Maps to Noncommutative Projective Spaces (w/ Daniel Chan)

Adam Nyman

Western Washington University

June 23, 2022

Conventions

- always work over a field k
- unless otherwise stated, work with right modules
- always let C denote a k-linear Hom-finite abelian category.

Part 1 Maps to Projective Spaces

Maps from line bundles

Suppose

- X is a projective variety
- \mathcal{L} is line-bundle on X gen. by n+1 global sections.

Given (X, \mathcal{L}) , \exists morphism $f: X \to \mathbb{P}^n$.

Stein factorization of f

f factors as

$$X \stackrel{g}{\longrightarrow} \operatorname{Proj} \Gamma_*(X, \mathcal{L}) \stackrel{h}{\longrightarrow} \operatorname{Proj} \mathbb{S}(\Gamma(X, \mathcal{L})) = \mathbb{P}^n$$

where g proper, h finite.

Goal

Generalize above construction to produce maps from nc elliptic curves to nc projective spaces.

Examples

Artin-Zhang (1994) and Polishchuk (2005) study no generalizations of g.

Elliptic curves in noncommutative projective planes

X a smooth elliptic curve. Artin, Tate and Van den Bergh construct closed immersions $f: X \to \mathbb{P}^2_{nc}$.

Theorem (S.P. Smith (2003))

If A is a loc. finite noetherian \mathbb{N} -graded algebra and J is a graded ideal, then $A \to A/J$ induces closed immersion of noncommutative spaces

$$\operatorname{Proj} A/J \to \operatorname{Proj} A$$
.

Double covers of \mathbb{P}^1

X a smooth elliptic curve. $\mathcal{L} = \text{deg. 2}$ line bundle over X. \mathcal{L} induces double cover $X \to \mathbb{P}^1$. No (very) nc analogue.

Data associated to (X, \mathcal{L})

Given (X, \mathcal{L}) , we can construct:

- ullet a canonical finite map $\mathbb{S}(\Gamma(X,\mathcal{L})) o \Gamma_*(X,\mathcal{L})$,
- an induced finite morphism $\text{Proj } \Gamma_*(X,\mathcal{L}) \stackrel{h}{\longrightarrow} \text{Proj } \mathbb{S}(\Gamma(X,\mathcal{L})) \text{, and }$
- ullet pullback of Koszul complex over \mathbb{P}^n to X

$$0 \to \bigwedge^{n+1} V \otimes \mathcal{L}^{-n-1} \to \cdots \to \bigwedge^{1} V \otimes \mathcal{L}^{-1} \to \mathcal{O}_{X} \to 0$$

is **exact**, where $V = \Gamma(X, \mathcal{L})$.

Koszul Complex

Let $V = \Gamma(\mathbb{P}^n, \mathcal{O}(1))$. \exists exact sequence

$$0 \to \bigwedge\nolimits^{n+1} V \otimes \mathcal{O}_{\mathbb{P}^n}(-n-1) \to \cdots \to \bigwedge\nolimits^1 V \otimes \mathcal{O}_{\mathbb{P}^n}(-1) \to \mathcal{O}_{\mathbb{P}^n} \to 0$$

An Example

- D, E Noncommutative Spaces
- $\mathsf{D} \xrightarrow{f} \mathsf{E}$ denotes adjoint pair (f^*, f_*) in the diagram

$$D \stackrel{f_*}{\underset{f^*}{\rightleftharpoons}} E$$

Motivation

If $f: Y \to X$ is a morphism of commutative schemes, (f^*, f_*) is an adjoint pair.

Notion is too general.

Define $\operatorname{Qcoh}\mathbb{P}^0 \stackrel{f_*}{\underset{f^*}{\rightleftharpoons}} \operatorname{Qcoh}\mathbb{P}^1$ by $f^* = \operatorname{H}^1(\mathbb{P}^1, -)$. Then f^* is not exact on ses of vector-bundles so can't come from a map of schemes.

