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Abstract. In this paper we study a generalization of the notion of AS-
regularity for connected Z-algebras defined in [13]. Our main result is a
characterization of those categories equivalent to noncommutative projec-
tive schemes associated to right coherent regular Z-algebras, which we call
quantum projective Z-spaces in this paper.

As an application, we show that smooth quadric hypersurfaces and the
standard noncommutative smooth quadric surfaces studied in [23, 15] have
right noetherian AS-regular Z-algebras as homogeneous coordinate alge-
bras. In particular, the latter are thus noncommutative P1 × P1 (in the
sense of [26]).
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Throughout this paper, we work over a field k.

1. Introduction

In noncommutative algebraic geometry, one studies so-called noncommuta-
tive schemes from a geometric perspective. These schemes are often abelian
categories with properties in common with categories of coherent sheaves over
a scheme. Those noncommutative schemes which behave like categories of
coherent sheaves over projective schemes have particular significance, as they
can be studied via their global invariants. For this reason, it may be useful to
characterize these abelian categories, and such a characterization constitutes
the main result of this paper.

The first result along these lines was due to Artin and Zhang [2, Theorem
4.5], who characterized those triples (C ,A , s) consisting of a k-linear abelian
category C , a distinguished object A (thought of as a structure sheaf), and
an autoequivalence s of the category C , which are equivalent to a triple of the
form (tailsA, π(A), s), where A is some right noetherian N-graded k-algebra
satisfying a homological condition called χ1, grmodA is the category of finitely
generated graded right A-modules, torsA is the full subcategory of grmodA
consisting of right-bounded modules, tailsA := grmodA/ torsA is the quotient
category with quotient functor π, and (abusing notation) s is induced by the
shift functor in grmodA. This result raises a natural question:

Question 1.1. Is there a characterization of categories of the form tailsA for
suitably well behaved Z-graded algebras A?

Artin and Zhang’s result was later generalized by the first author and
Ueyama [15, Theorem 2.6] to the case in which A is right-coherent. The first
author and Ueyama then used this generalization to address Question 1.1. In
particular, they obtained a characterization of abelian categories equivalent
to noncommutative projective schemes with homogenous coordinate ring a
graded right coherent AS-regular algebra over a finite dimensional algebra R
of finite global dimension [15, Theorem 4.1].

In a separate development, Bondal and Polishchuk introduced the notion
of Z-algebra [3], and illustrated the utility of this concept in the study of
Z-graded algebras. Sierra provided further evidence [21] that working with
Z-algebras simplifies aspects of the theory of Z-graded algebras. On the other
hand, much of the theory of modules over Z-graded algebras can be generalized
to the Z-algebra context (see, for example [13]).
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Many noncommutative projective schemes with Z-algebra coordinate rings
have been studied. For example, Van den Bergh discovered notions of noncom-
mutative P1 × P1 [26] and noncommutative P1-bundles over a pair of smooth
schemes [27]. Specializing the latter construction to the case where the base
schemes are spectra of fields (or division rings), one obtains the notion of a
noncommutative projective line. Polishchuk [19] found sufficient conditions
for a k-linear abelian category to be of the form tailsA for a right coherent
positively graded Z-algebra A. He applied this result to construct Z-algebra
homogenous coordinate rings for noncommutative elliptic curves [18]. Efimov,
Lunts and Orlov constructed noncommutative Grassmannians with Z-algebra
homogeneous coordinate rings [6], providing further evidence for the signifi-
cance of the notion of Z-algebra.
Returning to characterizations of noncommutative projective schemes, in

[17], the second author characterized those abelian categories equivalent to
noncommutative projective lines over a pair of division rings. The purpose of
this paper is to obtain a Z-algebra version of [15, Theorem 4.1] which gener-
alizes [17, Theorem 4.2].

Instead of characterizing categories equivalent to tailsA where A is an
AS-regular Z-algebra, we use a related notion of regularity, called ASF++-
regularity (see Section 4). In the Z-graded case, AS-regularity implies that, if
τ is the torsion functor, then DR τ(A) ∼= A(−ℓ)ν [d] in the derived category of
graded right Ae-modules, for some graded algebra automorphism ν ∈ AutA
called the Nakayama automorphism of A. In the Z-algebra case, it is unclear
if AS-regularity is enough to guarantee the existence of such an isomorphism,
and so we impose it as part of the definition of ASF++-regularity.
The following is the main result of the paper, characterizing those non-

commutative projective Z-schemes associated to an ASF++-regular Z-algebra
(Theorem 6.4, Theorem 6.5, and Theorem 6.11), which extends [3, Theorem
4.2], [15, Theorem 4.1], thus providing an answer to the Z-algebra version of
Question 1.1. Before we state it, we remark that we will abuse notation in this
paper by writing C ∼= D for categories C and D if they are equivialent (not
necessarily isomorphic) categories.

