Genus zero phenomena in noncommutative algebraic geometry

Adam Nyman

Western Washington University

April 23, 2017

-≣->

Adam Nyman

<u>Part 1</u>

Introduction

Adam Nyman

k = base field

Noncommutative algebraic geometry

Study k-linear abelian categories like coh X where X is a scheme.

個 ト く ヨ ト く ヨ ト

æ

k = base field

Noncommutative algebraic geometry

Study k-linear abelian categories like coh X where X is a scheme.

Question

When is a k-linear abelian category a 'noncommutative version' of $\operatorname{coh}\mathbb{P}^1$?

k = base field

Noncommutative algebraic geometry

Study k-linear abelian categories like coh X where X is a scheme.

Question

When is a k-linear abelian category a 'noncommutative version' of $\operatorname{coh}\mathbb{P}^1$?

Warm-up

What are necessary and sufficient conditions on a k-linear abelian category C such that

$$C \equiv \operatorname{coh} \mathbb{P}^1$$
?

- 4 回 2 - 4 三 2 - 4 三 2

Abstract characterization of \mathbb{P}^1

Let $C = \operatorname{coh} \mathbb{P}^1$. Let $\underline{\mathcal{L}} = (\mathcal{L}_i)_{i \in \mathbb{Z}}$. If $\mathcal{L}_i := \mathcal{O}(i)$, then, for all *i*,

• $\operatorname{End}(\mathcal{L}_i) = k$

• Hom
$$(\mathcal{L}_i, \mathcal{L}_{i-1}) = \operatorname{Ext}^1(\mathcal{L}_i, \mathcal{L}_{i-1}) = 0$$

- $\operatorname{Ext}^1(\mathcal{L}_i, \mathcal{L}_j) = 0 \ \forall j \geq i$
- Hom $(\mathcal{L}_i, \mathcal{M})$ is f.d. $\forall \mathcal{M} \in C$
- ∃ ses

$$0
ightarrow \mathcal{L}_i
ightarrow \mathcal{L}_{i+1}^2
ightarrow \mathcal{L}_{i+2}
ightarrow 0$$

回 と く ヨ と く ヨ と

whose left map is defined by a basis of $Hom(\mathcal{L}_i, \mathcal{L}_{i+1})$.

• $\underline{\mathcal{L}}$ is ample

Abstract characterization of \mathbb{P}^1

Let $C = \operatorname{coh} \mathbb{P}^1$. Let $\underline{\mathcal{L}} = (\mathcal{L}_i)_{i \in \mathbb{Z}}$. If $\mathcal{L}_i := \mathcal{O}(i)$, then, for all *i*,

• $\operatorname{End}(\mathcal{L}_i) = k$

•
$$\operatorname{Hom}(\mathcal{L}_i, \mathcal{L}_{i-1}) = \operatorname{Ext}^1(\mathcal{L}_i, \mathcal{L}_{i-1}) = 0$$

- $\operatorname{Ext}^1(\mathcal{L}_i, \mathcal{L}_j) = 0 \ \forall j \geq i$
- Hom $(\mathcal{L}_i, \mathcal{M})$ is f.d. $\forall \mathcal{M} \in C$

● ∃ ses

$$0 \rightarrow \mathcal{L}_i \rightarrow \mathcal{L}_{i+1}^2 \rightarrow \mathcal{L}_{i+2} \rightarrow 0$$

- 4 昂 ト 4 臣 ト 4 臣 ト

whose left map is defined by a basis of Hom($\mathcal{L}_i, \mathcal{L}_{i+1}$).

• $\underline{\mathcal{L}}$ is ample

Consequence of main theorem

A *k*-linear abelian category C is equivalent to $\operatorname{coh} \mathbb{P}^1$ iff $\exists \underline{\mathcal{L}} = (\mathcal{L}_i)_{i \in \mathbb{Z}}$ satisfying above properties.

Part 2

Background

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Adam Nyman

A is \mathbb{N} -graded algebra, GrA = cat. of graded right A-modules.

Definition

Suppose $M \in GrA$

- *M* is **coherent** if *M* is f.g. and every f.g. submodule is finitely presented.
- A is coherent if it is coherent as a graded right A-module.

Theorem (Chase (1960))

A is coherent iff the full subcategory of GrA of coherent modules is abelian.

個 と く ヨ と く ヨ と

Examples/Nonexamples of (graded right) coherence

• A noetherian \implies A is coherent.

