SERRE FINITENESS AND SERRE VANISHING FOR NON-COMMUTATIVE \mathbb{P}^{1}-BUNDLES

ADAM NYMAN

Abstract

Suppose X is a smooth projective scheme of finite type over a field K, \mathcal{E} is a locally free \mathcal{O}_{X}-bimodule of $\operatorname{rank} 2, \mathcal{A}$ is the non-commutative symmetric algebra generated by \mathcal{E} and $\operatorname{Proj} \mathcal{A}$ is the corresponding non-commutative \mathbb{P}^{1}-bundle. We use the properties of the internal Hom functor $\mathcal{H o m}_{\mathrm{Gr} \mathcal{A}}(-,-)$ to prove versions of Serre finiteness and Serre vanishing for $\operatorname{Proj} \mathcal{A}$. As a corollary to Serre finiteness, we prove that $\operatorname{Proj} \mathcal{A}$ is Ext-finite. This fact is used in [2] to prove that if X is a smooth curve over $\operatorname{Spec} K, \operatorname{Proj} \mathcal{A}$ has a Riemann-Roch theorem and an adjunction formula.

Keywords: non-commutative geometry, Serre finiteness, non-commutative projective bundle.

1. Introduction

Non-commutative \mathbb{P}^{1}-bundles over curves play a prominent role in the theory of non-commutative surfaces. For example, certain non-commutative quadrics are isomorphic to non-commutative \mathbb{P}^{1}-bundles over curves [9]. In addition, every noncommutative deformation of a Hirzebruch surface is given by a non-commutative \mathbb{P}^{1}-bundle over $\mathbb{P}^{1}[8$, Theorem 7.4.1, p. 29].

The purpose of this paper is to prove versions of Serre finiteness and Serre vanishing (Theorem 3.5 (1) and (2), respectively) for non-commutative \mathbb{P}^{1}-bundles over smooth projective schemes of finite type over a field K. As a corollary to the first of these results, we prove that such non-commutative \mathbb{P}^{1}-bundles are Extfinite. This fact is used to prove that non-commutative \mathbb{P}^{1}-bundles over smooth curves have a Riemann-Roch theorem and an adjunction formula [2].

We now review some important notions from non-commutative algebraic geometry in order to recall the definition of non-commutative \mathbb{P}^{1}-bundle. We conclude the introduction by relating the results of this paper to Mori's intersection theory.

If X is a quasi-compact and quasi-separated scheme, then $\operatorname{Mod} X$, the category of quasi-coherent sheaves on X, is a Grothendieck category. This leads to the following generalization of the notion of scheme, introduced by Van den Bergh in order to define a notion of blowing-up in the non-commutative setting.
Definition 1.1. [7] A quasi-scheme is a Grothendieck category Mod X, which we denote by $X . \quad X$ is called a noetherian quasi-scheme if the category $\operatorname{Mod} X$ is locally noetherian. X is called a quasi-scheme over \mathbf{K} if the category $\operatorname{Mod} X$ is K-linear.

If R is a ring and $\operatorname{Mod} R$ is the category of right R - $\operatorname{modules,~} \operatorname{Mod} R$ is a quasischeme, called the non-commutative affine scheme associated to R. If A is a graded

[^0]ring, $\operatorname{Gr} A$ is the category of graded right A-modules, Tors A is the full subcategory of $\operatorname{Gr} A$ consisting of direct limits of right bounded modules, and $\operatorname{Proj} A$ is the quotient category $\operatorname{Gr} A / \operatorname{Tors} A$, then $\operatorname{Proj} A$ is a quasi-scheme called the non-commutative projective scheme associated to A. If A is an Artin-Schelter regular algebra of dimension 3 with the same hilbert series as a polynomial ring in 3 variables, $\operatorname{Proj} A$ is called a non-commutative \mathbb{P}^{2}.

The notion of non-commutative \mathbb{P}^{1}-bundle over a smooth scheme X generalizes that of commutative \mathbb{P}^{1}-bundle over X. In order to recall the definition of noncommutative \mathbb{P}^{1}-bundle, we review some preliminary notions. Let S be a scheme of finite type over Spec K and let X be an S-scheme. For $i=1,2$, let $\mathrm{pr}_{i}: X \times{ }_{S} X \rightarrow X$ denote the standard projections, let $\delta: X \rightarrow X \times{ }_{S} X$ denote the diagonal morphism, and let Δ denote the image of δ.
Definition 1.2. A coherent \mathcal{O}_{X}-bimodule, \mathcal{E}, is a coherent $\mathcal{O}_{X \times_{S} X}$-module such that $\operatorname{pr}_{i \mid \operatorname{Supp} \mathcal{E}}$ is finite for $i=1,2$. A coherent \mathcal{O}_{X}-bimodule \mathcal{E} is locally free of rank \boldsymbol{n} if $\operatorname{pr}_{i *} \mathcal{E}$ is locally free of rank n for $i=1,2$.

Now assume X is smooth. If \mathcal{E} is a locally free \mathcal{O}_{X}-bimodule, then let \mathcal{E}^{*} denote the dual of $\mathcal{E}\left[8\right.$, p. 6], and let $\mathcal{E}^{j *}$ denote the dual of $\mathcal{E}^{j-1 *}$. Finally, let $\eta: \mathcal{O}_{\Delta} \rightarrow \mathcal{E} \otimes_{\mathcal{O}_{X}} \mathcal{E}^{*}$ denote the counit from \mathcal{O}_{Δ} to the bimodule tensor product of \mathcal{E} and $\mathcal{E}^{*}[8$, p. 7].
Definition 1.3. [8, Section 4.1] Let \mathcal{E} be a locally free \mathcal{O}_{X}-bimodule. The noncommutative symmetric algebra generated by \mathcal{E}, \mathcal{A}, is the sheaf- \mathbb{Z}-algebra generated by the $\mathcal{E}^{j *}$ subject to the relations $\eta\left(\mathcal{O}_{\Delta}\right)$.