Theorem 1.2. Let C be a k-linear abelian category. Then C ∼= tailsC for
some right coherent ASF++-regular Z-algebra C of dimension at least 1 and of
Gorenstein parameter ℓ if and only if

(GH1) C has a canonical bimodule ωC , and
(GH2) C has an ample sequence {Ei}i∈Z which is a full geometric helix of

period ℓ for D b(C ).

In fact, if C satisfies (GH1) and (GH2), then C := C(C , {Ei}i∈Z)≥0 is a right
coherent ASF++-regular Z-algebra of dimension gldimC +1 and of Gorenstein
parameter ℓ such that C ∼= tailsC.

Moreover, C constructed above is right noetherian if and only if C is a
noetherian category.
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The condition (GH1) requires that C has an autoequivalence which induces
a Serre functor on D b(C ). The notion of helix we use in (GH2) is similar
to that of [3] (see [15, Remark 3.17]). In comparison to [15, Theorem 4.1],
Theorem 1.2 is somewhat simpler in that no autoequivalence on C (other
than the canonical bimodule) is required. Our proof of Theorem 1.2 requires
the foundations of homological algebra for connected Z-algebras developed in
[13] and [14]. In particular, we use a variant of local duality [14, Theorem 2.1]
in this paper to prove, in Theorem 6.8, that tailsC, where C is ASF++-regular,
has a Serre functor. Our argument is adapted from [16, Appendix A].

As an application of Theorem 1.2, we construct a family of right noetherian
AS-regular Z-algebras from noncommutative quadric hypersurfaces. In partic-
ular, we will show that every smooth quadric hypersurface and every standard
noncommutative smooth quadric surface has a right noetherian AS-regular
Z-algebra as a homogeneous coordinate algebra (Theorem 6.14 and Theorem
6.13).

We now briefly describe the contents of the paper. In Section 2 we recall
relevant definitions and results from the theory of Z-algebras we will need.
Although some of this material appears in [13], most does not appear elsewhere,
and is necessary for defining the notion of an ASF++-regular Z-algebra. In
Section 3, after recalling the notion of noncommutative projective Z-scheme,
we prove variants of the version of local duality from [14] which we will use
in the proof of our main theorem. We also include a number of results about
derived functors and related triangles which will be used in the sequel.

In Section 4, we continue the study of regularity for Z-algebras initiated in
the paper [13]. In [13], we defined two notions of regularity for a Z-algebra,
namely, AS-regularity and ASF-regularity. In this paper, after reviewing the
aforementioned notions of regularity, we define two more notions of regularity
for a Z-algebra, namely ASF+-regularity and ASF++-regularity, and show the
implications:

ASF++ ⇒ ASF+ ⇒ AS ⇒ ASF

(Theorem 4.8, Theorem 4.14, and Theorem 4.19). Recall that AS-regularity
and ASF-regularity for a Z-algebra A are the same if A has a “balanced dualiz-
ing complex” [13, Theorem 7.10]. In this paper, we show that ASF+-regularity
and ASF++-regularity are the same if A is ℓ-periodic (Theorem 4.19). We note
that the notion of ASF++-regularity was first introduced and studied in [14,
Definition 3.1].

In Section 5, we introduce several concepts we will need for the proof of
Theorem 1.2, including various notions of helix. The proof of Theorem 1.2,
as well as some consequences, are given in Section 6. Finally, an application
of our main result, to noncommutative quadric hypersurfaces, concludes the
paper.
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2. Z-algebras

Although some of the results in this section are known (see [13]) or easy to
see, we will discuss them rather carefully, hoping that this section (together
with our previous paper [13]) will serve as a useful reference.

2.1. Z-algebras. A Z-algebra is an algebra with vector space decomposition
C = ⊕i,j∈ZCij and with the multiplication

Cij ⊗ Cst →

{
Cit if j = s

0 if j 6= s.

A Z-algebra C does not have a unity, but we assume that each subalgebra Cii

has a unity ei ∈ Cii, called a local unity, so that Cij = eiCej (and that eiaej = a
for every a ∈ Cij). Let C,C ′ be Z-algebras. A Z-algebra homomorphism
ϕ : C → C ′ is an algebra homomorphism ϕ : C → C ′ such that ϕ(Cij) ⊂ C ′

ij

for all i, j ∈ Z, and ϕ(ei) = e′i for all i ∈ Z. We say that C is locally finite if
dimk Cij <∞ for all i, j, and C is connected if Cij = 0 for all i > j and Cii = k
for all i.

Let C be a Z-algebra. A graded right C-module is a right C-module M =
⊕j∈ZMj with the action Mi⊗Cij →Mj. We assume that each Mi is a unitary
Cii-module in the sense that mei = m for every m ∈ Mi. The category of
graded right C-modules is denoted by GrModC whose morphisms are right
C-module homomorphisms preserving degrees. A graded left C-module is a left
C-module M = ⊕i∈ZMi with the action Cij ⊗Mj →Mi.

