.c.}(V)$,

Theorem

The noncommutative space $\mathbb{P}^{n.c.}(V)$

- is a locally noetherian category (Van den Bergh (2000)),
- is Ext-finite (N. (2004)),
- has a Serre functor (Chan and N. (2009)) induced by [-2]: $Gr S^{n.c.}(V) \rightarrow Gr S^{n.c.}(V)$,
- has homological dimension 1 (Chan and N. (2009)), and

イロン イ部ン イヨン イヨン 三日

• has a tilting object \mathcal{T} .

@ ▶ ∢ ≣ ▶

< ≣ ►

Conjecture (Artin)

Every noncommutative surface not finite over its center is birational to a noncommutative ruled surface.

個 と く ヨ と く ヨ と

Conjecture (Artin)

Every noncommutative surface not finite over its center is birational to a noncommutative ruled surface.

If C, C' are \mathbb{Z} -graded,

 $\operatorname{Proj} C$ birational to $\operatorname{Proj} C'$

means deg. 0 comp. of skew field of C equals that of C'.

Conjecture (Artin)

Every noncommutative surface not finite over its center is birational to a noncommutative ruled surface.

```
If C, C' are \mathbb{Z}-graded,
```

```
\operatorname{Proj} C birational to \operatorname{Proj} C'
```

means deg. 0 comp. of skew field of C equals that of C'.

Relationship to $\mathbb{P}^{n.c.}(V)$

Generic fibre of noncommutative ruled surface $\cong \mathbb{P}^{n.c.}(V)$ where V is two-sided over L

・ 回 と ・ ヨ と ・ ヨ と

Conjecture (Artin)

Every noncommutative surface not finite over its center is birational to a noncommutative ruled surface.

```
If C, C' are \mathbb{Z}-graded,
```

```
\operatorname{Proj} C birational to \operatorname{Proj} C'
```

means deg. 0 comp. of skew field of C equals that of C'.

Relationship to $\mathbb{P}^{n.c.}(V)$

Generic fibre of noncommutative ruled surface $\cong \mathbb{P}^{n.c.}(V)$ where V is two-sided over L = function field of smooth curve

(4回) (4回) (4回)

Conjecture (Artin)

Every noncommutative surface not finite over its center is birational to a noncommutative ruled surface.

```
If C, C' are \mathbb{Z}-graded,
```

```
\operatorname{Proj} C birational to \operatorname{Proj} C'
```

means deg. 0 comp. of skew field of C equals that of C'.

Relationship to $\mathbb{P}^{n.c.}(V)$

Generic fibre of noncommutative ruled surface $\cong \mathbb{P}^{n.c.}(V)$ where V is two-sided over L = function field of smooth curve

Birational invariants of noncommutative projective lines $\mathbb{P}^{n.c.}(V)$ may suggest birational invariants of a noncommutative surface.

Toy Models

Adam Nyman

"The motivation for a physicist to study 1-dimensional problems is best illustrated by the story of the man who, returning home late at night after an alcoholic evening, was scanning the ground for his key under a lamppost; he knew, to be sure, that he had dropped it somewhere else, but only under the lamppost was there enough light to conduct a proper search." -F. Calogero "The motivation for a physicist to study 1-dimensional problems is best illustrated by the story of the man who, returning home late at night after an alcoholic evening, was scanning the ground for his key under a lamppost; he knew, to be sure, that he had dropped it somewhere else, but only under the lamppost was there enough light to conduct a proper search." -F. Calogero

Thanks Thomas Nevins.

Adam Nyman

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let X = locally noetherian noncommutative space.

《曰》《聞》《臣》《臣》

Let X = locally noetherian noncommutative space.

Definition (S.P. Smith (2001))

イロン イヨン イヨン イヨン

Let X = locally noetherian noncommutative space.

Definition (S.P. Smith (2001))

X is integral if \exists indecomposable injective \mathcal{E}_X (a big injective) such that

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

2

Let X = locally noetherian noncommutative space.

Definition (S.P. Smith (2001))

X is integral if \exists indecomposable injective \mathcal{E}_X (a big injective) such that

• End_X(\mathcal{E}_X) is a division ring and

個 と く ヨ と く ヨ と

Let X = locally noetherian noncommutative space.

Definition (S.P. Smith (2001))

X is integral if \exists indecomposable injective \mathcal{E}_X (a big injective) such that

- End_X(\mathcal{E}_X) is a division ring and
- 2 every object of X is a subquotient of $\oplus \mathcal{E}_X$.

個 と く ヨ と く ヨ と

Let X = locally noetherian noncommutative space.

Definition (S.P. Smith (2001))

X is integral if \exists indecomposable injective \mathcal{E}_X (a big injective) such that

- End_X(\mathcal{E}_X) is a division ring and
- 2 every object of X is a subquotient of $\oplus \mathcal{E}_X$.

A noetherian scheme Y is integral in the above sense iff Y is integral in the usual sense, and \mathcal{E}_{QcohY} is the constant sheaf with sections = k(Y).

白 ト イヨト イヨト

Let X = locally noetherian noncommutative space.

Definition (S.P. Smith (2001))

X is integral if \exists indecomposable injective \mathcal{E}_X (a big injective) such that

- End_X(\mathcal{E}_X) is a division ring and
- 2 every object of X is a subquotient of $\oplus \mathcal{E}_X$.

A noetherian scheme Y is integral in the above sense iff Y is integral in the usual sense, and \mathcal{E}_{QcohY} is the constant sheaf with sections = k(Y).

Theorem (N. 2013)

The noncommutative space $\mathbb{P}^{n.c.}(V)$ is integral.

Adam Nyman

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

• $M \in X$ is torsion if $Hom_X(M, \mathcal{E}_X) = 0$.

《曰》《聞》《臣》《臣》

- $M \in X$ is torsion if $Hom_X(M, \mathcal{E}_X) = 0$.
- rank $M := \text{length of Hom}_X(M, \mathcal{E}_X)$ as left $\text{End}_X(\mathcal{E}_X)$ -module.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

- $M \in X$ is torsion if $Hom_X(M, \mathcal{E}_X) = 0$.
- rank $M := \text{length of Hom}_X(M, \mathcal{E}_X)$ as left $\text{End}_X(\mathcal{E}_X)$ -module.