A more explicit definition of non-commutative symmetric algebra is given in Section 2. We now recall the definition of non-commutative \mathbb{P}^{1}-bundle.

Definition 1.4. [8] Suppose X is a smooth scheme of finite type over K, \mathcal{E} is a locally free \mathcal{O}_{X}-bimodule of $\operatorname{rank} 2$ and \mathcal{A} is the non-commutative symmetric algebra generated by \mathcal{E}. Let $\operatorname{Gr} \mathcal{A}$ denote the category of graded right \mathcal{A}-modules, let Tors \mathcal{A} denote the full subcategory of $\operatorname{Gr} \mathcal{A}$ consisting of direct limits of right-bounded modules, and let $\operatorname{Proj} \mathcal{A}$ denote the quotient of $\operatorname{Gr} \mathcal{A}$ by $\operatorname{Tors} \mathcal{A}$. The category $\operatorname{Proj} \mathcal{A}$ is a non-commutative $\mathbb{P}^{\mathbf{1}}$-bundle over \mathbf{X}.

This notion generalizes that of a commutative \mathbb{P}^{1}-bundle over X as follows. Let \mathcal{E} be an \mathcal{O}_{X}-bimodule on which \mathcal{O}_{X} acts centrally. Then \mathcal{E} can be identified with the direct image $\operatorname{pr}_{i *} \mathcal{E}$ for $i=1,2$. If, furthermore, \mathcal{E} is locally free of rank 2 and \mathcal{A} is the non-commutative symmetric algebra generated by \mathcal{E}, Van den Bergh proves [8, Lemma 4.2.1] that the category $\operatorname{Proj} \mathcal{A}$ is equivalent to the category $\operatorname{Mod} \mathbb{P}_{X}\left(\operatorname{pr}_{i *} \mathcal{E}\right)$, where $\mathbb{P}_{X}(-)$ is the usual (commutative) projectivization.

One of the major problems in non-commutative algebraic geometry is to classify non-commutative surfaces. Since intersection theory on commutative surfaces facilitates the classification of commutative surfaces, one expects intersection theory to be an important tool in non-commutative algebraic geometry. Mori shows [2, Theorem 3.11] that if Y is a noetherian quasi-scheme over a field K such that
(1) Y is Ext-finite,
(2) the cohomological dimension of Y is 2 , and
(3) Y satisfies Serre duality
then versions of the Riemann-Roch theorem and the adjunction formula hold for Y. Let X be a smooth curve over $\operatorname{Spec} K$. In [5], we prove that a non-commutative
\mathbb{P}^{1}-bundle over X satisfies (2) and (3) above (see Section 4 for a precise statement of these results). In this paper we prove that a non-commutative \mathbb{P}^{1}-bundle over a projective scheme of finite type satisfies (1) (Corollary 3.6). We conclude the paper by stating the versions of the Riemann-Roch theorem and the adjunction formula which hold for non-commutative \mathbb{P}^{1}-bundles.

In what follows, K is a field, X is a smooth, projective scheme of finite type over Spec $K, \operatorname{Mod} X$ denotes the category of quasi-coherent \mathcal{O}_{X}-modules, and we abuse notation by calling objects in this category \mathcal{O}_{X}-modules.

Acknowledgment: We thank Izuru Mori for showing us his preprint [2] and for helping us understand the material in Section 4.

2. PRELIMINARIES

Before we prove Serre finiteness and Serre vanishing, we review the definition of non-commutative symmetric algebra and the definition and basic properties of the internal Hom functor $\mathcal{H o m}_{\mathrm{Gr} \mathcal{A}}(-,-)$ on $\operatorname{Gr} \mathcal{A}$.

Definition 2.1. Let \mathcal{E} be a locally free \mathcal{O}_{X}-bimodule. The non-commutative symmetric algebra generated by \mathcal{E} is the sheaf- \mathbb{Z}-algebra $\mathcal{A}=\underset{i, j \in \mathbb{Z}}{\oplus} \mathcal{A}_{i j}$ with components

- $\mathcal{A}_{i i}=\mathcal{O}_{\Delta}$
- $\mathcal{A}_{i, i+1}=\mathcal{E}^{i *}$,
- $\mathcal{A}_{i j}=\mathcal{A}_{i, i+1} \otimes \cdots \otimes \mathcal{A}_{j-1, j} / \mathcal{R}_{i j}$ for $j>i+1$, where $\mathcal{R}_{i j} \subset \mathcal{A}_{i, i+1} \otimes \cdots \otimes$ $\mathcal{A}_{j-1, j}$ is the \mathcal{O}_{X}-bimodule

$$
\sum_{k=i}^{j-2} \mathcal{A}_{i, i+1} \otimes \cdots \otimes \mathcal{A}_{k-1, k} \otimes \mathcal{Q}_{k} \otimes \mathcal{A}_{k+2, k+3} \otimes \cdots \otimes \mathcal{A}_{j-1, j}
$$

and \mathcal{Q}_{i} is the image of the unit map $\mathcal{O}_{\Delta} \rightarrow \mathcal{A}_{i, i+1} \otimes \mathcal{A}_{i+1, i+2}$, and