Let C,C ′ be Z-algebras. A bigraded C-C ′ bimodule is a C-C ′ bimodule
M = ⊕i,jMij such that eiM := ⊕jMij is a graded right C ′-module for every
i and Me′j := ⊕iMij is a graded left C-module for every j, that is, we have
maps Mli ⊗ C ′

ij → Mlj and Cij ⊗Mjl → Mil. A homomorphism of bigraded
C-bimodules M,N is a homomorphism ϕ : M → N of C-bimodules such that
ϕ(Mij) ⊂ Nij for every i, j ∈ Z.

For a graded left C-module M and a graded right C ′-module N , M ⊗kN :=
⊕i,j∈Z(Mi⊗kNj) is naturally a bigraded C-C ′ bimodule. Note that C itself is a
bigraded C-bimodule. If C is connected, then C≥n := ⊕j−i≥nCij is a bigraded
C-bimodule for every n ∈ N.

We define a graded right C-module

Pi := eiC = ⊕j∈ZCij

for every i ∈ Z, and a graded left C-module

Qj := Cej = ⊕i∈ZCij

for every j ∈ Z. If C is connected, then

Sj := ej(C/C≥1) = (C/C≥1)ej = Pjej = ejQj = ejCej = Cjj
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has a structure of a bigraded C-bimodule for every j ∈ Z. Moreover, {Pj}j∈Z
is the set of all indecomposable graded projective right C-modules up to iso-
morphism, and {Sj}j∈Z is the set of all graded simple right C-modules up to
isomorphism. Note that Sj is the unique simple quotient of Pj.
If M is a graded right C-module, then DM = ⊕i∈ZD(Mi) is a graded left

C-module via (af)(x) = f(xa) where a ∈ Cij, x ∈ Mj, f ∈ D(Mi) = (DM)i
so that af ∈ D(Mj) = (DM)j. Similarly, if M is a graded left C-module,
then DM is a graded right C-module. If M is a bigraded C-C ′ bimodule, then
DM := ⊕i,jD(Mji) is naturally a bigraded C ′-C bimodule. It follows that

D(eiM) = ⊕jD((eiM)j) = ⊕jD(Mij) = ⊕j(DM)ji = (DM)e′i

D(Me′j) = ⊕iD((Me′j)i) = ⊕iD(Mij) = ⊕i(DM)ji = ej(DM)

for every i ∈ Z and every j ∈ Z, respectively.
We say that M ∈ GrModC is locally finite if dimkMi < ∞ for every i.

Note that C is locally finite if and only if Pj is locally finite for every j. If
M ∈ GrModC is locally finite, then DDM ∼= M in GrModC.

The opposite Z-algebra of C is the opposite algebra Co with Co
ij := C−j,−i.

For ao ∈ Co
jk = C−k,−j, b

o ∈ Co
ij = C−j,−i, b

oao = ab ∈ C−k,−i = Co
ik, so C

o is
in fact a Z-algebra. If M is a graded left C-module, then ⊕iM−i is a graded
right Co-module under the action of ao ∈ Co

ij = C−j,−i on x ∈M−i defined by
xao = ax ∈M−j.

In fact, the category of graded left C-modules is equivalent to the category of
graded right Co-modules, so we often identify these two categories. Similarly,
we can see that the category of graded right C-modules is equivalent to the
category of graded left Co-modules. Both of these facts are proven in [13,

Proposition 2.2], where the algebra Co is denoted C̃op.
Note that if C is a connected Z-algebra, then Co is again a connected Z-

algebra. Let C,C ′ be Z-algebras. The category of bigraded C-C ′ bimodules is
denoted by Bimod(C−C ′). Note that the categories GrModC and Bimod(C−
C ′) are Grothendieck categories [26, Section 3], [13, Proposition 2.2(1)], hence
abelian.

Remark 2.1. Let C be a Z-algebra.

(1) If M = ⊕i∈ZMi is a graded left C-module, then, precisely speaking,
⊕i∈ZM−i ∈ GrModCo is a graded right Co-module, however, we often
identify them in this paper.

(2) If M is a bigraded C-bimodule, then eiM := ⊕j∈ZMij is a graded right
C-module for every i ∈ Z, and Mej := ⊕i∈ZMij is a graded left C-
module for every j ∈ Z, but Mej is not a graded right Co-module in
this grading. By defining M o := ⊕ijM−j,−i ∈ Bimod(Co − Co), we
identify Mej with a graded right Co-module eo−jM

o := ⊕i∈ZM
o
−j,i :=

⊕i∈ZM−i,j = ⊕i∈Z(Mej)−i.
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(3) We write

P o
i := eoiC

o = ⊕j∈ZC
o
ij = ⊕j∈ZC−j,−i = Ce−i =: Q−i,

Qo
j := Coeoj = ⊕i∈ZC

o
ij = ⊕i∈ZC−j,−i = e−jC =: P−j,

So
j = eojC

oeoj = Co
jj = C−j,−j = e−jCe−j =: S−j.

In particular, we identify a graded right Co-module P o
j := eojC

o with a
graded left C-module Q−j := Ce−i, and so on.

(4) D : GrModC → GrModCo is defined by D(⊕iMi) := ⊕iD(Mi)
when we view D(⊕iMi) as a graded left C-module while D(⊕iMi) :=
⊕iD(M−i) when we view D(⊕iMi) as a graded right Co-module.