Definition

Vector bundles/X =

イロト イヨト イヨト イヨト

2

- $M \in X$ is torsion if $Hom_X(M, \mathcal{E}_X) = 0$.
- rank $M := \text{length of Hom}_X(M, \mathcal{E}_X)$ as left $\text{End}_X(\mathcal{E}_X)$ -module.

Definition

Vector bundles/X = finite rank torsion-free modules.

- $M \in X$ is torsion if $Hom_X(M, \mathcal{E}_X) = 0$.
- rank $M := \text{length of Hom}_X(M, \mathcal{E}_X)$ as left $\text{End}_X(\mathcal{E}_X)$ -module.

Definition

Vector bundles/X = finite rank torsion-free modules.

• Let
$$e_i \mathbb{S}^{n.c.}(V) := \bigoplus_{j \in \mathbb{Z}} \mathbb{S}^{n.c.}(V)_{ij} \in Gr \mathbb{S}^{n.c.}(V)$$
.

- $M \in X$ is torsion if $Hom_X(M, \mathcal{E}_X) = 0$.
- rank $M := \text{length of Hom}_X(M, \mathcal{E}_X)$ as left $\text{End}_X(\mathcal{E}_X)$ -module.

Definition

Vector bundles/X = finite rank torsion-free modules.

• Let
$$e_i \mathbb{S}^{n.c.}(V) := \bigoplus_{j \in \mathbb{Z}} \mathbb{S}^{n.c.}(V)_{ij} \in \mathrm{Gr} \mathbb{S}^{n.c.}(V).$$

• Let
$$\pi : \operatorname{Gr}\mathbb{S}^{n.c.}(V) \to \mathbb{P}^{n.c.}(V)$$
 be the quotient functor.

- $M \in X$ is torsion if $Hom_X(M, \mathcal{E}_X) = 0$.
- rank $M := \text{length of Hom}_X(M, \mathcal{E}_X)$ as left $\text{End}_X(\mathcal{E}_X)$ -module.

Definition

Vector bundles/X = finite rank torsion-free modules.

- Let $e_i \mathbb{S}^{n.c.}(V) := \bigoplus_{j \in \mathbb{Z}} \mathbb{S}^{n.c.}(V)_{ij} \in \mathrm{Gr} \mathbb{S}^{n.c.}(V).$
- Let $\pi : \operatorname{Gr}\mathbb{S}^{n.c.}(V) \to \mathbb{P}^{n.c.}(V)$ be the quotient functor.
- Let 𝒪(i) :=

- $M \in X$ is torsion if $Hom_X(M, \mathcal{E}_X) = 0$.
- rank $M := \text{length of Hom}_X(M, \mathcal{E}_X)$ as left $\text{End}_X(\mathcal{E}_X)$ -module.

Definition

Vector bundles/X = finite rank torsion-free modules.

• Let
$$e_i \mathbb{S}^{n.c.}(V) := \bigoplus_{j \in \mathbb{Z}} \mathbb{S}^{n.c.}(V)_{ij} \in \mathrm{Gr} \mathbb{S}^{n.c.}(V).$$

• Let
$$\pi : \operatorname{Gr}\mathbb{S}^{n.c.}(V) \to \mathbb{P}^{n.c.}(V)$$
 be the quotient functor.

• Let
$$\mathcal{O}(i) := \pi(e_{-i}\mathbb{S}^{n.c.}(V)).$$

- $M \in X$ is torsion if $Hom_X(M, \mathcal{E}_X) = 0$.
- rank $M := \text{length of Hom}_X(M, \mathcal{E}_X)$ as left $\text{End}_X(\mathcal{E}_X)$ -module.

Definition

Vector bundles/X = finite rank torsion-free modules.

• Let
$$e_i \mathbb{S}^{n.c.}(V) := \bigoplus_{j \in \mathbb{Z}} \mathbb{S}^{n.c.}(V)_{ij} \in \mathrm{Gr} \mathbb{S}^{n.c.}(V).$$

• Let
$$\pi : \operatorname{Gr}\mathbb{S}^{n.c.}(V) \to \mathbb{P}^{n.c.}(V)$$
 be the quotient functor.

• Let
$$\mathcal{O}(i) := \pi(e_{-i}\mathbb{S}^{n.c.}(V)).$$

Theorem (N. 2013)

Every vector bundle over $\mathbb{P}^{n.c.}(V)$ is a direct sum of line bundles.

- 4 同 2 4 日 2 4 日 2

- $M \in X$ is torsion if $Hom_X(M, \mathcal{E}_X) = 0$.
- rank $M := \text{length of Hom}_X(M, \mathcal{E}_X)$ as left $\text{End}_X(\mathcal{E}_X)$ -module.

Definition

Vector bundles/X = finite rank torsion-free modules.

• Let
$$e_i \mathbb{S}^{n.c.}(V) := \bigoplus_{j \in \mathbb{Z}} \mathbb{S}^{n.c.}(V)_{ij} \in \mathrm{Gr} \mathbb{S}^{n.c.}(V).$$

• Let
$$\pi$$
 : $Gr\mathbb{S}^{n.c.}(V) \to \mathbb{P}^{n.c.}(V)$ be the quotient functor.

• Let
$$\mathcal{O}(i) := \pi(e_{-i}\mathbb{S}^{n.c.}(V)).$$

Theorem (N. 2013)

Every vector bundle over $\mathbb{P}^{n.c.}(V)$ is a direct sum of line bundles. The line bundles are $\{\mathcal{O}(i)\}_{i\in\mathbb{Z}}$.

