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Abstract. Let K be a perfect field and let k ⊂ K be a subfield. In [4,
Theorem 3.2], left finite dimensional simple two-sided k-central vector spaces
over K were classified by arithmetic data associated to the extension K/k.
In this paper, we continue to study the relationship between simple two-sided
vector spaces and their associated arithmetic data. In particular, we determine
which arithmetic data corresponds to simple two-sided vector spaces with the
same left and right dimension, and we determine the arithmetic data associated
to the left and right dual of a simple two-sided vector space. As an immediate
application, we prove the existence of the non-commutative symmetric algebra
of any k-central two-sided vector space over K which has the same left and
right dimension.

1. Introduction

In non-commutative algebraic geometry, one thinks of graded non-commutative
rings as homogeneous coordinate rings of non-commutative spaces. If a graded
non-commutative ring has certain features in common with a commutative ring
A, the associated space is considered a non-commutative analogue of ProjA. A
standard approach to constructing non-commutative analogues of the projective
line over a field K is to take its homogeneous coordinate ring to be a quotient of
the free K-algebra K〈x, y〉 having favorable homological properties. For example,
if K is algebraically closed and B = K〈x, y〉/(yx − qxy) for some q ∈ K∗ or
B = K〈x, y〉/(yx− xy − x2), then B is Artin-Schelter regular of global dimension
2 [7, Proposition 2.1, Chapter 17], and B is considered a homogeneous coordinate
ring for a non-commutative analogue of P

1. Note that in these cases, B is obtained
from A = K[x, y] by deforming the commutativity relation yx− xy.

IfW is a two-dimensional vector space overK and SK(W ) denotes the symmetric
algebra ofW , then there is an isomorphism of gradedK-algebrasK[x, y] → SK(W ).
This suggests another way to construct a homogeneous coordinate ring of a non-
commutative projective line, due to M. Van den Bergh [8, Section 1]. Let k be a
subfield of K. Instead of deforming relations in K[x, y], one deformsW by replacing
it with a k-central two-sided vector space V of rank two, i.e. V is a K⊗kK-module
which is two-dimensional as both a K ⊗ 1-module and a 1 ⊗K-module. Van den
Bergh shows that when K is the field of fractions of a smooth integral scheme X
of finite type over k and V is the generic localization of a locally free rank 2 OX -
bimodule (see [8] for a definition), one can construct a canonical non-commutative
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ring from V , Sn.c.
K (V ), in such a way that Sn.c.

K (V ) is “equivalent” to SK(V ) when
V is K-central [8, Section 5.2].

Now suppose K is a perfect field and let k ⊂ K be a subfield. In [4, Theorem
3.2], simple two-sided k-central vector spaces over K are classified by arithmetic
data associated to the extension K/k. In this paper, we continue to study the
relationship between the arithmetic of the extension K/k and simple two-sided
vector spaces. As an immediate application of our study, we prove the existence
of non-commutative symmetric algebras. Our initial motivation for studying non-
commutative symmetric algebras comes from a conjecture of Mike Artin [1] that
the division ring of fractions of a non-commutative surface not finite over its center
is the division ring of fractions of a non-commutative symmetric algebra over the
field of fractions of a curve. The investigations in this paper are part of an ongoing
project to classify division rings of fractions of non-commutative symmetric algebras
of rank 2 two-sided vector spaces.

Our first goal is to find an arithmetic criterion for a simple two-sided vector space
with left dimension n to have rank n, i.e. to have right dimension also equal to n.
We achieve this goal in Proposition 2.3. In order to describe this result, we need
to recall the classification of simple two-sided vector spaces of finite left dimension.
To this end, we introduce some notation. We write Emb(K) for the set of k-linear
embeddings of K into K, and we let G = Aut(K/K). Now, G acts on Emb(K) by
left composition. Given λ ∈ Emb(K), we denote the orbit of λ under this action by
λG. We denote the set of finite orbits of Emb(K) under the action of G by Λ(K).
Left finite dimensional simple two-sided vector spaces are classified by the following

Theorem 1.1. [4] There is a one-to-one correspondence between isomorphism
classes of simple left finite dimensional two-sided vector spaces and Λ(K). More-
over, if V is a simple two-sided vector space corresponding to λG ∈ Λ(K), then
dimK(KV ) = |λG|.

Let λ ∈ Emb(K) have |λG| = n and let K(λ) denote the composite of K and
λ(K). We define a two-sided vector space, V (λ), as follows: let V (λ) have under-
lying set K(λ) and K ⊗k K-structure induced by the formula a · v · b := avλ(b).

We observe the following (Proposition 2.3)

Proposition 1.2. Suppose V is a left finite dimensional simple two-sided vector
space (of left dimension n) corresponding (via Theorem 1.1) to an embedding λ.
Then V ∼= V (λ). Therefore, V has rank n if and only if [K(λ) : λ(K)] = n.

