A representation theoretic study of noncommutative symmetric algebras (joint with Daniel Chan)

Adam Nyman

Western Washington University

April 15, 2018

• always work over a field k

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

æ

<u>Part 1</u>

Introduction - The Projective Line

・ロン ・聞 と ・ 聞 と ・ 聞 と

æ

The category $\operatorname{coh}\mathbb{P}(V)$

- Let V is 2-diml.
- Define $\mathbb{P}(V) := \operatorname{Proj} \mathbb{S}(V)$.
- Let cohℙ(V) be subcategory of Qcohℙ(V) consisting of noetherian objects.

Properties of $\operatorname{coh}\mathbb{P}(V)$

- $\operatorname{coh}\mathbb{P}(V)$ is hereditary.
- Every object of cohP(V) is a direct sum of a torsion sheaf and a vector bundle. Every vector bundle is a direct sum of O(i)'s (Grothendieck).

The Kronecker Algebra

 $V := kx \oplus ky$

The Kronecker Algebra $\Lambda(V)$

$$\Lambda(V) = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$$

(Right) $\Lambda(V)$ -module

 (N_0, N_1) and $x, y \in \operatorname{Hom}_k(N_0, N_1)$ w/mult

$$(n_0, n_1) \cdot \begin{pmatrix} a & cx + dy \\ 0 & b \end{pmatrix} := (n_0a, n_0cx + n_0dy + n_1b)$$

Notation:
$$N_0 \xrightarrow[y]{x} N_1$$

▲圖▶ ▲屋▶ ▲屋▶

2

Indecomposable $\Lambda(V)$ -modules

If $a, b \in k$ not both zero,

$$k \xrightarrow{a}_{b} k$$

is indecomposable. If $c \neq 0$, then isomorphic to

$$k \xrightarrow[cb]{ca} k$$

Heuristic

Points of $\mathbb{P}(V) \rightarrow$ Indecomposable $\Lambda(V)$ -modules

- 4 回 2 - 4 □ 2 - 4 □

Theorem (Beilinson 1978)

The functor $RHom(\mathcal{O}\oplus\mathcal{O}(1),-)$ gives an equivalence

 $D^b(\operatorname{coh}\mathbb{P}(V)) o D^b(\operatorname{mod}\Lambda(V)).$

Regular $\Lambda(V)$ -Modules

M is *regular* if it is direct sum of indecomposable $N = (N_0, N_1)$ with dim_k $(N_0) = \dim_k(N_1)$.

• torsion sheaves over $\mathbb{P}(V) \longleftrightarrow$ regular $\Lambda(V)$ -modules

イロン イ部ン イヨン イヨン 三日

• torsion-free sheaves over $\mathbb{P}(V)$ = { \mathcal{N} | Hom_{$\mathbb{P}(V)$}(\mathcal{T}, \mathcal{N}) = 0 for all torsion \mathcal{T} }.

Goal of Talk

Explore the extent to which categories of coherent sheaves over "noncommutative versions" of $\mathbb{P}(V)$ have similar properties, i.e.

- are hereditary,
- have a version of Grothendieck's Theorem for objects, and
- satisfy a version of Beilinson's Theorem.

<u>Part 2</u>

Piontkovski's \mathbb{P}^1_n

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

A is \mathbb{N} -graded algebra, GrA cat. of graded right A-modules.

Definition

Suppose $M \in GrA$

- *M* is **coherent** if *M* is f.g. and every f.g. submodule is finitely presented.
- A is coherent if it is coherent as a graded right A-module.

Theorem (Chase (1960))

A is coherent iff the full subcategory of GrA of coherent modules is abelian.

個 と く ヨ と く ヨ と

If A is coherent, let cohA denote this subcategory of GrA.

Examples/Nonexamples of (graded right) coherence

- A noetherian \implies A is coherent.
- $k[\{x_i\}_{i\in\mathbb{N}}]$ is coherent.
- $k\langle x_1, \ldots, x_n \rangle$ is coherent.
- $k\langle x, y, z \rangle / \langle xy, yz, xz zx \rangle$ is *not* coherent (Polishchuk (2005)).

