The Geometry of (Some) Noncommutative Projective Lines

Adam Nyman

Western Washington University
July 2, 2013

Conventions and Notation

Conventions and Notation

- k a perfect field

Conventions and Notation

- k a perfect field
- L/k finite extension

Conventions and Notation

- k a perfect field
- L/k finite extension
- \bar{L} an algebraic closure of L

Part 1

Noncommutative Projective Lines

Noncommutative Spaces

Noncommutative Space :=Grothendieck Category

Noncommutative Spaces

Noncommutative Space := Grothendieck Category $=$

- (k-linear) abelian category with

Noncommutative Spaces

Noncommutative Space := Grothendieck Category $=$

- (k-linear) abelian category with
- exact direct limits and

Noncommutative Spaces

Noncommutative Space := Grothendieck Category $=$

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Noncommutative Spaces

Noncommutative Space := Grothendieck Category $=$

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

Noncommutative Spaces

Noncommutative Space := Grothendieck Category $=$

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

- $\operatorname{Mod} R, R$ a ring

Noncommutative Spaces

Noncommutative Space := Grothendieck Category $=$

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

- Mod R, R a ring
- Qcoh X

Noncommutative Spaces

Noncommutative Space := Grothendieck Category $=$

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

- $\operatorname{Mod} R, R$ a ring
- Qcoh X
- $\operatorname{Proj} A:=\operatorname{Gr} A /$ Tors A where A is \mathbb{Z}-graded

Curves on Quasischemes (Smith and Zhang (1998))

Curves on Quasischemes (Smith and Zhang (1998))

(Commutative) polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ has \mathbb{Z}^{n}-grading:

Curves on Quasischemes (Smith and Zhang (1998))

(Commutative) polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ has \mathbb{Z}^{n}-grading:

$$
\left|x_{i}\right|=(0, \ldots, 0,1,0, \ldots, 0)
$$

Curves on Quasischemes (Smith and Zhang (1998))

(Commutative) polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ has \mathbb{Z}^{n}-grading:

$$
\begin{gathered}
\left|x_{i}\right|=(0, \ldots, 0,1,0, \ldots, 0) \\
\mathbb{V}_{n}^{1}:=\operatorname{Grk}\left[x_{1}, \ldots, x_{n}\right] /\{\operatorname{Kdim} \leq n-2\}
\end{gathered}
$$

Curves on Quasischemes (Smith and Zhang (1998))

(Commutative) polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ has \mathbb{Z}^{n}-grading:

$$
\begin{gathered}
\left|x_{i}\right|=(0, \ldots, 0,1,0, \ldots, 0) \\
\mathbb{V}_{n}^{1}:=\operatorname{Grk}\left[x_{1}, \ldots, x_{n}\right] /\{\operatorname{Kdim} \leq n-2\}
\end{gathered}
$$

The noncommutative space \mathbb{V}_{n}^{1}

Curves on Quasischemes (Smith and Zhang (1998))

(Commutative) polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ has \mathbb{Z}^{n}-grading:

$$
\begin{gathered}
\left|x_{i}\right|=(0, \ldots, 0,1,0, \ldots, 0) \\
\mathbb{V}_{n}^{1}:=\operatorname{Grk}\left[x_{1}, \ldots, x_{n}\right] /\{\operatorname{Kdim} \leq n-2\}
\end{gathered}
$$

The noncommutative space \mathbb{V}_{n}^{1}

- is locally noetherian,

Curves on Quasischemes (Smith and Zhang (1998))

(Commutative) polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ has \mathbb{Z}^{n}-grading:

$$
\begin{gathered}
\left|x_{i}\right|=(0, \ldots, 0,1,0, \ldots, 0) \\
\mathbb{V}_{n}^{1}:=\operatorname{Grk}\left[x_{1}, \ldots, x_{n}\right] /\{\operatorname{Kdim} \leq n-2\}
\end{gathered}
$$

The noncommutative space \mathbb{V}_{n}^{1}

- is locally noetherian,
- is Ext-finite

Curves on Quasischemes (Smith and Zhang (1998))

(Commutative) polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ has \mathbb{Z}^{n}-grading:

$$
\begin{gathered}
\left|x_{i}\right|=(0, \ldots, 0,1,0, \ldots, 0) \\
\mathbb{V}_{n}^{1}:=\operatorname{Grk}\left[x_{1}, \ldots, x_{n}\right] /\{\operatorname{Kdim} \leq n-2\}
\end{gathered}
$$

The noncommutative space \mathbb{V}_{n}^{1}

- is locally noetherian,
- is Ext-finite
- has homological dimension 1,

Curves on Quasischemes (Smith and Zhang (1998))

(Commutative) polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ has \mathbb{Z}^{n}-grading:

$$
\begin{gathered}
\left|x_{i}\right|=(0, \ldots, 0,1,0, \ldots, 0) . \\
\mathbb{V}_{n}^{1}:=\operatorname{Grk}\left[x_{1}, \ldots, x_{n}\right] /\{\operatorname{Kdim} \leq n-2\}
\end{gathered}
$$

The noncommutative space \mathbb{V}_{n}^{1}

- is locally noetherian,
- is Ext-finite
- has homological dimension 1 ,
- does not satisfy Serre duality unless $n=1$ or 2 .

Curves on Quasischemes (Smith and Zhang (1998))

(Commutative) polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ has \mathbb{Z}^{n}-grading:

$$
\begin{gathered}
\left|x_{i}\right|=(0, \ldots, 0,1,0, \ldots, 0) \\
\mathbb{V}_{n}^{1}:=\operatorname{Grk}\left[x_{1}, \ldots, x_{n}\right] /\{\operatorname{Kdim} \leq n-2\}
\end{gathered}
$$

The noncommutative space \mathbb{V}_{n}^{1}

- is locally noetherian,
- is Ext-finite
- has homological dimension 1 ,
- does not satisfy Serre duality unless $n=1$ or 2 .

Significance

Curves on Quasischemes (Smith and Zhang (1998))

(Commutative) polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ has \mathbb{Z}^{n}-grading:

$$
\begin{gathered}
\left|x_{i}\right|=(0, \ldots, 0,1,0, \ldots, 0) \\
\mathbb{V}_{n}^{1}:=\operatorname{Grk}\left[x_{1}, \ldots, x_{n}\right] /\{\operatorname{Kdim} \leq n-2\}
\end{gathered}
$$

The noncommutative space \mathbb{V}_{n}^{1}

- is locally noetherian,
- is Ext-finite
- has homological dimension 1 ,
- does not satisfy Serre duality unless $n=1$ or 2 .

Significance

If X is noncommutative space, Y is a regularly embedded hypersurface, and C is a curve which is 'in good position' w.r.t. Y , then

Curves on Quasischemes (Smith and Zhang (1998))

(Commutative) polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ has \mathbb{Z}^{n}-grading:

$$
\begin{gathered}
\left|x_{i}\right|=(0, \ldots, 0,1,0, \ldots, 0) \\
\mathbb{V}_{n}^{1}:=\operatorname{Grk}\left[x_{1}, \ldots, x_{n}\right] /\{\operatorname{Kdim} \leq n-2\}
\end{gathered}
$$

The noncommutative space \mathbb{V}_{n}^{1}

- is locally noetherian,
- is Ext-finite
- has homological dimension 1 ,
- does not satisfy Serre duality unless $n=1$ or 2 .

Significance

If X is noncommutative space, Y is a regularly embedded hypersurface, and C is a curve which is 'in good position' w.r.t. Y , then $\mathrm{C} \equiv \mathbb{V}_{n}^{1}$.

Piontkovski's Noncommutative \mathbb{P}^{11} 's (2008)

Piontkovski's Noncommutative \mathbb{P}^{1} 's (2008)

Suppose A is connected graded over k having the following properties:

Piontkovski's Noncommutative \mathbb{P}^{1} 's (2008)

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,

Piontkovski's Noncommutative \mathbb{P}^{1} 's (2008)

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Piontkovski's Noncommutative \mathbb{P}^{1} 's (2008)

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n.

Piontkovski's Noncommutative \mathbb{P}^{1} 's (2008)

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For $n>2, A$ is coherent

Piontkovski's Noncommutative \mathbb{P}^{1} 's (2008)

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For $n>2, A$ is coherent but not noetherian.

Piontkovski's Noncommutative \mathbb{P}^{1} 's (2008)

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For $n>2, A$ is coherent but not noetherian.
\mathbb{P}_{n}^{1} is any category of the form $\operatorname{proj} A:=\operatorname{gr} A / \operatorname{tors} A$ for some A satisfying the above conditions with n generators.

Piontkovski's Noncommutative \mathbb{P}^{1} 's (2008)

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For $n>2, A$ is coherent but not noetherian.
\mathbb{P}_{n}^{1} is any category of the form $\operatorname{proj} A:=\operatorname{gr} A / \operatorname{tors} A$ for some A satisfying the above conditions with n generators. It

- is Ext-finite

Piontkovski's Noncommutative \mathbb{P}^{1} 's (2008)

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For $n>2, A$ is coherent but not noetherian.
\mathbb{P}_{n}^{1} is any category of the form $\operatorname{proj} A:=\operatorname{gr} A / \operatorname{tors} A$ for some A satisfying the above conditions with n generators. It

- is Ext-finite
- satisfies Serre duality, and

Piontkovski's Noncommutative \mathbb{P}^{1} 's (2008)

Suppose A is connected graded over k having the following properties:

- A is generated in degree 1 by $n \geq 2$ generators over k,
- A is regular, and
- A has global dimension 2.

Theorem (Piontkovski (2008))

The algebra A depends only on k and n. For $n>2, A$ is coherent but not noetherian.
\mathbb{P}_{n}^{1} is any category of the form $\operatorname{proj} A:=\operatorname{gr} A / \operatorname{tors} A$ for some A satisfying the above conditions with n generators. It

- is Ext-finite
- satisfies Serre duality, and
- has homological dimension 1.

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh \mathbb{P}^{1},

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh \mathbb{P}^{1}, i.e. abelian categories P such that P

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh \mathbb{P}^{1}, i.e. abelian categories P such that P

- consists of noetherian objects,

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh \mathbb{P}^{1}, i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh \mathbb{P}^{1}, i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh \mathbb{P}^{1}, i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1,

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh \mathbb{P}^{1}, i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1 ,
- has infinitely many non-isomorphic simple objects, and

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh \mathbb{P}^{1}, i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1 ,
- has infinitely many non-isomorphic simple objects, and
- has a tilting object,

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh \mathbb{P}^{1}, i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1 ,
- has infinitely many non-isomorphic simple objects, and
- has a tilting object, i.e. an object \mathcal{T} such that
- $\operatorname{Ext}_{\mathrm{P}}^{1}(\mathcal{T}, \mathcal{T})=0$, and

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh \mathbb{P}^{1}, i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1 ,
- has infinitely many non-isomorphic simple objects, and
- has a tilting object, i.e. an object \mathcal{T} such that
- $\operatorname{Ext}_{\mathrm{P}}^{1}(\mathcal{T}, \mathcal{T})=0$, and
- whenever $\operatorname{Hom}_{\mathbb{P}^{1}}(\mathcal{T}, \mathcal{M})=0=\operatorname{Ext}^{1}(\mathcal{T}, \mathcal{M})$ we have $\mathcal{M}=0$.

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh \mathbb{P}^{1}, i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1 ,
- has infinitely many non-isomorphic simple objects, and
- has a tilting object, i.e. an object \mathcal{T} such that
- $\operatorname{Ext}_{\mathrm{P}}^{1}(\mathcal{T}, \mathcal{T})=0$, and
- whenever $\operatorname{Hom}_{\mathbb{P}^{1}}(\mathcal{T}, \mathcal{M})=0=\operatorname{Ext}_{p}^{1}(\mathcal{T}, \mathcal{M})$ we have $\mathcal{M}=0$.

Examples

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh \mathbb{P}^{1}, i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1 ,
- has infinitely many non-isomorphic simple objects, and
- has a tilting object, i.e. an object \mathcal{T} such that
- $\operatorname{Ext}_{\mathrm{P}}^{1}(\mathcal{T}, \mathcal{T})=0$, and
- whenever $\operatorname{Hom}_{\mathbb{P}^{1}}(\mathcal{T}, \mathcal{M})=0=\operatorname{Ext}_{p}^{1}(\mathcal{T}, \mathcal{M})$ we have $\mathcal{M}=0$.

Examples

(1) $\operatorname{coh} \mathbb{P}^{1}$

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh \mathbb{P}^{1}, i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1 ,
- has infinitely many non-isomorphic simple objects, and
- has a tilting object, i.e. an object \mathcal{T} such that
- $\operatorname{Ext}_{\mathrm{P}}^{1}(\mathcal{T}, \mathcal{T})=0$, and
- whenever $\operatorname{Hom}_{\mathbb{P}^{1}}(\mathcal{T}, \mathcal{M})=0=\operatorname{Ext}^{1}(\mathcal{T}, \mathcal{M})$ we have $\mathcal{M}=0$.

Examples

(1) $\operatorname{coh} \mathbb{P}^{1}$
(2) Weighted projective lines (Geigle-Lenzing)

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to coh \mathbb{P}^{1}, i.e. abelian categories P such that P

- consists of noetherian objects,
- is Ext-finite,
- has a Serre functor,
- has homological dimension 1 ,
- has infinitely many non-isomorphic simple objects, and
- has a tilting object, i.e. an object \mathcal{T} such that
- $\operatorname{Ext}_{\mathrm{P}}^{1}(\mathcal{T}, \mathcal{T})=0$, and
- whenever $\operatorname{Hom}_{\mathbb{P}^{1}}(\mathcal{T}, \mathcal{M})=0=\operatorname{Ext}^{1}(\mathcal{T}, \mathcal{M})$ we have $\mathcal{M}=0$.

Examples

(1) $\operatorname{coh} \mathbb{P}^{1}$
(2) Weighted projective lines (Geigle-Lenzing)
(3) Arithmetic noncommutative projective lines

Arithmetic Noncommutative Projective Lines

Arithmetic Noncommutative Projective Lines

Spaces of form Proj $\mathbb{S}^{\text {n.c. }}(V)=$: $\mathbb{P}^{\text {n.c. }}(V)$ where

Arithmetic Noncommutative Projective Lines

Spaces of form Proj $\mathbb{S}^{\text {n.c. }}(V)=$: $\mathbb{P}^{\text {n.c. }}(V)$ where

- V is a two-sided vector space

Arithmetic Noncommutative Projective Lines

Spaces of form Proj오 ${ }^{\text {n.c. }}(V)=$: $\mathbb{P}^{\text {n.c. }}(V)$ where

- V is a two-sided vector space
- $\mathbb{S}^{\text {n.c. }}(V)$ is noncommutative symmetric algebra of V

Arithmetic Noncommutative Projective Lines

Spaces of form Proj오 ${ }^{\text {n.c. }}(V)=$: $\mathbb{P}^{\text {n.c. }}(V)$ where

- V is a two-sided vector space
- $\mathbb{S}^{\text {n.c. }}(V)$ is noncommutative symmetric algebra of V
- $\operatorname{Proj} A=\operatorname{Gr} A /$ Tors A.

Arithmetic Noncommutative Projective Lines

Spaces of form Proj $\mathbb{S}^{\text {n.c. }}(V)=$: $\mathbb{P}^{\text {n.c. }}(V)$ where

- V is a two-sided vector space
- $\mathbb{S}^{\text {n.c. }}(V)$ is noncommutative symmetric algebra of V
- $\operatorname{Proj} A=\operatorname{Gr} A / T o r s A$.