This criterion, apart from being useful in the study of moduli of two-sided vector
spaces, facilitates the explicit construction of simple two-sided vector spaces of finite
rank. For example, in Section 2.3, we use Proposition 1.2 in the case that K = k(t)
where t is transcendental over k to exhibit a five-dimensional family of simple two-
sided vector spaces V over k(t) of rank 2. More specifically, we obtain the following

Proposition 1.3. Suppose char k = 0. If V is a simple two-sided vector-space over

k(t) corresponding (via Theorem 1.1) to λ ∈ Emb(k(t)) with λ(t) = α+
√

at2+bt+c
dt2+et+f

such that

• α, a, b, c, d, e, f ∈ k,
• a, d not both zero,
• ae = bd, af 6= cd, b2 6= 4ac, and e2 6= 4df ,

then V has rank 2.
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In Section 3, we turn to the study of left and right duals of two-sided vector
spaces, since they arise in the construction of the non-commutative symmetric
algebra. We find formulas for the left and right dual of a simple two-sided vector
space of finite rank in terms of its associated arithmetic data. Our main result is
the following (Theorem 3.13)

Theorem 1.4. Suppose λ ∈ Emb(K) has |λG| = n and [K(λ) : λ(K)] is finite.
Let λ denote an extension of λ to K, and let µ = (λ)−1|K . Then ∗V (λ) ∼= V (λ)∗ ∼=
V (µ), and V (λ) has rank n if and only if V (µ) has rank n if and only if [K(λ) :
λ(K)] = n.

In Section 4, we recall the definition of the non-commutative symmetric algebra
of a rank n two-sided vector space, V , over K (from [8]). Using Theorem 1.4, we
prove it exists if K is perfect (Corollary 4.4). Existence of the non-commutative
symmetric algebra amounts to showing that the iterated duals of V have rank n.

D. Patrick also studied the question of when a non-commutative symmetric al-
gebra of V exists in the rank 2 case [5]. He then analyzed the structure of the
algebra (when V is not simple) and computed its field of fractions. His notion of
non-commutative symmetric algebra predates (and is distinct from) the one used
in this paper. For the precise relationship between the two notions, see [8, Section
5.2].

Some of the results in this paper are part of the first author’s Ph.D. thesis [2]
written under the supervision of the second author.

Acknowledgement: We thank D. Chan and S.P. Smith for interesting conversa-
tions which led to improvements in this paper and we thank Nikolaus Vonessen for
carefully reading an earlier version of this paper and making numerous suggestions
for its improvement.

2. Simple two-sided vector spaces

2.1. Preliminaries on two-sided vector spaces. Throughout the paper, we let
k ⊂ K be a field extension, and we let K̄ denotes a fixed algebraic closure of K.
By a two-sided vector space we mean a K ⊗k K-module V . By right (resp. left)
multiplication by K we mean multiplication by elements in 1⊗k K (resp. K ⊗k 1).
We denote the restriction of scalars of V to K ⊗k 1 (resp. 1 ⊗k K) by KV (resp.
VK).

If V is a two-sided vector space, then right multiplication by x ∈ K defines an
endomorphism φ(x) of KV , and the right action of K on V is via the k-algebra
homomorphism φ : K → End(KV ). This observation motivates the following

Definition 2.1. Let φ : K → Mn(K) be a nonzero homomorphism. Then we
denote by Kn

φ the two-sided vector space of left dimension n, where the left action
is the usual one and the right action is via φ; that is,

(1) x · (v1, . . . , vn) = (xv1, . . . , xvn), (v1, . . . , vn) · x = (v1, . . . , vn)φ(x).

We shall always write scalars as acting to the left of elements of Kn
φ and matrices

acting to the right; thus, elements of Kn are written as row vectors.

If V is a two-sided vector space with left dimension equal to n, then choosing a
left basis for V shows that V ∼= Kn

φ for some homomorphism φ : K →Mn(K).
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We say V has rank n if dimK(KV ) = dimK(VK) = n. If V has rank n, then V
has a simultaneous basis, i.e. a subset {y1, . . . , yn} which is a basis for both the left
and right action of K on V [5, p. 18].

2.2. Simple two-sided vector spaces and their left and right dimension.

In this section, we assume that K is a perfect field in order to employ Theorem 1.1.
We first obtain a convenient description of the simple two-sided vector space

associated to λ ∈ Emb(K) with |λG| = n. We recall (from [4, Section 3]) that the
simple two-sided vector space associated to such a λ is Kn

φ , where φ : K →Mn(K)
is the k-algebra homomorphism defined as follows. Let

•{α1, . . . , αn} be a basis for K(λ)/K

•λi : K → K be defined by λ(x) =
∑

i λi(x)αi, and

•βijk be defined by the equation αiαj =
∑

k βijkαk.

(2)

We define

(3) φij(x) =

n
∑

k=1

βjkiλk(x).

Lemma 2.2. Suppose Kn
φ is the simple module corresponding to λ. Then Kn

φT
∼=

Kn
φ .