2.2. Hom and ⊗. IfM is a bigraded C ′-C bimodule and N is a graded right C-
module, then HomC(M,N) := ⊕i HomC(eiM,N) = ⊕i HomC(⊕kMik, N) has
a structure of a graded right C ′-module via (fa)(x) = f(ax) where a ∈ C ′

ℓi, x ∈
⊕jMij, f ∈ HomC(M,N)ℓ = HomC(⊕jMlj, N) by the map a· : Mij → Mℓj so
that fa ∈ HomC(M,N)ℓ = HomC(⊕jMℓj, N). (Although ⊕jMij does not
have a structure of a left C ′-module, the left multiplication a· : ⊕jMij →
⊕jMℓj is well-defined, which induces the right action ·a : HomC(⊕jMij, N) →
HomC(⊕jMℓj, N).)

If M is a graded right C-module and N is a bigraded C ′-C bimodule, then
HomC(M,N) := ⊕j HomC(M, ejN) = ⊕j HomC(M,⊕ℓNjℓ) has a structure of
a graded left C ′-module via (af)(x) = a(f(x)) where a ∈ C ′

ij, x ∈ M, f ∈
HomC(M,N)j = HomC(M,⊕ℓNjℓ) by the map a· : Njℓ → Niℓ so that af ∈
HomC(M,N)i = HomC(M,⊕ℓNiℓ).

IfM is a bigraded C ′-C bimodule and N is a bigraded C ′′-C bimodule, then
HomC(M,N) := ⊕i,j HomC(ejM, eiN) has a structure of a bigraded C ′′-C ′

bimodule since

e′′i HomC(M,N) = ⊕j∈Z HomC(M,N)ij

= ⊕j∈Z HomC(e
′
jM, e′′iN)

= HomC(M, e′′iN)

is a graded right C ′-module for every i ∈ Z, and

HomC(M,N)e′j = ⊕i∈Z HomC(M,N)ij

= ⊕i∈Z HomC(e
′
jM, e′′iN)

= HomC(e
′
jM,N)

is a graded left C ′′-module for every i ∈ Z.
The proof of the following lemma is straightforward and omitted.

Lemma 2.2. Let C be a Z-algebra.
(1) For M ∈ GrModC, HomC(C,M) ∼= M in GrModC so that

HomC(Pi,M) =Mi
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for every i ∈ Z. In particular,

HomC(Pi, Sj) =

{
Sj if i = j

0 if i 6= j.

(2) HomC(Pi, C) ∼= Qi in GrModCo, and HomCo(Qi, C
o) ∼= Pi in GrModC

for every i ∈ Z.

Definition 2.3. Let C,C ′, C ′′ be Z-algebras. For M ∈ GrModC and N ∈
GrModCo, we define

M ⊗C N := Coker(⊕i,j∈Z(Mi ⊗Cii
Cij ⊗Cjj

Nj) → ⊕k∈ZMk ⊗Ckk
Nk)

where the morphism is induced by the usual difference between left and right
multiplication.

• For M ∈ GrModC and N ∈ Bimod(C − C ′), we define

M⊗CN = ⊕ℓ∈Z(M ⊗C Ne
′
ℓ) ∈ GrModC.

• For M ∈ Bimod(C ′ − C) and N ∈ GrModCo, we define

M⊗CN = ⊕i∈Z(eiM ⊗C N) ∈ GrModC ′o.

• For M ∈ Bimod(C − C ′), N ∈ Bimod(C ′ − C ′′), we define

M⊗CN = ⊕i,j∈Z(eiM ⊗C Ne
′′
j ) ∈ Bimod(C − C ′′).

Note that from general properties of adjoint functors and [13, Proposition
5.3(2)], for N ∈ Bimod(C ′ − C ′′), the functor

⊗CN : Bimod(C − C ′) → Bimod(C − C ′′)

commutes with colimits.

Lemma 2.4. [13, Section 4.1, Proposition 5.3] Let C be a Z-algebra.
(1) For M ∈ GrModC, M⊗CC

∼= M in GrModC so that M⊗CQj
∼= Mj

for every j ∈ Z.
(2) For N ∈ GrModCo, C⊗CN

∼= N in GrModCo so that Pi⊗CN
∼= Ni

for every i ∈ Z.
(3) For M ∈ GrModC,N ∈ GrModC ′ and L ∈ Bimod(C − C ′),

HomC′(M⊗CL,N) ∼= HomC(M,HomC′(L,N)).

2.3. Noetherian and Coherent Properties. For a set of objects E in an
additive category C , we denote by add E the set of objects in C consisting of
all finite direct sums of objects in E .

Remark 2.5. The notation add E usually denotes the set of objects in C con-
sisting of direct summands of finite direct sums of objects in E , so the above
notation is not standard.

Definition 2.6. Let C be a Z-algebra.
(1) We say that M ∈ GrModC is finitely generated (resp. finitely pre-

sented) if there exists an exact sequence F 0 → M → 0 (resp. F 1 →
F 0 →M → 0) where F i ∈ add{Pj}j∈Z.