Theme of talk

Arithmetic Noncommutative Projective Lines

Spaces of form Proj $\mathbb{S}^{\text {n.c. }}(V)=$: $\mathbb{P}^{\text {n.c. }}(V)$ where

- V is a two-sided vector space
- $\mathbb{S}^{\text {n.c. }}(V)$ is noncommutative symmetric algebra of V
- $\operatorname{Proj} A=\operatorname{Gr} A / T o r s A$.

Theme of talk

$$
\text { Study } V \rightsquigarrow \mathbb{P}^{\text {n.c. }}(V)
$$

Arithmetic Noncommutative Projective Lines

Spaces of form Proj $\mathbb{S}^{\text {n.c. }}(V)=$: $\mathbb{P}^{\text {n.c. }}(V)$ where

- V is a two-sided vector space
- $\mathbb{S}^{\text {n.c. }}(V)$ is noncommutative symmetric algebra of V
- $\operatorname{Proj} A=\operatorname{Gr} A /$ Tors A.

Theme of talk

$$
\text { Study } V \rightsquigarrow \mathbb{P}^{\text {n.c. }}(V)
$$

Initial Motivation: The noncommutative geometry of $\mathbb{P}^{\text {n.c. }}(V)$ is well understood.

Arithmetic Noncommutative Projective Lines

Spaces of form Proj $\mathbb{S}^{\text {n.c. }}(V)=$: $\mathbb{P}^{\text {n.c. }}(V)$ where

- V is a two-sided vector space
- $\mathbb{S}^{\text {n.c. }}(V)$ is noncommutative symmetric algebra of V
- $\operatorname{Proj} A=\operatorname{Gr} A /$ Tors A.

Theme of talk

$$
\text { Study } V \rightsquigarrow \mathbb{P}^{\text {n.c. }}(V)
$$

Initial Motivation: The noncommutative geometry of $\mathbb{P}^{\text {n.c. }}(V)$ is well understood.

Remark

The classification of noncommutative curves due to Reiten and Van den Bergh (2002) is over $k=\bar{k}$.

Arithmetic Noncommutative Projective Lines

Spaces of form $\operatorname{Proj} \mathbb{S}^{\text {n.c. }}(V)=$: $\mathbb{P}^{\text {n.c. }}(V)$ where

- V is a two-sided vector space
- $\mathbb{S}^{\text {n.c. }}(V)$ is noncommutative symmetric algebra of V
- $\operatorname{Proj} A=\operatorname{Gr} A /$ Tors A.

Theme of talk

$$
\text { Study } V \rightsquigarrow \mathbb{P}^{\text {n.c. }}(V)
$$

Initial Motivation: The noncommutative geometry of $\mathbb{P}^{\text {n.c. }}(V)$ is well understood.

Remark

The classification of noncommutative curves due to Reiten and Van den Bergh (2002) is over $k=\bar{k}$. In this case $\mathbb{P}^{\text {n.c. }}(V) \equiv$ Qcoh \mathbb{P}^{1}.

Part 2
 Two-sided Vector Spaces

Basic Terminology

Basic Terminology

A two-sided vector space of rank n is a

Basic Terminology

A two-sided vector space of rank n is a

- k-central L-L-bimodule V such that

Basic Terminology

A two-sided vector space of rank n is a

- k-central L-L-bimodule V such that
- $\operatorname{dim}_{L}(L V)=\operatorname{dim}_{L}\left(V_{L}\right)=n$.

Basic Terminology

A two-sided vector space of rank n is a

- k-central L - L-bimodule V such that
- $\operatorname{dim}_{L}(L V)=\operatorname{dim}_{L}\left(V_{L}\right)=n$.

Example 1

Basic Terminology

A two-sided vector space of rank n is a

- k-central L - L-bimodule V such that
- $\operatorname{dim}_{L}(L V)=\operatorname{dim}_{L}\left(V_{L}\right)=n$.

Example 1

$k=\mathbb{R}, L=\mathbb{C}, V=\mathbb{C}, \sigma=$ complex conjugation

Basic Terminology

A two-sided vector space of rank n is a

- k-central L - L-bimodule V such that
- $\operatorname{dim}_{L}(L V)=\operatorname{dim}_{L}\left(V_{L}\right)=n$.

Example 1

$k=\mathbb{R}, L=\mathbb{C}, V=\mathbb{C}, \sigma=$ complex conjugation $x \cdot v:=x v$

Basic Terminology

A two-sided vector space of rank n is a

- k-central L - L-bimodule V such that
- $\operatorname{dim}_{L}(L V)=\operatorname{dim}_{L}\left(V_{L}\right)=n$.

Example 1

$k=\mathbb{R}, L=\mathbb{C}, V=\mathbb{C}, \sigma=$ complex conjugation $x \cdot v:=x v$
$v \cdot x:=v \sigma(x)$

Basic Terminology

A two-sided vector space of rank n is a

- k-central L - L-bimodule V such that
- $\operatorname{dim}_{L}(L V)=\operatorname{dim}_{L}\left(V_{L}\right)=n$.

Example 1

$k=\mathbb{R}, L=\mathbb{C}, V=\mathbb{C}, \sigma=$ complex conjugation $x \cdot v:=x v$
$v \cdot x:=v \sigma(x)$ Notation: \mathbb{C}_{σ}

Basic Terminology

A two-sided vector space of rank n is a

- k-central L-L-bimodule V such that
- $\operatorname{dim}_{L}(L V)=\operatorname{dim}_{L}\left(V_{L}\right)=n$.

Example 1

$k=\mathbb{R}, L=\mathbb{C}, V=\mathbb{C}, \sigma=$ complex conjugation $x \cdot v:=x v$
$v \cdot x:=v \sigma(x)$ Notation: \mathbb{C}_{σ}

Example 2

Basic Terminology

A two-sided vector space of rank n is a

- k-central L-L-bimodule V such that
- $\operatorname{dim}_{L}(L V)=\operatorname{dim}_{L}\left(V_{L}\right)=n$.

Example 1

$k=\mathbb{R}, L=\mathbb{C}, V=\mathbb{C}, \sigma=$ complex conjugation $x \cdot v:=x v$
$v \cdot x:=v \sigma(x)$ Notation: \mathbb{C}_{σ}

Example 2

$$
V=L^{n}, \phi: L \rightarrow M_{n}(L)
$$

Basic Terminology

A two-sided vector space of rank n is a

- k-central L-L-bimodule V such that
- $\operatorname{dim}_{L}(L V)=\operatorname{dim}_{L}\left(V_{L}\right)=n$.

Example 1

$k=\mathbb{R}, L=\mathbb{C}, V=\mathbb{C}, \sigma=$ complex conjugation $x \cdot v:=x v$
$v \cdot x:=v \sigma(x)$ Notation: \mathbb{C}_{σ}

Example 2

$$
V=L^{n}, \phi: L \rightarrow M_{n}(L) x \cdot v=x v
$$

Basic Terminology

A two-sided vector space of rank n is a

- k-central L-L-bimodule V such that
- $\operatorname{dim}_{L}(L V)=\operatorname{dim}_{L}\left(V_{L}\right)=n$.

Example 1

$k=\mathbb{R}, L=\mathbb{C}, V=\mathbb{C}, \sigma=$ complex conjugation $x \cdot v:=x v$
$v \cdot x:=v \sigma(x)$ Notation: \mathbb{C}_{σ}

Example 2

$$
V=L^{n}, \phi: L \rightarrow M_{n}(L) x \cdot v=x v v \cdot x=v \phi(x)
$$

Basic Terminology

A two-sided vector space of rank n is a

- k-central L-L-bimodule V such that
- $\operatorname{dim}_{L}(L V)=\operatorname{dim}_{L}\left(V_{L}\right)=n$.

Example 1

$k=\mathbb{R}, L=\mathbb{C}, V=\mathbb{C}, \sigma=$ complex conjugation $x \cdot v:=x v$
$v \cdot x:=v \sigma(x)$ Notation: \mathbb{C}_{σ}

Example 2

$V=L^{n}, \phi: L \rightarrow M_{n}(L) x \cdot v=x v v \cdot x=v \phi(x)$ Notation: L_{ϕ}^{n}

Classification of Rank 2 Two-sided Vector Spaces

Classification of Rank 2 Two-sided Vector Spaces

Theorem (Patrick 2000)
 Suppose char $k \neq 2$. If V has rank 2 , either

Classification of Rank 2 Two-sided Vector Spaces

Theorem (Patrick 2000)

Suppose char $k \neq 2$. If V has rank 2 , either
(1) $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}\sigma(x) & 0 \\ 0 & \sigma(x)\end{array}\right)$ where $\sigma(x) \in \operatorname{Gal}(L / k)$,

Classification of Rank 2 Two-sided Vector Spaces

Theorem (Patrick 2000)

Suppose char $k \neq 2$. If V has rank 2 , either
(1) $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}\sigma(x) & 0 \\ 0 & \sigma(x)\end{array}\right)$ where $\sigma(x) \in \operatorname{Gal}(L / k)$,
(2) $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}\sigma(x) & 0 \\ 0 & \tau(x)\end{array}\right), \sigma(x), \tau(x) \in \operatorname{Gal}(L / k)$, and $\tau \neq \sigma$, or

Classification of Rank 2 Two-sided Vector Spaces

Theorem (Patrick 2000)

Suppose char $k \neq 2$. If V has rank 2 , either
(1) $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}\sigma(x) & 0 \\ 0 & \sigma(x)\end{array}\right)$ where $\sigma(x) \in \operatorname{Gal}(L / k)$,
(2) $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}\sigma(x) & 0 \\ 0 & \tau(x)\end{array}\right), \sigma(x), \tau(x) \in \operatorname{Gal}(L / k)$, and $\tau \neq \sigma$, or
(3) V is simple.

Classification of Rank 2 Two-sided Vector Spaces

Theorem (Patrick 2000)

Suppose char $k \neq 2$. If V has rank 2, either
(1) $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}\sigma(x) & 0 \\ 0 & \sigma(x)\end{array}\right)$ where $\sigma(x) \in \operatorname{Gal}(L / k)$,
(2) $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}\sigma(x) & 0 \\ 0 & \tau(x)\end{array}\right), \sigma(x), \tau(x) \in \operatorname{Gal}(L / k)$, and $\tau \neq \sigma$, or
(3) V is simple. In this case $V \cong L_{\phi}^{2}$ where

$$
\phi(x)=\left(\begin{array}{cc}
a(x) & b(x) \\
m b(x) & a(x)
\end{array}\right)
$$

Classification of Rank 2 Two-sided Vector Spaces

Theorem (Patrick 2000)

Suppose char $k \neq 2$. If V has rank 2 , either
(1) $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}\sigma(x) & 0 \\ 0 & \sigma(x)\end{array}\right)$ where $\sigma(x) \in \operatorname{Gal}(L / k)$,
(2) $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}\sigma(x) & 0 \\ 0 & \tau(x)\end{array}\right), \sigma(x), \tau(x) \in \operatorname{Gal}(L / k)$, and $\tau \neq \sigma$, or
(3) V is simple. In this case $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}a(x) & b(x) \\ m b(x) & a(x)\end{array}\right)$ and where b is a nonzero
(a, a)-derivation,

Classification of Rank 2 Two-sided Vector Spaces

Theorem (Patrick 2000)

Suppose char $k \neq 2$. If V has rank 2, either
(1) $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}\sigma(x) & 0 \\ 0 & \sigma(x)\end{array}\right)$ where $\sigma(x) \in \operatorname{Gal}(L / k)$,
(2) $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}\sigma(x) & 0 \\ 0 & \tau(x)\end{array}\right), \sigma(x), \tau(x) \in \operatorname{Gal}(L / k)$, and $\tau \neq \sigma$, or
(3) V is simple. In this case $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}a(x) & b(x) \\ m b(x) & a(x)\end{array}\right)$ and where b is a nonzero
(a, a)-derivation, $m \in L$ is not a perfect square,

Classification of Rank 2 Two-sided Vector Spaces

Theorem (Patrick 2000)

Suppose char $k \neq 2$. If V has rank 2 , either
(1) $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}\sigma(x) & 0 \\ 0 & \sigma(x)\end{array}\right)$ where $\sigma(x) \in \operatorname{Gal}(L / k)$,
(2) $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}\sigma(x) & 0 \\ 0 & \tau(x)\end{array}\right), \sigma(x), \tau(x) \in \operatorname{Gal}(L / k)$, and $\tau \neq \sigma$, or
(3) V is simple. In this case $V \cong L_{\phi}^{2}$ where $\phi(x)=\left(\begin{array}{cc}a(x) & b(x) \\ m b(x) & a(x)\end{array}\right)$ and where b is a nonzero
(a, a)-derivation, $m \in L$ is not a perfect square, and $a(x y)=a(x) a(y)+m b(x) b(y)$.

Simple Two-sided Vector Spaces I: Classification

Simple Two-sided Vector Spaces I: Classification

- $\operatorname{Emb}(L)=\{k$ - linear embeddings $L \rightarrow \bar{L}\}$

Simple Two-sided Vector Spaces I: Classification

- $\operatorname{Emb}(L)=\{k-$ linear embeddings $L \rightarrow \bar{L}\}$
- $G=\operatorname{Gal}(\bar{L} / L)$

Simple Two-sided Vector Spaces I: Classification

- $\operatorname{Emb}(L)=\{k-$ linear embeddings $L \rightarrow \bar{L}\}$
- $G=\operatorname{Gal}(\bar{L} / L)$
- G acts on $\operatorname{Emb}(L): g \cdot \lambda:=g \circ \lambda$. $\lambda^{G}=$ orbit of λ

Simple Two-sided Vector Spaces I: Classification

- $\operatorname{Emb}(L)=\{k$ - linear embeddings $L \rightarrow \bar{L}\}$
- $G=\operatorname{Gal}(\bar{L} / L)$
- G acts on $\operatorname{Emb}(L): g \cdot \lambda:=g \circ \lambda$. $\lambda^{G}=$ orbit of λ
- $\operatorname{Orb}(L)=\{$ finite G-orbits of $\operatorname{Emb}(L)\}$

Simple Two-sided Vector Spaces I: Classification

- $\operatorname{Emb}(L)=\{k$ - linear embeddings $L \rightarrow \bar{L}\}$
- $G=\operatorname{Gal}(\bar{L} / L)$
- G acts on $\operatorname{Emb}(L): g \cdot \lambda:=g \circ \lambda$. $\lambda^{G}=$ orbit of λ
- $\operatorname{Orb}(L)=\{$ finite G-orbits of $\operatorname{Emb}(L)\}$
- $\operatorname{Simp}(L)=\{\cong$ classes of k-central simples of finite rank $/ L\}$

Simple Two-sided Vector Spaces I: Classification

- $\operatorname{Emb}(L)=\{k$ - linear embeddings $L \rightarrow \bar{L}\}$
- $G=\operatorname{Gal}(\bar{L} / L)$
- G acts on $\operatorname{Emb}(L): g \cdot \lambda:=g \circ \lambda$. $\lambda^{G}=$ orbit of λ
- $\operatorname{Orb}(L)=\{$ finite G-orbits of $\operatorname{Emb}(L)\}$
- $\operatorname{Simp}(L)=\{\cong$ classes of k-central simples of finite rank $/ L\}$

Theorem (N. and Pappacena 2007)

There is a bijection

$$
\Phi: \operatorname{Orb}(L) \rightarrow \operatorname{Simp}(L)
$$

Simple Two-sided Vector Spaces I: Classification

- $\operatorname{Emb}(L)=\{k$ - linear embeddings $L \rightarrow \bar{L}\}$
- $G=\operatorname{Gal}(\bar{L} / L)$
- G acts on $\operatorname{Emb}(L): g \cdot \lambda:=g \circ \lambda . \lambda^{G}=$ orbit of λ
- $\operatorname{Orb}(L)=\{$ finite G-orbits of $\operatorname{Emb}(L)\}$
- $\operatorname{Simp}(L)=\{\cong$ classes of k-central simples of finite rank $/ L\}$

Theorem (N. and Pappacena 2007)

There is a bijection

$$
\Phi: \operatorname{Orb}(L) \rightarrow \operatorname{Simp}(L)
$$

and $\operatorname{rank}\left(\Phi\left(\lambda^{G}\right)\right)=\left|\lambda^{G}\right|$

Simple Two-sided Vector Spaces I: Classification

- $\operatorname{Emb}(L)=\{k$ - linear embeddings $L \rightarrow \bar{L}\}$
- $G=\operatorname{Gal}(\bar{L} / L)$
- G acts on $\operatorname{Emb}(L): g \cdot \lambda:=g \circ \lambda . \lambda^{G}=$ orbit of λ
- $\operatorname{Orb}(L)=\{$ finite G-orbits of $\operatorname{Emb}(L)\}$
- $\operatorname{Simp}(L)=\{\cong$ classes of k-central simples of finite rank $/ L\}$

Theorem (N. and Pappacena 2007)

There is a bijection

$$
\Phi: \operatorname{Orb}(L) \rightarrow \operatorname{Simp}(L)
$$

and $\operatorname{rank}\left(\Phi\left(\lambda^{G}\right)\right)=\left|\lambda^{G}\right|$
Notation: $\Phi\left(\lambda^{G}\right)=[V(\lambda)]$.