Proof. Suppose Kn
φ corresponds to λ ∈ Emb(K), and {σ1λ, . . . , σnλ} = λG. Then

there exists A ∈ GLn(K) such that AφA−1 = D := diag(σ1λ, . . . , σnλ) [4, Part
1, Step 1 of proof of Proposition 3.5]. Therefore, D = DT = (A−1)TφTAT . It
follows that φ is similar to φT over K so that φ is similar to φT over K. The result
follows. �

Proposition 2.3. The two sided vector space V (λ) (defined in the introduction)
is simple and corresponds (via Theorem 1.1) to λ. Therefore, the left dimension of
V (λ) over K is [K(λ) : K], while the right dimension of V (λ) over K is [K(λ) :
λ(K)].

Proof. We show that V (λ) ∼= Kn
φT . The result will then follow from Lemma 2.2.

We need only compute the matrix for the right action of K on the left basis
{α1, . . . , αn} of V (λ). We have

αj · x := αjλ(x) =

n
∑

i=1

αjλi(x)αi =

n
∑

i=1

λi(x)(

n
∑

k=1

βijkαk) =

n
∑

k=1

(

n
∑

i=1

λi(x)βijk)αk.

Thus, in the left-basis {α1, . . . , αn}, the jk entry of the right action matrix is
∑n

i=1 λiβijk and therefore, the matrix has ij-entry
∑n

k=1 λkβkij =
∑n

k=1 βikjλk.
This is just the ij-entry of φT , so that V (λ) ∼= Kn

φT . �

2.3. A five-dimensional family of simple two-sided vector spaces. For the
remainder of Section 2, we assume chark = 0 and t is transcendental over k.

Lemma 2.4. Let m = at2+bt+c
dt2+et+f

with a, b, c, d, e, f ∈ k, a, d not both zero, and

ae = bd, af 6= cd, b2 6= 4ac, and e2 6= 4df . Then [k(t) : k(m)] = 2 and
√
m /∈ k(t).

Proof. If m were in k, then a = dm, c = fm, so af = dmf = cd, a contradiction.
Hence, m /∈ k.
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If gcd(at2 + bt+ c, dt2 + et+ f) 6= 1, then these two polynomials have a common
root u in some extension field of k. So

au2 + bu+ c = 0 = du2 + eu+ f.

Hence

adu2 + bdu+ cd = 0 = adu2 + aeu+ af.

Since bd = ae, it follows that af = cd, a contradiction. Since a or d is nonzero, it
follows that [k(t) : k(m)] = 2.

Now suppose
√
m ∈ k(t). Then there exist polynomials p, q ∈ k[t] such that

m = p2

q2 . We may assume gcd(p, q) = 1. Now

(4) p2(dt2 + et+ f) = q2(at2 + bt+ c).

Since gcd(p, q) = 1,

p2|at2 + bt+ c, q2|dt2 + et+ f.

Hence, deg p, q ≤ 1.
Suppose a = 0. Then d 6= 0, so that the left hand side of (4) has even degree.

Hence the right hand side of (4) has even degree, implying b = 0. Hence, b2 =
0 = 4ac, a contradiction. Thus a 6= 0. Similarly, if d = 0 then e = 0, so that
e2 = 0 = 4df , a contradiction. Consequently both a 6= 0 and d 6= 0.

It now follows from (4) that deg p = deg q. If deg p = deg q = 0, thenm = p2

q2 ∈ k,

a contradiction. Hence, deg p = deg q = 1. Now at2 +bt+c = u1p
2 for some u1 ∈ k.

If t+ x (x ∈ k) is the monic polynomial associated to p, then

at2 + bt+ c = u2(t+ x)2,

for some u2 ∈ k. Clearly, u2 = a. We obtain

at2 + bt+ c = at2 + 2axt+ ax2.

Hence b = 2ax, c = ax2, and b2 = 4a(ax2) = 4ac, a contradiction. This final
contradiction concludes the proof. �

We now prove Proposition 1.3. Retain the notation from Lemma 2.4. By Lemma
2.4, [k(t) : k(m)] = 2, so that [k(t,

√
m) : k(

√
m)] = 2. Since α ∈ k, we may

conclude that [k(t,
√
m) : k(α +

√
m)] = 2. Therefore, [K(λ) : λ(K)] = 2. On the

other hand, Lemma 2.4 implies that [k(t,
√
m) : k(t)] = 2 so that [K(λ) : K] = 2.

Therefore, the simple two-sided vector space corresponding to λ has rank 2.

3. Duals of two-sided vector spaces

In order to define the non-commutative symmetric algebra of a two-sided vector
space, we need to recall (from [8, Section 4]) and study the notion of the left and
right dual of a two-sided vector space. Our main goal in this section is to determine
a formula for the dual of a simple two-sided vector space. This goal is realized in
Theorem 3.13.

For any commutative ring R, we let ModR denote the category of R-modules.
We let R (resp. L) denote the full subcategory of ModK⊗kK consisting of modules
which are finite-dimensional over K on the right (resp. left).
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3.1. Duals and their basic properties.