A CATEGORICAL CHARACTERIZATION OF QUANTUM PROJECTIVE Z-SPACES 9

(2) We say that M ∈ GrModC is coherent if M is finitely generated and
Kerϕ is finitely generated for every homomorphism ϕ : F → M with
F ∈ add{Pj}j∈Z.

(3) We denote by grmodC the full subcategory of GrModC consisting
of finitely presented modules, and by cohC the full subcategory of
GrModC consisting of coherent modules.

(4) We say that C is right coherent if Pi, Si ∈ cohC for every i ∈ Z.

We call a module in add{Pj}j∈Z finitely generated free. In this terminology,
C = ⊕jPj ∈ GrModC itself is free but not finitely generated free. If C is
connected, then every finitely generated projective graded right C-module is
isomorphic to a module in add{Pj}j∈Z.
The following result will often be used without comment in the sequel.

Lemma 2.7. Let C be a locally finite connected Z-algebra.
(1) cohC is an abelian category.
(2) If C is right coherent, then grmodC = cohC so that grmodC is an

abelian category.
(3) Conversely, if grmodC is an abelian category, then Pj ∈ cohC for

every j ∈ Z.

Proof. (1) This follows from [19, Proposition 1.1].
(2) If M ∈ cohC, then M ∈ grmodC by definition. Conversely, if C is right

coherent and M ∈ grmodC, then there exists an exact sequence F 1 → F 0 →
M → 0 in GrModC where F 1, F 0 ∈ add{Pj}j∈Z ⊂ cohC. Since cohC is an
abelian category by (1), M ∼= Coker(F 1 → F 0) ∈ cohC.
(3) If grmodC is an abelian category, then, for every homomorphism ϕ :

F → Pj with F, Pj ∈ add{Pj}j∈Z ⊂ grmodC, Kerϕ ∈ grmodC. In particular,
Pj,Kerϕ are finitely generated, so Pj ∈ cohC. □
Definition 2.8. We say that a Z-algebra C is right noetherian if Pj ∈ GrModC
is a noetherian object for every j ∈ Z.

By [26, Definition 3.1], C is right noetherian if and only if GrModC is a
locally noetherian (Grothendieck) catetgory.

Lemma 2.9. If C is a right noetherian Z-algebra, then every noetherian mod-
ule is coherent. In particular, C is right coherent and grmodC is an abelian
category.

Proof. If M ∈ GrModC is a noetherian module, then M is finitely generated,
so there exists F ∈ add{Pj}j∈Z and a surjection ϕ : F → M . Since Pj is
noetherian for every j ∈ Z, F is noetherian, so Ker ϕ ⊂ F is noetherian. It
follows that Ker ϕ is finitely generated, so M ∈ cohC. In particular, since
Pj, Sj ∈ GrModC are noetherian for every j ∈ Z, Pj, Sj ∈ cohC, so C is right
coherent. □
Lemma 2.10. A Z-algebra C is right noetherian if and only if grmodC is a
noetherian category.
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Proof. For every M ∈ grmodC, there exists a surjection F →M in GrModC
where F ∈ add{Pj}j∈Z ⊂ GrModC is a noetherian object, so M ∈ GrModC
is a noetherian object, hence grmodC is a noetherian category.

Conversely, if grmodC is a noetherian category, then Pj ∈ grmodC is a
noetherian object for every j ∈ Z, so C is right noetherian. □
2.4. Module Categories. Let C be a Z-algebra. We denote by ModC the
category of right C-modules which is “unitary” in the sense that M = MC.
The following lemma is known (cf. [21], [26]). We give a proof for the conve-
nience of the reader.

Lemma 2.11. For every Z-algebra C, GrModC ∼= ModC.

Proof. LetM ∈ ModC. Since eiej =

{
ej if i = j

0 if i 6= j,
ifmei = nej ∈Mei∩Mej

for i 6= j, then nej = ne2j = meiej = 0, so ⊕j∈ZMej ⊂M . Since M =MC, for
every m ∈ M , there exist n ∈ M and a =

∑
i,j aij ∈ ⊕i,j∈ZCij = C such that

m = na =
∑

i,j naij =
∑

j(
∑

i naij)ej ∈ ⊕j∈ZMej, so M = ⊕j∈ZMej. It is
easy to see that ⊕i∈ZMei is naturally a graded right C-module. If ϕ :M → N
is a homomorphism of right C-modules, then ϕ(mej) = ϕ(m)ej, so ϕ(Mej) ⊂
Nej, hence ϕ is naturally a homomorphism of graded right C-modules. It
follows that ModC → GrModC; M 7→ ⊕j∈ZMej is an equivalence functor.

□
Remark 2.12. By Lemma 2.11, we have the following:

(1) For a Z-algebra C and M,N ∈ GrModC, M ∼= N in GrModC if and
only if M ∼= N in ModC.