- 4 同 2 4 日 2 4 日 2

<u>Part 5</u>

Classification of Noncommutative Projective Lines

Classification Theorem Version 1

Adam Nyman

<ロ> <問> <問> < 国> < 国> < 国>

 $\mathbb{P}^{n.c.}(V) \equiv_k \mathbb{P}^{n.c.}(W)$ if and only if

イロト イヨト イヨト イヨト

 $\mathbb{P}^{n.c.}(V) \equiv_k \mathbb{P}^{n.c.}(W)$ if and only if there exists $\sigma, \tau \in Gal(L/k)$ such that either

 $V \cong L_{\sigma} \otimes_{L} W \otimes_{L} L_{\tau}$

<ロ> <問> <問> < 回> < 回> < □> < □> <

2

 $\mathbb{P}^{n.c.}(V) \equiv_k \mathbb{P}^{n.c.}(W)$ if and only if there exists $\sigma, \tau \in Gal(L/k)$ such that either

$$V \cong L_{\sigma} \otimes_L W \otimes_L L_{\tau}$$
 or $V \cong L_{\sigma} \otimes_L W^* \otimes_L L_{\tau}$.

イロン イヨン イヨン イヨン

2

 $\mathbb{P}^{n.c.}(V) \equiv_k \mathbb{P}^{n.c.}(W)$ if and only if there exists $\sigma, \tau \in \text{Gal}(L/k)$ such that either

$$V \cong L_{\sigma} \otimes_L W \otimes_L L_{\tau}$$
 or $V \cong L_{\sigma} \otimes_L W^* \otimes_L L_{\tau}$.

イロン イヨン イヨン イヨン

2

 (\Leftarrow) proven in greater generality by I. Mori.

Classification Theorem Version 2, Cases 1 and 2

Adam Nyman

<ロ> <問> <問> < 国> < 国> < 国>

Suppose char $k \neq 2$. Then $\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)$ if and only if

イロン イヨン イヨン イヨン

Э

Suppose char $k \neq 2$. Then $\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)$ if and only if **Case 1:** $\exists \sigma_i \in \text{Gal}(L/k)$ such that

 $V_i \cong L_{\sigma_i} \oplus L_{\sigma_i}$.

・ 母 と ・ ヨ と ・ ヨ と

Suppose char $k \neq 2$. Then $\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)$ if and only if **Case 1:** $\exists \sigma_i \in \text{Gal}(L/k)$ such that

$$V_i \cong L_{\sigma_i} \oplus L_{\sigma_i}.$$

In this case, $\mathbb{P}^{n.c.}(V_i) \equiv \operatorname{Qcoh}\mathbb{P}^1$.

・ 回 と ・ ヨ と ・ ヨ と

Suppose char $k \neq 2$. Then $\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)$ if and only if **Case 1:** $\exists \sigma_i \in \text{Gal}(L/k)$ such that

$$V_i \cong L_{\sigma_i} \oplus L_{\sigma_i}.$$

In this case, $\mathbb{P}^{n.c.}(V_i) \equiv \operatorname{Qcoh}\mathbb{P}^1$. **Case 2:** $\exists \sigma_i, \tau_i \in \operatorname{Gal}(L/k)$, with $\sigma_i \neq \tau_i$,

$$V_i \cong L_{\sigma_i} \oplus L_{\tau_i}$$

Suppose char $k \neq 2$. Then $\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)$ if and only if **Case 1:** $\exists \sigma_i \in \text{Gal}(L/k)$ such that

$$V_i \cong L_{\sigma_i} \oplus L_{\sigma_i}.$$

In this case, $\mathbb{P}^{n.c.}(V_i) \equiv \operatorname{Qcoh}\mathbb{P}^1$. **Case 2:** $\exists \sigma_i, \tau_i \in \operatorname{Gal}(L/k)$, with $\sigma_i \neq \tau_i$,

$$V_i \cong L_{\sigma_i} \oplus L_{\tau_i}$$

and under action of $Gal(L/k)^2$ on itself defined by

$$(\alpha,\beta)\cdot(\sigma,\tau):=(\alpha\sigma\beta^{-1},\alpha\tau\beta^{-1})$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

臣

Suppose char $k \neq 2$. Then $\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)$ if and only if **Case 1:** $\exists \sigma_i \in \text{Gal}(L/k)$ such that

$$V_i \cong L_{\sigma_i} \oplus L_{\sigma_i}.$$

In this case, $\mathbb{P}^{n.c.}(V_i) \equiv \operatorname{Qcoh}\mathbb{P}^1$. **Case 2:** $\exists \sigma_i, \tau_i \in \operatorname{Gal}(L/k)$, with $\sigma_i \neq \tau_i$,

$$V_i \cong L_{\sigma_i} \oplus L_{\tau_i}$$

and under action of $Gal(L/k)^2$ on itself defined by

$$(\alpha,\beta)\cdot(\sigma,\tau):=(\alpha\sigma\beta^{-1},\alpha\tau\beta^{-1})$$

御 と く ヨ と く ヨ と …

Э

 $\mathcal{O}_{(\sigma_1,\tau_1)} \cap \{(\sigma_2,\tau_2), (\sigma_2^{-1},\tau_2^{-1}), (\tau_2,\sigma_2), (\tau_2^{-1},\sigma_2^{-1})\} \neq \emptyset.$

Classification Theorem Version 2, Case 3

Adam Nyman

<ロ> <問> <問> < 国> < 国> < 国>

Let $G := \operatorname{Gal}(\overline{L}/L)$. Suppose char $k \neq 2$. Then $\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)$ if and only if **Case 3:** $\exists \lambda_i \in \operatorname{Emb}(L)$ of *G*-orbit size two, such that

 $V_i \cong V(\lambda_i),$

Let $G := \operatorname{Gal}(\overline{L}/L)$. Suppose char $k \neq 2$. Then $\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)$ if and only if **Case 3:** $\exists \lambda_i \in \operatorname{Emb}(L)$ of *G*-orbit size two, such that

 $V_i \cong V(\lambda_i),$

and under the action of $Gal(L/k)^2$ on Emb(L) defined by

$$(\alpha,\beta)\cdot\lambda:=\alpha\lambda\beta^{-1},$$

Either

Let $G := \operatorname{Gal}(\overline{L}/L)$. Suppose char $k \neq 2$. Then $\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)$ if and only if **Case 3:** $\exists \lambda_i \in \operatorname{Emb}(L)$ of *G*-orbit size two, such that