Definition 3.1. The right dual of V , denoted V ∗, is the set HomK(VK ,K) with
action (a ·ψ · b)(x) = aψ(bx) for all ψ ∈ HomK(VK ,K) and a, b ∈ K. We note that
V ∗ is a K ⊗k K-module since V is.

The left dual of V , denoted ∗V , is the set HomK(KV,K) with action (a·φ·b)(x) =
bφ(xa) for all φ ∈ HomK(KV,K) and a, b ∈ K. As above, ∗V is a K ⊗k K-module.

We set

V i∗ :=











V if i = 0,

(V (i−1)∗)∗ if i > 0,
∗(V (i+1)∗) if i < 0.

We may also form the usual dual of a two-sided vector space V , defined by
V̌ = HomK⊗kK(V,K⊗kK) with its usual K⊗kK-module structure. The following
example shows that it is not always true that V̌ ∼= V ∗.

Example 3.2. Let x, y be algebraically independent transcendentals over k, and
let K = k(x). Then K⊗kK is a domain since it is a subring of k(x, y). In addition,
let σ denote a nontrivial k-linear automorphism of K and suppose c ∈ K is not a
fixed point.

We define a two-sided vector space V with underlying set K and K ⊗k K-action
induced by the formula (a⊗ b) · x := aσ(b)x.

Since V is simple, V̌ is either equal to 0, or V embeds in K ⊗k K. But K ⊗k K
is a domain, and for v ∈ V , (1⊗ c−σ(c)⊗1) ·v = 0. Therefore, V cannot embed in
K ⊗k K as a K ⊗k K-module. The contradiction establishes the fact that V̌ = 0.
On the other hand, we leave it as an exercise to check that V ∗ is isomorphic to
the K ⊗k K-module with underlying set K and action induced by the formula
(a⊗ b) · x := aσ−1(b)x.

It is straightforward to check that the assignments on objects (−)∗ : ModK ⊗k

K → ModK ⊗k K and ∗(−) : ModK ⊗k K → ModK ⊗k K canonically induce
contravariant left exact functors.

Lemma 3.3. The functors (−)∗ and ∗(−) restrict to exact functors (−)∗ : R → L

and ∗(−) : L → R.

Proof. We prove the lemma for (−)∗. The proof for ∗(−) is similar and omitted.
Since V ∈ R implies that dimK(K(V ∗)) = dimK(VK) is finite, (−)∗ restricted to R

takes values in L.
To prove the restriction of (−)∗ to R is exact, it suffices to show that the functor

HomK(−,K) : R → ModK taking an object V to the usual dual of VK is exact.
This follows from the exactness of the restriction of scalars functor sending an
object V in R to VK in ModK. �

3.2. Adjoint pairs from duals. As one might expect, if V has rank n then both
pairs of functors (−⊗K

∗V,−⊗K V ) and (−⊗K V,−⊗K V ∗) from ModK to ModK
are adjoint pairs. This is mentioned in [8, Section 4] and left as an exercise for the
reader. For completeness, and in order to spare the reader from verifying that the
proof is independent of the geometric assumptions made in [8], we include it here
(in Proposition 3.7). We note that the conclusion of Proposition 3.7 remains true
in case V has distinct finite left and right dimension. We leave the verification of
this fact to the interested reader.
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In our proof of Proposition 3.7 and related facts, we will use the following no-
tation for the rest of the section. Let F denote the ring of additive functions
from K to K under composition and point-wise addition and let Mn(F ) denote
the corresponding matrix ring. Let V be a two-sided vector space of rank n, and
let y1, . . . , yn be a simultaneous basis for V . Following [5, Section 1], we define a
matrix A ∈Mn(F ) as follows. For α ∈ K,

yiα =
∑

j

aij(α)yj .

We call A the matrix representing right multiplication on V in the left basis {yi}.
Similarly, we define a matrix B ∈Mn(F ) as follows. For δ ∈ K,

δyi =
∑

j

yjbji(δ).

We call B the matrix representing left multiplication on V in the right basis {yi}.
Let {ψi} ⊂ V ∗ be defined by ψi(yj) = δij , and let {φi} ⊂ ∗V be defined similarly.

Lemma 3.4. The matrix representing right multiplication on V ∗ in the left basis
{ψi} is B and the matrix representing left multiplication on ∗V in the right basis
{φi} is A.

Proof. Suppose a1, . . . , an, α, δ are in K. We compute

ψi · δ(
∑

j

yjaj) = ψi(
∑

j

δyjaj) = ψi(
∑

j

(
∑

k

ykbkj(δ)aj)) =
∑

j

bij(δ)aj .

Since the last expression equals
∑

j bij(δ)ψj(
∑

l ylal), we conclude that ψi · δ =
∑

j bij(δ)ψj . A similar computation establishes the equality α · φi =
∑

j φjaji(α).
�

Corollary 3.5. There are isomorphisms (∗V )∗ ∼= V and ∗(V ∗) ∼= V . Therefore, if
V i∗ has rank n, then (V i∗)∗ ∼= V (i+1)∗ and ∗(V i∗) ∼= V (i−1)∗.