Part 2

Maps to Noncommutative Projective Spaces

Replacement for \mathcal{L} (Polishchuk (2005))

Let X be a variety, \mathcal{L} a line bundle on X. Recall

$$\Gamma_*(X,\mathcal{L}) = \bigoplus_{n \geq 0} \Gamma(X,\mathcal{L}^{\otimes n})$$

depends on monoidal structure on Coh X.

Categories natural in nc algebraic geometry (e.g. Mod R) may not have a monoidal structure.

Artin-Zhang (1994)

Given $A \in \text{ob } C$, consider $s^i(A)$ where s is autoequivalence of C.

Bondal-Polishchuk (1993), Polishchuk (2005)

Let $\underline{\mathcal{L}} := (\mathcal{L}_i)_{i \in \mathbb{Z}}$ where $\mathcal{L}_i \in \mathsf{Ob}\,\mathsf{C}$

Question

How do you form a ring from a sequence $(\mathcal{L}_i)_{i\in\mathbb{Z}}$ of objects of C?

\mathbb{Z} -algebras (Bondal and Polishchuk (1993))

A $\underline{\mathbb{Z}}$ -algebra is ring A with vector space decomposition $\bigoplus_{i,j\in\mathbb{Z}}A_{ij}$ such that

- $A_{ij}A_{jk}\subset A_{ik}$,
- $A_{ij}A_{kl}=0$ for $k\neq j$, and
- A_{ii} contains a unit e_i so that $e_i A = \bigoplus_i A_{ij}$.

Periodicity (Sierra (2011))

Periodic \mathbb{Z} -algebras generalize \mathbb{Z} -graded algebras

Let A be a \mathbb{Z} -algebra. Let $A(\ell)$ be the \mathbb{Z} -algebra with

$$A(\ell)_{ij} := A_{i+\ell,j+\ell}$$

A is ℓ -periodic if $A \cong A(\ell)$ as algebras.

Observation (Sierra (2011))

If A is a 1-periodic \mathbb{Z} -algebra, then A is Morita equivalent to a \mathbb{Z} -graded algebra.

Replacement for $\Gamma_*(X, \mathcal{L})$ (Polishchuk (2005))

Let $\underline{\mathcal{L}} = (\mathcal{L}_i)_{i \in \mathbb{Z}}$. Let $(B_{\underline{\mathcal{L}}})_{ij} := \operatorname{Hom}_{\mathbb{C}}(\mathcal{L}_{-j}, \mathcal{L}_{-i})$. Then $B_{\underline{\mathcal{L}}}$ with mult. induced by composition, is a \mathbb{Z} -algebra.

The \mathbb{Z} -algebra $B_{\underline{\mathcal{L}}}$ plays the role of $\Gamma_*(X,\mathcal{L})$

Motivation

Let $\mathcal{L}_i := \mathcal{L}^{\otimes i}$. Then $B_{\underline{\mathcal{L}}}$ is 1-periodic and

$$\mathsf{Gr} B_{\mathcal{L}} \equiv \mathsf{Gr} \Gamma_*(X, \mathcal{L}).$$

Replacement for $\mathbb{S}(\Gamma(X,\mathcal{L}))$

The noncommutative symmetric algebra of $\mathcal L$

We define $A_{\mathcal{L}}$ to be quadratic part of $B_{\mathcal{L}}$.

By construction, there is a morphism of \mathbb{Z} -algebras

$$A_{\underline{\mathcal{L}}} \to B_{\underline{\mathcal{L}}}$$
.

analogous to

$$\mathbb{S}(\Gamma(X,\mathcal{L})) \longrightarrow \Gamma_*(X,\mathcal{L})$$

Relationship to Van den Bergh's $\mathbb{S}^{nc}(V)$

Necessary and sufficient conditions on $\underline{\mathcal{L}}$ are known (N (2019)) to ensure

$$A_{\underline{\mathcal{L}}} \cong \mathbb{S}^{nc}(V).$$

Quadratic Duals (Bondal-Polishchuk (1993))

Definition of $A^!$

- $A = \text{locally finite, quadratic } \mathbb{Z}\text{-algebra with relns } I$.
- Define $A^!$ = quadratic \mathbb{Z} -algebra with gens

$$A_{i+1,i}^! := A_{i,i+1}^*$$

with relations the kernel of

$$A_{i+2,i+1}^! \otimes A_{i+1,i}^! \cong (A_{i,i+1} \otimes A_{i+1,i+2})^* \to I_{i,i+2}^*$$

induced by inclusion $I_{i,i+2} \rightarrow A_{i,i+1} \otimes A_{i+1,i+2}$.