- $\mathcal{A}_{i j}=0$ if $i>j$
and with multiplication, μ, defined as follows: for $i<j<k$,

$$
\begin{aligned}
\mathcal{A}_{i j} \otimes \mathcal{A}_{j k} & =\frac{\mathcal{A}_{i, i+1} \otimes \cdots \otimes \mathcal{A}_{j-1, j}}{\mathcal{R}_{i j}} \otimes \frac{\mathcal{A}_{j, j+1} \otimes \cdots \otimes \mathcal{A}_{k-1, k}}{\mathcal{R}_{j k}} \\
& \cong \frac{\mathcal{A}_{i, i+1} \otimes \cdots \otimes \mathcal{A}_{k-1, k}}{\mathcal{R}_{i j} \otimes \mathcal{A}_{j, j+1} \otimes \cdots \otimes \mathcal{A}_{k-1, k}+\mathcal{A}_{i, i+1} \otimes \cdots \otimes \mathcal{A}_{j-1, j} \otimes \mathcal{R}_{j k}}
\end{aligned}
$$

by [4, Corollary 3.18$]$. On the other hand,

$$
\begin{gathered}
\mathcal{R}_{i k} \cong \mathcal{R}_{i j} \otimes \mathcal{A}_{j, j+1} \otimes \cdots \otimes \mathcal{A}_{k-1, k}+\mathcal{A}_{i, i+1} \otimes \cdots \otimes \mathcal{A}_{j-1, j} \otimes \mathcal{R}_{j k}+ \\
\mathcal{A}_{i, i+1} \otimes \cdots \otimes \mathcal{A}_{j-2, j-1} \otimes \mathcal{Q}_{j-1} \otimes \mathcal{A}_{j+1, j+2} \otimes \cdots \otimes \mathcal{A}_{k-1, k}
\end{gathered}
$$

Thus there is an epi $\mu_{i j k}: \mathcal{A}_{i j} \otimes \mathcal{A}_{j k} \rightarrow \mathcal{A}_{i k}$.
If $i=j$, let $\mu_{i j k}: \mathcal{A}_{i i} \otimes \mathcal{A}_{i k} \rightarrow \mathcal{A}_{i k}$ be the scalar multiplication map $\mathcal{O} \mu$: $\mathcal{O}_{\Delta} \otimes \mathcal{A}_{i k} \rightarrow \mathcal{A}_{i k}$. Similarly, if $j=k$, let $\mu_{i j k}: \mathcal{A}_{i j} \otimes \mathcal{A}_{j j} \rightarrow \mathcal{A}_{i j}$ be the scalar multiplication map $\mu_{\mathcal{O}}$. Using the fact that the tensor product of bimodules is associative, one can check that multiplication is associative.

Definition 2.2. Let $\operatorname{Bimod} \mathcal{A}-\mathcal{A}$ denote the category of $\mathcal{A}-\mathcal{A}$-bimodules. Specifically:

- an object of $\operatorname{Bimod} \mathcal{A}-\mathcal{A}$ is a triple

$$
\left(\mathcal{C}=\left\{C_{i j}\right\}_{i, j \in \mathbb{Z}},\left\{\mu_{i j k}\right\}_{i, j, k \in \mathbb{Z}},\left\{\psi_{i j k}\right\}_{i, j, k \in \mathbb{Z}}\right)
$$

where $\mathcal{C}_{i j}$ is an \mathcal{O}_{X}-bimodule and $\mu_{i j k}: \mathcal{C}_{i j} \otimes \mathcal{A}_{j k} \rightarrow \mathcal{C}_{i k}$ and $\psi_{i j k}: \mathcal{A}_{i j} \otimes$

- A morphism $\phi: \mathcal{C} \rightarrow \mathcal{D}$ between objects in $\operatorname{Bimod} \mathcal{A}-\mathcal{A}$ is a collection $\phi=\left\{\phi_{i j}\right\}_{i, j \in \mathbb{Z}}$ such that $\phi_{i j}: \mathcal{C}_{i j} \rightarrow \mathcal{D}_{i j}$ is a morphism of $\mathcal{O}_{X^{2}}$-modules, and such that ϕ respects the $\mathcal{A}-\mathcal{A}$-bimodule structure on \mathcal{C} and \mathcal{D}.
Let \mathbb{B} denote the full subcategory of $\operatorname{Bimod} \mathcal{A}-\mathcal{A}$ whose objects $\mathcal{C}=\left\{C_{i j}\right\}_{i, j \in \mathbb{Z}}$ have the property that $\mathcal{C}_{i j}$ is coherent and locally free for all $i, j \in \mathbb{Z}$.