Proof. We prove the first statement and leave the second as an exercise. We define
Φ : V → (∗V )∗ by letting Φ(

∑

i aiyi)(
∑

j φjbj) =
∑

k akbk, where ai and bj are in

K for all i, j. Note that this formula makes sense since {φi} is a right basis for ∗V .
It is elementary to check that Φ is additive and compatible with the left K-action.
We show that it is compatible with the right action. Suppose α ∈ K. On the one
hand,

Φ(
∑

i

aiyiα)(
∑

k

φkbk) = Φ(
∑

i,j

aiaij(α)yj)(
∑

k

φkbk)

=
∑

i,j

aiaij(α)bj .

On the other hand

(Φ(
∑

i

aiyi)α)(
∑

k

φkbk) = Φ(
∑

i

aiyi)(
∑

k

αφkbk)

= Φ(
∑

i

aiyi)(
∑

k

(
∑

j

φjajk(α))bk)

=
∑

k,j

ajk(α)bkaj .
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It follows that Φ is a homomorphism of two-sided vector spaces. Since Φ is clearly
injective, it remains to check that Φ is surjective. To this end, since {φi} is a right
basis for ∗V , its right duals in (∗V )∗ are a left basis for (∗V )∗. Therefore, (∗V )∗

has left dimension n. It follows that Φ is surjective. �

Proposition 3.6. The matrices AT and B are inverses in the ring Mn(F ).

Proof. For all δ and λ in K, we have

(δyi)λ =
∑

j

yjbji(δ)λ =
∑

j

(
∑

k

ajk(bji(δ)λ)yk) =
∑

k

(
∑

j

ajk(bji(δ)λ))yk .

On the other hand,

δ(yiλ) = δ(
∑

j

aij(λ)yj) =
∑

k

δaik(λ)yk.

Therefore, δaik(λ) =
∑

j ajk(bji(δ)λ). In particular, when λ = 1, we have

δδik =
∑

j

ajk(bji(δ)),

where δik = 0 if i 6= k and δik = 1 if i = k. The left-hand side is the (k, i)-entry of
δIn, while the right-hand side is the (k, i)-entry of ATB(δ). Therefore, ATB = In.

We now repeat the computation above, but group terms on the right of the yi’s.
On the one hand, we have

(δyi)λ =
∑

j

yjbji(δ)λ.

On the other hand,

δ(yiλ) =
∑

j

δaij(λ)yj =
∑

j

(
∑

k

ykbkj(δaij(λ))) =
∑

k

yk(
∑

j

bkj(δaij(λ))).

Therefore,
∑

j bkj(δaij(λ)) = bki(δ)λ. In particular, if δ = 1, we have
∑

j

bkj(aij(λ)) = δkiλ.

The left-hand side is the (k, i)-entry of BAT (λ) while the right-hand side is the
(k, i)-entry of λIn. Therefore, BAT = In. �

Proposition 3.7. Suppose V has rank n. Then there exist unit and counit mor-
phisms making the pair of functors (−⊗K

∗V,−⊗K V ) (resp. (−⊗K V,−⊗K V ∗))
from ModK to ModK adjoint.

Proof. We prove the first assertion. The proof of the second is similar and we omit
it. Throughout the proof, unlabeled tensor products are over K. We begin by
defining two maps η : K → ∗V ⊗V and ǫ : V ⊗ ∗V → K by η(a) = a

∑

i φi ⊗ yi and
ǫ(

∑

i,j aiyi ⊗φjbj) =
∑

i aibi. We first show that η is a K⊗k K-module morphism.

To this end, we note that η(ab) equals

a(
∑

i

bφi ⊗ yi) = a(
∑

i,j

φjaji(b) ⊗ yi) = a(
∑

i,j

φj ⊗ aji(b)yi).

The last expression equals

(5) a(
∑

i,j,k

φj ⊗ ykbki(aji(b))).
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By Proposition 3.6, AT = B−1, which implies that the expression (5) equals
a(

∑

i φi ⊗ yib) = η(a)b. It follows that η is a K ⊗k K-module map.
A routine argument establishes the fact that ǫ is a K ⊗k K-module map.
Next, a routine computation shows that the compositions

∗V ∼= K ⊗ ∗V
η⊗∗V−→ ∗V ⊗ V ⊗ ∗V

∗V ⊗ǫ−→ ∗V ⊗K ∼= ∗V

and

V ∼= V ⊗K
V ⊗η−→ V ⊗ ∗V ⊗ V

ǫ⊗V−→ K ⊗ V ∼= V

whose unlabeled maps are canonical, are both identity maps. It follows from this
and from the Eilenberg-Watts Theorem that the natural transformation id −→
(−⊗ ∗V ) ⊗ V defined by the composition

M −→M ⊗K
M⊗η−→ M ⊗ (∗V ⊗ V ) −→ (M ⊗ ∗V ) ⊗ V

whose first arrow is canonical and whose last arrow is the associativity isomorphism,
and the natural transformation (−⊗ V ) ⊗ ∗V −→ id defined by the composition

(M ⊗ V ) ⊗ ∗V −→M ⊗ (V ⊗ ∗V )
M⊗ǫ−→ M ⊗K −→M

whose first arrow is the associativity isomorphism and whose last arrow is canonical,
define a unit and counit of the pair (− ⊗K

∗V,−⊗K V ). �

We next prove that the image of η defined in the proof of Proposition 3.7 is
independent of choice of simultaneous basis for V . To this end, we will need the
following lemma, whose proof we leave as an exercise.