Simple Two-sided Vector Spaces I: Classification

- $\operatorname{Emb}(L)=\{k$ - linear embeddings $L \rightarrow \bar{L}\}$
- $G=\operatorname{Gal}(\bar{L} / L)$
- G acts on $\operatorname{Emb}(L): g \cdot \lambda:=g \circ \lambda . \lambda^{G}=$ orbit of λ
- $\operatorname{Orb}(L)=\{$ finite G-orbits of $\operatorname{Emb}(L)\}$
- $\operatorname{Simp}(L)=\{\cong$ classes of k-central simples of finite rank $/ L\}$

Theorem (N. and Pappacena 2007)

There is a bijection

$$
\Phi: \operatorname{Orb}(L) \rightarrow \operatorname{Simp}(L)
$$

and $\operatorname{rank}\left(\Phi\left(\lambda^{G}\right)\right)=\left|\lambda^{G}\right|$
Notation: $\Phi\left(\lambda^{G}\right)=[V(\lambda)]$.

Remark

The result holds even if L / k is infinite

Construction of $V(\lambda)$

Construction of $V(\lambda)$

What is $V(\lambda)$?

Construction of $V(\lambda)$

What is $V(\lambda)$?

$$
V(\lambda):={ }_{1} L \vee \lambda(L)_{\lambda}
$$

Action defined as $a \cdot v \cdot b:=a v \lambda(b)$.

Simple Two-sided Vector Spaces: Examples

Simple Two-sided Vector Spaces: Examples

Example 1

- $k=\mathbb{R}, L=\mathbb{C}, G=\operatorname{Gal}(\bar{L} / L)=\{\mathrm{id}\}$

Simple Two-sided Vector Spaces: Examples

Example 1

- $k=\mathbb{R}, L=\mathbb{C}, G=\operatorname{Gal}(\bar{L} / L)=\{\mathrm{id}\}$
- $\operatorname{Emb}(L)=\{i d, \sigma\}$

Simple Two-sided Vector Spaces: Examples

Example 1

- $k=\mathbb{R}, L=\mathbb{C}, G=\operatorname{Gal}(\bar{L} / L)=\{\mathrm{id}\}$
- $\operatorname{Emb}(L)=\{i d, \sigma\}$
- $\operatorname{Orb}(L)=\{\{\mathrm{id}\},\{\sigma\}\}$

Simple Two-sided Vector Spaces: Examples

Example 1

- $k=\mathbb{R}, L=\mathbb{C}, G=\operatorname{Gal}(\bar{L} / L)=\{\mathrm{id}\}$
- $\operatorname{Emb}(L)=\{i d, \sigma\}$
- $\operatorname{Orb}(L)=\{\{\mathrm{id}\},\{\sigma\}\} \Rightarrow \operatorname{Simp}(L)=\left\{\mathbb{C}_{\text {id }}, \mathbb{C}_{\sigma}\right\}$

Simple Two-sided Vector Spaces: Examples

Example 1

- $k=\mathbb{R}, L=\mathbb{C}, G=\operatorname{Gal}(\bar{L} / L)=\{\mathrm{id}\}$
- $\operatorname{Emb}(L)=\{\mathrm{id}, \sigma\}$
- $\operatorname{Orb}(L)=\{\{\mathrm{id}\},\{\sigma\}\} \Rightarrow \operatorname{Simp}(L)=\left\{\mathbb{C}_{\text {id }}, \mathbb{C}_{\sigma}\right\}$

Example 2

$p \geq 3$ prime, $\zeta=$ a primative p th root of unity.

Simple Two-sided Vector Spaces: Examples

Example 1

- $k=\mathbb{R}, L=\mathbb{C}, G=\operatorname{Gal}(\bar{L} / L)=\{\mathrm{id}\}$
- $\operatorname{Emb}(L)=\{\mathrm{id}, \sigma\}$
- $\operatorname{Orb}(L)=\{\{\mathrm{id}\},\{\sigma\}\} \Rightarrow \operatorname{Simp}(L)=\left\{\mathbb{C}_{\text {id }}, \mathbb{C}_{\sigma}\right\}$

Example 2

$p \geq 3$ prime, $\zeta=$ a primative p th root of unity.

- $k=\mathbb{Q}, L=\mathbb{Q}\left({ }^{p} \sqrt{2}\right)$

Simple Two-sided Vector Spaces: Examples

Example 1

- $k=\mathbb{R}, L=\mathbb{C}, G=\operatorname{Gal}(\bar{L} / L)=\{\mathrm{id}\}$
- $\operatorname{Emb}(L)=\{\mathrm{id}, \sigma\}$
- $\operatorname{Orb}(L)=\{\{\mathrm{id}\},\{\sigma\}\} \Rightarrow \operatorname{Simp}(L)=\left\{\mathbb{C}_{\text {id }}, \mathbb{C}_{\sigma}\right\}$

Example 2

$p \geq 3$ prime, $\zeta=$ a primative p th root of unity.

- $k=\mathbb{Q}, L=\mathbb{Q}\left({ }^{p} \sqrt{2}\right)$
- G-action $=\operatorname{Gal}(L(\zeta) / L)$-action

Simple Two-sided Vector Spaces: Examples

Example 1

- $k=\mathbb{R}, L=\mathbb{C}, G=\operatorname{Gal}(\bar{L} / L)=\{\mathrm{id}\}$
- $\operatorname{Emb}(L)=\{\mathrm{id}, \sigma\}$
- $\operatorname{Orb}(L)=\{\{\mathrm{id}\},\{\sigma\}\} \Rightarrow \operatorname{Simp}(L)=\left\{\mathbb{C}_{\text {id }}, \mathbb{C}_{\sigma}\right\}$

Example 2

$p \geq 3$ prime, $\zeta=$ a primative p th root of unity.

- $k=\mathbb{Q}, L=\mathbb{Q}\left({ }^{p} \sqrt{2}\right)$
- G-action $=\operatorname{Gal}(L(\zeta) / L)$-action
- $\operatorname{Gal}(L(\zeta) / L)=\left\{\sigma_{i} \mid 1 \leq i \leq p-1\right\}$ where $\sigma_{i}(\zeta)=\zeta^{i}$

Simple Two-sided Vector Spaces: Examples

Example 1

- $k=\mathbb{R}, L=\mathbb{C}, G=\operatorname{Gal}(\bar{L} / L)=\{\mathrm{id}\}$
- $\operatorname{Emb}(L)=\{$ id, $\sigma\}$
- $\operatorname{Orb}(L)=\{\{\mathrm{id}\},\{\sigma\}\} \Rightarrow \operatorname{Simp}(L)=\left\{\mathbb{C}_{\text {id }}, \mathbb{C}_{\sigma}\right\}$

Example 2

$p \geq 3$ prime, $\zeta=$ a primative p th root of unity.

- $k=\mathbb{Q}, L=\mathbb{Q}\left({ }^{p} \sqrt{2}\right)$
- G-action $=\operatorname{Gal}(L(\zeta) / L)$-action
- $\operatorname{Gal}(L(\zeta) / L)=\left\{\sigma_{i} \mid 1 \leq i \leq p-1\right\}$ where $\sigma_{i}(\zeta)=\zeta^{i}$
- $\operatorname{Emb}(L)=\left\{\mathrm{id}, \sigma_{1} \lambda, \ldots, \sigma_{p-1} \lambda\right\}$ where $\lambda\left({ }^{p} \sqrt{2}\right)=\zeta\left({ }^{p} \sqrt{2}\right)$

Simple Two-sided Vector Spaces: Examples

Example 1

- $k=\mathbb{R}, L=\mathbb{C}, G=\operatorname{Gal}(\bar{L} / L)=\{\mathrm{id}\}$
- $\operatorname{Emb}(L)=\{$ id, $\sigma\}$
- $\operatorname{Orb}(L)=\{\{\mathrm{id}\},\{\sigma\}\} \Rightarrow \operatorname{Simp}(L)=\left\{\mathbb{C}_{\text {id }}, \mathbb{C}_{\sigma}\right\}$

Example 2

$p \geq 3$ prime, $\zeta=$ a primative p th root of unity.

- $k=\mathbb{Q}, L=\mathbb{Q}\left({ }^{p} \sqrt{2}\right)$
- G-action $=\operatorname{Gal}(L(\zeta) / L)$-action
- $\operatorname{Gal}(L(\zeta) / L)=\left\{\sigma_{i} \mid 1 \leq i \leq p-1\right\}$ where $\sigma_{i}(\zeta)=\zeta^{i}$
- $\operatorname{Emb}(L)=\left\{\mathrm{id}, \sigma_{1} \lambda, \ldots, \sigma_{p-1} \lambda\right\}$ where $\lambda\left({ }^{p} \sqrt{2}\right)=\zeta\left({ }^{p} \sqrt{2}\right)$
- $\operatorname{Orb}(L)$

Simple Two-sided Vector Spaces: Examples

Example 1

- $k=\mathbb{R}, L=\mathbb{C}, G=\operatorname{Gal}(\bar{L} / L)=\{\mathrm{id}\}$
- $\operatorname{Emb}(L)=\{$ id, $\sigma\}$
- $\operatorname{Orb}(L)=\{\{\mathrm{id}\},\{\sigma\}\} \Rightarrow \operatorname{Simp}(L)=\left\{\mathbb{C}_{\text {id }}, \mathbb{C}_{\sigma}\right\}$

Example 2

$p \geq 3$ prime, $\zeta=$ a primative p th root of unity.

- $k=\mathbb{Q}, L=\mathbb{Q}\left({ }^{p} \sqrt{2}\right)$
- G-action $=\operatorname{Gal}(L(\zeta) / L)$-action
- $\operatorname{Gal}(L(\zeta) / L)=\left\{\sigma_{i} \mid 1 \leq i \leq p-1\right\}$ where $\sigma_{i}(\zeta)=\zeta^{i}$
- $\operatorname{Emb}(L)=\left\{\mathrm{id}, \sigma_{1} \lambda, \ldots, \sigma_{p-1} \lambda\right\}$ where $\lambda\left({ }^{p} \sqrt{2}\right)=\zeta\left({ }^{p} \sqrt{2}\right)$
- $\operatorname{Orb}(L)=\left\{\{\mathrm{id}\},\left\{\sigma_{i} \lambda \mid 1 \leq i \leq p-1\right\}\right\}$

Simple Two-sided Vector Spaces: Examples

Example 1

- $k=\mathbb{R}, L=\mathbb{C}, G=\operatorname{Gal}(\bar{L} / L)=\{\mathrm{id}\}$
- $\operatorname{Emb}(L)=\{\mathrm{id}, \sigma\}$
- $\operatorname{Orb}(L)=\{\{\mathrm{id}\},\{\sigma\}\} \Rightarrow \operatorname{Simp}(L)=\left\{\mathbb{C}_{\text {id }}, \mathbb{C}_{\sigma}\right\}$

Example 2

$p \geq 3$ prime, $\zeta=$ a primative p th root of unity.

- $k=\mathbb{Q}, L=\mathbb{Q}\left({ }^{p} \sqrt{2}\right)$
- G-action $=\operatorname{Gal}(L(\zeta) / L)$-action
- $\operatorname{Gal}(L(\zeta) / L)=\left\{\sigma_{i} \mid 1 \leq i \leq p-1\right\}$ where $\sigma_{i}(\zeta)=\zeta^{i}$
- $\operatorname{Emb}(L)=\left\{\mathrm{id}, \sigma_{1} \lambda, \ldots, \sigma_{p-1} \lambda\right\}$ where $\lambda\left({ }^{p} \sqrt{2}\right)=\zeta\left({ }^{p} \sqrt{2}\right)$
- $\operatorname{Orb}(L)=\left\{\{\right.$ id $\left.\},\left\{\sigma_{i} \lambda \mid 1 \leq i \leq p-1\right\}\right\}$

$$
\operatorname{Simp}(L)=\left\{\mathbb{Q}\left({ }^{p} \sqrt{2}\right)_{\mathrm{id}}, V(\lambda)\right\}
$$

Duals

Adam Nyman

Duals

Right dual of V

$$
V^{*}:=\operatorname{Hom}_{L}\left(V_{L}, L\right)
$$

Duals

Right dual of V

$$
V^{*}:=\operatorname{Hom}_{L}\left(V_{L}, L\right) \text { with action }(a \cdot \psi \cdot b)(x)=a \psi(b x) \text {. }
$$

Duals

Right dual of V

$$
V^{*}:=\operatorname{Hom}_{L}\left(V_{L}, L\right) \text { with action }(a \cdot \psi \cdot b)(x)=a \psi(b x)
$$

Left dual of V
*V $:=\operatorname{Hom}_{L}(L V, L)$ with action $(a \cdot \phi \cdot b)(x)=b \phi(x a)$.

Duals

Right dual of V

$$
V^{*}:=\operatorname{Hom}_{L}\left(V_{L}, L\right) \text { with action }(a \cdot \psi \cdot b)(x)=a \psi(b x) \text {. }
$$

Left dual of V
$* V:=\operatorname{Hom}_{L}(L V, L)$ with action $(a \cdot \phi \cdot b)(x)=b \phi(x a)$.

Example

If $\sigma \in \operatorname{Gal}(L / k)$ then

Duals

Right dual of V

$$
V^{*}:=\operatorname{Hom}_{L}\left(V_{L}, L\right) \text { with action }(a \cdot \psi \cdot b)(x)=a \psi(b x) \text {. }
$$

Left dual of V
*V $:=\operatorname{Hom}_{L}(L V, L)$ with action $(a \cdot \phi \cdot b)(x)=b \phi(x a)$.

Example

If $\sigma \in \operatorname{Gal}(L / k)$ then ${ }^{*} L_{\sigma} \cong L_{\sigma}{ }^{*} \cong L_{\sigma^{-1}}$

Duals

Right dual of V

$$
V^{*}:=\operatorname{Hom}_{L}\left(V_{L}, L\right) \text { with action }(a \cdot \psi \cdot b)(x)=a \psi(b x) \text {. }
$$

Left dual of V

* $V:=\operatorname{Hom}_{L}(L V, L)$ with action $(a \cdot \phi \cdot b)(x)=b \phi(x a)$.