Motivating Example

In \mathbb{Z} -graded case, we have $\mathbb{S}(V)^! = \bigwedge(V^*)$

The Koszul complex of $\underline{\mathcal{L}}$

 $\underline{\mathcal{L}} = \text{sequence of objects in C with End}(\mathcal{L}_i) = k \text{ for all } i, A := A_{\underline{\mathcal{L}}}.$ There is a complex of form

$$\cdots \to A_{j+2,j}^{!*} \otimes \mathcal{L}_{-j-2} \to A_{j+1,j}^{!*} \otimes \mathcal{L}_{-j-1} \to A_{j,j}^{!*} \otimes \mathcal{L}_{-j} \to 0$$

Evaluation is map $\mathsf{Hom}(\mathcal{E},\mathcal{F})\otimes\mathcal{E}\cong\bigoplus\mathcal{E}\stackrel{(f_1,\ldots,f_n)}{\longrightarrow}\mathcal{F}.$

Sample map
$$A_{2,0}^{!*}\otimes \mathcal{L}_{-2}\longrightarrow A_{1,0}^{!*}\otimes \mathcal{L}_{-1}$$

$$egin{array}{lll} A_{2,0}^{1*}\otimes \mathcal{L}_{-2} & \longrightarrow & A_{0,1}\otimes A_{1,2}\otimes \mathcal{L}_{-2} \ & \stackrel{=}{\longrightarrow} & A_{0,1}\otimes \mathsf{Hom}(\mathcal{L}_{-2},\mathcal{L}_{-1})\otimes \mathcal{L}_{-2} \ & \stackrel{\mathit{eval}}{\longrightarrow} & A_{0,1}\otimes \mathcal{L}_{-1} \ & \stackrel{\cong}{\longrightarrow} & A_{1,0}^{1*}\otimes \mathcal{L}_{-1} \end{array}$$

Definition of Helix (Chan-N (2022))

A sequence $\underline{\mathcal{L}} = (\mathcal{L}_i)_{i \in \mathbb{Z}}$ of objects in C is a **helix of length** n if for all i, j,

- there exists an $m \ge 0$ such that for all $l \ge m$, $\operatorname{Ext}^j(\mathcal{L}_i, \mathcal{L}_{i+l}) = 0$ for all j > 0 (Serre vanishing).
- End $(\mathcal{L}_i) = k$ (i.e. \mathcal{L}_i is "simple"), and
- there are f.d. vector spaces $V_{j+3,j}, \ldots, V_{j+n,j}$ and exact sequences whose right three terms are the Koszul complex

$$0 \longrightarrow V_{j+n,j} \otimes \mathcal{L}_{-j-n} \longrightarrow \cdots \longrightarrow V_{j+3,j} \otimes \mathcal{L}_{-j-3} \longrightarrow$$

$$A_{j+2,j}^{!*} \otimes \mathcal{L}_{-j-2} \xrightarrow{\phi_2} A_{j+1,j}^{!*} \otimes \mathcal{L}_{-j-1} \xrightarrow{\phi_1} A_{j,j}^{!*} \otimes \mathcal{L}_{-j} \longrightarrow 0$$

where $A = A_{\underline{\mathcal{L}}}$.

The map of noncommutative spaces induced by a helix

Let
$$(B_{\underline{\mathcal{L}}})_{\geq 0} =: B$$
.