Lemma 3.8. If U has a right basis {ui}m
i=1 and V has a simultaneous basis {yj}n

j=1

then U ⊗K V has right basis {ui ⊗ yj}i,j.

Proposition 3.9. The image of η in the proof of Proposition 3.7 is independent
of choice of simultaneous basis.

Proof. Suppose {yi} and {zi} are simultaneous bases of V with corresponding left
dual bases {φi} and {γi}. By Lemma 3.8, every element of ∗V ⊗ V can be written
uniquely in the form

∑

i,j φi ⊗ cijyj where cij ∈ K. Thus, we may define a function

of abelian groups Ψ : ∗V ⊗V → HomAb(V, V ) by the formula Ψ(
∑

i,j φi⊗cijyj)(v) =
∑

i,j φi(v)cijyj. It is easy to check that Ψ is an injective group homomorphism. We

claim that
∑

i φi ⊗ yi =
∑

i γi ⊗ zi by showing that Ψ(
∑

i φi ⊗ yi) = Ψ(
∑

i γi ⊗ zi).
The proposition will follow from the claim. To prove the claim, we note that if
a ∈ K then Ψ(

∑

i φi ⊗ yi)(ayl) = ayl for each l. Since Ψ(
∑

i φi ⊗ yi) is additive, it
follows that Ψ(

∑

i φi ⊗ yi) is the identity function. In a similar manner, one shows
that Ψ(

∑

i γi ⊗ zi) is the identity function. The claim follows. �

3.3. The left and right dual of a simple two-sided vector space. We now
works towards establishing formulas for the left and right dual of a simple two-sided
vector space (Theorem 3.13). To this end, we will use the following notation and
conventions for the remainder of the section. We will routinely utilize the notation
defined in (2) and (3) at the beginning of Section 2.2. We assume K is perfect and
λ ∈ Emb(K) with |λG| = n, where, we remind the reader, G := Aut(K/K). In

addition, we let λ be an extension of λ to K, we let µ be the inverse of λ and we
let µ = µ|K . Finally, if γ, δ : K → L are k-linear embeddings of K into a field L,
we let γLδ denote the two-sided vector space whose underlying set is L and whose
K ⊗k K-module action is induced by the formula (a⊗ b) · c := γ(a)δ(b)c.
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Lemma 3.10. The map λ induces an isomorphism µµ(K) ∨Kid → V (λ).

Proof. The restriction of λ to µ(K) ∨ K maps into K(λ). It follows that this
restriction induces a map of two-sided vector spaces µµ(K) ∨ Kid → V (λ). Since

the kernel of λ is 0, and since the image of λ restricted to µ(K) ∨K is a subfield
of K containing K and λ(K), λ induces an isomorphism of two-sided vector spaces

µµ(K) ∨Kid → V (λ), as desired. �

We next introduce notation which will be employed for the rest of this section.
Since |λG| = n, λG = {σ1λ, . . . , σnλ} where σi ∈ G. Without loss of generality, we
assume σ1 is the identity map.

Lemma 3.11. The n× n matrix whose ij entry is σi(αj) is invertible. Therefore,

the function λi : K → K defined in (2) is a K-linear combination of elements of
λG.

Proof. We have σiλ =
∑n

j=1 σi(αj)λj since σi ∈ Aut(K/K) and λj : K → K. The
second assertion will thus follow from the first. To prove the first assertion, we show
that the columns of the matrix whose ij entry is σj(αi) are linearly independent

over K. Otherwise, without loss of generality,

(6)







σn(α1)
...

σn(αn)






= a1







σ1(α1)
...

σ1(αn)






+ · · · + an−1







σn−1(α1)
...

σn−1(αn)







where ai ∈ K. Since σi is K-linear, it induces a K-linear embedding of K(λ)
into K. Thus, (6) implies that σn|K(λ) = a1σ1|K(λ) + · · · + an−1σn−1|K(λ) which
contradicts independence of distinct characters. The lemma follows. �

We now introduce notation we will require in the statement of Lemma 3.12
and in the proof of Theorem 3.13. By Lemma 3.11, there is an inverse, (aij) to
(σi(αj)). Since, as we observed in the first line of the proof of Lemma 3.11, we have

σiλ =
∑n

j=1 σi(αj)λj , it follows that λi =
∑

j aijσjλ. We define λi =
∑

j aijσjλ.