Example

If $\sigma \in \operatorname{Gal}(L / k)$ then ${ }^{*} L_{\sigma} \cong L_{\sigma}{ }^{*} \cong L_{\sigma^{-1}}$

Theorem (Hart and N. 2012)

Duals

Right dual of V

$$
V^{*}:=\operatorname{Hom}_{L}\left(V_{L}, L\right) \text { with action }(a \cdot \psi \cdot b)(x)=a \psi(b x) \text {. }
$$

Left dual of V

* $V:=\operatorname{Hom}_{L}(L V, L)$ with action $(a \cdot \phi \cdot b)(x)=b \phi(x a)$.

Example

If $\sigma \in \operatorname{Gal}(L / k)$ then ${ }^{*} L_{\sigma} \cong L_{\sigma}{ }^{*} \cong L_{\sigma^{-1}}$

Theorem (Hart and N. 2012)

Duals

Right dual of V

$$
V^{*}:=\operatorname{Hom}_{L}\left(V_{L}, L\right) \text { with action }(a \cdot \psi \cdot b)(x)=a \psi(b x) \text {. }
$$

Left dual of V

* $V:=\operatorname{Hom}_{L}(L V, L)$ with action $(a \cdot \phi \cdot b)(x)=b \phi(x a)$.

Example

If $\sigma \in \operatorname{Gal}(L / k)$ then ${ }^{*} L_{\sigma} \cong L_{\sigma}{ }^{*} \cong L_{\sigma^{-1}}$

Theorem (Hart and N. 2012)
Suppose $V \cong V(\lambda)$,

Duals

Right dual of V

$$
V^{*}:=\operatorname{Hom}_{L}\left(V_{L}, L\right) \text { with action }(a \cdot \psi \cdot b)(x)=a \psi(b x) \text {. }
$$

Left dual of V

* $V:=\operatorname{Hom}_{L}(L V, L)$ with action $(a \cdot \phi \cdot b)(x)=b \phi(x a)$.

Example

If $\sigma \in \operatorname{Gal}(L / k)$ then ${ }^{*} L_{\sigma} \cong L_{\sigma}{ }^{*} \cong L_{\sigma^{-1}}$

Theorem (Hart and N. 2012)

Suppose $V \cong V(\lambda)$, and let $\bar{\lambda}: \bar{L} \rightarrow \bar{L}$ be a lift of λ. Let $\mu:=\left.(\bar{\lambda})^{-1}\right|_{L}$. Then

Duals

Right dual of V

$$
V^{*}:=\operatorname{Hom}_{L}\left(V_{L}, L\right) \text { with action }(a \cdot \psi \cdot b)(x)=a \psi(b x) \text {. }
$$

Left dual of V

* $V:=\operatorname{Hom}_{L}(L V, L)$ with action $(a \cdot \phi \cdot b)(x)=b \phi(x a)$.

Example

If $\sigma \in \operatorname{Gal}(L / k)$ then ${ }^{*} L_{\sigma} \cong L_{\sigma}{ }^{*} \cong L_{\sigma^{-1}}$

Theorem (Hart and N. 2012)

Suppose $V \cong V(\lambda)$, and let $\bar{\lambda}: \bar{L} \rightarrow \bar{L}$ be a lift of λ. Let $\mu:=\left.(\bar{\lambda})^{-1}\right|_{L}$. Then

$$
{ }^{*} V \cong V^{*} \cong V(\mu)
$$

Theme Revisited

Theme Revisited

If V is not simple,

Theme Revisited

If V is not simple, study

$$
\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{\text {n.c. }}\left(L_{\sigma} \oplus L_{\tau}\right)
$$

Theme Revisited

If V is not simple, study

$$
\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{\text {n.c. }}\left(L_{\sigma} \oplus L_{\tau}\right)
$$

If V is simple,

Theme Revisited

If V is not simple, study

$$
\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{\text {n.c. }}\left(L_{\sigma} \oplus L_{\tau}\right)
$$

If V is simple, study

$$
\lambda \rightsquigarrow \mathbb{P}^{\text {n.c. }}(V(\lambda))
$$

Theme Revisited

If V is not simple, study

$$
\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{\text {n.c. }}\left(L_{\sigma} \oplus L_{\tau}\right)
$$

If V is simple, study

$$
\lambda \rightsquigarrow \mathbb{P}^{\text {n.c. }}(V(\lambda))
$$

Arithmetic

Theme Revisited

If V is not simple, study

$$
\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{\text {n.c. }}\left(L_{\sigma} \oplus L_{\tau}\right)
$$

If V is simple, study

$$
\lambda \rightsquigarrow \mathbb{P}^{\text {n.c. }}(V(\lambda))
$$

Arithmetic \rightsquigarrow Noncommutative geometry

Theme Revisited

If V is not simple, study

$$
\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{\text {n.c. }}\left(L_{\sigma} \oplus L_{\tau}\right)
$$

If V is simple, study

$$
\lambda \rightsquigarrow \mathbb{P}^{\text {n.c. }}(V(\lambda))
$$

Arithmetic \rightsquigarrow Noncommutative geometry

Questions

Theme Revisited

If V is not simple, study

$$
\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{\text {n.c. }}\left(L_{\sigma} \oplus L_{\tau}\right)
$$

If V is simple, study

$$
\lambda \rightsquigarrow \mathbb{P}^{\text {n.c. }}(V(\lambda))
$$

Arithmetic \rightsquigarrow Noncommutative geometry

Questions

(1) For which arithmetic data are associated spaces isomorphic?

Theme Revisited

If V is not simple, study

$$
\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{\text {n.c. }}\left(L_{\sigma} \oplus L_{\tau}\right)
$$

If V is simple, study

$$
\lambda \rightsquigarrow \mathbb{P}^{\text {n.c. }}(V(\lambda))
$$

Arithmetic \rightsquigarrow Noncommutative geometry

Questions

(1) For which arithmetic data are associated spaces isomorphic?
(2) If they are isomorphic, what are the isomorphisms?

Theme Revisited

If V is not simple, study

$$
\{\sigma, \tau\} \rightsquigarrow \mathbb{P}^{\text {n.c. }}\left(L_{\sigma} \oplus L_{\tau}\right)
$$

If V is simple, study

$$
\lambda \rightsquigarrow \mathbb{P}^{\text {n.c. }}(V(\lambda))
$$

Arithmetic \rightsquigarrow Noncommutative geometry

Questions

(1) For which arithmetic data are associated spaces isomorphic?
(2) If they are isomorphic, what are the isomorphisms?
(3) What is the relationship between the arithmetic data and the automorphism groups?

Part 3

Noncommutative Symmetric Algebras

Goal

Adam Nyman

Goal

Suppose

- V has rank two.
- $\{x, y\}$ is simultaneous basis for V.

Goal

Suppose

- V has rank two.
- $\{x, y\}$ is simultaneous basis for V.

Construct n.c. ring $\mathbb{S}^{\text {n.c. }}(V)$ which specializes to

$$
\mathbb{S}(V):=\frac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{(x \otimes y-y \otimes x)}
$$

when V is L-central.

Goal

Suppose

- V has rank two.
- $\{x, y\}$ is simultaneous basis for V.

Construct n.c. ring $\mathbb{S}^{\text {n.c. }}(V)$ which specializes to

$$
\mathbb{S}(V):=\frac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{(x \otimes y-y \otimes x)}
$$

when V is L-central.
Should have expected left and right Hilbert series

Attempt 1

Adam Nyman

Attempt 1

Define

$$
\mathbb{S}^{\text {n.c. }}(V):=\frac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{(x \otimes y-y \otimes x)}
$$

Attempt 1

Define

$$
\mathbb{S}^{\text {n.c. }}(V):=\frac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{(x \otimes y-y \otimes x)}
$$

Problem

Too many relations.

Attempt 2

Adam Nyman

Attempt 2

There exists canonical $\eta_{0}: L \rightarrow V \otimes_{L} V^{*}$:

Attempt 2

There exists canonical $\eta_{0}: L \rightarrow V \otimes_{L} V^{*}:$ If $\delta_{x} \in \operatorname{Hom}_{L}\left(V_{L}, L\right)$ is dual to x etc. then

Attempt 2

There exists canonical $\eta_{0}: L \rightarrow V \otimes_{L} V^{*}:$ If $\delta_{x} \in \operatorname{Hom}_{L}\left(V_{L}, L\right)$ is dual to x etc. then

$$
\eta_{0}(a):=a\left(x \otimes \delta_{x}+y \otimes \delta_{y}\right) .
$$

Attempt 2

There exists canonical $\eta_{0}: L \rightarrow V \otimes_{L} V^{*}:$ If $\delta_{x} \in \operatorname{Hom}_{L}\left(V_{L}, L\right)$ is dual to x etc. then

$$
\eta_{0}(a):=a\left(x \otimes \delta_{x}+y \otimes \delta_{y}\right) .
$$

η_{0} independent of choices.

Attempt 2

There exists canonical $\eta_{0}: L \rightarrow V \otimes_{L} V^{*}:$ If $\delta_{x} \in \operatorname{Hom}_{L}\left(V_{L}, L\right)$ is dual to x etc. then

$$
\eta_{0}(a):=a\left(x \otimes \delta_{x}+y \otimes \delta_{y}\right) .
$$

η_{0} independent of choices. Define

$$
\mathbb{S}^{\text {n.c. }}(V):=L \oplus V \oplus \frac{V \otimes_{L} V^{*}}{\operatorname{im} \eta_{0}} \oplus \frac{V \otimes V^{*} \otimes V^{* *}}{\operatorname{im} \eta_{0} \otimes V^{* *}+V \otimes \operatorname{im} \eta_{1}} \oplus \cdots
$$

Attempt 2

There exists canonical $\eta_{0}: L \rightarrow V \otimes_{L} V^{*}:$ If $\delta_{x} \in \operatorname{Hom}_{L}\left(V_{L}, L\right)$ is dual to x etc. then

$$
\eta_{0}(a):=a\left(x \otimes \delta_{x}+y \otimes \delta_{y}\right) .
$$

η_{0} independent of choices. Define

$$
\mathbb{S}^{\text {n.c. }}(V):=L \oplus V \oplus \frac{V \otimes_{L} V^{*}}{\operatorname{im} \eta_{0}} \oplus \frac{V \otimes V^{*} \otimes V^{* *}}{\operatorname{im} \eta_{0} \otimes V^{* *}+V \otimes \operatorname{im} \eta_{1}} \oplus \cdots
$$

Problem

No natural multiplication: if $x, y \in V, x \cdot y$ not in $\frac{V \otimes V^{*}}{\operatorname{im} \eta_{0}}$.

Z-algebras (Bondal and Polishchuk (1993))

Z-algebras (Bondal and Polishchuk (1993))

A ring A is a \mathbb{Z}-algebra if

Z-algebras (Bondal and Polishchuk (1993))

A ring A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A=\oplus_{i, j \in \mathbb{Z}} A_{i j}$,

Z-algebras (Bondal and Polishchuk (1993))

A ring A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A=\oplus_{i, j \in \mathbb{Z}} A_{i j}$,
- $A_{i j} A_{j k} \subset A_{i k}$,

Z-algebras (Bondal and Polishchuk (1993))

A ring A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A=\oplus_{i, j \in \mathbb{Z}} A_{i j}$,
- $A_{i j} A_{j k} \subset A_{i k}$,
- $A_{i j} A_{k l}=0$ for $k \neq j$, and

Z-algebras (Bondal and Polishchuk (1993))

A ring A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A=\oplus_{i, j \in \mathbb{Z}} A_{i j}$,
- $A_{i j} A_{j k} \subset A_{i k}$,
- $A_{i j} A_{k l}=0$ for $k \neq j$, and
- the subalgebra $A_{i i}$ contains a unit, e_{i}.

Z-algebras (Bondal and Polishchuk (1993))

A ring A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A=\oplus_{i, j \in \mathbb{Z}} A_{i j}$,
- $A_{i j} A_{j k} \subset A_{i k}$,
- $A_{i j} A_{k l}=0$ for $k \neq j$, and
- the subalgebra $A_{i i}$ contains a unit, e_{i}.

Remark: A does not have a unity and is not a domain.

Z-algebras (Bondal and Polishchuk (1993))

A ring A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A=\oplus_{i, j \in \mathbb{Z}} A_{i j}$,
- $A_{i j} A_{j k} \subset A_{i k}$,
- $A_{i j} A_{k l}=0$ for $k \neq j$, and
- the subalgebra $A_{i i}$ contains a unit, e_{i}.

Remark: A does not have a unity and is not a domain.

Example

If $(\mathcal{O}(n))_{n \in \mathbb{Z}}$ is seq. of objects in a category A , then

$$
A_{i j}=\operatorname{Hom}_{\mathrm{A}}(\mathcal{O}(-j), \mathcal{O}(-i))
$$

with mult. $=$ composition makes $\oplus_{i, j \in \mathbb{Z}} A_{i j}$ a \mathbb{Z}-algebra

Attempt 3: $\mathbb{S}^{\text {n.c. }}(V)$ is a \mathbb{Z}-algebra

Attempt 3: $\mathbb{S}^{\text {n.c. }}(\mathrm{V})$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{\text {n.c. }}(V)(V a n$ den Bergh (2000))
 - $\mathbb{S}^{\text {n.c. }}(V)_{i j}=\frac{V^{i *} \otimes_{L} \cdots \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,

Attempt 3: $\mathbb{S}^{\text {n.c. }}(\mathrm{V})$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{\text {n.c. }}(V)$ (Van den Bergh (2000))

- $\mathbb{S}^{n . c .}(V)_{i j}=\frac{V^{i *} \otimes_{L} \cdots \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,
- $\mathbb{S}^{\text {n.c. }}(V)_{i i}=L$,

Attempt 3: $\mathbb{S}^{\text {n.c. }}(\mathrm{V})$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{\text {n.c. }}(V)$ (Van den Bergh (2000))

- $\mathbb{S}^{\text {n.c. }}(V)_{i j}=\frac{V^{i *} \otimes_{L} \cdots \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,
- $\mathbb{S}^{\text {n.c. }}(V)_{i i}=L$,
- $\mathbb{S}^{n . c .}(V)_{i j}=0$ if $i>j$,

Attempt 3: $\mathbb{S}^{\text {n.c. }}(V)$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{\text {n.c. }}(V)$ (Van den Bergh (2000))

- $\mathbb{S}^{\text {n.c. }}(V)_{i j}=\frac{V^{i *} \otimes_{L} \cdots \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,
- $\mathbb{S}^{\text {n.c. }}(V)_{i i}=L$,
- $\mathbb{S}^{n . c .}(V)_{i j}=0$ if $i>j$,
- multiplication induced by \otimes_{L}.

Attempt 3: $\mathbb{S}^{\text {n.c. }}(V)$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{\text {n.c. }}(V)$ (Van den Bergh (2000))

- $\mathbb{S}^{\text {n.c. }}(V)_{i j}=\frac{V^{i *} \otimes_{L} \cdots \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,
- $\mathbb{S}^{\text {n.c. }}(V)_{i i}=L$,
- $\mathbb{S}^{\text {n.c. }}(V)_{i j}=0$ if $i>j$,
- multiplication induced by \otimes_{L}.

More generally, if

Attempt 3: $\mathbb{S}^{\text {n.c. }}(V)$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{\text {n.c. }}(V)$ (Van den Bergh (2000))

- $\mathbb{S}^{\text {n.c. }}(V)_{i j}=\frac{V^{i *} \otimes_{L} \cdots \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,
- $\mathbb{S}^{\text {n.c. }}(V)_{i i}=L$,
- $\mathbb{S}^{n . c .}(V)_{i j}=0$ if $i>j$,
- multiplication induced by \otimes_{L}.

More generally, if

- X is a smooth scheme of finite type over a k

Attempt 3: $\mathbb{S}^{\text {n.c. }}(\mathrm{V})$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{\text {n.c. }}(V)$ (Van den Bergh (2000))

- $\mathbb{S}^{n . c .}(V)_{i j}=\frac{V^{i *} \otimes_{L} \cdots \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,
- $\mathbb{S}^{\text {n.c. }}(V)_{i i}=L$,
- $\mathbb{S}^{n . c .}(V)_{i j}=0$ if $i>j$,
- multiplication induced by \otimes_{L}.