● ▶ < ミ ▶

-≣->

Examples/Nonexamples of (graded right) coherence

- A noetherian \implies A is coherent.
- $k\langle x_1, \ldots, x_n \rangle$ is coherent.

★聞▶ ★臣▶ ★臣▶

Examples/Nonexamples of (graded right) coherence

- A noetherian \implies A is coherent.
- $k\langle x_1, \ldots, x_n \rangle$ is coherent.
- $k\langle x, y, z \rangle / \langle xy, yz, xz zx \rangle$ is *not* coherent (Polishchuk (2005)).

御 と く き と く き と

Z-algebras (Bondal and Polishchuk (1993))

The orbit algebra of a sequence

If $\underline{\mathcal{L}} = (\mathcal{L}_i)_{i \in \mathbb{Z}}$ is seq. of objects in a category C, then

$$(A_{\underline{\mathcal{L}}})_{ij} = \operatorname{Hom}(\mathcal{L}_{-j}, \mathcal{L}_{-i})$$

with mult. = composition makes $A_{\underline{\mathcal{L}}} = \bigoplus_{i,j \in \mathbb{Z}} (A_{\underline{\mathcal{L}}})_{ij}$ a \mathbb{Z} -algebra

《曰》《聞》《臣》《臣》 三臣

\mathbb{Z} -algebras (Bondal and Polishchuk (1993))

The orbit algebra of a sequence

If $\underline{\mathcal{L}} = (\mathcal{L}_i)_{i \in \mathbb{Z}}$ is seq. of objects in a category C, then

$$(A_{\underline{\mathcal{L}}})_{ij} = \operatorname{Hom}(\mathcal{L}_{-j}, \mathcal{L}_{-i})$$

with mult. = composition makes $A_{\underline{\mathcal{L}}} = \bigoplus_{i,j \in \mathbb{Z}} (A_{\underline{\mathcal{L}}})_{ij}$ a \mathbb{Z} -algebra

A ring A is a (positively graded) \mathbb{Z} -algebra if

- \exists vector space decomp $A = \bigoplus_{i,j \in \mathbb{Z}} A_{ij}$,
- $A_{ij}A_{jk} \subset A_{ik}$,
- $A_{ij}A_{kl} = 0$ for $k \neq j$,
- the subalgebra A_{ii} contains a unit, and

•
$$A_{ij} = 0$$
 if $j < i$.

イロン イ部ン イヨン イヨン 三日

\mathbb{Z} -algebras (Bondal and Polishchuk (1993))

The orbit algebra of a sequence

If $\underline{\mathcal{L}} = (\mathcal{L}_i)_{i \in \mathbb{Z}}$ is seq. of objects in a category C, then

$$(A_{\underline{\mathcal{L}}})_{ij} = \operatorname{Hom}(\mathcal{L}_{-j}, \mathcal{L}_{-i})$$

with mult. = composition makes $A_{\underline{\mathcal{L}}} = \bigoplus_{i,j \in \mathbb{Z}} (A_{\underline{\mathcal{L}}})_{ij}$ a \mathbb{Z} -algebra

A ring A is a (positively graded) \mathbb{Z} -algebra if

- \exists vector space decomp $A = \bigoplus_{i,j \in \mathbb{Z}} A_{ij}$,
- $A_{ij}A_{jk} \subset A_{ik}$,
- $A_{ij}A_{kl} = 0$ for $k \neq j$,
- the subalgebra A_{ii} contains a unit, and

•
$$A_{ij} = 0$$
 if $j < i$.

There is a notion of graded coherence for \mathbb{Z} -algebras.

|▲□ ▶ ▲ 目 ▶ ▲ 目 → ○ ○ ○

The category cohproj (Polishchuk (2005))

Let A be coherent \mathbb{Z} -algebra and let

- cohA = cat. of (graded right) coherent modules
- tors*A* = full subcat. of right-bounded modules.

Definition

cohprojA := cohA/torsA

個 と く ヨ と く ヨ と

The category cohproj (Polishchuk (2005))

Let A be coherent \mathbb{Z} -algebra and let

- cohA = cat. of (graded right) coherent modules
- tors*A* = full subcat. of right-bounded modules.

Definition

cohprojA := cohA/torsA

Remark

If A is noetherian, $\operatorname{cohproj} A \equiv \operatorname{proj} A$.