 $V_i \cong V(\lambda_i),$

and under the action of $Gal(L/k)^2$ on Emb(L) defined by

$$(\alpha,\beta)\cdot\lambda:=\alpha\lambda\beta^{-1},$$

Either

•
$$\mathcal{O}_{\lambda_1} \cap \lambda_2^{\mathsf{G}} \neq \emptyset$$
 or

Let $G := \operatorname{Gal}(\overline{L}/L)$. Suppose char $k \neq 2$. Then $\mathbb{P}^{n.c.}(V_1) \equiv \mathbb{P}^{n.c.}(V_2)$ if and only if **Case 3:** $\exists \lambda_i \in \operatorname{Emb}(L)$ of *G*-orbit size two, such that

 $V_i \cong V(\lambda_i),$

and under the action of $Gal(L/k)^2$ on Emb(L) defined by

$$(\alpha,\beta)\cdot\lambda:=\alpha\lambda\beta^{-1},$$

Either

•
$$\mathcal{O}_{\lambda_1} \cap \lambda_2^G \neq \emptyset$$
 or
• $\mathcal{O}_{\lambda_1} \cap \mu_2^G \neq \emptyset$ where $\mu_2 = (\overline{\lambda_2})^{-1}|_L$.

Part 6

Classification of Isomorphisms $\mathbb{P}^{n.c.}(V) \rightarrow \mathbb{P}^{n.c.}(W)$

・ロン ・雪 と ・ ヨ と ・ ヨ と ・

æ

Adam Nyman

Adam Nyman

<ロ> <問> <問> < 国> < 国> < 国>

$$\phi: V \xrightarrow{\cong} W$$
 induces $\phi: \mathbb{S}^{n.c.}(V) \xrightarrow{\cong} \mathbb{S}^{n.c.}(W)$.

<ロ> <問> <問> < 国> < 国> < 国>

$$\phi: V \xrightarrow{\cong} W$$
 induces $\phi: \mathbb{S}^{n.c.}(V) \xrightarrow{\cong} \mathbb{S}^{n.c.}(W)$.

The equivalence Φ

Adam Nyman

イロト イヨト イヨト イヨト

臣

$$\phi: V \xrightarrow{\cong} W$$
 induces $\phi: \mathbb{S}^{n.c.}(V) \xrightarrow{\cong} \mathbb{S}^{n.c.}(W)$.

The equivalence Φ

Definition of Φ : $Gr\mathbb{S}^{n.c.}(V) \rightarrow Gr\mathbb{S}^{n.c.}(W)$:

イロト イヨト イヨト イヨト

$$\phi: V \xrightarrow{\cong} W$$
 induces $\phi: \mathbb{S}^{n.c.}(V) \xrightarrow{\cong} \mathbb{S}^{n.c.}(W)$.

The equivalence Φ

Definition of Φ : $Gr\mathbb{S}^{n.c.}(V) \rightarrow Gr\mathbb{S}^{n.c.}(W)$:

• $\Phi(M)_i := M_i$ as a set, with $\mathbb{S}^{n.c.}(W)$ -module structure

$$\Phi(M)_i \otimes \mathbb{S}^{n.c.}(W)_{ij} \stackrel{1 \otimes \phi^{-1}}{\to} \Phi(M)_i \otimes \mathbb{S}^{n.c.}(V)_{ij} \stackrel{\mu}{\to} \Phi(M)_j.$$

2

$$\phi: V \xrightarrow{\cong} W$$
 induces $\phi: \mathbb{S}^{n.c.}(V) \xrightarrow{\cong} \mathbb{S}^{n.c.}(W)$.

The equivalence Φ

Definition of Φ : $Gr\mathbb{S}^{n.c.}(V) \rightarrow Gr\mathbb{S}^{n.c.}(W)$:

• $\Phi(M)_i := M_i$ as a set, with $\mathbb{S}^{n.c.}(W)$ -module structure

$$\Phi(M)_i \otimes \mathbb{S}^{n.c.}(W)_{ij} \stackrel{1 \otimes \phi^{-1}}{\to} \Phi(M)_i \otimes \mathbb{S}^{n.c.}(V)_{ij} \stackrel{\mu}{\to} \Phi(M)_j.$$

イロト イヨト イヨト イヨト

• If $f: M \to N$ we define $\Phi(f)_i(m) = f(m)$.

$$\phi: V \xrightarrow{\cong} W$$
 induces $\phi: \mathbb{S}^{n.c.}(V) \xrightarrow{\cong} \mathbb{S}^{n.c.}(W)$.

The equivalence Φ

Definition of Φ : $Gr\mathbb{S}^{n.c.}(V) \rightarrow Gr\mathbb{S}^{n.c.}(W)$:

• $\Phi(M)_i := M_i$ as a set, with $\mathbb{S}^{n.c.}(W)$ -module structure

$$\Phi(M)_i \otimes \mathbb{S}^{n.c.}(W)_{ij} \stackrel{1 \otimes \phi^{-1}}{\to} \Phi(M)_i \otimes \mathbb{S}^{n.c.}(V)_{ij} \stackrel{\mu}{\to} \Phi(M)_j.$$

《口》《聞》《臣》《臣》 三臣

• If $f: M \to N$ we define $\Phi(f)_i(m) = f(m)$.

 Φ descends uniquely to an equivalence $\Phi : \mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(W)$.

Adam Nyman

- 《圖》 《문》 《문》

Adam Nyman

- 《圖》 《문》 《문》

• For $i \in \mathbb{Z}$, let $\sigma_i \in \text{Gal}(L/k)$,

▲圖▶ ▲屋▶ ▲屋▶

- For $i \in \mathbb{Z}$, let $\sigma_i \in \text{Gal}(L/k)$,
- Let $\sigma := {\sigma_i}_{i \in \mathbb{Z}}$, and

▲圖▶ ▲屋▶ ▲屋▶

- For $i \in \mathbb{Z}$, let $\sigma_i \in \text{Gal}(L/k)$,
- Let $\sigma := {\sigma_i}_{i \in \mathbb{Z}}$, and
- If A denotes a \mathbb{Z} -algebra, let A_{σ} denote the \mathbb{Z} -algebra with

$$A_{\sigma,ij} := L_{\sigma_i^{-1}} \otimes A_{ij} \otimes L_{\sigma_j}$$

and with multiplication induced by that of A.