Lemma 3.12. We have
λ =

∑

i

λiαi

and, for b, c ∈ K such that λi(b), λi(c), and λi(bc) are in K,

λk(bc) =
∑

i,j

λi(b)λj(c)βijk .

Proof. It follows from the fact that (aij) and (σi(αj)) are inverse that σiλ =
∑

j σi(αj)λj . When i = 1, we get the first assertion.

To prove the second assertion, we note that since λ(bc) = λ(b)λ(c), we have
∑

i

λi(bc)αi = (
∑

i

λi(b)αi)(
∑

j

λj(c)αj).

It follows that λk(bc) is equal to the coefficient of αk in
∑

i,j λi(b)λj(c)αiαj =
∑

i,j,k λi(b)λj(c)βijkαk. The result follows. �

Theorem 3.13. Suppose [K(λ) : λ(K)] is finite. Then ∗V (λ) ∼= V (λ)∗ ∼= V (µ),
and V (λ) has rank n if and only if V (µ) has rank n if and only if [K(λ) : λ(K)] = n.
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Proof. We begin by noting that since [K(λ) : λ(K)] = m < ∞, we must have
[K(µ) : K] = m, so that the notation V (µ) makes sense and the module V (µ) is
simple. We now prove that V (λ)∗ ∼= V (µ). In order to proceed, we need to make
a remark regarding notation. We adopt the notation defined in (2) and (3) at the
beginning of Section 2.2, using µ in place of λ. Furthermore, we define µi in the
same way we defined λi preceding the statement of Lemma 3.12. We will show that
{µ1, . . . , µm} is a left basis for V (λ)∗, and in this basis the matrix for the right
action of K is the matrix φ defined by (3). It will follow that V (λ)∗ ∼= V (µ).

We begin by showing that µi restricts to an element of HomK(V (λ)K ,K). By
the definition of (aij) and µi following the proof of Lemma 3.11, if cl, dl ∈ K where
l runs over a finite index set, then µi(

∑

l clλ(dl)) ∈ K. Since [K(λ) : K] is finite, it
follows that µi restricted to V (λ) takes values in K. If α ∈ K(λ) and b ∈ K, then

µi(α · b) = µi(λ(b)α)

=
∑

j

ajσjµ(λ(b))σjµ(α)

= bµi(α)

= µi(α) · b.

It follows that µi ∈ HomK(V (λ)K ,K) as desired.
We next show that {µ1, . . . , µm} is a left basis for V (λ)∗. Since V (λ) has right

dimension m by Proposition 2.3, V (λ)∗ has left dimension m. Therefore, it suf-
fices to show that {µ1, . . . , µm} is left linearly independent. To this end, since
{σ1µ, . . . , σmµ} is a set of distinct embeddings, this set is left linearly independent
over K. Since the matrix (aij) defined in the paragraph following the proof of
Lemma 3.11 and the matrix (σi(αj)) are inverse, σiµ =

∑m
j=1 σi(αj)µj . It follows

that {µ1, . . . , µm} is left linearly independent over K, hence over K. Therefore,
{µ1, . . . , µm} is a left basis for V (λ)∗.

We complete the proof that V (λ)∗ ∼= V (µ) by computing the matrix for the
right action of K on V (λ)∗ in the left basis {µ1, . . . , µm}. If b ∈ K, then the
argument in the second paragraph of the proof implies that µk(b), µk(αl), and
µk(bαl) are elements of K. Therefore, Lemma 3.12 implies that µk(bαl) equals
∑

i,j µi(b)µj(αl)βijk. This, in turn equals

∑

j

[(
∑

i

µi(b)βijk)µj(αl)] =
∑

j

[(
∑

i

µi(b)βjik)µj(αl)].

Thus, the kj entry of the matrix for the right action is
∑

i βjikµi(b) since b ∈ K.
It follows that the matrix for the right action is the matrix φ (defined in (3))
corresponding to µ.

To complete the proof of the first part of the theorem, we need to prove that
∗V (λ) ∼= V (µ). Since the proof is similar to the proof that V (λ)∗ ∼= V (µ), we
only sketch it. By Lemma 3.10, if W = µµ(K) ∨ Kid, then ∗V (λ) ∼= ∗W . It is

straightforward to check, as above, that {λ1, . . . , λn} is a right basis for ∗W , which
allows one to prove that ∗W ∼= λλ(K) ∨Kid. Thus, by Lemma 3.10, ∗W ∼= V (µ).

Finally, we prove the second part of the theorem. By Theorem 1.1 and Propo-
sition 2.3, n = [K(λ) : K]. Furthermore, by Lemma 3.10, [K(µ) : K] = [K(λ) :
λ(K)]. Similarly, [K(µ) : µ(K)] = [K(λ) : K]. It follows from Proposition 2.3 that
V (λ) has rank n if and only if V (µ) has rank n if and only if [K(λ) : λ(K)] = n. �
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4. Non-commutative symmetric algebras

In this section we recall (from [8]) the definition of the non-commutative sym-
metric algebra of a rank n two-sided vector space V . We conclude the paper by
using Theorem 3.13 to show that the non-commutative symmetric algebra of V
exists over a perfect field.