Noncommutative versions of coherent sheaves over \mathbb{P}^1 : Bimodules

Goal

If V is 2-diml/k, $\mathbb{P}^1 = \mathbb{P}(V)$. Idea: replace V by bimod. M.

個 と く ヨ と く ヨ と …

æ

Noncommutative versions of coherent sheaves over \mathbb{P}^1 : Bimodules

Goal

If V is 2-diml/k, $\mathbb{P}^1 = \mathbb{P}(V)$. Idea: replace V by bimod. M.

- D_0 , D_1 = division rings over k
- $M = D_0 D_1$ -bimodule of left-right dimension (m, n)

Right dual of M

$$M^* := \operatorname{Hom}_{D_1}(M_{D_1}, D_1)$$
 is $D_1 - D_0$ -bimodule with action $(a \cdot \psi \cdot b)(x) = a\psi(bx).$

Can define $^*M = M^{-1*}$ similarly.

M is **2-periodic** if M^{i*} has left-right dim = $\begin{cases} (m, n) & \text{for } i \text{ even} \\ (n, m) & \text{for } i \text{ odd} \end{cases}$

Noncommutative versions of coherent sheaves over \mathbb{P}^1 : Definition (Van den Bergh (2000))

Let *M* be 2-periodic $D_0 - D_1$ -bimodule.

Definition of $\mathbb{S}^{nc}(M)$

•
$$\exists \eta_i : D \to M^{i*} \otimes_D M^{i+1*}$$

•
$$\mathbb{S}^{nc}(M)_{ij} = \frac{M^{i*} \otimes \cdots \otimes M^{j-1*}}{\text{relns. gen. by } \eta_i}$$
 for $j > i$,

• mult. induced by \otimes .

Definition of $\mathbb{P}^{nc}(M)$

Suppose $\mathbb{S}^{nc}(M)$ is coherent. We let

$$\mathbb{P}^{nc}(M) := \operatorname{cohproj} \mathbb{S}^{nc}(M)$$

(4回) (4回) (4回)

Examples

- Generic fibers of noncommutative ruled surfaces (Patrick (2000), Van den Bergh (2000), D. Chan and N (2016))
- Generic fibers of noncommutative Del Pezzo surfaces (De Thanhoffer and Presotto (2016))
- Generic fibers of ruled orders (Artin and de Jong (2005))
- Noncommutative curves of genus zero after Kussin (N (2015))
- Artin's Conjecture: Every noncommutative surface infinite over its center is birational to some P^{nc}(M) (1997)

Theorem (Zhang (1998))

If A is connected, gen. in degree 1 and regular of dim 2 then

$$A \cong k\langle x_1, \ldots, x_n \rangle / \langle b \rangle$$

where $n \ge 2$, $b = \sum_{i=1}^{n} x_i \sigma(x_{n-i+1})$ and $\sigma \in \text{Aut } k\langle x_1, \ldots, x_n \rangle$. Furthermore, A is noetherian iff n = 2.

- (日) (日) (日) 日

Theorem (Zhang (1998))

If A is connected, gen. in degree 1 and regular of dim 2 then

$$A \cong k\langle x_1, \ldots, x_n \rangle / \langle b \rangle$$

where $n \ge 2$, $b = \sum_{i=1}^{n} x_i \sigma(x_{n-i+1})$ and $\sigma \in \text{Aut } k\langle x_1, \ldots, x_n \rangle$. Furthermore, A is noetherian iff n = 2.

Theorem (Piontkovski (2008))

n > 2 implies A is coherent. If $\mathbb{P}_n^1 := \text{cohproj}A$, then \mathbb{P}_n^1 depends only on n, is Ext-finite, satisfies Serre duality and is hereditary.

Question

Is
$$\mathbb{P}^1_n \equiv \mathbb{P}^{nc}(M)$$
?