More generally, if

- X is a smooth scheme of finite type over a k
- \mathcal{E} is a locally free rank $n \mathcal{O}_{X}$-bimodule

Attempt 3: $\mathbb{S}^{\text {n.c. }}(\mathrm{V})$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{\text {n.c. }}(V)$ (Van den Bergh (2000))

- $\mathbb{S}^{n . c .}(V)_{i j}=\frac{V^{i *} \otimes_{L} \cdots \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,
- $\mathbb{S}^{n . c}(V)_{i i}=L$,
- $\mathbb{S}^{n . c .}(V)_{i j}=0$ if $i>j$,
- multiplication induced by \otimes_{L}.

More generally, if

- X is a smooth scheme of finite type over a k
- \mathcal{E} is a locally free rank $n \mathcal{O}_{X}$-bimodule

Van den Bergh defines $\mathbb{S}^{\text {n.c. }}(\mathcal{E})$.

Relation to $\mathbb{S}(V)$

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{\text {n.c. }}(V) \neq \mathbb{S}(V)$.

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{\text {n.c. }}(V) \neq \mathbb{S}(V)$.
If A is a \mathbb{Z}-algebra,

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{\text {n.c. }}(V) \neq \mathbb{S}(V)$.
If A is a \mathbb{Z}-algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{j k}:=A_{j+i, k+i}$.

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{\text {n.c. }}(V) \neq \mathbb{S}(V)$.
If A is a \mathbb{Z}-algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{j k}:=A_{j+i, k+i}$.
- A is i-periodic if $A \cong A(i)$.

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{\text {n.c. }}(V) \neq \mathbb{S}(V)$.
If A is a \mathbb{Z}-algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{j k}:=A_{j+i, k+i}$.
- A is i-periodic if $A \cong A(i)$.

If B is \mathbb{Z}-graded algebra, define $\check{B}_{i j}:=B_{j-i}$.

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{\text {n.c. }}(V) \neq \mathbb{S}(V)$.
If A is a \mathbb{Z}-algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{j k}:=A_{j+i, k+i}$.
- A is i-periodic if $A \cong A(i)$.

If B is \mathbb{Z}-graded algebra, define $\check{B}_{i j}:=B_{j-i}$.

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a \mathbb{Z}-graded ring B such that $A \cong \check{B}$,

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{\text {n.c. }}(V) \neq \mathbb{S}(V)$.
If A is a \mathbb{Z}-algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{j k}:=A_{j+i, k+i}$.
- A is i-periodic if $A \cong A(i)$.

If B is \mathbb{Z}-graded algebra, define $\check{B}_{i j}:=B_{j-i}$.

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a \mathbb{Z}-graded ring B such that $A \cong \check{B}$, and $\operatorname{Gr} A \equiv \mathrm{Gr} B$.

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{\text {n.c. }}(V) \neq \mathbb{S}(V)$.
If A is a \mathbb{Z}-algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{j k}:=A_{j+i, k+i}$.
- A is i-periodic if $A \cong A(i)$.

If B is \mathbb{Z}-graded algebra, define $\check{B}_{i j}:=B_{j-i}$.

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a \mathbb{Z}-graded ring B such that $A \cong \breve{B}$, and $\operatorname{Gr} A \equiv \operatorname{Gr} B$. It follows that if V is L-central, then

$$
\operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) \equiv \operatorname{GrS}(V)
$$

Part 4

Arithmetic Noncommutative Projective Lines

Basic Properties

Basic Properties

- V a rank 2 (k-central) two-sided vector space $/ L$

Basic Properties

- V a rank 2 (k-central) two-sided vector space /L
- Tors $\mathbb{S}^{\text {n.c. }}(V)=$ full subcat. of $\operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V)$ of direct limits of right bounded modules

Basic Properties

- V a rank 2 (k-central) two-sided vector space /L
- Tors $\mathbb{S}^{\text {n.c. }}(V)=$ full subcat. of $\operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V)$ of direct limits of right bounded modules
- $\mathbb{P}^{\text {n.c. }}(V):=\operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) /$ Tors $\mathbb{S}^{\text {n.c. }}(V)$,

Basic Properties

- V a rank 2 (k-central) two-sided vector space /L
- Tors $\mathbb{S}^{n . c .}(V)=$ full subcat. of $\operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V)$ of direct limits of right bounded modules
- $\mathbb{P}^{\text {n.c. }}(V):=\operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) /$ Tors $\mathbb{S}^{\text {n.c. }}(V)$,

Theorem

The noncommutative space $\mathbb{P}^{\text {n.c. }}(V)$

Basic Properties

- V a rank 2 (k-central) two-sided vector space /L
- Tors $\mathbb{S}^{n . c .}(V)=$ full subcat. of $\operatorname{Gr} \mathbb{S}^{n . c .}(V)$ of direct limits of right bounded modules
- $\mathbb{P}^{\text {n.c. }}(V):=\operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) /$ Tors $\mathbb{S}^{\text {n.c. }}(V)$,

Theorem

The noncommutative space $\mathbb{P}^{\text {n.c. }}(V)$

- is a locally noetherian category (Van den Bergh (2000)),

Basic Properties

- V a rank 2 (k-central) two-sided vector space /L
- Tors $\mathbb{S}^{n . c .}(V)=$ full subcat. of $\operatorname{Gr} \mathbb{S}^{n . c .}(V)$ of direct limits of right bounded modules
- $\mathbb{P}^{\text {n.c. }}(V):=\operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) /$ Tors $\mathbb{S}^{\text {n.c. }}(V)$,

Theorem

The noncommutative space $\mathbb{P}^{\text {n.c. }}(V)$

- is a locally noetherian category (Van den Bergh (2000)),
- is Ext-finite (N. (2004)),

Basic Properties

- V a rank 2 (k-central) two-sided vector space /L
- Tors $\mathbb{S}^{n . c .}(V)=$ full subcat. of $\operatorname{Gr} \mathbb{S}^{n . c .}(V)$ of direct limits of right bounded modules
- $\mathbb{P}^{\text {n.c. }}(V):=\operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) /$ Tors $\mathbb{S}^{\text {n.c. }}(V)$,

Theorem

The noncommutative space $\mathbb{P}^{\text {n.c. }}(V)$

- is a locally noetherian category (Van den Bergh (2000)),
- is Ext-finite (N. (2004)),
- has a Serre functor (Chan and N. (2009)) induced by $[-2]: \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) \rightarrow \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V)$,

Basic Properties

- V a rank 2 (k-central) two-sided vector space /L
- Tors $\mathbb{S}^{n . c .}(V)=$ full subcat. of $\operatorname{Gr} \mathbb{S}^{n . c .}(V)$ of direct limits of right bounded modules
- $\mathbb{P}^{\text {n.c. }}(V):=\operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) /$ Tors $\mathbb{S}^{\text {n.c. }}(V)$,

Theorem

The noncommutative space $\mathbb{P}^{\text {n.c. }}(V)$

- is a locally noetherian category (Van den Bergh (2000)),
- is Ext-finite (N. (2004)),
- has a Serre functor (Chan and N. (2009)) induced by $[-2]: \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) \rightarrow \operatorname{Gr}^{\text {n.c. }}(V)$,
- has homological dimension 1 (Chan and N. (2009)), and

Basic Properties

- V a rank 2 (k-central) two-sided vector space /L
- Tors $\mathbb{S}^{n . c .}(V)=$ full subcat. of $\operatorname{Gr} \mathbb{S}^{n . c .}(V)$ of direct limits of right bounded modules
- $\mathbb{P}^{\text {n.c. }}(V):=\operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) /$ Tors $\mathbb{S}^{\text {n.c. }}(V)$,

Theorem

The noncommutative space $\mathbb{P}^{\text {n.c. }}(V)$

- is a locally noetherian category (Van den Bergh (2000)),
- is Ext-finite (N. (2004)),
- has a Serre functor (Chan and N. (2009)) induced by $[-2]: \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) \rightarrow \operatorname{Gr}^{\text {n.c. }}(V)$,
- has homological dimension 1 (Chan and N. (2009)), and
- has a tilting object \mathcal{T}.

Motivation: Birational Classification of Noncommutative Surfaces

Motivation: Birational Classification of Noncommutative Surfaces

Conjecture (Artin)

Every noncommutative surface not finite over its center is birational to a noncommutative ruled surface.

Motivation: Birational Classification of Noncommutative Surfaces

Conjecture (Artin)

Every noncommutative surface not finite over its center is birational to a noncommutative ruled surface.

If C, C^{\prime} are \mathbb{Z}-graded,

$$
\text { Proj } C \text { birational to } \operatorname{Proj} C^{\prime}
$$

means deg. 0 comp. of skew field of C equals that of C^{\prime}.

Motivation: Birational Classification of Noncommutative Surfaces

Conjecture (Artin)

Every noncommutative surface not finite over its center is birational to a noncommutative ruled surface.

If C, C^{\prime} are \mathbb{Z}-graded,

$$
\text { Proj } C \text { birational to } \operatorname{Proj} C^{\prime}
$$

means deg. 0 comp. of skew field of C equals that of C^{\prime}.
Relationship to $\mathbb{P}^{\text {n.c. }}(V)$
Generic fibre of noncommutative ruled surface $\cong \mathbb{P}^{\text {n.c. }}(V)$ where V is two-sided over L

Motivation: Birational Classification of Noncommutative Surfaces

Conjecture (Artin)

Every noncommutative surface not finite over its center is birational to a noncommutative ruled surface.

If C, C^{\prime} are \mathbb{Z}-graded,

$$
\text { Proj } C \text { birational to } \operatorname{Proj} C^{\prime}
$$

means deg. 0 comp. of skew field of C equals that of C^{\prime}.
Relationship to $\mathbb{P}^{\text {n.c. }}(V)$
Generic fibre of noncommutative ruled surface $\cong \mathbb{P}^{\text {n.c. }}(V)$ where V is two-sided over $L=$ function field of smooth curve

Motivation: Birational Classification of Noncommutative Surfaces

Conjecture (Artin)

Every noncommutative surface not finite over its center is birational to a noncommutative ruled surface.

If C, C^{\prime} are \mathbb{Z}-graded,

$$
\text { Proj } C \text { birational to } \operatorname{Proj} C^{\prime}
$$

means deg. 0 comp. of skew field of C equals that of C^{\prime}.
Relationship to $\mathbb{P}^{\text {n.c. }}(V)$
Generic fibre of noncommutative ruled surface $\cong \mathbb{P}^{\text {n.c. }}(V)$ where V is two-sided over $L=$ function field of smooth curve

Birational invariants of noncommutative projective lines $\mathbb{P}^{\text {n.c. }}(V)$ may suggest birational invariants of a noncommutative surface.
"The motivation for a physicist to study 1-dimensional problems is best illustrated by the story of the man who, returning home late at night after an alcoholic evening, was scanning the ground for his key under a lamppost; he knew, to be sure, that he had dropped it somewhere else, but only under the lamppost was there enough light to conduct a proper search." -F. Calogero

Toy Models

"The motivation for a physicist to study 1-dimensional problems is best illustrated by the story of the man who, returning home late at night after an alcoholic evening, was scanning the ground for his key under a lamppost; he knew, to be sure, that he had dropped it somewhere else, but only under the lamppost was there enough light to conduct a proper search." -F. Calogero

Thanks Thomas Nevins.

$\mathbb{P}^{\text {n.c. }}(V)$ is Integral

$\mathbb{P}^{\text {p.c.c }}(V)$ is Integral

Let $X=$ locally noetherian noncommutative space.

$\mathbb{P}^{\text {p.c.c }}(V)$ is Integral

Let $X=$ locally noetherian noncommutative space.
Definition (S.P. Smith (2001))

$\mathbb{P}^{\text {p.c.c }}(V)$ is Integral

Let $X=$ locally noetherian noncommutative space.
Definition (S.P. Smith (2001))
X is integral if \exists indecomposable injective \mathcal{E}_{X} (a big injective) such that

$\mathbb{P}^{\text {p.c.c }}(V)$ is Integral

Let $X=$ locally noetherian noncommutative space.
Definition (S.P. Smith (2001))
X is integral if \exists indecomposable injective \mathcal{E}_{X} (a big injective) such that
(1) End ${ }_{\mathrm{X}}\left(\mathcal{E}_{\mathrm{X}}\right)$ is a division ring and

Let $X=$ locally noetherian noncommutative space.
Definition (S.P. Smith (2001))
X is integral if \exists indecomposable injective \mathcal{E}_{X} (a big injective) such that
(1) End ${ }_{\mathrm{X}}\left(\mathcal{E}_{\mathrm{X}}\right)$ is a division ring and
(2) every object of X is a subquotient of $\oplus \mathcal{E}_{X}$.

$\mathbb{P}^{\text {p.c. }}(V)$ is Integral

Let $X=$ locally noetherian noncommutative space.

Definition (S.P. Smith (2001))

X is integral if \exists indecomposable injective \mathcal{E}_{X} (a big injective) such that
(1) End $X\left(\mathcal{E}_{X}\right)$ is a division ring and
(2) every object of X is a subquotient of $\oplus \mathcal{E}_{X}$.

A noetherian scheme Y is integral in the above sense iff Y is integral in the usual sense, and $\mathcal{E}_{\text {Qcoh } Y}$ is the constant sheaf with sections $=k(Y)$.

$\mathbb{P}^{\text {p.c. }}(V)$ is Integral

Let $X=$ locally noetherian noncommutative space.

Definition (S.P. Smith (2001))

X is integral if \exists indecomposable injective \mathcal{E}_{X} (a big injective) such that
(1) End ${ }_{\mathrm{X}}\left(\mathcal{E}_{\mathrm{X}}\right)$ is a division ring and
(2) every object of X is a subquotient of $\oplus \mathcal{E}_{X}$.

A noetherian scheme Y is integral in the above sense iff Y is integral in the usual sense, and $\mathcal{E}_{\text {Qcoh } Y}$ is the constant sheaf with sections $=k(Y)$.

Theorem (N. 2013)

The noncommutative space $\mathbb{P}^{\text {n.c. }}(V)$ is integral.

Classification of Vector Bundles

Classification of Vector Bundles

- $M \in X$ is torsion if $\operatorname{Hom}_{\mathrm{X}}\left(M, \mathcal{E}_{\mathrm{X}}\right)=0$.

Classification of Vector Bundles

- $M \in X$ is torsion if $\operatorname{Hom}_{\mathrm{X}}\left(M, \mathcal{E}_{\mathrm{X}}\right)=0$.
- rank $M:=$ length of $\operatorname{Hom}_{X}\left(M, \mathcal{E}_{X}\right)$ as left $\operatorname{End}\left(\mathcal{E}_{X}\right)$-module.

Classification of Vector Bundles

- $M \in X$ is torsion if $\operatorname{Hom}_{X}\left(M, \mathcal{E}_{\mathrm{X}}\right)=0$.
- rank $M:=$ length of $\operatorname{Hom}_{X}\left(M, \mathcal{E}_{X}\right)$ as left $\operatorname{End}\left(\mathcal{E}_{\mathrm{X}}\right)$-module.

Definition

Vector bundles/X =

Classification of Vector Bundles

- $M \in X$ is torsion if $\operatorname{Hom}_{X}\left(M, \mathcal{E}_{\mathrm{X}}\right)=0$.
- rank $M:=$ length of $\operatorname{Hom}_{\mathrm{X}}\left(M, \mathcal{E}_{\mathrm{X}}\right)$ as left $\operatorname{End}{ }_{\mathrm{X}}\left(\mathcal{E}_{\mathrm{X}}\right)$-module.