(2) For Z-algebras C,C ′, GrModC ∼= GrModC ′ if and only if ModC ∼=
ModC ′.

Lemma 2.13. Let C,C ′ be Z-algebras. If C ∼= C ′ as algebras (not necessarily
as Z-algebras), then GrModC ∼= GrModC ′.

Proof. Let ϕ : C → C ′ be an isomorphism of algebras. If M ∈ ModC ′, then
MC ′ = M , so MϕC := Mϕ(C) = MC ′ = M , hence Mϕ ∈ ModC. It follows
that GrModC ∼= ModC ∼= ModC ′ ∼= GrModC ′ by Lemma 2.11. □
2.5. Periodicity. Let C,C ′ be Z-algebras, and ϕ : C → C ′ a homomorphism
of Z-algebras. For M ∈ GrModC ′, we define Mϕ ∈ GrModC by Mϕ = M as
a graded vector space with the action m ∗ a = mϕ(a) for m ∈M,a ∈ C. This
induces a functor (−)ϕ : GrModC ′ → GrModC.

For a bigraded vector space M and r, ℓ ∈ Z, we define a bigraded vector
space M(r, ℓ) by M(r, ℓ)ij =Mr+i,ℓ+j.

Lemma 2.14. Let C,C ′ be Z-algebras.
(1) For ℓ ∈ Z, C(ℓ) := C(ℓ, ℓ) is a Z-algebra.
(2) IfM is a bigraded C-C ′ bimodule, thenM(ℓ, r) is a bigraded C(ℓ)-C ′(r)

bimodule.
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(3) If ϕ : C → C(−ℓ) is an isomorphism of Z-algebras, then ϕ−1 induces
an isomorphism C → C(ℓ) of Z-algebras, which is denoted by ϕ−1 by
abuse of notation, and C(0,−ℓ)ϕ ∼= ϕ−1C(ℓ, 0) as bigraded C-bimodules.

Proof. (1) Note that C = C(ℓ) as ungraded algebras. Since

C(ℓ)ij ⊗ C(ℓ)jk = Ci+ℓ,j+ℓ ⊗ Cj+ℓ,k+ℓ → Ci+ℓ,k+ℓ = C(ℓ)ik,

the result follows.
(2) Note that M(ℓ, r) =M as ungraded C-D bimodules. Since

C(ℓ)ij ⊗M(ℓ, r)jk = Cℓ+i,ℓ+j ⊗Mℓ+j,r+k →Mℓ+i,r+k =M(ℓ, r)ik,

M(ℓ, r)ij ⊗D(r)jk =Mℓ+i,r+j ⊗Dr+j.r+k →Mℓ+i,r+k =M(ℓ, r)ik,

the result follows.
(3) Since ϕ−1 : C → C(ℓ) is an isomorphism of (ungraded) algebras, and

ϕ−1(Cij) = ϕ−1(C(−ℓ)i+ℓ,j+ℓ) = Ci+ℓ,j+ℓ = C(ℓ)ij,

ϕ−1 : C → C(ℓ) is an isomorphism of Z-algebras.
Since ϕ : ϕ−1C(ℓ, 0) → C(0,−ℓ)ϕ is an isomorphism of bigraded vector

spaces, and

ϕ(a ∗mb) = ϕ(ϕ−1(a)mb) = aϕ(m)ϕ(b) = aϕ(m) ∗ b,
for m ∈ ϕ−1C(0,−ℓ) and a, b ∈ C, ϕ : ϕ−1C(ℓ, 0) → C(0,−ℓ)ϕ is an isomor-
phism of bigraded C-bimodules. □

Let C be a Z-algebra. Since C ∼= C(r) as algebras (but not necessarily as
Z-algebras in general), GrModC ∼= GrModC(r) by Lemma 2.13. In fact, we
have an equivalence functor (r) : GrModC → GrModC(r) defined byM(r) :=
⊕j∈ZMr+j. Since (eiC)(r) = ⊕j∈ZCi,j+r = ei−r(C(r)), the assignment F 7→
F (r) preserves finitely generated projectives, so (r) induces an equivalence
functor (r) : grmodC → grmodC(r). For M ∈ GrModC, M(r) is not a
graded right C-module in general, so there exists no notion of homomorphism
of graded right C-modules of degree r.

Lemma 2.15. Let C,C ′, C ′′ be Z-algebras.
(1) For ℓ ∈ Z, −⊗CC(0, ℓ)

∼= (−)(ℓ) : GrModC → GrModC(ℓ) as func-
tors.

(2) If ϕ : C ′′ → C ′ is a homomorphism of Z-algebras and M is a bigraded
C-C ′ bimodule, then −⊗CMϕ

∼= (−⊗CM)ϕ : GrModC → GrModC ′′

as functors.
(3) In particular, if ϕ : C → C(ℓ) is a homomorphism of Z-algebras, then

−⊗C C(0, ℓ)ϕ ∼= (−)(ℓ)ϕ : GrModC → GrModC as functors.