・ロト ・日本 ・モート ・モート

Part 3

Results

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

Adam Nyman

Recognizing orbit algebras as $\mathbb{S}^{nc}(M)$ (finite-type case)

C = k-linear abelian category $\underline{\mathcal{L}} = (\mathcal{L}_i)_{i \in \mathbb{Z}}$ seq. of obj. in C

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Recognizing orbit algebras as $\mathbb{S}^{nc}(M)$ (finite-type case)

C = k-linear abelian category $\underline{\mathcal{L}} = (\mathcal{L}_i)_{i \in \mathbb{Z}}$ seq. of obj. in C Properties $\underline{\mathcal{L}}$ might have $\forall i$:

- $\operatorname{End}(\mathcal{L}_i) = D_i$ is div. ring f.d./k and dim $D_i = \dim D_{i+2}$
- Hom $(\mathcal{L}_i, \mathcal{L}_{i-1}) = \operatorname{Ext}^1(\mathcal{L}_i, \mathcal{L}_{i-1}) = 0$
- $\operatorname{Ext}^1(\mathcal{L}_i, \mathcal{L}_j) = 0 \ \forall j \geq i$
- Hom $(\mathcal{L}_i, \mathcal{L}_{i+1})$ is f.d./k
- If $I_i := \dim_{D_{i+1}} \operatorname{Hom}(\mathcal{L}_i, \mathcal{L}_{i+1})$, \exists ses

$$0 \to \mathcal{L}_i \to \mathcal{L}_{i+1}^{l_i} \to \mathcal{L}_{i+2} \to 0$$

(《圖》 《문》 《문》 - 문

whose left map is defined by a left-basis of Hom $(\mathcal{L}_i, \mathcal{L}_{i+1})$.

Recognizing orbit algebras as $\mathbb{S}^{nc}(M)$ (finite-type case)

C = k-linear abelian category $\underline{\mathcal{L}} = (\mathcal{L}_i)_{i \in \mathbb{Z}}$ seq. of obj. in C Properties $\underline{\mathcal{L}}$ might have $\forall i$:

- $\operatorname{End}(\mathcal{L}_i) = D_i$ is div. ring f.d./k and dim $D_i = \dim D_{i+2}$
- Hom $(\mathcal{L}_i, \mathcal{L}_{i-1}) = \operatorname{Ext}^1(\mathcal{L}_i, \mathcal{L}_{i-1}) = 0$
- $\operatorname{Ext}^1(\mathcal{L}_i, \mathcal{L}_j) = 0 \ \forall j \geq i$
- Hom $(\mathcal{L}_i, \mathcal{L}_{i+1})$ is f.d./k
- If $I_i := \dim_{D_{i+1}} \operatorname{Hom}(\mathcal{L}_i, \mathcal{L}_{i+1})$, \exists ses

$$0 \to \mathcal{L}_i \to \mathcal{L}_{i+1}^{l_i} \to \mathcal{L}_{i+2} \to 0$$

whose left map is defined by a left-basis of Hom $(\mathcal{L}_i, \mathcal{L}_{i+1})$.

Theorem N (2017)

If C has sequence $\underline{\mathcal{L}}$ satisfying properties above, then

- $_{D_0}M_{D_1}:=\mathsf{Hom}(\mathcal{L}_{-1},\mathcal{L}_0)$ is 2-periodic,
- M does not have type (1, 1), (1, 2), or (1, 3),

•
$$A_{\underline{\mathcal{L}}} \cong \mathbb{S}^{nc}(M)$$
.

Main Theorem: Finite-type case

C, $\underline{\mathcal{L}}$ as before.

・ロト ・四ト ・ヨト ・ヨト

æ

Main Theorem: Finite-type case

C, $\underline{\mathcal{L}}$ as before. Properites $\underline{\mathcal{L}}$ might have $\forall i$:

- $\operatorname{End}(\mathcal{L}_i) = D_i$ is div. ring f.d./k and dim $D_i = \dim D_{i+2}$
- Hom $(\mathcal{L}_i, \mathcal{L}_{i-1}) = \operatorname{Ext}^1(\mathcal{L}_i, \mathcal{L}_{i-1}) = 0$
- $\operatorname{Ext}^1(\mathcal{L}_i, \mathcal{L}_j) = 0 \ \forall j \geq i$
- Hom $(\mathcal{L}_i, \mathcal{M})$ is f.d. $\forall \mathcal{M} \in C$
- If $I_i := \dim_{D_{i+1}} \operatorname{Hom}(\mathcal{L}_i, \mathcal{L}_{i+1})$, \exists ses

$$0 \to \mathcal{L}_i \to \mathcal{L}_{i+1}^{l_i} \to \mathcal{L}_{i+2} \to 0$$

· < @ > < 문 > < 문 > · · 문

whose left map is defined by a left-basis of Hom $(\mathcal{L}_i, \mathcal{L}_{i+1})$. • $\underline{\mathcal{L}}$ is ample