Definition

Vector bundles $/ X=$ finite rank torsion-free modules.

Classification of Vector Bundles

- $M \in X$ is torsion if $\operatorname{Hom}_{X}\left(M, \mathcal{E}_{\mathrm{X}}\right)=0$.
- rank $M:=$ length of $\operatorname{Hom}_{X}\left(M, \mathcal{E}_{X}\right)$ as left $\operatorname{End}\left(\mathcal{E}_{\mathrm{X}}\right)$-module.

Definition

Vector bundles $/ X=$ finite rank torsion-free modules.

- Let $e_{i} \mathbb{S}^{\text {n.c. }}(V):=\oplus_{j \in \mathbb{Z}} \mathbb{S}^{\text {n.c. }}(V)_{i j} \in \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V)$.

Classification of Vector Bundles

- $M \in X$ is torsion if $\operatorname{Hom}_{X}\left(M, \mathcal{E}_{\mathrm{X}}\right)=0$.
- rank $M:=$ length of $\operatorname{Hom}_{X}\left(M, \mathcal{E}_{\mathrm{X}}\right)$ as left $\operatorname{End}\left(\mathcal{E}_{\mathrm{X}}\right)$-module.

Definition

Vector bundles $/ X=$ finite rank torsion-free modules.

- Let $e_{i} \mathbb{S}^{\text {n.c. }}(V):=\oplus_{j \in \mathbb{Z}} \mathbb{S}^{\text {n.c. }}(V)_{i j} \in \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V)$.
- Let $\pi: \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(V)$ be the quotient functor.

Classification of Vector Bundles

- $M \in X$ is torsion if $\operatorname{Hom}_{X}\left(M, \mathcal{E}_{\mathrm{X}}\right)=0$.
- rank $M:=$ length of $\operatorname{Hom}_{X}\left(M, \mathcal{E}_{X}\right)$ as left $\operatorname{End}\left(\mathcal{E}_{X}\right)$-module.

Definition

Vector bundles $/ X=$ finite rank torsion-free modules.

- Let $e_{i} \mathbb{S}^{\text {n.c. }}(V):=\oplus_{j \in \mathbb{Z}^{\text {两.c. }}}(V)_{i j} \in \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V)$.
- Let $\pi: \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(V)$ be the quotient functor.
- Let $\mathcal{O}(i):=$

Classification of Vector Bundles

- $M \in X$ is torsion if $\operatorname{Hom}_{X}\left(M, \mathcal{E}_{\mathrm{X}}\right)=0$.
- rank $M:=$ length of $\operatorname{Hom}_{X}\left(M, \mathcal{E}_{\mathrm{X}}\right)$ as left $\operatorname{End}\left(\mathcal{E}_{\mathrm{X}}\right)$-module.

Definition

Vector bundles $/ X=$ finite rank torsion-free modules.

- Let $e_{i} \mathbb{S}^{\text {n.c. }}(V):=\oplus_{j \in \mathbb{Z}} \mathbb{S}^{\text {n.c. }}(V)_{i j} \in \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V)$.
- Let $\pi: \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(V)$ be the quotient functor.
- Let $\mathcal{O}(i):=\pi\left(e_{-i} \mathbb{S}^{\text {n.c. }}(V)\right)$.

Classification of Vector Bundles

- $M \in \mathrm{X}$ is torsion if $\operatorname{Hom}_{\mathrm{X}}\left(M, \mathcal{E}_{\mathrm{X}}\right)=0$.
- rank $M:=$ length of $\operatorname{Hom}_{X}\left(M, \mathcal{E}_{X}\right)$ as left $\operatorname{End}\left(\mathcal{E}_{X}\right)$-module.

Definition

Vector bundles/ $\mathrm{X}=$ finite rank torsion-free modules.

- Let $e_{i} \mathbb{S}^{\text {n.c. }}(V):=\oplus_{j \in \mathbb{Z}} \mathbb{S}^{\text {n.c. }}(V)_{i j} \in \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V)$.
- Let $\pi: \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(V)$ be the quotient functor.
- Let $\mathcal{O}(i):=\pi\left(e_{-i} \mathbb{S}^{\text {n.c. }}(V)\right)$.

Theorem (N. 2013)

Every vector bundle over $\mathbb{P}^{\text {n.c. }}(V)$ is a direct sum of line bundles.

Classification of Vector Bundles

- $M \in \mathrm{X}$ is torsion if $\operatorname{Hom}_{\mathrm{X}}\left(M, \mathcal{E}_{\mathrm{X}}\right)=0$.
- rank $M:=$ length of $\operatorname{Hom}_{X}\left(M, \mathcal{E}_{X}\right)$ as left $\operatorname{End}\left(\mathcal{E}_{X}\right)$-module.

Definition

Vector bundles/ $\mathrm{X}=$ finite rank torsion-free modules.

- Let $e_{i} \mathbb{S}^{\text {n.c. }}(V):=\oplus_{j \in \mathbb{Z}} \mathbb{S}^{\text {n.c. }}(V)_{i j} \in \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V)$.
- Let $\pi: \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(V)$ be the quotient functor.
- Let $\mathcal{O}(i):=\pi\left(e_{-i} \mathbb{S}^{\text {n.c. }}(V)\right)$.

Theorem (N. 2013)

Every vector bundle over $\mathbb{P}^{\text {n.c. }}(V)$ is a direct sum of line bundles. The line bundles are $\{\mathcal{O}(i)\}_{i \in \mathbb{Z}}$.

Part 5

Classification of Noncommutative Projective Lines

Classification Theorem Version 1

Classification Theorem Version 1

Theorem (N. (2013))

$\mathbb{P}^{\text {n.c. }}(V) \equiv_{k} \mathbb{P}^{\text {n.c. }}(W)$ if and only if

Classification Theorem Version 1

Theorem (N. (2013))

$\mathbb{P}^{\text {n.c. }}(V) \equiv{ }_{k} \mathbb{P}^{\text {n.c. }}(W)$ if and only if there exists $\sigma, \tau \in \operatorname{Gal}(L / k)$ such that either

$$
V \cong L_{\sigma} \otimes_{L} W \otimes_{L} L_{\tau}
$$

Classification Theorem Version 1

Theorem (N. (2013))

$\mathbb{P}^{\text {n.c. }}(V) \equiv{ }_{k} \mathbb{P}^{\text {n.c. }}(W)$ if and only if there exists $\sigma, \tau \in \operatorname{Gal}(L / k)$ such that either

$$
V \cong L_{\sigma} \otimes_{L} W \otimes_{L} L_{\tau} \text { or } V \cong L_{\sigma} \otimes_{L} W^{*} \otimes_{L} L_{\tau} .
$$

Classification Theorem Version 1

Theorem (N. (2013))

$\mathbb{P}^{\text {n.c. }}(V) \equiv{ }_{k} \mathbb{P}^{\text {n.c. }}(W)$ if and only if there exists $\sigma, \tau \in \operatorname{Gal}(L / k)$ such that either

$$
V \cong L_{\sigma} \otimes_{L} W \otimes_{L} L_{\tau} \text { or } V \cong L_{\sigma} \otimes_{L} W^{*} \otimes_{L} L_{\tau}
$$

(\Leftarrow) proven in greater generality by I. Mori.

Classification Theorem Version 2, Cases 1 and 2

Classification Theorem Version 2, Cases 1 and 2

Theorem (N. (2013))

Suppose char $k \neq 2$. Then $\mathbb{P}^{\text {n.c. }}\left(V_{1}\right) \equiv \mathbb{P}^{\text {n.c. }}\left(V_{2}\right)$ if and only if

Classification Theorem Version 2, Cases 1 and 2

Theorem (N. (2013))
Suppose char $k \neq 2$. Then $\mathbb{P}^{\text {n.c. }}\left(V_{1}\right) \equiv \mathbb{P}^{\text {n.c. }}\left(V_{2}\right)$ if and only if
Case 1: $\exists \sigma_{i} \in \operatorname{Gal}(L / k)$ such that

$$
V_{i} \cong L_{\sigma_{i}} \oplus L_{\sigma_{i}}
$$

Classification Theorem Version 2，Cases 1 and 2

Theorem（N．（2013））

Suppose char $k \neq 2$ ．Then $\mathbb{P}^{\text {n．c．}}\left(V_{1}\right) \equiv \mathbb{P}^{\text {n．c．}}\left(V_{2}\right)$ if and only if Case 1：$\exists \sigma_{i} \in \operatorname{Gal}(L / k)$ such that

$$
V_{i} \cong L_{\sigma_{i}} \oplus L_{\sigma_{i}}
$$

In this case， $\mathbb{P}^{\text {n．c．}}\left(V_{i}\right) \equiv \operatorname{Qcoh} \mathbb{P}^{1}$ ．

Classification Theorem Version 2，Cases 1 and 2

Theorem（N．（2013））

Suppose char $k \neq 2$ ．Then $\mathbb{P}^{\text {n．c．}}\left(V_{1}\right) \equiv \mathbb{P}^{\text {n．c．}}\left(V_{2}\right)$ if and only if
Case 1：$\exists \sigma_{i} \in \operatorname{Gal}(L / k)$ such that

$$
V_{i} \cong L_{\sigma_{i}} \oplus L_{\sigma_{i}}
$$

In this case， $\mathbb{P}^{\text {n．c．}}\left(V_{i}\right) \equiv$ Qcoh \mathbb{P}^{1} ．
Case 2：$\exists \sigma_{i}, \tau_{i} \in \operatorname{Gal}(L / k)$ ，with $\sigma_{i} \neq \tau_{i}$ ，

$$
V_{i} \cong L_{\sigma_{i}} \oplus L_{\tau_{i}}
$$

Classification Theorem Version 2, Cases 1 and 2

Theorem (N. (2013))

Suppose char $k \neq 2$. Then $\mathbb{P}^{\text {n.c. }}\left(V_{1}\right) \equiv \mathbb{P}^{\text {n.c. }}\left(V_{2}\right)$ if and only if
Case 1: $\exists \sigma_{i} \in \operatorname{Gal}(L / k)$ such that

$$
V_{i} \cong L_{\sigma_{i}} \oplus L_{\sigma_{i}}
$$

In this case, $\mathbb{P}^{\text {n.c. }}\left(V_{i}\right) \equiv$ Qcoh \mathbb{P}^{1}.
Case 2: $\exists \sigma_{i}, \tau_{i} \in \operatorname{Gal}(L / k)$, with $\sigma_{i} \neq \tau_{i}$,

$$
V_{i} \cong L_{\sigma_{i}} \oplus L_{\tau_{i}}
$$

and under action of $\operatorname{Gal}(L / k)^{2}$ on itself defined by

$$
(\alpha, \beta) \cdot(\sigma, \tau):=\left(\alpha \sigma \beta^{-1}, \alpha \tau \beta^{-1}\right)
$$

Classification Theorem Version 2, Cases 1 and 2

Theorem (N. (2013))

Suppose char $k \neq 2$. Then $\mathbb{P}^{\text {n.c. }}\left(V_{1}\right) \equiv \mathbb{P}^{\text {n.c. }}\left(V_{2}\right)$ if and only if
Case 1: $\exists \sigma_{i} \in \operatorname{Gal}(L / k)$ such that

$$
V_{i} \cong L_{\sigma_{i}} \oplus L_{\sigma_{i}}
$$

In this case, $\mathbb{P}^{\text {n.c. }}\left(V_{i}\right) \equiv$ Qcoh \mathbb{P}^{1}.
Case 2: $\exists \sigma_{i}, \tau_{i} \in \operatorname{Gal}(L / k)$, with $\sigma_{i} \neq \tau_{i}$,

$$
V_{i} \cong L_{\sigma_{i}} \oplus L_{\tau_{i}}
$$

and under action of $\operatorname{Gal}(L / k)^{2}$ on itself defined by

$$
\begin{gathered}
(\alpha, \beta) \cdot(\sigma, \tau):=\left(\alpha \sigma \beta^{-1}, \alpha \tau \beta^{-1}\right) \\
\mathcal{O}_{\left(\sigma_{1}, \tau_{1}\right)} \cap\left\{\left(\sigma_{2}, \tau_{2}\right),\left(\sigma_{2}^{-1}, \tau_{2}^{-1}\right),\left(\tau_{2}, \sigma_{2}\right),\left(\tau_{2}^{-1}, \sigma_{2}^{-1}\right)\right\} \neq \emptyset
\end{gathered}
$$

Classification Theorem Version 2, Case 3

Classification Theorem Version 2, Case 3

Theorem (cont.)

Let $G:=\operatorname{Gal}(\bar{L} / L)$. Suppose char $k \neq 2$. Then $\mathbb{P}^{\text {n.c. }}\left(V_{1}\right) \equiv \mathbb{P}^{\text {n.c. }}\left(V_{2}\right)$ if and only if
Case 3: $\exists \lambda_{i} \in \operatorname{Emb}(L)$ of G-orbit size two, such that

$$
V_{i} \cong V\left(\lambda_{i}\right)
$$

Classification Theorem Version 2, Case 3

Theorem (cont.)

Let $G:=\operatorname{Gal}(\bar{L} / L)$. Suppose char $k \neq 2$. Then
$\mathbb{P}^{\text {n.c. }}\left(V_{1}\right) \equiv \mathbb{P}^{\text {n.c. }}\left(V_{2}\right)$ if and only if
Case 3: $\exists \lambda_{i} \in \operatorname{Emb}(L)$ of G-orbit size two, such that

$$
V_{i} \cong V\left(\lambda_{i}\right)
$$

and under the action of $\operatorname{Gal}(L / k)^{2}$ on $\operatorname{Emb}(L)$ defined by

$$
(\alpha, \beta) \cdot \lambda:=\alpha \lambda \beta^{-1}
$$

Either

Classification Theorem Version 2, Case 3

Theorem (cont.)

Let $G:=\operatorname{Gal}(\bar{L} / L)$. Suppose char $k \neq 2$. Then
$\mathbb{P}^{\text {n.c. }}\left(V_{1}\right) \equiv \mathbb{P}^{\text {n.c. }}\left(V_{2}\right)$ if and only if
Case 3: $\exists \lambda_{i} \in \operatorname{Emb}(L)$ of G-orbit size two, such that

$$
V_{i} \cong V\left(\lambda_{i}\right)
$$

and under the action of $\operatorname{Gal}(L / k)^{2}$ on $\operatorname{Emb}(L)$ defined by

$$
(\alpha, \beta) \cdot \lambda:=\alpha \lambda \beta^{-1}
$$

Either

- $\mathcal{O}_{\lambda_{1}} \cap \lambda_{2}^{G} \neq \emptyset$ or

Classification Theorem Version 2, Case 3

Theorem (cont.)

Let $G:=\operatorname{Gal}(\bar{L} / L)$. Suppose char $k \neq 2$. Then
$\mathbb{P}^{\text {n.c. }}\left(V_{1}\right) \equiv \mathbb{P}^{\text {n.c. }}\left(V_{2}\right)$ if and only if
Case 3: $\exists \lambda_{i} \in \operatorname{Emb}(L)$ of G-orbit size two, such that

$$
V_{i} \cong V\left(\lambda_{i}\right)
$$

and under the action of $\operatorname{Gal}(L / k)^{2}$ on $\operatorname{Emb}(L)$ defined by

$$
(\alpha, \beta) \cdot \lambda:=\alpha \lambda \beta^{-1}
$$

Either

- $\mathcal{O}_{\lambda_{1}} \cap \lambda_{2}^{G} \neq \emptyset$ or
- $\mathcal{O}_{\lambda_{1}} \cap \mu_{2}^{G} \neq \emptyset$ where $\mu_{2}=\left.\left(\overline{\lambda_{2}}\right)^{-1}\right|_{L}$.