同 ト く ヨ ト く ヨ ト

The category cohproj (Polishchuk (2005))

Let A be coherent connected \mathbb{N} -graded algebra and let

- cohA = cat. of (graded right) coherent modules
- tors*A* = full subcat. of right-bounded modules.

Definition

cohprojA := cohA/torsA

Remark

If A is noetherian, $\operatorname{cohproj} A \equiv \operatorname{proj} A$.

個 と く ヨ と く ヨ と

Theorem (Zhang (1998))

If A is connected, gen. in degree 1 and regular of dim 2 then

$$A \cong k\langle x_1, \ldots, x_n \rangle / \langle b \rangle$$

where $n \ge 2$, $b = \sum_{i=1}^{n} x_i \sigma(x_{n-i+1})$ and $\sigma \in \text{Aut } k\langle x_1, \ldots, x_n \rangle$. Furthermore, A is noetherian iff n = 2.

Theorem (Piontkovski (2008))

n > 2 implies A is coherent. If $\mathbb{P}_n^1 := \text{cohproj}A$, then \mathbb{P}_n^1 depends only on n. Furthermore, $\mathbb{P}_2^1 \equiv \text{coh}\mathbb{P}(k^{\oplus 2})$, \mathbb{P}_n^1 is hereditary, and there is a Beilinson equivalence

$$D^b(\mathbb{P}^1_n) \equiv D^b(\mathrm{mod}\Lambda(k^{\oplus n})).$$

This form of Beilinson equivalence was independently discovered by Minamoto (2008) and Van den Bergh.

<u>Part 3</u>

Noncommutative Projective Lines

・ロン ・聞 と ・ 聞 と ・ 聞 と

æ

The orbit algebra of a sequence

If $\underline{\mathcal{L}} = (\mathcal{L}_i)_{i \in \mathbb{Z}}$ is seq. of objects in a category C, then

$$(A_{\underline{\mathcal{L}}})_{ij} = \operatorname{Hom}(\mathcal{L}_{-j}, \mathcal{L}_{-i})$$

with mult. = composition makes $A_{\underline{\mathcal{L}}} = \bigoplus_{i,j \in \mathbb{Z}} (A_{\underline{\mathcal{L}}})_{ij}$ a \mathbb{Z} -algebra

A ring A is a (positively graded) \mathbb{Z} -algebra if

• \exists vector space decomp $A = \bigoplus_{i,j \in \mathbb{Z}} A_{ij}$, with $A_{ij} = 0$ if j < i,

(《圖》 《문》 《문》 - 문

- $A_{ij}A_{jk} \subset A_{ik}$,
- $A_{ij}A_{kl} = 0$ for $k \neq j$, and
- the subalgebra A_{ii} contains a unit.

Noncommutative versions of coherent sheaves over \mathbb{P}^1 : Bimodules

Goal

If V is 2-diml/k, $\mathbb{P}^1 = \mathbb{P}(V)$. Idea: replace V by bimod. M.

• D_0 , D_1 = division rings over k

• $M = D_0 - D_1$ -bimodule of left-right dimension (m, n)

Right dual of M

 $M^* := \operatorname{Hom}_{D_1}(M_{D_1}, D_1)$ is $D_1 - D_0$ -bimodule with action $(a \cdot \psi \cdot b)(x) = a\psi(bx).$

Can define $^*M = M^{-1*}$ similarly.

· < @ > < 글 > < 글 > · · 글

Noncommutative versions of coherent sheaves over \mathbb{P}^1 : Definition (Van den Bergh (2000))

Let *M* be $D_0 - D_1$ -bimodule.

Definition of $\mathbb{S}^{nc}(M)$

•
$$\exists \eta_i : D \to M^{i*} \otimes_D M^{i+1*}$$

•
$$\mathbb{S}^{nc}(M)_{ij} = \frac{M^{i*} \otimes \cdots \otimes M^{j-1*}}{\text{relns. gen. by } \eta_i}$$
 for $j > i$

• mult. induced by \otimes .