Let $\operatorname{Gr} \mathcal{A}$ denote the full subcategory of \mathbb{B} consisting of objects \mathcal{C} such that for some $n \in \mathbb{Z}, \mathcal{C}_{i j}=0$ for $i \neq n$ (we say \mathcal{C} is left-concentrated in degree n).
Definition 2.3. [5, Definition 3.7] Let \mathcal{C} be an object in \mathbb{B} and let \mathcal{M} be a graded right \mathcal{A}-module. We define $\mathcal{H o m}_{\operatorname{Gr\mathcal {A}}}(\mathcal{C}, \mathcal{M})$ to be the \mathbb{Z}-graded \mathcal{O}_{X}-module whose k th component is the equalizer of the diagram

where α is the identity map, β is induced by the composition

$$
\mathcal{M}_{i} \xrightarrow{\eta} \mathcal{M}_{i} \otimes \mathcal{A}_{i j} \otimes \mathcal{A}_{i j}^{*} \xrightarrow{\mu} \mathcal{M}_{j} \otimes \mathcal{A}_{i j}^{*}
$$

γ is induced by the dual of

$$
\mathcal{C}_{k i} \otimes \mathcal{A}_{i j} \xrightarrow{\mu} \mathcal{C}_{k j},
$$

and δ is induced by the composition

$$
\left(\mathcal{M}_{j} \otimes \mathcal{A}_{i j}^{*}\right) \otimes \mathcal{C}_{i j}^{*} \rightarrow \mathcal{M}_{j} \otimes\left(\mathcal{A}_{i j}^{*} \otimes \mathcal{C}_{k i}^{*}\right) \rightarrow \mathcal{M}_{j} \otimes\left(\mathcal{C}_{k i} \otimes \mathcal{A}_{i j}\right)^{*}
$$

whose left arrow is the associativity isomorphism and whose right arrow is induced by the canonical map [5, Section 2.1]. If \mathcal{C} is an object of $\mathbb{G r} \mathcal{A}$ left-concentrated in degree k, we define $\mathcal{H} \operatorname{Hom}_{\operatorname{Gr} \mathcal{A}}(\mathcal{C}, \mathcal{M})$ to be the equalizer of (1).

Let $\tau: \operatorname{Gr} \mathcal{A} \rightarrow$ Tors \mathcal{A} denote the torsion functor, let $\pi: \operatorname{Gr} \mathcal{A} \rightarrow \operatorname{Proj} \mathcal{A}$ denote the quotient functor, and let $\omega: \operatorname{Proj} \mathcal{A} \rightarrow \operatorname{Gr} \mathcal{A}$ denote the right adjoint to π. For any $k \in \mathbb{Z}$, let $e_{k} \mathcal{A}$ denote the right- \mathcal{A}-module $\underset{l \geq k}{\bigoplus} \mathcal{A}_{k l}$. We define $e_{k} \mathcal{A}_{\geq k+n}$ to be the sum $\bigoplus_{i \geq 0} e_{k} \mathcal{A}_{k+n+i}$ and we let $\mathcal{A}_{\geq n}=\bigoplus_{k} e_{k} \mathcal{A} \geq k+n$.

Theorem 2.4. If \mathcal{M} is an object in $\operatorname{Gr\mathcal {A}}$ and \mathcal{C} is an object in $\mathbb{B}, \mathcal{H o m}_{\operatorname{Gr\mathcal {A}}}(\mathcal{C}, \mathcal{M})$ inherits a graded right \mathcal{A}-module structure from the left \mathcal{A}-module structure of \mathcal{C}, making $\underline{\mathcal{H o m}}_{\mathrm{Gr} \mathcal{A}}(-,-): \mathbb{B}^{o p} \times \mathrm{Gr} \mathcal{A} \rightarrow \mathrm{Gr} \mathcal{A}$ a bifunctor.

Furthermore
(1) $\tau(-) \cong \lim _{n \rightarrow \infty} \mathcal{H o m}_{\operatorname{Gr\mathcal {A}}}\left(\mathcal{A} / \mathcal{A}_{\geq n},-\right)$,
(2) If \mathcal{F} is a coherent, locally free \mathcal{O}_{X}-bimodule,

$$
\mathcal{H o m}_{\operatorname{Gr\mathcal {A}}}\left(\mathcal{F} \otimes e_{k} \mathcal{A},-\right) \cong(-)_{k} \otimes \mathcal{F}^{*}
$$

and
(3) If \mathcal{L} is an \mathcal{O}_{X}-module and \mathcal{M} is an object of $\operatorname{Gr} \mathcal{A}$,

$$
\operatorname{Hom}_{\mathcal{O}_{X}}\left(\mathcal{L}, \mathcal{H o m} \operatorname{Gr\mathcal {A}}\left(e_{k} \mathcal{A}, \mathcal{M}\right)\right) \cong \operatorname{Hom}_{\operatorname{Gr\mathcal {A}}}\left(\mathcal{L} \otimes e_{k} \mathcal{A}, \mathcal{M}\right)
$$

Proof. The first statement is [5, Proposition 3.11], (1) is [5, Proposition 3.19], (2) is [5, Theorem 3.16(4)] and (3) is a consequence of [5, Proposition 3.10]

By Theorem $2.4(2), \mathcal{H o m}_{\operatorname{Gr} \mathcal{A}}(-, \mathcal{M})$ is $\mathcal{F} \otimes e_{k} \mathcal{A}$-acyclic when \mathcal{F} is a coherent, locally free \mathcal{O}_{X}-bimodule. Thus, one may use the resolution [8, Theorem 7.1.2] to compute the derived functors of $\mathcal{H o m}_{\operatorname{Gr\mathcal {A}}}\left(\mathcal{A} / \mathcal{A}_{\geq 1},-\right)$. By Theorem 2.4(1), we may thus compute the derived functors of τ :

Theorem 2.5. The cohomological dimension of τ is 2 . For $i<2$ and \mathcal{L} a coherent, locally free \mathcal{O}_{X}-module,

$$
\mathrm{R}^{i} \tau\left(\mathcal{L} \otimes e_{k} \mathcal{A}\right)=0
$$

and

$$
\left(\mathrm{R}^{2} \tau\left(\mathcal{L} \otimes e_{l} \mathcal{A}\right)\right)_{l-2-i} \cong \begin{cases}\mathcal{L} \otimes \mathcal{A}_{l-2-i, l-2}^{*} & \text { if } i \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. The first result is [5, Corollary 4.10], while the remainder is [5, Lemma 4.9].