Part 6

Classification of Isomorphisms $\mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(W)$

Canonical Equivalences 1

Canonical Equivalences 1

$$
\phi: V \xlongequal{\cong} W \text { induces } \phi: \mathbb{S}^{\text {n.c. }}(V) \xlongequal{\cong} \mathbb{S}^{\text {n.c. }}(W)
$$

Canonical Equivalences 1

$$
\phi: V \stackrel{\cong}{\rightrightarrows} W \text { induces } \phi: \mathbb{S}^{\text {n.c. }}(V) \xlongequal{\cong} \mathbb{S}^{\text {n.c. }}(W)
$$

The equivalence Φ

Canonical Equivalences 1

$$
\phi: V \stackrel{\cong}{\rightrightarrows} W \text { induces } \phi: \mathbb{S}^{\text {n.c. }}(V) \xlongequal{\cong} \mathbb{S}^{\text {n.c. }}(W)
$$

The equivalence Φ

Definition of Φ : $\operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) \rightarrow \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(W)$:

Canonical Equivalences 1

$\phi: V \xlongequal{\cong} W$ induces $\phi: \mathbb{S}^{\text {n.c. }}(V) \xlongequal{\cong} \mathbb{S}^{\text {n.c. }}(W)$.

The equivalence Φ

Definition of $\Phi: \operatorname{GrS}{ }^{\text {n.c. }}(V) \rightarrow \operatorname{GrS}^{\text {n.c. }}(W)$:

- $\Phi(M)_{i}:=M_{i}$ as a set, with $\mathbb{S}^{\text {n.c. }}(W)$-module structure

$$
\Phi(M)_{i} \otimes \mathbb{S}^{n . c .}(W)_{i j} \xrightarrow{1 \otimes \phi^{-1}} \Phi(M)_{i} \otimes \mathbb{S}^{n . c .}(V)_{i j} \xrightarrow{\mu} \Phi(M)_{j} .
$$

Canonical Equivalences 1

$\phi: V \xlongequal{\cong} W$ induces $\phi: \mathbb{S}^{\text {n.c. }}(V) \xlongequal{\cong} \mathbb{S}^{\text {n.c. }}(W)$.

The equivalence Φ

Definition of $\Phi: \operatorname{GrS}$ n.c. $(V) \rightarrow$ Grsn.c. (W) :

- $\Phi(M)_{i}:=M_{i}$ as a set, with $\mathbb{S}^{\text {n.c. }}(W)$-module structure

$$
\Phi(M)_{i} \otimes \mathbb{S}^{n . c .}(W)_{i j} \xrightarrow{1 \otimes \phi^{-1}} \Phi(M)_{i} \otimes \mathbb{S}^{n . c .}(V)_{i j} \xrightarrow{\mu} \Phi(M)_{j} .
$$

- If $f: M \rightarrow N$ we define $\Phi(f)_{i}(m)=f(m)$.

Canonical Equivalences 1

$\phi: V \xlongequal{\cong} W$ induces $\phi: \mathbb{S}^{\text {n.c. }}(V) \xlongequal{\cong} \mathbb{S}^{\text {n.c. }}(W)$.

The equivalence Φ

Definition of $\Phi: \operatorname{GrS}{ }^{\text {n.c. }}(V) \rightarrow$ Grs.n.c. (W) :

- $\Phi(M)_{i}:=M_{i}$ as a set, with $\mathbb{S}^{\text {n.c. }}(W)$-module structure

$$
\Phi(M)_{i} \otimes \mathbb{S}^{n . c .}(W)_{i j} \xrightarrow{1 \otimes \phi^{-1}} \Phi(M)_{i} \otimes \mathbb{S}^{n . c .}(V)_{i j} \xrightarrow{\mu} \Phi(M)_{j} .
$$

- If $f: M \rightarrow N$ we define $\Phi(f)_{i}(m)=f(m)$.
Φ descends uniquely to an equivalence $\Phi: \mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(W)$.

Canonical Equivalences 2: Twisting

Canonical Equivalences 2: Twisting

Canonical Equivalences 2: Twisting

- For $i \in \mathbb{Z}$, let $\sigma_{i} \in \operatorname{Gal}(L / k)$,

Canonical Equivalences 2: Twisting

- For $i \in \mathbb{Z}$, let $\sigma_{i} \in \operatorname{Gal}(L / k)$,
- Let $\sigma:=\left\{\sigma_{i}\right\}_{i \in \mathbb{Z}}$, and

Canonical Equivalences 2: Twisting

- For $i \in \mathbb{Z}$, let $\sigma_{i} \in \operatorname{Gal}(L / k)$,
- Let $\sigma:=\left\{\sigma_{i}\right\}_{i \in \mathbb{Z}}$, and
- If A denotes a \mathbb{Z}-algebra, let A_{σ} denote the \mathbb{Z}-algebra with

$$
A_{\sigma, i j}:=L_{\sigma_{i}^{-1}} \otimes A_{i j} \otimes L_{\sigma_{j}}
$$

and with multiplication induced by that of A.

Canonical Equivalences 2: Twisting

- For $i \in \mathbb{Z}$, let $\sigma_{i} \in \operatorname{Gal}(L / k)$,
- Let $\sigma:=\left\{\sigma_{i}\right\}_{i \in \mathbb{Z}}$, and
- If A denotes a \mathbb{Z}-algebra, let A_{σ} denote the \mathbb{Z}-algebra with

$$
A_{\sigma, i j}:=L_{\sigma_{i}^{-1}} \otimes A_{i j} \otimes L_{\sigma_{j}}
$$

and with multiplication induced by that of A.

The equivalence T_{σ} (Van den Bergh)

Definition of $T_{\sigma}: \mathrm{Gr} A \rightarrow \mathrm{Gr} A_{\sigma}$:

Canonical Equivalences 2: Twisting

- For $i \in \mathbb{Z}$, let $\sigma_{i} \in \operatorname{Gal}(L / k)$,
- Let $\sigma:=\left\{\sigma_{i}\right\}_{i \in \mathbb{Z}}$, and
- If A denotes a \mathbb{Z}-algebra, let A_{σ} denote the \mathbb{Z}-algebra with

$$
A_{\sigma, i j}:=L_{\sigma_{i}^{-1}} \otimes A_{i j} \otimes L_{\sigma_{j}}
$$

and with multiplication induced by that of A.

The equivalence T_{σ} (Van den Bergh)

Definition of $T_{\sigma}: \mathrm{Gr} A \rightarrow \mathrm{Gr} A_{\sigma}$:

- $T_{\sigma}(M)_{i}:=M_{i} \otimes L_{\sigma_{i}}$ with multiplication induced by that of A, and

Canonical Equivalences 2: Twisting

- For $i \in \mathbb{Z}$, let $\sigma_{i} \in \operatorname{Gal}(L / k)$,
- Let $\sigma:=\left\{\sigma_{i}\right\}_{i \in \mathbb{Z}}$, and
- If A denotes a \mathbb{Z}-algebra, let A_{σ} denote the \mathbb{Z}-algebra with

$$
A_{\sigma, i j}:=L_{\sigma_{i}^{-1}} \otimes A_{i j} \otimes L_{\sigma_{j}}
$$

and with multiplication induced by that of A.

The equivalence T_{σ} (Van den Bergh)

Definition of $T_{\sigma}: \mathrm{Gr} A \rightarrow \mathrm{Gr} A_{\sigma}$:

- $T_{\sigma}(M)_{i}:=M_{i} \otimes L_{\sigma_{i}}$ with multiplication induced by that of A, and
- If $f: M \rightarrow N$ we define $T_{\sigma}(f)_{i}=f_{i} \otimes L_{\sigma_{i}}$.

Canonical Equivalences 2: Twisting

- For $i \in \mathbb{Z}$, let $\sigma_{i} \in \operatorname{Gal}(L / k)$,
- Let $\sigma:=\left\{\sigma_{i}\right\}_{i \in \mathbb{Z}}$, and
- If A denotes a \mathbb{Z}-algebra, let A_{σ} denote the \mathbb{Z}-algebra with

$$
A_{\sigma, i j}:=L_{\sigma_{i}^{-1}} \otimes A_{i j} \otimes L_{\sigma_{j}}
$$

and with multiplication induced by that of A.

The equivalence T_{σ} (Van den Bergh)

Definition of $T_{\sigma}: \mathrm{Gr} A \rightarrow \mathrm{Gr} A_{\sigma}$:

- $T_{\sigma}(M)_{i}:=M_{i} \otimes L_{\sigma_{i}}$ with multiplication induced by that of A, and
- If $f: M \rightarrow N$ we define $T_{\sigma}(f)_{i}=f_{i} \otimes L_{\sigma_{i}}$.
T_{σ} descends uniquely to an equivalence $T_{\sigma}: \operatorname{Proj} A \rightarrow \operatorname{Proj} A_{\sigma}$.

A Special Twist

A Special Twist

For $\delta, \tau \in \operatorname{Gal}(L / k)$

$$
\zeta_{i}=\left\{\begin{array}{l}
\delta \text { if } i \text { is even } \\
\tau \text { if } i \text { is odd, }
\end{array}\right.
$$

A Special Twist

For $\delta, \tau \in \operatorname{Gal}(L / k)$

$$
\zeta_{i}=\left\{\begin{array}{l}
\delta \text { if } i \text { is even } \\
\tau \text { if } i \text { is odd }
\end{array}\right.
$$

In this case there is a canonical isomorphism

$$
\mathbb{S}^{\text {n.c. }}(V)_{\zeta} \rightarrow \mathbb{S}^{\text {n.c. }}\left(L_{\delta^{-1}} \otimes V \otimes L_{\tau}\right)
$$

A Special Twist

For $\delta, \tau \in \operatorname{Gal}(L / k)$

$$
\zeta_{i}=\left\{\begin{array}{l}
\delta \text { if } i \text { is even } \\
\tau \text { if } i \text { is odd }
\end{array}\right.
$$

In this case there is a canonical isomorphism

$$
\mathbb{S}^{\text {n.c. }}(V)_{\zeta} \rightarrow \mathbb{S}^{\text {n.c. }}\left(L_{\delta^{-1}} \otimes V \otimes L_{\tau}\right)
$$

Notation

$$
T_{\delta, \tau}: \mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}\left(L_{\delta^{-1}} \otimes V \otimes L_{\tau}\right)
$$

Canonical Equivalences 3: Shifts

Canonical Equivalences 3: Shifts

Shift Functor

Definition of $[i]: \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) \rightarrow \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V)(i \in \mathbb{Z})$:

- $M[i]_{j}:=M_{j+i}$ with multiplication induced from mult. on M
- If $f: M \rightarrow N, f[i]_{j}=f_{j+i}$.

Canonical Equivalences 3: Shifts

Shift Functor

Definition of $[i]: \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) \rightarrow \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V)(i \in \mathbb{Z})$:

- $M[i]_{j}:=M_{j+i}$ with multiplication induced from mult. on M
- If $f: M \rightarrow N, f[i]_{j}=f_{j+i}$.

Problem

If i is odd, $M[i]$ does not inherit $\mathbb{S}^{\text {n.c. }}(V)$-module mult. from M !

Canonical Equivalences 3: Shifts

Shift Functor

Definition of $[i]: \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) \rightarrow \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V)(i \in \mathbb{Z})$:

- $M[i]_{j}:=M_{j+i}$ with multiplication induced from mult. on M
- If $f: M \rightarrow N, f[i]_{j}=f_{j+i}$.

Problem

If i is odd, $M[i]$ does not inherit $\mathbb{S}^{\text {n.c. }}(V)$-module mult. from M ! But $M[i]$ does have a $\mathbb{S}^{\text {n.c. }}\left(V^{*}\right)$-module structure (I. Mori)

Canonical Equivalences 3: Shifts

Shift Functor

Definition of $[i]: \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V) \rightarrow \operatorname{Gr} \mathbb{S}^{\text {n.c. }}(V)(i \in \mathbb{Z})$:

- $M[i]_{j}:=M_{j+i}$ with multiplication induced from mult. on M
- If $f: M \rightarrow N, f[i]_{j}=f_{j+i}$.

Problem

If i is odd, $M[i]$ does not inherit $\mathbb{S}^{\text {n.c. }}(V)$-module mult. from M ! But $M[i]$ does have a $\mathbb{S}^{\text {n.c. }}\left(V^{*}\right)$-module structure (I. Mori)

$$
[i]: \mathbb{P}^{\text {n.c. }}(V) \rightarrow \begin{cases}\mathbb{P}^{\text {n.c. }}(V) & \text { if } i \text { is even } \\ \mathbb{P}^{\text {n.c. }}\left(V^{*}\right) & \text { if } i \text { is odd }\end{cases}
$$

Classification of Isomorphisms

Classification of Isomorphisms

Theorem (N. (2013))

If $F: \mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(W)$ is k-linear equivalence, there exists

Classification of Isomorphisms

Theorem (N. (2013))

If $F: \mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(W)$ is k-linear equivalence, there exists

- $i \in \mathbb{Z}$,

Classification of Isomorphisms

Theorem (N. (2013))

If $F: \mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(W)$ is k-linear equivalence, there exists

- $i \in \mathbb{Z}$,
- $\sigma, \tau \in \mathrm{Gal}(L / k)$, and

Classification of Isomorphisms

Theorem (N. (2013))

If $F: \mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(W)$ is k-linear equivalence, there exists

- $i \in \mathbb{Z}$,
- $\sigma, \tau \in \mathrm{Gal}(L / k)$, and
- an isomorphism $\phi: L_{\sigma^{-1}} \otimes_{L} V \otimes_{L} L_{\tau} \rightarrow W^{-i^{*}}$

Classification of Isomorphisms

Theorem (N. (2013))

If $F: \mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(W)$ is k-linear equivalence, there exists

- $i \in \mathbb{Z}$,
- $\sigma, \tau \in \mathrm{Gal}(L / k)$, and
- an isomorphism $\phi: L_{\sigma^{-1}} \otimes_{L} V \otimes_{L} L_{\tau} \rightarrow W^{-i^{*}}$
such that

$$
F \cong[i] \circ \Phi \circ T_{\sigma, \tau} .
$$

Classification of Isomorphisms

Theorem (N. (2013))

If $F: \mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(W)$ is k-linear equivalence, there exists

- $i \in \mathbb{Z}$,
- $\sigma, \tau \in \mathrm{Gal}(L / k)$, and
- an isomorphism $\phi: L_{\sigma^{-1}} \otimes_{L} V \otimes_{L} L_{\tau} \rightarrow W^{-i^{*}}$
such that

$$
F \cong[i] \circ \Phi \circ T_{\sigma, \tau} .
$$

Furthermore,

- i, σ and τ are unique up to natural equivalence and

Classification of Isomorphisms

Theorem (N. (2013))

If $F: \mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(W)$ is k-linear equivalence, there exists

- $i \in \mathbb{Z}$,
- $\sigma, \tau \in \mathrm{Gal}(L / k)$, and
- an isomorphism $\phi: L_{\sigma^{-1}} \otimes_{L} V \otimes_{L} L_{\tau} \rightarrow W^{-i^{*}}$
such that

$$
F \cong[i] \circ \Phi \circ T_{\sigma, \tau} .
$$

Furthermore,

- i, σ and τ are unique up to natural equivalence and
- $\Phi \equiv \Phi^{\prime} \Leftrightarrow$ there exist $\alpha, \beta \in L^{*}$ such that

$$
\phi^{\prime} \circ \phi^{-1}(w)=\alpha \cdot w \cdot \beta \text { for all } w \in W^{-i *}
$$

Classification of Isomorphisms

Theorem (N. (2013))

If $F: \mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(W)$ is k-linear equivalence, there exists

- $i \in \mathbb{Z}$,
- $\sigma, \tau \in \mathrm{Gal}(L / k)$, and
- an isomorphism $\phi: L_{\sigma^{-1}} \otimes_{L} V \otimes_{L} L_{\tau} \rightarrow W^{-i^{*}}$
such that

$$
F \cong[i] \circ \Phi \circ T_{\sigma, \tau} .
$$

Furthermore,

- i, σ and τ are unique up to natural equivalence and
- $\Phi \equiv \Phi^{\prime} \Leftrightarrow$ there exist $\alpha, \beta \in L^{*}$ such that

$$
\phi^{\prime} \circ \phi^{-1}(w)=\alpha \cdot w \cdot \beta \text { for all } w \in W^{-i *}
$$

Remark

$[\Phi]$ also classified.