Definition of $\mathbb{P}^{nc}(M)$

Suppose $\mathbb{S}^{nc}(M)$ is coherent. We let

 $\mathbb{P}^{nc}(M) := \operatorname{cohproj} \mathbb{S}^{nc}(M)$

Motivation for our work

Under what conditions on M is $\mathbb{S}^{nc}(M)$ coherent?

Examples

- $\mathbb{P}_n^1 \equiv \mathbb{P}^{nc}(k^{\oplus n})$ (N (2017)). Implies $\mathbb{P}_n^1 = \operatorname{cohproj} k\langle x_1, \dots, x_n \rangle / \langle b \rangle$ independent of choice of *b*.
- Noncommutative curves of genus zero after Kussin (N (2015))
- Generic fibers of noncommutative ruled surfaces (Patrick (2000), Van den Bergh (2000), D. Chan and N (2016)), noncommutative Del Pezzo surfaces (De Thanhoffer and Presotto (2016)), ruled orders (Artin and de Jong (2005))
- Artin's Conjecture: Every noncommutative surface infinite over its center is birational to some P^{nc}(M) (1997)

(《圖》 《문》 《문》 - 문

Part 4

Main Theorem

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Definition

 D_0 , D_1 division rings (with char $\neq 2$), $M = D_0 - D_1$ -bimodule with left-right dimension (m, n). We let

$$\Lambda(M) := egin{pmatrix} D_0 & M \ 0 & D_1 \end{pmatrix}$$

Definition

Let M be a $D_0 - D_1$ -bimodule. M has symmetric duals if M and M^* are finite-dimensional on the left and right and there is a bimodule isomorphism $M \cong M^{**}$.

Main Theorem: Statement

Hypothesis: *M* has symmetric duals, and the product of its left and right dimensions is \geq 4.

Theorem (Chan-N (2018))

- $\mathbb{S}^{nc}(M)$ is coherent,
- $\mathbb{P}^{nc}(M)$ is hereditary, and
- There is an equivalence $D^b(\mathbb{P}^{nc}(M)) \equiv D^b(\text{mod}\Lambda(M))$.

Definition

 $\mathcal{T} \in \mathbb{P}^{nc}(M)$ is torsion if it corresponds to a regular module over $\Lambda(M)$. $\mathcal{N} \in \mathbb{P}^{nc}(M)$ is torsion-free if $\operatorname{Hom}_{\mathbb{P}^{nc}(M)}(\mathcal{T}, \mathcal{N}) = 0 \ \forall \ \mathcal{T}$.

Theorem (Chan-N (2018))

Every object of $\mathbb{P}^{nc}(M)$ is a direct sum of a torsion sheaf and a torsion-free sheaf. Every torsion-free sheaf over $\mathbb{P}^{nc}(M)$ is a direct sum of sheaves of the form $e_i \mathbb{S}^{nc}(M)$.

Grothendieck's Theorem

Follows from elementary torsion theory!

Remark

Generalizes results from (N (2014)), (Chan-N (2016)) and simplifies their proofs significantly.

æ

Thank you for your attention!

æ

Main Theorem: Proof

Idea

 $\Lambda(M)$ Artinian and hereditary. Work in mod $\Lambda(M)$.

Key Computation

We compute $\operatorname{RHom}_{D^b(\operatorname{mod}\Lambda(M))}(D(\Lambda(M)), -)$ using bimod right projective resolution of $D(\Lambda(M))$ inspired by (Butler-King (1999)).

Proof sketch:

- Step 1: In commutative case, O(i) ∈ cohP(k^{⊕2}) corresponds to L_i ∈ D^b(modΛ(k^{⊕2})). Now let N_i ∈ D^b(modΛ(M)) denote noncommutative analogue of L_i.
- Step 2: Prove $\mathbb{S}^{nc}(M) \cong \bigoplus_{i,j} \operatorname{Hom}_{D^b(\operatorname{mod}\Lambda(M))}(\mathcal{N}_{-j}, \mathcal{N}_{-i}).$
- Step 3: Use theorem of Minamoto (2012) to show {N_i} is ample. The fact that S^{nc}(M) is coherent follows from (Polishchuk (2005)).