Theorem (Chan-N (2022))

If $\underline{\mathcal{L}}$ is a helix of length n, then

the canonical map

$$\psi: A_{\mathcal{L}} \to B$$

makes Be_j a finitely generated $A_{\underline{\mathcal{L}}}$ -module for all j, and

 $oldsymbol{2}$ the map ψ descends to an adjoint pair

$$\operatorname{Proj} B \leftrightharpoons \operatorname{Proj} A_{\underline{\mathcal{L}}}.$$

Recall: TorsB = full subcategory of objects in GrB whose elements generate right-bounded modules.

$$ProjB := GrB/TorsB$$
.

Part 3

Interlude: Noncommutative Elliptic Curves

Conventions for remainder of talk

- $k = \mathbb{C}$
- X is smooth elliptic curve (over k)
- Coh X is category of coherent sheaves over X

Classification of vector bundles over X (Atiyah (1957))

Let E(r, d) =set of iso. classes of indecomposable vector bundles of rank r and degree d.

Theorem (Atiyah (1957))

For each $r \ge 1$ and each $d \in \mathbb{Z}$, E(r, d) is parameterized by the points of X.

- ullet A bundle $\mathcal E$ in $\mathsf{Coh}\mathbb P^1$ is simple if and only if $\mathcal E$ is a line bundle.
- A bundle \mathcal{E} in E(r, d) is simple if and only if gcd(r, d) = 1.

We will construct helices (of length 2 and 3) whose terms are simple vector bundles over X (not nec. line bundles)

cohproj

Let A be coherent connected \mathbb{Z} -algebra and let

- coh A = cat. of (graded right) coherent modules
- tors*A* = full subcat. of right-bounded modules.

Definition (Polishchuk (2005))

cohprojA := cohA/torsA

Remark

If A is noetherian, cohproj $A \equiv \text{proj}A$.

Noncommutative elliptic curves (Polishchuk (2002))

Theorem (Polishchuk (2002))

For each $\theta \in \mathbb{R}$, \exists *t*-structure on $D^b(X)$ w/heart C^θ such that

- $D^b(C^\theta) \equiv D^b(X)$,
- \bullet C^{θ} has cohomological dimension 1, and
- if θ is irrational, then every nonzero object in C^{θ} is nonnoetherian.

Theorem (Polishshcuk (2002))

If $\underline{\mathcal{L}} = (\mathcal{L}_i)_{i \in \mathbb{Z}}$ is a sequence of simple bundles such that $\mu(\mathcal{L}_m) > \theta$ for all m and $\lim_{m \to -\infty} \mu(\mathcal{L}_m) = \theta$, then

$$C^{\theta} \equiv \operatorname{cohproj} B_{\underline{\mathcal{L}}}.$$

Part 4

First Application: Maps to \mathbb{P}^1_d

Piontkovski's noncommutative projective line \mathbb{P}^1_d

Theorem (Zhang (1998))

If A is connected, gen. in degree 1 and regular of dim 2 then

$$A \cong k\langle x_1, \ldots, x_n \rangle / \langle b \rangle$$

where $n \ge 2$, $b = \sum_{i=1}^{n} x_i \sigma(x_{n-i+1})$ and $\sigma \in \text{Aut } k\langle x_1, \dots, x_n \rangle$. If n > 2, A is non-noetherian.

Theorem (Piontkovski (2008))

n > 2 implies A is coherent. If $\mathbb{P}_n^1 := \operatorname{cohproj} A$, then \mathbb{P}_n^1 depends only on n. Furthermore, $\mathbb{P}_2^1 \equiv \operatorname{Coh} \mathbb{P}^1$.

Example: Maps from Elliptic Curves to Projective Lines

Double cover of \mathbb{P}^1

 $\mathcal{L} = \text{degree 2 line bundle over } X.$

L induces double cover

$$X\cong\operatorname{\mathsf{Proj}}\ \Gamma_*(X,\mathcal{L})\stackrel{h}{\longrightarrow}\operatorname{\mathsf{Proj}}\ \mathbb{S}(\Gamma(X,\mathcal{L}))\cong\mathbb{P}^1$$

ramified at 4 points.

ullet Pullback of Koszul complex over \mathbb{P}^1 takes form

$$0\longrightarrow \mathcal{L}^{-2}\longrightarrow \mathsf{Hom}(\mathcal{O}_X,\mathcal{L})\otimes \mathcal{L}^{-1}\longrightarrow \mathcal{O}_X\longrightarrow 0.$$

Goal

Look for interesting helices over C = CohX with the same "shape" as this example.