Definition 4.1. Let V be a rank n two-sided vector space over K such that V i∗

has rank n for all i. Since (− ⊗K V i∗,− ⊗K V (i+1)∗) is an adjoint pair for each
i by Proposition 3.7 and Corollary 3.5, the Eilenberg-Watts Theorem implies that
the unit of the pair (− ⊗K V i∗,− ⊗K V (i+1)∗) induces a map of two-sided vector
spaces K → V i∗ ⊗K V (i+1)∗. We denote the image of this map by Qi.

The non-commutative symmetric algebra generated by V , denoted Sn.c.
K (V ), is

the Z-algebra (see [6, p. 95] for a definition of Z-algebra) ⊕
i,j∈Z

Aij with components

defined as follows:

• Aij = 0 if i > j.
• Aii = K.
• Ai,i+1 = V i∗.

In order to define Aij for j > i+1, we introduce some notation: we define Bi,i+1 =
Ai,i+1, and, for j > i+ 1, we define

Bij = Ai,i+1 ⊗Ai+1,i+2 ⊗ · · · ⊗Aj−1,j .

We let Ri,i+1 = 0, Ri,i+2 = Qi,

Ri,i+3 = Qi ⊗ V (i+2)∗ + V i∗ ⊗Qi+1,

and, for j > i+ 3, we let

Rij = Qi ⊗Bi+2,j +Bi,i+1 ⊗Qi+1 ⊗Bi+3,j + · · · +Bi,j−2 ⊗Qj−2.

• For j > i+ 1, we define Aij as the quotient Bij/Rij .

Multiplication in Sn.c.
K (V ) is defined as follows:

• if a ∈ Aij , b ∈ Alk and j 6= l, then ab = 0,
• if a ∈ Aij and b ∈ Ajk, with either i = j or j = k, then ab is induced by

the usual scalar action,
• otherwise, if i < j < k, we have

Aij ⊗Ajk =
Bij

Rij

⊗ Bjk

Rjk

∼= Bik

Rij ⊗Bjk +Bij ⊗ Rjk

.

Since Rij ⊗ Bjk + Bij ⊗ Rjk is a submodule of Rik, there is thus an epi
µijk : Aij ⊗Ajk → Aik.

We say the non-commutative symmetric algebra of a rank n vector space V exists
if V i∗ has rank n for all i ∈ Z.

It is straightforward to check, using [3, Lemma 6.6], that if Sn.c.
K (V ) exists and

f : V → W is an isomorphism, then f induces an isomorphism of Z-algebras
Sn.c.

K (V ) ∼= Sn.c.
K (W ).
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Lemma 4.2. Suppose K is a perfect field and W is simple with dimK(KW ) =
n < ∞ and dimK(WK) = m < ∞. If i is even, then dimK(KW

i∗) = n and
dimK(W i∗

K) = m. If i is odd, then dimK(KW
i∗) = m and dimK(W i∗

K) = n.

Proof. Since W is simple, Proposition 2.3 implies there exists λ ∈ Emb(K) such
that W ∼= V (λ). Theorem 3.13 and Corollary 3.5 thus imply that for i even,
W i∗ ∼= V (λ) and for i odd, W i∗ ∼= V (µ). The result follows from Proposition 2.3
since [K(λ) : K] = [K(µ) : µ(K)] and [K(λ) : λ(K)] = [K(µ) : K]. �

Proposition 4.3. Suppose K is perfect and V is a two-sided vector space over
K with dimK(KV ) = n < ∞ and dimK(VK) = m < ∞. If i is even, then
dimK(KV

i∗) = n and dimK(V i∗
K) = m. If i is odd, then dimK(KV

i∗) = m
and dimK(V i∗

K) = n.

Proof. We prove the result when i = 1. When i > 1 the result follows from
induction on i since (V i∗)∗ = V (i+1)∗. If i < 0, a similar argument works, so we
omit the proof in this case. To prove the result in the i = 1 case, we proceed by
induction on the left dimension, n, of V . If n = 1 then V is simple, so the result
follows from Lemma 4.2. In the general case, if V is simple, then the result follows
from Lemma 4.2. Otherwise, let W ⊂ V be simple and suppose dimK(KW ) = p.
By Lemma 3.3, there is an exact sequence

0 → (V/W )∗ → V ∗ →W ∗ → 0.

By Lemma 4.2, dimK(V ∗
K) = p+ dimK((V/W )∗K). By the induction hypothesis,

dimK((V/W )∗K) = n − p. It follows that dimK(V ∗
K) = n as desired. The proof

in case i = 1 follows. �

Corollary 4.4. If K is a perfect field and V has rank n over K, then Sn.c.
K (V )

exists.

Proof. It suffices to show that V i∗ has rank n for all i ∈ Z. This follows immediately
from Proposition 4.3. �
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