3. Serre finiteness and Serre vanishing

In this section let I denote a finite subset of $\mathbb{Z} \times \mathbb{Z}$. The proof of the following lemma is straightforward, so we omit it.

Lemma 3.1. If \mathcal{M} is a noetherian object in $\operatorname{Gr} \mathcal{A}, \pi \mathcal{M}$ is a noetherian object in $\operatorname{Proj} \mathcal{A}$ and \mathcal{M} is locally coherent.

Lemma 3.2. If \mathcal{M} is a noetherian object in $\operatorname{Gr} \mathcal{A}, \mathrm{R}^{i} \tau \mathcal{M}$ is locally coherent for all $i \geq 0$.

Proof. The module $\mathcal{O}_{X}(j) \otimes e_{k} \mathcal{A}$ is noetherian by [5, Lemma 2.17] and the lemma holds with $\mathcal{M}=\bigoplus_{(j, k) \in I} \mathcal{O}_{X}(j) \otimes e_{k} \mathcal{A}$ by Theorem 2.5 .

To prove the result for arbitrary noetherian \mathcal{M}, we use descending induction on i. For $i>2, \mathrm{R}^{i} \tau \mathcal{M}=0$ by Theorem 2.5 , so the result is trivial in this case. Since \mathcal{M} is noetherian, there is a finite subset $I \subset \mathbb{Z} \times \mathbb{Z}$ and a short exact sequence

$$
0 \rightarrow \mathcal{R} \rightarrow \bigoplus_{(j, k) \in I} \mathcal{O}_{X}(j) \otimes e_{k} \mathcal{A} \rightarrow \mathcal{M} \rightarrow 0
$$

by [5, Lemma 2.17]. This induces an exact sequence of \mathcal{A}-modules

$$
\ldots \rightarrow\left(\mathrm{R}^{i} \tau\left(\underset{(j, k) \in I}{ } \mathcal{O}_{X}(j) \otimes e_{k} \mathcal{A}\right)\right)_{l} \rightarrow\left(\mathrm{R}^{i} \tau \mathcal{M}\right)_{l} \rightarrow\left(\mathrm{R}^{i+1} \tau \mathcal{R}\right)_{l} \rightarrow \ldots
$$

The left module is coherent by the first part of the proof, while the right module is coherent by the induction hypothesis. Hence the middle module is coherent since X is noetherian.

Corollary 3.3. If \mathcal{M} is a noetherian object in $\operatorname{Gr} \mathcal{A}, \mathrm{R}^{i}\left(\omega(-)_{k}\right)(\pi \mathcal{M})$ is coherent for all $i \geq 0$ and all $k \in \mathbb{Z}$.

Proof. Since $(-)_{k}: \operatorname{Gr} \mathcal{A} \rightarrow \operatorname{Mod} X$ is an exact functor, $\mathrm{R}^{i}\left(\omega(-)_{k}\right)(\pi \mathcal{M}) \cong \mathrm{R}^{i} \omega(\pi \mathcal{M})_{k}$.
Now, to prove $\omega(\pi \mathcal{M})_{k}$ is coherent, we note that there is an exact sequence in $\operatorname{Mod} X$

$$
0 \rightarrow \tau \mathcal{M}_{k} \rightarrow \mathcal{M}_{k} \rightarrow \omega(\pi \mathcal{M})_{k} \rightarrow\left(\mathrm{R}^{1} \tau \mathcal{M}\right)_{k} \rightarrow 0
$$

by [5, Theorem 4.11]. Since \mathcal{M}_{k} and $\left(\mathrm{R}^{1} \tau \mathcal{M}\right)_{k}$ are coherent by Lemma 3.1 and Lemma 3.2 respectively, $\omega(\pi \mathcal{M})_{k}$ is coherent since X is noetherian.

The fact that $\mathrm{R}^{i} \omega(\pi \mathcal{M})_{k}$ is coherent for $i>0$ follows from Lemma 3.2 since, in this case,

$$
\begin{equation*}
\left(\mathrm{R}^{i} \omega(\pi \mathcal{M})\right)_{k} \cong\left(\mathrm{R}^{i+1} \tau \mathcal{M}\right)_{k} \tag{2}
\end{equation*}
$$

by [5, Theorem 4.11].
Lemma 3.4. For \mathcal{N} noetherian in $\operatorname{Gr} \mathcal{A}, \mathrm{R}^{1} \omega(\pi \mathcal{N})_{k}=0$ for $k \gg 0$.
Proof. When $\mathcal{N}=\bigoplus_{(l, m) \in I}\left(\mathcal{O}_{X}(l) \otimes e_{m} \mathcal{A}\right)$, the result follows from (2) and Theorem 2.5.