- For $i \in \mathbb{Z}$, let $\sigma_i \in \text{Gal}(L/k)$,
- Let $\sigma := {\sigma_i}_{i \in \mathbb{Z}}$, and
- If A denotes a \mathbb{Z} -algebra, let A_{σ} denote the \mathbb{Z} -algebra with

$$A_{\sigma,ij} := L_{\sigma_i^{-1}} \otimes A_{ij} \otimes L_{\sigma_j}$$

同 と く ヨ と く ヨ と

and with multiplication induced by that of A.

The equivalence T_{σ} (Van den Bergh)

Definition of T_{σ} : Gr $A \rightarrow$ Gr A_{σ} :

- For $i \in \mathbb{Z}$, let $\sigma_i \in \text{Gal}(L/k)$,
- Let $\sigma := {\sigma_i}_{i \in \mathbb{Z}}$, and
- If A denotes a \mathbb{Z} -algebra, let A_{σ} denote the \mathbb{Z} -algebra with

$$A_{\sigma,ij} := L_{\sigma_i^{-1}} \otimes A_{ij} \otimes L_{\sigma_j}$$

and with multiplication induced by that of A.

The equivalence T_{σ} (Van den Bergh)

Definition of T_{σ} : Gr $A \rightarrow$ Gr A_{σ} :

• $T_{\sigma}(M)_i := M_i \otimes L_{\sigma_i}$ with multiplication induced by that of A, and

個 と く ヨ と く ヨ と

- For $i \in \mathbb{Z}$, let $\sigma_i \in \text{Gal}(L/k)$,
- Let $\sigma := {\sigma_i}_{i \in \mathbb{Z}}$, and
- If A denotes a \mathbb{Z} -algebra, let A_{σ} denote the \mathbb{Z} -algebra with

$$A_{\sigma,ij} := L_{\sigma_i^{-1}} \otimes A_{ij} \otimes L_{\sigma_j}$$

and with multiplication induced by that of A.

The equivalence T_{σ} (Van den Bergh)

Definition of T_{σ} : Gr $A \rightarrow$ Gr A_{σ} :

• $T_{\sigma}(M)_i := M_i \otimes L_{\sigma_i}$ with multiplication induced by that of A, and

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

• If $f: M \to N$ we define $T_{\sigma}(f)_i = f_i \otimes L_{\sigma_i}$.

- For $i \in \mathbb{Z}$, let $\sigma_i \in \text{Gal}(L/k)$,
- Let $\sigma := {\sigma_i}_{i \in \mathbb{Z}}$, and
- If A denotes a \mathbb{Z} -algebra, let A_{σ} denote the \mathbb{Z} -algebra with

$$\mathsf{A}_{\sigma,ij} := \mathsf{L}_{\sigma_i^{-1}} \otimes \mathsf{A}_{ij} \otimes \mathsf{L}_{\sigma_j}$$

and with multiplication induced by that of A.

The equivalence T_{σ} (Van den Bergh)

Definition of T_{σ} : Gr $A \rightarrow$ Gr A_{σ} :

• $T_{\sigma}(M)_i := M_i \otimes L_{\sigma_i}$ with multiplication induced by that of A, and

< 注 → < 注 → □ 注

• If $f: M \to N$ we define $T_{\sigma}(f)_i = f_i \otimes L_{\sigma_i}$.

 T_{σ} descends uniquely to an equivalence T_{σ} : $\operatorname{Proj} A \to \operatorname{Proj} A_{\sigma}$.

A Special Twist

Adam Nyman

A Special Twist

For $\delta, \tau \in \operatorname{Gal}(L/k)$

$$\zeta_i = \begin{cases} \delta \text{ if } i \text{ is even} \\ \tau \text{ if } i \text{ is odd,} \end{cases}$$
For $\delta, \tau \in \operatorname{Gal}(L/k)$

$$\zeta_i = \begin{cases} \delta \text{ if } i \text{ is even} \\ \tau \text{ if } i \text{ is odd,} \end{cases}$$

In this case there is a canonical isomorphism

$$\mathbb{S}^{n.c.}(V)_{\zeta} \to \mathbb{S}^{n.c.}(L_{\delta^{-1}} \otimes V \otimes L_{\tau}).$$

・ロト ・回ト ・ヨト ・ヨト

For $\delta, \tau \in \operatorname{Gal}(L/k)$

$$\zeta_i = \begin{cases} \delta \text{ if } i \text{ is even} \\ \tau \text{ if } i \text{ is odd,} \end{cases}$$

In this case there is a canonical isomorphism

$$\mathbb{S}^{n.c.}(V)_{\zeta} \to \mathbb{S}^{n.c.}(L_{\delta^{-1}} \otimes V \otimes L_{\tau}).$$

イロト イヨト イヨト イヨト

æ

Notation

$$\mathcal{T}_{\delta,\tau}:\mathbb{P}^{n.c.}(V)\to\mathbb{P}^{n.c.}(\mathcal{L}_{\delta^{-1}}\otimes V\otimes \mathcal{L}_{\tau})$$

Canonical Equivalences 3: Shifts

Adam Nyman

<ロ> <問> <問> < 国> < 国> < 国>

臣

Definition of [i]: $\operatorname{Gr}\mathbb{S}^{n.c.}(V) \to \operatorname{Gr}\mathbb{S}^{n.c.}(V)$ $(i \in \mathbb{Z})$:

• $M[i]_j := M_{j+i}$ with multiplication induced from mult. on M

• If
$$f: M \to N$$
, $f[i]_j = f_{j+i}$.

イロト イヨト イヨト イヨト

2

Definition of [i]: $\operatorname{Gr}\mathbb{S}^{n.c.}(V) \to \operatorname{Gr}\mathbb{S}^{n.c.}(V)$ $(i \in \mathbb{Z})$:

- $M[i]_j := M_{j+i}$ with multiplication induced from mult. on M
- If $f: M \to N$, $f[i]_j = f_{j+i}$.

Problem

If *i* is odd, M[i] does **not** inherit $\mathbb{S}^{n.c.}(V)$ -module mult. from M!