Proof. Functors of both sides are naturally isomorphic on ungraded module
categories and they are compatible with the grading, hence the result. □

We say that C is r-periodic if C(r) ∼= C as Z-algebras. If C is r-periodic
and ϕ : C → C(r) is an isomorphism of Z-algebras, then, for M ∈ GrModC,
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M(r)ϕ ∈ GrModC, so there exist autoequivalences of GrModC and grmodC
defined by M 7→M(r)ϕ.

Lemma 2.16. If C is an r-periodic Z-algebra, then an isomorphism ϕ : C →
C(r) of Z-algebras restricts to an isomorphism Pℓ → Pℓ+r(r)ϕ in GrModC for
every ℓ ∈ Z.

Proof. If ϕ : C → C(r) is an isomorphism of Z-algebras, then Pℓ+r(r)ϕ =
⊕iCℓ+r,i+r = ϕ(Pℓ) as graded vector spaces. For a ∈ Pℓ+r(r)ϕ and b ∈ C,
ϕ(a) ∗ b = ϕ(a)ϕ(b) = ϕ(ab), so we have a commutative diagram

(Pℓ)i ⊗ Cij = Cℓi ⊗ Cij
·−−−→ Cℓj = (Pℓ)j

ϕ⊗id

y yϕ

Pℓ+r(r)i ⊗ Cij =Cℓ+r,i+r ⊗ Cij
∗−−−→ Cℓ+r,j+r= Pℓ+r(r)j

hence ϕ : Pℓ → Pℓ+r(r)ϕ is an isomorphism in GrModC for every ℓ ∈ Z. □

2.6. Z-algebras Associated to Graded Algebras. For a graded algebra
A, we define a Z-algebra A by A := ⊕i,j∈ZAj−i. The following lemma is well-
known (cf. [3], [19], [21]).

Lemma 2.17. For a graded algebra A, the functors Φ : GrModA→ GrModA
and Φ : grmodA → grmodA defined by Φ(M) := ⊕i∈ZMi are equivalences of
categories sending A(−i) to Pi and k(−i) to Si for every i ∈ Z.

Proof. It is well-known that the functor Φ : GrModA → GrModA defined as
above is an equivalence functor (cf. [21]). Since

Φ(A(−i)) := ⊕jA(−i)j = ⊕jAj−i = ⊕jAij = eiA =: Pi,

Φ(k(−i)) := ⊕jk(−i)j = ⊕jkj−i = eiAei =: Si,

Φ restricts to an equivalence functor Φ : grmodA→ grmodA. □

Lemma 2.18. Let A be a graded algebra. Viewing GrModA
o
as the category

of graded left A-modules, the following hold.

(1) Φo : GrModAo → GrModA
o
defined by Φo(M) := ⊕j∈ZM−j is an

equivalence functor such that Φo(A(i)) ∼= Aei for every i ∈ Z.
(2) GrModAe → Bimod(A−A); M 7→M := ⊕i,j∈ZMj−i is a functor such

that, for every M ∈ GrModAe, Φ(M(−i)) ∼= eiM for every i ∈ Z, and
Φo(M(i)) ∼= Me−i for every i ∈ Z. (Here we view Φ : GrModAe →
GrModA→ GrModA and Φo : GrModAe → GrModAo → GrModA

o

by composing with the natural functors GrModAe → GrModA forget-
ting the graded left A-module structure and GrModAe → GrModAo

forgetting the graded right A-module structure.)
(3) ΦoD = DΦ : GrModA → GrModA

o
as functors, and ΦD = DΦo :

GrModAo → GrModA as functors.
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Proof. (1) By Lemma 2.17, Φo : GrModAo → GrModA
o
defined by Φo(M) :=

⊕j∈ZMj is an equivalence functor such that Φo(Ao(−i)) ∼= eoiA
o
for every

i ∈ Z viewed as a graded right A
o
-module, however, Φo(M) = ⊕j∈ZM−j and

eoiA
o
= Ae−i viewed as a graded left A-module by Remark 2.1.

(2) Let M ∈ GrModAe. For x ∈ M ij = Mj−i, a ∈ Asi = Ai−s, b ∈ Ajt =
At−j, axb ∈Mt−s =M st, so we may view M ∈ Bimod(A− A).
Let ϕ ∈ HomAe(M,N) where M,N ∈ GrModAe. For x ∈ M ij = Mj−i,

ϕ(x) ∈ Nj−i = N ij, so we may define a map ϕ : M → N by ϕ(x) := ϕ(x)

such that ϕ(M ij) ⊂ N ij. Since ϕ(axb) = ϕ(axb) = aϕ(x)b = aϕ(x)b, ϕ ∈
HomA(M,N). Moreover, we have

Φ(M(−i)) := ⊕j∈ZM(−i)j = ⊕j∈ZMj−i = ⊕j∈ZM ij =: eiM,

and

Φo(M(i)) := ⊕j∈ZM(i)−j = ⊕j∈ZMi−j = ⊕j∈ZM−j,−i =:Me−i.