More generally, there is a short exact sequence

$$
0 \rightarrow \mathcal{R} \rightarrow \pi\left(\bigoplus_{(l, m) \in I} \mathcal{O}_{X}(l) \otimes e_{m} \mathcal{A}\right) \rightarrow \pi \mathcal{N} \rightarrow 0
$$

which induces an exact sequence

$$
\cdots \rightarrow \mathrm{R}^{1} \omega\left(\pi\left(\bigoplus_{(l, m) \in I} \mathcal{O}_{X}(l) \otimes e_{m} \mathcal{A}\right)\right) \rightarrow \mathrm{R}^{1} \omega(\pi \mathcal{N}) \rightarrow \mathrm{R}^{2} \omega(\mathcal{R})=0
$$

where the right equality is due to (2) and Theorem 2.5. Since the left module is 0 in high degree, so is $\mathrm{R}^{1} \omega(\pi \mathcal{N})$.
Theorem 3.5. For any noetherian object \mathcal{N} in $\operatorname{Gr} \mathcal{A}$,
(1) $\operatorname{Ext}_{\operatorname{Proj} \mathcal{A}}^{i}\left(\underset{(j, k) \in I}{\bigoplus} \pi\left(\mathcal{O}_{X}(j) \otimes e_{k} \mathcal{A}\right), \pi \mathcal{N}\right)$ is finite-dimensional over K for all $i \geq 0$, and
(2) for $i>0, \operatorname{Ext}_{\operatorname{Proj} \mathcal{A}}^{i}\left(\underset{(j, k) \in I}{\bigoplus} \pi\left(\mathcal{O}_{X}(j) \otimes e_{k} \mathcal{A}\right), \pi \mathcal{N}\right)=0$ whenever $j \ll 0$ and $k \gg 0$.

Proof. Let d denote the cohomological dimension of X. Since $\operatorname{Ext}_{\text {Proj } \mathcal{A}}^{i}(-, \pi \mathcal{N})$ commutes with finite direct sums, it suffices to prove the theorem when I has only one element.

$$
\begin{aligned}
\operatorname{Homproj} \mathcal{A}\left(\pi\left(\mathcal{O}_{X}(j) \otimes e_{k} \mathcal{A}\right), \pi \mathcal{N}\right) & \cong \operatorname{Hom}_{G r \mathcal{A}}\left(\mathcal{O}_{X}(j) \otimes e_{k} \mathcal{A}, \omega \pi \mathcal{N}\right) \\
& \cong \operatorname{Hom}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X}(j), \mathcal{H o m}\right. \\
& \left.\cong \operatorname{Hom}_{\mathcal{O}_{X} \mathcal{A}}\left(e_{k} \mathcal{A}, \omega \pi \mathcal{N}\right)\right) \\
& \left.\cong \Gamma(j), \omega(\pi \mathcal{N})_{k}\right) \\
& \left.\cong \mathcal{O}_{X}(-j) \otimes \omega(-)_{k}\right)(\pi \mathcal{N})
\end{aligned}
$$

where the second isomorphism is from Theorem 2.4 (3), while the third isomorphism is from Theorem 2.4 (2). Thus,

$$
\operatorname{Ext}_{\operatorname{Proj} \mathcal{A}}^{i}\left(\pi\left(\mathcal{O}_{X}(j) \otimes e_{k} \mathcal{A}\right), \pi \mathcal{N}\right) \cong \mathrm{R}^{i}\left(\Gamma \circ\left(\mathcal{O}_{X}(-j) \otimes \omega(-)_{k}\right)\right) \pi \mathcal{N}
$$

If $i=0$, (1) follows from Corollary 3.3 and [1, III, Theorem 5.2a, p. 228].
If $0<i<d+1$, the Grothendieck spectral sequence gives us an exact sequence

$$
\begin{equation*}
\ldots \rightarrow \mathrm{R}^{i} \Gamma\left(\mathcal{O}_{X}(-j) \otimes \omega(\pi \mathcal{N})_{k}\right) \rightarrow \mathrm{R}^{i}\left(\Gamma \circ \mathcal{O}_{X}(-j) \otimes \omega(-)_{k}\right) \pi \mathcal{N} \rightarrow \tag{3}
\end{equation*}
$$

$$
\mathrm{R}^{i-1} \Gamma \mathrm{R}^{1}\left(\mathcal{O}_{X}(-j) \otimes \omega(-)_{k}\right) \pi \mathcal{N} \rightarrow \ldots
$$

Since $\omega(\pi \mathcal{N})_{k}$ and $\mathrm{R}^{1}\left(\mathcal{O}_{X}(-j) \otimes \omega(-)_{k}\right) \pi \mathcal{N} \cong \mathcal{O}_{X}(-j) \otimes \mathrm{R}^{1}\left(\omega(-)_{k}\right) \pi \mathcal{N}$ are coherent by Corollary 3.3, the first and last terms of (3) are finite-dimensional by [1, III, Theorem 5.2a, p.228]. Thus, the middle term of (3) is finite-dimensional as well, which proves (1) in this case. To prove (2) in this case, we note that, since $\omega(\pi \mathcal{N})_{k}$ is coherent, the first module of (3) is 0 for $j \ll 0$ by [1, III, Theorem 5.2 b, p.228]. If $i>1$, the last module of (3) is 0 for $j \ll 0$ for the same reason. Finally, if $i=1$, the last module of (3) is 0 since $\mathrm{R}^{1} \omega(\pi \mathcal{N})_{k}=0$ for $k \gg 0$ by Lemma 3.4.