Definition of [i]: $\operatorname{Gr}\mathbb{S}^{n.c.}(V) \to \operatorname{Gr}\mathbb{S}^{n.c.}(V)$ $(i \in \mathbb{Z})$:

- $M[i]_j := M_{j+i}$ with multiplication induced from mult. on M
- If $f: M \to N$, $f[i]_j = f_{j+i}$.

Problem

If *i* is odd, M[i] does **not** inherit $\mathbb{S}^{n.c.}(V)$ -module mult. from M!But M[i] does have a $\mathbb{S}^{n.c.}(V^*)$ -module structure (I. Mori)

Definition of [i]: $\operatorname{Gr}\mathbb{S}^{n.c.}(V) \to \operatorname{Gr}\mathbb{S}^{n.c.}(V)$ $(i \in \mathbb{Z})$:

- $M[i]_j := M_{j+i}$ with multiplication induced from mult. on M
- If $f: M \to N$, $f[i]_j = f_{j+i}$.

Problem

If *i* is odd, M[i] does **not** inherit $\mathbb{S}^{n.c.}(V)$ -module mult. from M!But M[i] does have a $\mathbb{S}^{n.c.}(V^*)$ -module structure (I. Mori)

$$[i]: \mathbb{P}^{n.c.}(V) \to \begin{cases} \mathbb{P}^{n.c.}(V) & \text{if } i \text{ is even} \\ \mathbb{P}^{n.c.}(V^*) & \text{if } i \text{ is odd} \end{cases}$$

Classification of Isomorphisms

Adam Nyman

・ロト ・回ト ・ヨト

æ

_ र ≣ ।>

If $F : \mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(W)$ is k-linear equivalence, there exists

(김희) 김 말에 귀엽이 말

If $F : \mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(W)$ is k-linear equivalence, there exists • $i \in \mathbb{Z}$,

If $F : \mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(W)$ is *k*-linear equivalence, there exists • $i \in \mathbb{Z}$.

• $\sigma, \tau \in Gal(L/k)$, and

(김희) 김 말에 귀엽이 말

If $F : \mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(W)$ is *k*-linear equivalence, there exists • $i \in \mathbb{Z}$.

- $\sigma, \tau \in \mathsf{Gal}(L/k)$, and
- an isomorphism $\phi: L_{\sigma^{-1}} \otimes_L V \otimes_L L_{\tau} \to W^{-i^*}$

· · @ · · · 글 · · · 글 · · · 글

If $F : \mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(W)$ is k-linear equivalence, there exists • $i \in \mathbb{Z}$,

• $\sigma, \tau \in \mathsf{Gal}\ (L/k)$, and

• an isomorphism $\phi: L_{\sigma^{-1}} \otimes_L V \otimes_L L_{\tau} \to W^{-i^*}$

such that

$$F\cong [i]\circ \Phi\circ T_{\sigma,\tau}.$$

(김희) 김 말에 귀엽이 말

If $F : \mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(W)$ is k-linear equivalence, there exists • $i \in \mathbb{Z}$,

- $\sigma, \tau \in \mathsf{Gal}\ (L/k)$, and
- an isomorphism $\phi: L_{\sigma^{-1}} \otimes_L V \otimes_L L_{\tau} \to W^{-i^*}$

such that

$$F\cong [i]\circ \Phi\circ T_{\sigma,\tau}.$$

・ 回 ト ・ ヨ ト ・ ヨ ト …

Furthermore,

• i, σ and τ are unique up to natural equivalence and

If $F : \mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(W)$ is k-linear equivalence, there exists • $i \in \mathbb{Z}$,

• $\sigma, \tau \in \mathsf{Gal}\ (L/k)$, and

• an isomorphism $\phi: L_{\sigma^{-1}} \otimes_L V \otimes_L L_{\tau} \to W^{-i^*}$

such that

$$F\cong [i]\circ \Phi\circ T_{\sigma,\tau}.$$

・ 回 ト ・ ヨ ト ・ ヨ ト …

Furthermore,

• *i*, σ and τ are unique up to natural equivalence and

•
$$\Phi \equiv \Phi' \Leftrightarrow$$
 there exist $\alpha, \beta \in L^*$ such that $\phi' \circ \phi^{-1}(w) = \alpha \cdot w \cdot \beta$ for all $w \in W^{-i*}$

If $F : \mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(W)$ is k-linear equivalence, there exists • $i \in \mathbb{Z}$,

• $\sigma, \tau \in \mathsf{Gal}\ (L/k)$, and

• an isomorphism $\phi: L_{\sigma^{-1}} \otimes_L V \otimes_L L_{\tau} \to W^{-i^*}$

such that

$$F\cong [i]\circ \Phi\circ T_{\sigma,\tau}.$$

Furthermore,

• *i*, σ and τ are unique up to natural equivalence and

•
$$\Phi \equiv \Phi' \Leftrightarrow$$
 there exist $\alpha, \beta \in L^*$ such that $\phi' \circ \phi^{-1}(w) = \alpha \cdot w \cdot \beta$ for all $w \in W^{-i*}$

Remark

 $[\Phi]$ also classified.

<u>Part 7</u>

Automorphism Groups

æ

Adam Nyman

Aut $\mathbb{P}^{n.c.}(V)$, Stab V and Aut V

Adam Nyman

Aut $\mathbb{P}^{n.c.}(V) :=$ the set equivalence classes of *k*-linear shift-free equivalences $\mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(V)$, with composition induced by composition of functors.

Aut $\mathbb{P}^{n.c.}(V) :=$ the set equivalence classes of *k*-linear shift-free equivalences $\mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(V)$, with composition induced by composition of functors.

To describe it: need

Definition of Stab V

Stab V = subgroup of Gal $(L/k) \times$ Gal (L/k) consisting of (σ, τ) such that $L_{\sigma^{-1}} \otimes_L V \otimes_L L_{\tau} \cong V$

Aut $\mathbb{P}^{n.c.}(V) :=$ the set equivalence classes of *k*-linear shift-free equivalences $\mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(V)$, with composition induced by composition of functors.