Kuleshov's Lemma (Kuleshov (1992))

Definition (Kuleshov (1992))

 $(\mathcal{E}, \mathcal{F})$ is simple pair if \mathcal{E} and \mathcal{F} are simple and exactly one of $\mathsf{Hom}(\mathcal{E}, \mathcal{F})$, $\mathsf{Ext}^1(\mathcal{E}, \mathcal{F})$ is nonzero.

Lemma (Kuleshov (1992))

Let \mathcal{E}_1 be a simple bundle. If

$$0 \longrightarrow \mathcal{L} \longrightarrow V \otimes \mathcal{E}_1 \longrightarrow \mathcal{E}_2 \longrightarrow 0$$

is exact, then TFAE:

- $(\mathcal{L}, \mathcal{E}_1)$ is a simple pair and $V \cong \text{Hom}(\mathcal{L}, \mathcal{E}_1)^*$.
- $(\mathcal{E}_1, \mathcal{E}_2)$ is a simple pair and $V \cong \text{Hom}(\mathcal{E}_1, \mathcal{E}_2)$.

Our idea

Use Lemma to construct a helix starting from two simple bundles. Will need $\mathcal{L} \stackrel{coev}{\to} \mathsf{Hom}(\mathcal{L}, \mathcal{E})^* \otimes \mathcal{E}$ to be injective.

Modification of Kuleshov's Lemma

Injective pairs

A simple pair $(\mathcal{E}, \mathcal{F})$ of bundles is an *injective pair* if $\operatorname{Ext}^1(\mathcal{E}, \mathcal{F}) = 0$ and every nonzero map $\mathcal{E} \to \mathcal{F}$ is injective.

Lemma (Chan-N (2021))

Let $(\mathcal{L}_0, \mathcal{L}_1)$ be an injective pair of bundles such that $d := \dim \mathsf{Hom}(\mathcal{L}_0, \mathcal{L}_1) > 1$. Then the ses

$$0 o \mathcal{L}_0 \overset{\textit{coev}}{ o} \mathsf{Hom}(\mathcal{L}_0, \mathcal{L}_1)^* \otimes \mathcal{L}_1 o \mathcal{L}_2 o 0$$

defines an injective pair of bundles $(\mathcal{L}_1, \mathcal{L}_2)$.

Construction of \mathcal{L}

Start with $\mathcal{L}_0 \in E(1,0)$, $\mathcal{L}_1 \in E(1,d)$. Lemma gives $(\mathcal{L}_i)_{i\geq 0}$. Do the same starting with the injective pair $(\mathcal{L}_1^*, \mathcal{L}_0^*)$ and use duality to get $(\mathcal{L}_i)_{i\leq 0}$.

Double covers of \mathbb{P}^1_d

Theorem (Chan-N. (2021))

Let d>2, let $\mathcal{L}_0\in E(1,0)$ and let $\mathcal{L}_1\in E(1,d)$. Then

- the pair $(\mathcal{L}_0, \mathcal{L}_1)$ extends to a unique helix $\underline{\mathcal{L}}_d$ on CohX
- **2** cohproj $B_{\underline{\mathcal{L}}_d} \equiv C^{\theta_d}$, where

$$\theta_d = -\frac{2d}{d-2+\sqrt{d^2-4}},$$

- **3** cohproj $A_{\underline{\mathcal{L}}_d} \equiv \mathbb{P}^1_d$, and
- the map from Part 2

$$\operatorname{Proj} B_{\underline{\mathcal{L}}_d} \leftrightarrows \operatorname{Proj} A_{\underline{\mathcal{L}}_d}$$

is a double cover.