Part 7

Automorphism Groups

Aut $\mathbb{P}^{\text {n.c. }}(V)$, Stab V and Aut V

Aut $\mathbb{P}^{\text {n.c. }}(V)$, Stab V and Aut V

The group Aut $\mathbb{P}^{\text {n.c. }}(V)$

Aut $\mathbb{P}^{\text {n.c. }}(V):=$ the set equivalence classes of k-linear shift-free equivalences $\mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(V)$, with composition induced by composition of functors.

Aut $\mathbb{P}^{\text {n.c. }}(V)$, Stab V and Aut V

The group Aut $\mathbb{P}^{\text {n.c. }}(V)$

Aut $\mathbb{P}^{\text {n.c. }}(V):=$ the set equivalence classes of k-linear shift-free equivalences $\mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(V)$, with composition induced by composition of functors.

To describe it: need
Definition of Stab V
Stab $V=$ subgroup of $\mathrm{Gal}(L / k) \times \mathrm{Gal}(L / k)$ consisting of (σ, τ) such that $L_{\sigma^{-1}} \otimes_{L} V \otimes_{L} L_{\tau} \cong V$

Aut $\mathbb{P}^{\text {n.c. }}(V)$, Stab V and Aut V

The group Aut $\mathbb{P}^{\text {n.c. }}(V)$

Aut $\mathbb{P}^{\text {n.c. }}(V):=$ the set equivalence classes of k-linear shift-free equivalences $\mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(V)$, with composition induced by composition of functors.

To describe it: need
Definition of Stab V
Stab $V=$ subgroup of $\mathrm{Gal}(L / k) \times \operatorname{Gal}(L / k)$ consisting of (σ, τ) such that $L_{\sigma^{-1}} \otimes_{L} V \otimes_{L} L_{\tau} \cong V$

Definition of Aut V

Aut $V=$ the set of isomorphisms $V \rightarrow V$

Aut $\mathbb{P}^{\text {n.c. }}(V)$, Stab V and Aut V

The group Aut $\mathbb{P}^{\text {n.c. }}(V)$
Aut $\mathbb{P}^{\text {n.c. }}(V):=$ the set equivalence classes of k-linear shift-free equivalences $\mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(V)$, with composition induced by composition of functors.

To describe it: need

Definition of Stab V

Stab $V=$ subgroup of $\mathrm{Gal}(L / k) \times \operatorname{Gal}(L / k)$ consisting of (σ, τ) such that $L_{\sigma^{-1}} \otimes_{L} V \otimes_{L} L_{\tau} \cong V$

Definition of Aut V

Aut $V=$ the set of isomorphisms $V \rightarrow V$ modulo the relation defined by setting $\phi^{\prime} \equiv \phi \Leftrightarrow$ there exist $\alpha, \beta \in L^{*}$ such that $\phi^{\prime} \circ \phi^{-1}(v)=\alpha \cdot v \cdot \beta$ for all $v \in V$.

The Automorphism Group

The Automorphism Group

Theorem (N. (2013))
There exists homomorphism $\psi:$ Stab $V \rightarrow$ End (Aut $(V))$ such that

Theorem (N. (2013))
There exists homomorphism ψ : Stab $V \rightarrow$ End (Aut (V)) such that

Aut $\mathbb{P}^{\text {n.c. }}(V) \cong$ Aut $V \rtimes_{\psi}$ Stab $V^{o p}$.

Automorphism Group, Case 1

Automorphism Group, Case 1

Let $V=L_{\sigma} \oplus L_{\sigma}$. Then

Automorphism Group, Case 1

Let $V=L_{\sigma} \oplus L_{\sigma}$. Then

- Stab $V \cong \mathrm{Gal}(L / k)$ and

Automorphism Group, Case 1

Let $V=L_{\sigma} \oplus L_{\sigma}$. Then

- Stab $V \cong \mathrm{Gal}(L / k)$ and
- Aut $V \cong \mathrm{PGL}_{2}(L)$.

Automorphism Group, Case 1

Let $V=L_{\sigma} \oplus L_{\sigma}$. Then

- Stab $V \cong \mathrm{Gal}(L / k)$ and
- Aut $V \cong \mathrm{PGL}_{2}(L)$.

Then ψ : Stab $V \rightarrow$ End (Aut (V)) is the homomorphism

Automorphism Group, Case 1

Let $V=L_{\sigma} \oplus L_{\sigma}$. Then

- Stab $V \cong \mathrm{Gal}(L / k)$ and
- Aut $V \cong \mathrm{PGL}_{2}(L)$.

Then ψ : Stab $V \rightarrow$ End (Aut (V)) is the homomorphism

$$
\psi: \operatorname{Gal}(L / k) \rightarrow \operatorname{End}\left(\mathrm{PGL}_{2}(L)\right)
$$

Automorphism Group, Case 1

Let $V=L_{\sigma} \oplus L_{\sigma}$. Then

- Stab $V \cong \mathrm{Gal}(L / k)$ and
- Aut $V \cong \mathrm{PGL}_{2}(L)$.

Then ψ : Stab $V \rightarrow$ End (Aut (V)) is the homomorphism

$$
\psi: \operatorname{Gal}(L / k) \rightarrow \text { End }\left(\mathrm{PGL}_{2}(L)\right)
$$

defined by

$$
\psi(\sigma)\left[\left(a_{i j}\right)\right]=\left[\left(\sigma\left(a_{i j}\right)\right)\right]
$$

Automorphism Group, Case 2

Automorphism Group, Case 2

Let $V=L_{\sigma} \oplus L_{\tau}$ with $\sigma \neq \tau$.

Automorphism Group, Case 2

Let $V=L_{\sigma} \oplus L_{\tau}$ with $\sigma \neq \tau$. Then

- Stab $V=\left\{(g, h) \mid\left\{g^{-1} \sigma h, g^{-1} \tau h\right\}=\{\sigma, \tau\}\right\}$ and

Automorphism Group, Case 2

Let $V=L_{\sigma} \oplus L_{\tau}$ with $\sigma \neq \tau$. Then

- Stab $V=\left\{(g, h) \mid\left\{g^{-1} \sigma h, g^{-1} \tau h\right\}=\{\sigma, \tau\}\right\}$ and

There are two types of elements in Stab V.

Automorphism Group, Case 2

Let $V=L_{\sigma} \oplus L_{\tau}$ with $\sigma \neq \tau$. Then

- Stab $V=\left\{(g, h) \mid\left\{g^{-1} \sigma h, g^{-1} \tau h\right\}=\{\sigma, \tau\}\right\}$ and

There are two types of elements in Stab V.

- Aut $V \cong L^{*} \times L^{*} /\left\{(\alpha \sigma(\beta), \alpha \tau(\beta)) \mid \alpha, \beta \in L^{*}\right\}$

Automorphism Group, Case 2

Let $V=L_{\sigma} \oplus L_{\tau}$ with $\sigma \neq \tau$. Then

- Stab $V=\left\{(g, h) \mid\left\{g^{-1} \sigma h, g^{-1} \tau h\right\}=\{\sigma, \tau\}\right\}$ and

There are two types of elements in Stab V.

- Aut $V \cong L^{*} \times L^{*} /\left\{(\alpha \sigma(\beta), \alpha \tau(\beta)) \mid \alpha, \beta \in L^{*}\right\}$

Then ψ : Stab $V \rightarrow$ End (Aut (V)) is defined by

$$
\psi((g, h))[(a, b)]=[(g(a), g(b))]
$$

if $g^{-1} \sigma h=\sigma$

Automorphism Group, Case 2

Let $V=L_{\sigma} \oplus L_{\tau}$ with $\sigma \neq \tau$. Then

- Stab $V=\left\{(g, h) \mid\left\{g^{-1} \sigma h, g^{-1} \tau h\right\}=\{\sigma, \tau\}\right\}$ and

There are two types of elements in Stab V.

- Aut $V \cong L^{*} \times L^{*} /\left\{(\alpha \sigma(\beta), \alpha \tau(\beta)) \mid \alpha, \beta \in L^{*}\right\}$

Then ψ : Stab $V \rightarrow$ End (Aut (V)) is defined by

$$
\psi((g, h))[(a, b)]=[(g(a), g(b))]
$$

if $g^{-1} \sigma h=\sigma$ and

$$
\psi((g, h))[(a, b)]=[(g(b), g(a))]
$$

if $g^{-1} \sigma h=\tau$ and

Automorphism Group, Case 2

Let $V=L_{\sigma} \oplus L_{\tau}$ with $\sigma \neq \tau$. Then

- Stab $V=\left\{(g, h) \mid\left\{g^{-1} \sigma h, g^{-1} \tau h\right\}=\{\sigma, \tau\}\right\}$ and

There are two types of elements in Stab V.

- Aut $V \cong L^{*} \times L^{*} /\left\{(\alpha \sigma(\beta), \alpha \tau(\beta)) \mid \alpha, \beta \in L^{*}\right\}$

Then ψ : Stab $V \rightarrow$ End (Aut (V)) is defined by

$$
\psi((g, h))[(a, b)]=[(g(a), g(b))]
$$

if $g^{-1} \sigma h=\sigma$ and

$$
\psi((g, h))[(a, b)]=[(g(b), g(a))]
$$

if $g^{-1} \sigma h=\tau$ and

In the special case that V is not simple and $\operatorname{Gal}(L / k)$ is cyclic the result was obtained by Kussin.

Automorphism Group, Case 3

Automorphism Group, Case 3

Let $V=V(\lambda)={ }_{1} L V \lambda(L)_{\lambda}$.

Automorphism Group, Case 3

Let $V=V(\lambda)={ }_{1} L \vee \lambda(L)_{\lambda}$. Then

- Stab $V=\left\{(g, h) \in \operatorname{Gal}(L / k) \times \operatorname{Gal}(L / k) \mid\left(g^{-1} \lambda h\right)^{G}=\lambda^{G}\right\}$ and

Automorphism Group, Case 3

Let $V=V(\lambda)={ }_{1} L \vee \lambda(L)_{\lambda}$. Then

- Stab $V=\left\{(g, h) \in \operatorname{Gal}(L / k) \times \operatorname{Gal}(L / k) \mid\left(g^{-1} \lambda h\right)^{G}=\lambda^{G}\right\}$ and
- Aut $V=(L \vee \lambda(L))^{*} / L^{*} \lambda(L)^{*}$

Automorphism Group, Case 3

Let $V=V(\lambda)={ }_{1} L \vee \lambda(L)_{\lambda}$. Then

- Stab $V=\left\{(g, h) \in \operatorname{Gal}(L / k) \times \operatorname{Gal}(L / k) \mid\left(g^{-1} \lambda h\right)^{G}=\lambda^{G}\right\}$ and
- Aut $V=(L \vee \lambda(L))^{*} / L^{*} \lambda(L)^{*}$

Lemma

For each $(g, h) \in \operatorname{Stab} V, \exists!$ field automorphism
$\psi_{\mathrm{g}, h}: L \vee \lambda(L) \rightarrow L \vee \lambda(L)$

Automorphism Group, Case 3

Let $V=V(\lambda)={ }_{1} L \vee \lambda(L)_{\lambda}$. Then

- Stab $V=\left\{(g, h) \in \operatorname{Gal}(L / k) \times \operatorname{Gal}(L / k) \mid\left(g^{-1} \lambda h\right)^{G}=\lambda^{G}\right\}$ and
- Aut $V=(L \vee \lambda(L))^{*} / L^{*} \lambda(L)^{*}$

Lemma

For each $(g, h) \in \operatorname{Stab} V, \exists!$ field automorphism $\psi_{g, h}: L \vee \lambda(L) \rightarrow L \vee \lambda(L)$ such that if $a \in L$ then $\psi_{g, h}(a)=g(a)$, and $\psi_{g, h}(\lambda(a))=\lambda(h(a))$.

Automorphism Group, Case 3

Let $V=V(\lambda)={ }_{1} L \vee \lambda(L)_{\lambda}$. Then

- Stab $V=\left\{(g, h) \in \operatorname{Gal}(L / k) \times \operatorname{Gal}(L / k) \mid\left(g^{-1} \lambda h\right)^{G}=\lambda^{G}\right\}$ and
- Aut $V=(L \vee \lambda(L))^{*} / L^{*} \lambda(L)^{*}$

Lemma

For each $(g, h) \in \operatorname{Stab} V, \exists$! field automorphism $\psi_{g, h}: L \vee \lambda(L) \rightarrow L \vee \lambda(L)$ such that if $a \in L$ then $\psi_{g, h}(a)=g(a)$, and $\psi_{g, h}(\lambda(a))=\lambda(h(a))$.

Then $\psi:$ Stab $V \rightarrow$ End (Aut (V)) is the homomorphism defined by

$$
\psi((g, h))[x]=\left[\psi_{g, h}(x)\right] .
$$

Work in Progress

Work in Progress

(1) $\mathbb{P}^{\text {n.c. }}(V)$ is finite over its center (Kussin). No explicit description of center is known. Compute the center of $\mathbb{P}^{\text {n.c. }}(V(\lambda))$ as a function of λ.

Work in Progress

(1) $\mathbb{P}^{\text {n.c. }}(V)$ is finite over its center (Kussin). No explicit description of center is known. Compute the center of $\mathbb{P}^{\text {n.c. }}(V(\lambda))$ as a function of λ.
(2) Classify the spaces $\mathbb{P}^{\text {n.c. }}(V)$ up to derived equivalence.

Work in Progress

(1) $\mathbb{P}^{\text {n.c. }}(V)$ is finite over its center (Kussin). No explicit description of center is known. Compute the center of $\mathbb{P}^{\text {n.c. }}(V(\lambda))$ as a function of λ.
(2) Classify the spaces $\mathbb{P}^{\text {n.c. }}(V)$ up to derived equivalence.

Conjecture

$$
D^{b}\left(\mathbb{P}^{\text {n.c. }}(V)\right) \equiv D^{b}\left(\mathbb{P}^{\text {n.c. }}(W)\right) \Rightarrow \mathbb{P}^{\text {n.c. }}(V) \equiv \mathbb{P}^{\text {n.c. }}(W)
$$

Work in Progress

(1) $\mathbb{P}^{\text {n.c. }}(V)$ is finite over its center (Kussin). No explicit description of center is known. Compute the center of $\mathbb{P}^{\text {n.c. }}(V(\lambda))$ as a function of λ.
(2) Classify the spaces $\mathbb{P}^{\text {n.c. }}(V)$ up to derived equivalence.

Conjecture

$$
D^{b}\left(\mathbb{P}^{\text {n.c. }}(V)\right) \equiv D^{b}\left(\mathbb{P}^{\text {n.c. }}(W)\right) \Rightarrow \mathbb{P}^{\text {n.c. }}(V) \equiv \mathbb{P}^{\text {n.c. }}(W)
$$

and derived equivalences are induced by translations and equivalences

$$
\mathbb{P}^{\text {n.c. }}(V) \rightarrow \mathbb{P}^{\text {n.c. }}(W) .
$$

Thank you for your attention!