If $i=d+1$, the Grothendieck spectral sequence gives an isomorphism

$$
\mathrm{R}^{d+1}\left(\Gamma \circ\left(\mathcal{O}_{X}(-j) \otimes \omega(-)_{k}\right) \pi \mathcal{N} \cong \mathrm{R}^{d} \Gamma \mathrm{R}^{1}\left(\mathcal{O}_{X}(-j) \otimes \omega(-)_{k}\right) \pi \mathcal{N}\right.
$$

In this case, (1) again follows from Corollary 3.3 and [1, III, Theorem 5.2a, p.228], while (2) follows from Lemma 3.4.
Corollary 3.6. If \mathcal{M} and \mathcal{N} are noetherian objects in $\operatorname{Gr} \mathcal{A}$, $\operatorname{Ext}_{\text {Proj } \mathcal{A}}^{i}(\pi \mathcal{M}, \pi \mathcal{N})$ is finite-dimensional for $i \geq 0$.

Proof. Since \mathcal{M} is noetherian, there is an exact sequence

$$
0 \rightarrow \mathcal{R} \rightarrow \pi\left(\underset{(j, k) \in I}{ } \mathcal{O}_{X}(j) \otimes e_{k} \mathcal{A}\right) \rightarrow \pi \mathcal{M} \rightarrow 0
$$

Since the central term is noetherian by Lemma 3.1, so is the \mathcal{R}. Since $\operatorname{Homproj}_{\mathcal{A}}(-, \pi \mathcal{N})$ is left exact, there are exact sequences

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}_{\operatorname{Proj} \mathcal{A}}(\pi \mathcal{M}, \pi \mathcal{N}) \rightarrow \operatorname{Hom}_{\operatorname{Proj} \mathcal{A}}\left(\pi\left(\bigoplus_{(j, k) \in I} \mathcal{O}_{X}(j) \otimes e_{k} \mathcal{A}\right), \pi \mathcal{N}\right) \rightarrow \tag{4}
\end{equation*}
$$

and, for $i \geq 1$,

$$
\begin{equation*}
\rightarrow \operatorname{Ext}_{\operatorname{Proj} \mathcal{A}}^{i-1}(\mathcal{R}, \pi \mathcal{N}) \rightarrow \operatorname{Ext}_{\text {Proj } \mathcal{A}}^{i}(\pi \mathcal{M}, \pi \mathcal{N}) \rightarrow \operatorname{Ext}_{\operatorname{Proj} \mathcal{A}}^{i}\left(\pi\left(\underset{(j, k) \in I}{\bigoplus} \mathcal{O}_{X}(j) \otimes e_{k} \mathcal{A}\right), \pi \mathcal{N}\right) \rightarrow \tag{5}
\end{equation*}
$$

Since π commutes with direct sums, the right-hand terms of (4) and (5) are finitedimensional by Theorem 3.5(1), while the left hand term of (5) is finite-dimensional by the induction hypothesis.

4. Riemann-Roch and Adjunction

Let X be a smooth projective curve, let \mathcal{A} be the noncommutative symmetric algebra generated by a locally free \mathcal{O}_{X}-bimodule \mathcal{E} of rank 2 , and let $Y=\operatorname{Proj} \mathcal{A}$. In this section, we state the Riemann-Roch theorem and adjunction formula for Y. In order to state these results, we need to define an intersection multiplicity on Y. This definition depends on the fact that Y has well behaved cohomology, so we begin this section by reviewing relevant facts regarding the cohomology of Y.

Let $\mathcal{O}_{Y}=\pi \operatorname{pr}_{2 *} e_{0} \mathcal{A}$. By [5, Theorem 5.20], Y satisfies Serre duality, i.e., there exists an object ω_{Y} in $\operatorname{Proj} \mathcal{A}$, called the canonical sheaf on Y, such that

$$
\begin{equation*}
\operatorname{Ext}_{Y}^{2-i}\left(\mathcal{O}_{Y},-\right)^{\prime} \cong \operatorname{Ext}_{Y}^{i}\left(-, \omega_{Y}\right) \tag{6}
\end{equation*}
$$

for all $0 \leq i \leq 2$.
By [5, Theorem 4.16], Y has cohomological dimension two, i.e.
(7) $\quad 2=\sup \left\{i \mid \operatorname{Ext}_{Y}^{i}\left(\mathcal{O}_{Y}, \mathcal{M}\right) \neq 0\right.$ for some noetherian object \mathcal{M} in $\left.\operatorname{Proj} \mathcal{A}\right\}$.

We write $D: Y \rightarrow Y$ for an autoequivalence, $-D: Y \rightarrow Y$ for the inverse of D, and $\mathcal{M}(D):=D(\mathcal{M})$ for $\mathcal{M} \in Y$.

Definition 4.1. [2, Definition 2.3] A weak divisor on Y is an element $\mathcal{O}_{D} \in K_{0}(Y)$ of the form $\mathcal{O}_{D}=\left[\mathcal{O}_{Y}\right]-\left[\mathcal{O}_{Y}(-D)\right]$ for some autoequivalence D of Y.

We now define an intersection multiplicity on Y following [2]. Let \mathcal{M} be a noetherian object in $\operatorname{Proj} \mathcal{A}$, and let $[\mathcal{M}]$ denote its class in $K_{0}(Y)$. We define a $\operatorname{map} \xi\left(-, \omega_{Y}\right): K_{0}(Y) \rightarrow \mathbb{Z}$ by

$$
\xi\left([\mathcal{M}], \omega_{Y}\right)=\sum_{i=0}^{\infty}(-1)^{i} \operatorname{dim}_{K} \operatorname{Ext}_{Y}^{i}\left(\mathcal{M}, \omega_{Y}\right)
$$