Main Theorem: Finite-type case

C, $\underline{\mathcal{L}}$ as before. Properites $\underline{\mathcal{L}}$ might have $\forall i$:

- $\operatorname{End}(\mathcal{L}_i) = D_i$ is div. ring f.d./k and dim $D_i = \dim D_{i+2}$
- Hom $(\mathcal{L}_i, \mathcal{L}_{i-1}) = \operatorname{Ext}^1(\mathcal{L}_i, \mathcal{L}_{i-1}) = 0$
- $\operatorname{Ext}^1(\mathcal{L}_i, \mathcal{L}_j) = 0 \ \forall j \geq i$
- Hom $(\mathcal{L}_i, \mathcal{M})$ is f.d. $\forall \mathcal{M} \in C$
- If $I_i := \dim_{D_{i+1}} \operatorname{Hom}(\mathcal{L}_i, \mathcal{L}_{i+1})$, \exists ses

$$0 \to \mathcal{L}_i \to \mathcal{L}_{i+1}^{l_i} \to \mathcal{L}_{i+2} \to 0$$

whose left map is defined by a left-basis of Hom($\mathcal{L}_i, \mathcal{L}_{i+1}$).

• $\underline{\mathcal{L}}$ is ample

Theorem N (2017)

C has $\underline{\mathcal{L}}$ satisfying props iff $C \equiv \mathbb{P}^{nc}(M)$ where

- *M* is 2-periodic
- *M* is $D_0 D_1$ -bimodule not of type (1, 1), (1, 2), (1, 3)
- $\mathbb{S}^{nc}(M)$ is coherent.

An Example

If $C = \operatorname{coh} \mathbb{P}^1$ and $\underline{\mathcal{L}} = (\mathcal{O}(i))_{i \in \mathbb{Z}}$, then $\underline{\mathcal{L}}$ satisfies properties in previous result. Thus,

$$\mathsf{coh}\mathbb{P}^1\equiv\mathbb{P}^{\mathit{nc}}(V)$$

where V is 2-diml vector-space over k.

æ

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

An Example

If $C = \operatorname{coh} \mathbb{P}^1$ and $\underline{\mathcal{L}} = (\mathcal{O}(i))_{i \in \mathbb{Z}}$, then $\underline{\mathcal{L}}$ satisfies properties in previous result. Thus,

$$\mathsf{coh}\mathbb{P}^1\equiv\mathbb{P}^{\mathit{nc}}(V)$$

where V is 2-diml vector-space over k.

Corollary N (2017)

$$\mathbb{P}_n^1 \equiv \mathbb{P}^{nc}(V)$$

・ 回 ト ・ ヨ ト ・ ヨ ト

where V is *n*-diml vector space over k.

Explains dependence of \mathbb{P}_n^1 on *n* only.

Thank you for your attention!

æ

Corollary N (2017)

C has a sequence $\underline{\mathcal{L}}$ satisfying properties above with $D_i = k$ iff $C \equiv \mathbb{P}_n^1$ for some n.

イロト イヨト イヨト イヨト

æ

Corollary N (2017)

C has a sequence $\underline{\mathcal{L}}$ satisfying properties above with $D_i = k$ iff $C \equiv \mathbb{P}_n^1$ for some n.

Corollary N (2017)

If D is nonsplit k-central division ring of deg n, \exists ext. $k \subset k'$ such that

Spec
$$k' imes_{\mathsf{Spec } k} \mathbb{P}^{nc}({}_D D_k) \equiv \mathbb{P}^1_n$$

(4月) (日)

Generalizes fact that a (commutative) curve of genus zero is a projective line after finite base extension.

Warning

Finite-type case of main theorem does not apply to generic fibers of quantum ruled surfaces (not Hom-finite)

個 と く ヨ と く ヨ と

Warning

Finite-type case of main theorem does not apply to generic fibers of quantum ruled surfaces (not Hom-finite)

• Finite-dimensionality of $D_i = \text{End}(\mathcal{L}_i)$ can be dropped.

Warning

Finite-type case of main theorem does not apply to generic fibers of quantum ruled surfaces (not Hom-finite)

- Finite-dimensionality of $D_i = \text{End}(\mathcal{L}_i)$ can be dropped.
- Need property ensuring if Hom(L_i, L_{i+1}) has left-right-dimension (m, n) then Hom(L_i, L_{i+1})* has right-dimension m.

個 と く ヨ と く ヨ と