To describe it: need

Definition of Stab V

Stab V = subgroup of Gal $(L/k) \times$ Gal (L/k) consisting of (σ, τ) such that $L_{\sigma^{-1}} \otimes_L V \otimes_L L_{\tau} \cong V$

・ロン ・回と ・ヨン ・ヨン

æ

Definition of Aut V

Aut V = the set of isomorphisms $V \rightarrow V$

Adam Nyman

Aut $\mathbb{P}^{n.c.}(V) :=$ the set equivalence classes of *k*-linear shift-free equivalences $\mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(V)$, with composition induced by composition of functors.

To describe it: need

Definition of Stab V

Stab V = subgroup of Gal $(L/k) \times$ Gal (L/k) consisting of (σ, τ) such that $L_{\sigma^{-1}} \otimes_L V \otimes_L L_{\tau} \cong V$

Definition of Aut V

Aut V = the set of isomorphisms $V \to V$ modulo the relation defined by setting $\phi' \equiv \phi \Leftrightarrow$ there exist $\alpha, \beta \in L^*$ such that $\phi' \circ \phi^{-1}(v) = \alpha \cdot v \cdot \beta$ for all $v \in V$.

2

The Automorphism Group

Adam Nyman

- 4 副 🖌 4 国 🕨 - 4 国 🕨

There exists homomorphism $\psi:\mathsf{Stab}\ V\to\mathsf{End}\ (\mathsf{Aut}\ (V))$ such that

Adam Nyman

- 4 回 2 - 4 □ 2 - 4 □

There exists homomorphism ψ : Stab $V \rightarrow$ End (Aut (V)) such that

Aut
$$\mathbb{P}^{n.c.}(V) \cong$$
 Aut $V \rtimes_{\psi}$ Stab V^{op} .

イロト イヨト イヨト イヨト

Adam Nyman

<ロ> <問> <問> < 国> < 国> < 国>

Let $V = L_{\sigma} \oplus L_{\sigma}$. Then

《曰》《聞》《臣》《臣》

Let $V = L_{\sigma} \oplus L_{\sigma}$. Then • Stab $V \cong \text{Gal}(L/k)$ and

2

- Let $V = L_{\sigma} \oplus L_{\sigma}$. Then
 - Stab $V \cong$ Gal (L/k) and
 - Aut $V \cong PGL_2(L)$.

▲圖▶ ▲理▶ ▲理▶

Let $V = L_{\sigma} \oplus L_{\sigma}$. Then

- Stab $V \cong$ Gal (L/k) and
- Aut $V \cong PGL_2(L)$.

Then ψ : Stab $V \rightarrow$ End (Aut (V)) is the homomorphism

伺 と く き と く き と

Let $V = L_{\sigma} \oplus L_{\sigma}$. Then

- Stab $V \cong$ Gal (L/k) and
- Aut $V \cong PGL_2(L)$.

Then ψ : Stab $V \rightarrow$ End (Aut (V)) is the homomorphism

 ψ : Gal $(L/k) \rightarrow \text{End} (\text{PGL}_2(L))$

個 と く ヨ と く ヨ と

Let $V = L_{\sigma} \oplus L_{\sigma}$. Then • Stab $V \cong \text{Gal}(L/k)$ and • Aut $V \cong \text{PGL}_2(L)$. Then ψ : Stab $V \to \text{End}(\text{Aut}(V))$ is the homomorphism ψ : Gal $(L/k) \to \text{End}(\text{PGL}_2(L))$ defined by

 $\psi(\sigma)[(a_{ij})] = [(\sigma(a_{ij}))]$

Adam Nyman

Adam Nyman

<ロ> <問> <問> < 国> < 国> < 国>

Let $V = L_{\sigma} \oplus L_{\tau}$ with $\sigma \neq \tau$.

《曰》《聞》《臣》《臣》

Let
$$V = L_{\sigma} \oplus L_{\tau}$$
 with $\sigma \neq \tau$. Then
• Stab $V = \{(g, h) | \{g^{-1}\sigma h, g^{-1}\tau h\} = \{\sigma, \tau\}\}$ and

Let
$$V = L_{\sigma} \oplus L_{\tau}$$
 with $\sigma \neq \tau$. Then

• Stab
$$V = \{(g, h) | \{g^{-1}\sigma h, g^{-1}\tau h\} = \{\sigma, \tau\}\}$$
 and

There are two types of elements in Stab V.

- 4 副 🖌 4 国 🕨 - 4 国 🕨
Let
$$V = L_{\sigma} \oplus L_{\tau}$$
 with $\sigma \neq \tau$. Then

• Stab
$$V = \{(g, h) | \{g^{-1}\sigma h, g^{-1}\tau h\} = \{\sigma, \tau\}\}$$
 and

There are two types of elements in Stab V.

• Aut $V \cong L^* \times L^* / \{ (\alpha \sigma(\beta), \alpha \tau(\beta)) | \alpha, \beta \in L^* \}$

個 と く ヨ と く ヨ と

Let
$$V = L_{\sigma} \oplus L_{ au}$$
 with $\sigma
eq au$. Then

• Stab
$$V = \{(g, h) | \{g^{-1}\sigma h, g^{-1}\tau h\} = \{\sigma, \tau\}\}$$
 and

There are two types of elements in Stab V.

• Aut $V \cong L^* \times L^* / \{ (\alpha \sigma(\beta), \alpha \tau(\beta)) | \alpha, \beta \in L^* \}$ Then ψ : Stab $V \to$ End (Aut (V)) is defined by

 $\psi((g,h))[(a,b)] = [(g(a),g(b))]$

・ 回 と ・ ヨ と ・ ヨ と …

if $g^{-1}\sigma h = \sigma$

Let
$$V = L_{\sigma} \oplus L_{\tau}$$
 with $\sigma \neq \tau$. Then

• Stab
$$V = \{(g, h) | \{g^{-1}\sigma h, g^{-1}\tau h\} = \{\sigma, \tau\}\}$$
 and

There are two types of elements in Stab V.