Part 5

Second Application: Noncommutative Nonnoetherian \mathbb{P}^2 's

Example: Maps from Elliptic Curves to Projective Planes

Embedding of X in \mathbb{P}^2

 $\mathcal{L} = \text{degree 3 line bundle over } X, \text{ let } V = \text{Hom}(\mathcal{O}_X, \mathcal{L}).$

L induces closed immersion

$$X \cong \operatorname{Proj} \Gamma_*(X, \mathcal{L}) \stackrel{h}{\longrightarrow} \operatorname{Proj} \mathbb{S}(\Gamma(X, \mathcal{L})) \cong \mathbb{P}^2.$$

• Since $\bigwedge^2 V \cong V^*$, pullback of Koszul complex over \mathbb{P}^2 takes form

$$0\longrightarrow \mathcal{L}^{-3}\longrightarrow V^*\otimes \mathcal{L}^{-2}\longrightarrow V\otimes \mathcal{L}^{-1}\longrightarrow \mathcal{O}_X\longrightarrow 0.$$

Goal

Look for interesting helices over C = CohX with the same "shape" as this example.

Helix construction: main idea

Find sequence $\underline{\mathcal{L}}$ of objects in $\mathsf{Coh} X$ with exact sequences like the Koszul complex

$$0 \to \mathcal{L}_{i-3} \to V \otimes \mathcal{L}_{i-2} \to W \otimes \mathcal{L}_{i-1} \to \mathcal{L}_i \to 0$$

Start with *three* simple bundles $(\mathcal{L}_0, \mathcal{L}_1', \mathcal{L}_1)$. Construct a *new* triple $(\mathcal{L}_1, \mathcal{L}_2', \mathcal{L}_2)$ as follows:

$$0 \to \mathcal{L}_0 \to \mathsf{Hom}(\mathcal{L}_0,\mathcal{L}_1)^* \otimes \mathcal{L}_1 \to \mathsf{cok} =: \mathcal{L}_2^{'} \to 0$$

and

$$0 \to \mathcal{L}_{1}^{'} \to \mathsf{Hom}(\mathcal{L}_{1}^{'},\mathcal{L}_{1})^{*} \otimes \mathcal{L}_{1} \to \mathsf{cok} =: \mathcal{L}_{2} \to 0$$

Would like:

- above sequences to be exact,
- \mathcal{L}_2 , \mathcal{L}_2' simple bundles,
- $\mathcal{L}_1 \to \mathsf{Hom}(\mathcal{L}_1, \mathcal{L}_2)^* \otimes \mathcal{L}_2$ and $\mathcal{L}_2' \to \mathsf{Hom}(\mathcal{L}_2', \mathcal{L}_2)^* \otimes \mathcal{L}_2$ to be injections, etc.

Helix construction: main idea (cont.)

If we can continue to the right, get exact sequences

$$0 \to \mathcal{L}_{i-3} \to \mathsf{Hom}(\mathcal{L}_{i-3}, \mathcal{L}_{i-2})^* \otimes \mathcal{L}_{i-2} \to \mathcal{L}_{i-1}^{'} \to 0$$

and

$$0 \to \mathcal{L}_{i-1}^{'} \to \mathsf{Hom}(\mathcal{L}_{i-1}^{'}, \mathcal{L}_{i-1})^{*} \otimes \mathcal{L}_{i-1} \to \mathcal{L}_{i} \to 0$$

which fit together to give

$$0 \to \mathcal{L}_{i-3} \to V \otimes \mathcal{L}_{i-2} \to W \otimes \mathcal{L}_{i-1} \to \mathcal{L}_i \to 0.$$

where

- $V = \operatorname{Hom}(\mathcal{L}_{i-3}, \mathcal{L}_{i-2})^*$,
- $W = \operatorname{Hom}(\mathcal{L}'_{i-1}, \mathcal{L}_{i-1})^* \cong \operatorname{Hom}(\mathcal{L}_{i-1}, \mathcal{L}_i).$

Definition of $\underline{\mathcal{L}}$

Theorem (Chan-N (2022))