This map is well defined by (6), (7) and Corollary 3.6. If \mathcal{O}_{D} is a weak divisor on Y, we define a map $\xi\left(\mathcal{O}_{D},-\right): K_{0}(Y) \rightarrow \mathbb{Z}$ by

$$
\xi\left(\mathcal{O}_{D},[\mathcal{M}]\right)=\sum_{i=0}^{\infty}(-1)^{i}\left(\operatorname{dim}_{K} \operatorname{Ext}_{Y}^{i}\left(\mathcal{O}_{Y}, \mathcal{M}\right)-\operatorname{dim}_{K} \operatorname{Ext}_{Y}^{i}\left(\mathcal{O}_{Y}(-D), \mathcal{M}\right)\right)
$$

This map is well defined by (7) and Corollary 3.6. We define the intersection multiplicity of \mathcal{M} and ω_{Y} by

$$
\mathcal{M} \cdot \omega_{Y}:=(-1)^{\operatorname{codim} \mathcal{M}} \xi\left([\mathcal{M}], \omega_{Y}\right)
$$

for some suitably defined integer $\operatorname{codim} \mathcal{M}$. Thus, if \mathcal{M} is a "curve" on Y, then $\mathcal{M} \cdot \omega_{Y}=-\xi\left([\mathcal{M}], \omega_{Y}\right)$. Similarly, we define the intersection multiplicity of \mathcal{O}_{D} and \mathcal{M} by

$$
\mathcal{O}_{D} \cdot \mathcal{M}:=-\xi\left(\mathcal{O}_{D},[\mathcal{M}]\right)
$$

We have yet to establish that ω_{Y} is noetherian. However, if it is noetherian, notice that $\mathcal{O}_{D} \cdot \omega_{Y}$ is defined unambiguously.

Finally, we define a map $\chi(-): K_{0}(Y) \rightarrow \mathbb{Z}$ by

$$
\chi([\mathcal{M}]):=\sum_{i=0}^{\infty}(-1)^{i} \operatorname{dim}_{K} \operatorname{Ext}_{Y}^{i}\left(\mathcal{O}_{Y}, \mathcal{M}\right) .
$$

Corollary 4.2. Let $Y=\operatorname{Proj} \mathcal{A}$, let ω_{Y} denote the canonical sheaf on Y, and suppose \mathcal{O}_{D} is a weak divisor on Y. Then we have the following formulas:
(1) (Riemann-Roch)

$$
\chi\left(\mathcal{O}_{Y}(D)\right)=\frac{1}{2}\left(\mathcal{O}_{D} \cdot \mathcal{O}_{D}-\mathcal{O}_{D} \cdot \omega_{Y}+\mathcal{O}_{D} \cdot \mathcal{O}_{Y}\right)+1+p_{a}
$$

where $p_{a}:=\chi\left(\left[\mathcal{O}_{Y}\right]\right)-1$ is the arithmetic genus of Y.
(2) (Adjunction)

$$
2 g-2=\mathcal{O}_{D} \cdot \mathcal{O}_{D}+\mathcal{O}_{D} \cdot \omega_{Y}-\mathcal{O}_{D} \cdot \mathcal{O}_{Y}
$$

where $g:=1-\chi\left(\mathcal{O}_{D}\right)$ is the genus of \mathcal{O}_{D}.
Proof. The quasi-scheme Y is Ext-finite by Corollary 3.6, has cohomological dimension 2 by [5 , Theorem 4.16], and satisfies Serre duality with ω_{Y} by [5, Theorem 5.20]. Thus, Y is classical Cohen-Macaulay, and the result follows [2, Theorem 3.11].

In stating the Corollary, we defined the intersection multiplicity only for specific elements of $K_{0}(Y) \times K_{0}(Y)$. In order to define an intersection multiplicity on the entire set $K_{0}(Y) \times K_{0}(Y)$, one must first prove that Y has finite homological dimension. In [3, Section 6], Mori and Smith study noncommutative \mathbb{P}^{1}-bundles $Y=\operatorname{Proj} \mathcal{A}$ such that \mathcal{A} is generated by a bimodule \mathcal{E} with the property that $\mathcal{E} \otimes \mathcal{E}$
contains a nondegenerate invertible bimodule. In this case, they use the structure of $K_{0}(Y)$ to prove that Y has finite homological dimension. They then compute various intersections on Y without the use of either the Riemann-Roch theorem or the adjunction formula. In particular, they prove that distinct fibers on Y do not meet, and that a fiber and a section on Y meet exactly once.

References

[1] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.
[2] I. Mori, Riemann-Roch like theorems for triangulated categories, preprint.
[3] I. Mori and S. P. Smith, The grothendieck group of a quantum projective space bundle, preprint.
[4] A. Nyman, The geometry of points on quantum projectivizations, J. Algebra, 246 (2001) 761-792.
[5] A. Nyman, Serre duality for non-commutative \mathbb{P}^{1}-bundles, Trans. Amer. Math. Soc., to appear.
[6] M. van den Bergh, A translation principle for the four-dimensional Sklyanin algebras, J. Algebra, 184 (1996) 435-490.
[7] M. Van den Bergh, Blowing up of non-commutative smooth surfaces, Mem. Amer. Math. Soc., 154 (2001).
[8] M. Van den Bergh, Non-commutative \mathbb{P}^{1}-bundles over commutative schemes, to appear.
[9] M. Van den Bergh, Non-commutative quadrics, in preparation.
Adam Nyman, Department of Mathematical Sciences, Mathematics Building, University of Montana, Missoula, MT 59812-0864

[^0]: 2000 Mathematical Subject Classification. Primary 14A22; Secondary 16S99.