• Aut $V \cong L^* \times L^* / \{ (\alpha \sigma(\beta), \alpha \tau(\beta)) | \alpha, \beta \in L^* \}$ Then ψ : Stab $V \to \text{End} (\text{Aut} (V))$ is defined by

 $\psi((g,h))[(a,b)] = [(g(a),g(b))]$

 $\text{if }g^{-1}\sigma h=\sigma \text{ and }$

 $\psi((g, h))[(a, b)] = [(g(b), g(a))]$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

if $g^{-1}\sigma h = \tau$ and

Let
$$V = L_{\sigma} \oplus L_{\tau}$$
 with $\sigma \neq \tau$. Then

• Stab
$$V = \{(g, h) | \{g^{-1}\sigma h, g^{-1}\tau h\} = \{\sigma, \tau\}\}$$
 and

There are two types of elements in Stab V.

• Aut $V \cong L^* \times L^* / \{ (\alpha \sigma(\beta), \alpha \tau(\beta)) | \alpha, \beta \in L^* \}$ Then ψ : Stab $V \to \text{End} (\text{Aut} (V))$ is defined by

$$\psi((g,h))[(a,b)] = [(g(a),g(b))]$$

 $\text{if }g^{-1}\sigma h=\sigma \text{ and }$

$$\psi((g, h))[(a, b)] = [(g(b), g(a))]$$

if $g^{-1}\sigma h = \tau$ and

In the special case that V is not simple and Gal(L/k) is cyclic the result was obtained by Kussin.

Adam Nyman

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

Let $V = V(\lambda) = {}_1L \lor \lambda(L)_{\lambda}$.

Adam Nyman

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Let $V = V(\lambda) = {}_1L \lor \lambda(L)_{\lambda}$. Then

• Stab $V = \{(g, h) \in Gal (L/k) \times Gal (L/k) | (g^{-1}\lambda h)^G = \lambda^G \}$ and

Let $V = V(\lambda) = {}_1L \lor \lambda(L)_{\lambda}$. Then

- Stab $V = \{(g, h) \in \text{Gal}(L/k) \times \text{Gal}(L/k) | (g^{-1}\lambda h)^G = \lambda^G \}$ and
- Aut $V = (L \vee \lambda(L))^* / L^* \lambda(L)^*$

Let $V = V(\lambda) = {}_1L \lor \lambda(L)_{\lambda}$. Then

• Stab $V = \{(g, h) \in Gal (L/k) \times Gal (L/k) | (g^{-1}\lambda h)^G = \lambda^G \}$ and

• Aut
$$V = (L \vee \lambda(L))^* / L^* \lambda(L)^*$$

Lemma

For each $(g, h) \in \text{Stab } V$, $\exists!$ field automorphism $\psi_{g,h} : L \lor \lambda(L) \to L \lor \lambda(L)$

(김희) 김 말에 귀엽이 말

Let $V = V(\lambda) = {}_1L \lor \lambda(L)_{\lambda}$. Then

• Stab $V = \{(g, h) \in Gal (L/k) \times Gal (L/k) | (g^{-1}\lambda h)^G = \lambda^G \}$ and

• Aut
$$V = (L \vee \lambda(L))^* / L^* \lambda(L)^*$$

Lemma

For each $(g, h) \in \text{Stab } V$, \exists ! field automorphism $\psi_{g,h} : L \lor \lambda(L) \to L \lor \lambda(L)$ such that if $a \in L$ then $\psi_{g,h}(a) = g(a)$, and $\psi_{g,h}(\lambda(a)) = \lambda(h(a))$.

Let $V = V(\lambda) = {}_1L \lor \lambda(L)_{\lambda}$. Then

• Stab $V = \{(g, h) \in \text{Gal}(L/k) \times \text{Gal}(L/k) | (g^{-1}\lambda h)^G = \lambda^G \}$ and

• Aut
$$V = (L \vee \lambda(L))^* / L^* \lambda(L)^*$$

Lemma

For each $(g, h) \in \text{Stab } V$, \exists ! field automorphism $\psi_{g,h} : L \lor \lambda(L) \to L \lor \lambda(L)$ such that if $a \in L$ then $\psi_{g,h}(a) = g(a)$, and $\psi_{g,h}(\lambda(a)) = \lambda(h(a))$.

Then ψ : Stab $V \rightarrow$ End (Aut (V)) is the homomorphism defined by

$$\psi((g,h))[x] = [\psi_{g,h}(x)].$$

▲御▶ ▲唐▶ ▲唐▶

Work in Progress

Adam Nyman

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

■ P^{n.c.}(V) is finite over its center (Kussin). No explicit description of center is known. Compute the center of P^{n.c.}(V(λ)) as a function of λ.

イロト イヨト イヨト イヨト

- P^{n.c.}(V) is finite over its center (Kussin). No explicit description of center is known. Compute the center of P^{n.c.}(V(λ)) as a function of λ.
- 2 Classify the spaces $\mathbb{P}^{n.c.}(V)$ up to derived equivalence.

伺 ト イヨト イヨト

- P^{n.c.}(V) is finite over its center (Kussin). No explicit description of center is known. Compute the center of P^{n.c.}(V(λ)) as a function of λ.
- **2** Classify the spaces $\mathbb{P}^{n.c.}(V)$ up to derived equivalence.

Conjecture

$$D^{b}(\mathbb{P}^{n.c.}(V)) \equiv D^{b}(\mathbb{P}^{n.c.}(W)) \Rightarrow \mathbb{P}^{n.c.}(V) \equiv \mathbb{P}^{n.c.}(W)$$

ヘロン 人間 とくほとう

- P^{n.c.}(V) is finite over its center (Kussin). No explicit description of center is known. Compute the center of P^{n.c.}(V(λ)) as a function of λ.
- **2** Classify the spaces $\mathbb{P}^{n.c.}(V)$ up to derived equivalence.

Conjecture

$$D^{b}(\mathbb{P}^{n.c.}(V)) \equiv D^{b}(\mathbb{P}^{n.c.}(W)) \Rightarrow \mathbb{P}^{n.c.}(V) \equiv \mathbb{P}^{n.c.}(W)$$

and derived equivalences are induced by translations and equivalences

$$\mathbb{P}^{n.c.}(V) \to \mathbb{P}^{n.c.}(W).$$

Thank you for your attention!