Let $d \geq 3$ be an odd integer. Let $\mathcal{L}_0 \in E(1,0)$, $\mathcal{L}_1' \in E(d,2)$ and let $\mathcal{L}_1 \in E(1,d)$. Then

lacktriangledown the triple $(\mathcal{L}_0,\mathcal{L}_1^{'},\mathcal{L}_1)$ generates a helix

$$\underline{\mathcal{L}}_d = (\mathcal{L}_i)_{i \in \mathbb{Z}}$$

- ② the Koszul complex of $\underline{\mathcal{L}}_d$ is exact of length 3, and
- helices $\underline{\mathcal{L}}_3 = \text{Bondal-Polishchuk's } elliptic helices of period 3 over X$.

Part $3 \Rightarrow$ we recover all three-dimensional elliptic Artin-Schelter regular algebras over X when d = 3.

Main Theorem

Theorem (Chan-N (2022))

Let d>3 be an odd integer, and let $\underline{\mathcal{L}}_d$ denote a sequence of the form above. Then

- **1** $A_{\underline{\mathcal{L}}_d}$ is 3-periodic, Koszul, has global dimension three, and is Gorenstein (with Gorenstein parameter three),
- **3** $A_{\underline{\mathcal{L}}_d}$ and $B_{\underline{\mathcal{L}}_d}$ are nonnoetherian,
- the canonical map $\phi: A_{\underline{\mathcal{L}}_d} \longrightarrow B_{\underline{\mathcal{L}}_d}$ is surjective,
- Proj $B_{\underline{\mathcal{L}}_d} \equiv \mathsf{C}^{\tau_d}$, i.e. Proj $B_{\underline{\mathcal{L}}_d}$ is a noncommutative elliptic curve.

Key Tool

Theorem (Chan-N (2022))

If ${\mathcal E}$ and ${\mathcal F}$ are simple bundles such that

- ullet $\mu(\mathcal{E})<\mu(\mathcal{F})$ and
- rank $\mathcal{F} < \operatorname{rank} \mathcal{E} \cdot \operatorname{dim} \operatorname{Hom}(\mathcal{E}, \mathcal{F})$,

then evaluation

$$\mathsf{Hom}(\mathcal{E},\mathcal{F})\otimes\mathcal{E}\to\mathcal{F}$$

is surjective, and coevaluation

$$\mathcal{F}^* o \mathsf{Hom}(\mathcal{F}^*, \mathcal{E}^*)^* \otimes \mathcal{E}^*$$

is injective.

Thank You!

More on classification of indecomposable bundles over X

A bundle in E(1,1) induces

$$\Phi: E(\gcd(r,d),0) \stackrel{\cong}{\to} E(r,d).$$

Using Φ , there exists a distinguished bundle $\mathcal{E}_{r,d} \in E(r,d)$ and every bundle in E(r,d) is

$$\mathcal{L}\otimes\mathcal{E}_{r,d}$$

where $\mathcal{L} \in E(1,0)$.

Classification

Let d>3 odd. Let $\mathcal{A}_0\otimes\mathcal{E}_{1,0}\in E(1,0)$, $\mathcal{A}_1^{'}\otimes\mathcal{E}_{d,2}\in E(d,2)$, $\mathcal{A}_1\otimes\mathcal{E}_{1,d}\in E(1,d)$.

Question

What are the isomorphism classes of algebras of the form $\mathbb{S}^{nc}(\underline{\mathcal{L}}_d)$?

Rigidify triple by tensoring $\underline{\mathcal{L}}_d$ by \mathcal{A}_0^* . Thus, $\mathbb{S}^{nc}(\underline{\mathcal{L}}_d)$ determined by two degree zero line bundles.

Conjecture

The noncommutative symmetric algebra corresponding to $(\mathcal{C}_1, \mathcal{C}_2)$ is isomorphic to that corresponding to $(\mathcal{D}_1, \mathcal{D}_2)$ if and only if \exists an automorphism σ of C^{τ_d} such that $\sigma(\mathcal{C}_i) = \mathcal{D}_i$.