(3) Recall that D : GrModA → GrModAo is defined by D(⊕iMi) :=
⊕iD(M−i) while D : GrModA → GrModA

o
is defined by D(⊕iMi) :=

⊕iD(M−i) when we view D(⊕iMi) as a graded left A-module (see Remark
2.1 (4)). Since

ΦoD(⊕iMi) = Φo(⊕iD(M−i)) = ⊕iD(Mi) = D(⊕iMi) = DΦ(⊕iMi)

in GrModA
o
for M ∈ GrModA, we see that ΦoD = DΦ : GrModA →

GrModA
o
.

Similarly, since

ΦD(⊕iMi) = Φ(⊕iD(M−i)) = ⊕iDM−i = D(⊕iM−i) = DΦo(⊕iMi)

in GrModA for M ∈ GrModAo, we see that ΦD = DΦo : GrModAo →
GrModA. □
Remark 2.19. For a graded algebra A, (Ao)ij = Ao

j−i = A−i+j = A−j,−i =

(A)oij for every i, j ∈ Z, so (Ao) = (A)o as Z-algebras. In particular, A is a
connected graded algebra if and only if Ao is a connected graded algebra if and
only if A is a connected Z-algebra if and only if (A)o is a connected Z-algebra.

Lemma 2.20. [21, Proposition 3.1] Let C be a Z-algebra. Then there exists a
graded algebra A such that C ∼= A as Z-algebras if and only if C is 1-periodic.

3. Derived Categories of Graded Modules

One of the main results in [13] and [14] is a version of local duality for con-
nected Z-algebras. In this section, we prove another version of local duality for
Z-algebras (Theorem 3.29) and we prove other results about derived functors
associated to noncommutative projective Z-schemes which will be employed
in the sequel.

Throughout the remainder of the paper, if C denotes an abelian category,
we let D(C ) (resp. D−(C ), D+(C ), D b(C )) denote the derived category
of C (resp. the bounded above derived category of C , the bounded below
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derived category, the bounded derived category). We will also utilize various
left and right derived functors of functors already introduced, and the reader
may consult [13, Section 6] for more information about these derived functors.

3.1. Noncommutative Projective Z-schemes.

Definition 3.1. Let C be a Z-algebra and X ∈ D b(GrModC). A complex (F, d)

· · · d2−−−→ F 2 d1−−−→ F 1 d0−−−→ F 0 −−−→ M −−−→ 0

where F q ∈ add{Pj}j∈Z is called a finitely generated free resolution of X if F
is quasi-isomorphic to X. A finitely generated free resolution of X is called
minimal if Im dq ⊂ F qC≥1 for every q ∈ Z.

Lemma 3.2. If C is a right coherent connected Z-algebra, then every M ∈
grmodC has a unique minimal finitely generated free resolution up to isomor-
phism.

Proof. The existence of a minimal finitely generated free resolution follows
from [13, Proposition 4.4]. Using the same argument as in the connected
graded case, a minimal finitely generated free resolution over a connected Z-
algebra is unique up to isomorphism. □

The following condition is essential for the rest of the paper.

Definition 3.3. A connected Z-algebra C is called right Ext-finite if every Si

has a minimal finitely generated free resolution in GrModC.

Lemma 3.4. If C is a right coherent connected Z-algebra, then C is right
Ext-finite.

Proof. This follows from Lemma 3.2. □
Lemma 3.5. Let C be a connected Z-algebra. If C is right Ext-finite, then C
is locally finite. In particular, if C is right coherent, then C is locally finite.

Proof. This follows from [13, Remark 3.3]. □

In summary, we have the following implications for a connected Z-algebra.
right noetherian ⇒ right coherent ⇒ right Ext-finite ⇒ locally finite.

Definition 3.6. Let C be a Z-algebra. We say that M ∈ GrModC is right
bounded if M≥m = 0 for some m ∈ Z and left bounded if M≤m = 0 for some
m ∈ Z.

We denote by TorsC the full subcategory of GrModC consisting of modules
M such that xC is right bounded for every x ∈M .
We define a torsion functor τ : GrModC → TorsC ⊂ GrModC by

τ(M) := {x ∈M | xC is right bounded}.

Lemma 3.7. If C is a right Ext-finite connected Z-algebra, then TorsC is a
localizing subcategory of GrModC.
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Proof. By [13, Lemma 3.5], TorsC is a Serre subcategory of GrModC. Since
τ(M) is the largest torsion submodule of M ∈ GrModC, TorsC is a localizing
subcategory of GrModC by [20, Proposition 4.5.2]. □
Definition 3.8. Let C be a right Ext-finite connected Z-algebra. We define the
quotient category TailsC := GrModC/TorsC. We call TailsC the noncom-
mutative projective Z-scheme associated to C.

Let C be a right Ext-finite connected Z-algebra. We denote by

π : GrModC → TailsC

the quotient functor. Since TorsC is a localizing subcategory of GrModC by
Lemma 3.7, π : GrModC → TailsC has a right adjoint

ω : TailsC → GrModC.

We write
Q := ωπ : GrModC → GrModC.

We often write M := πM ∈ TailsC for M ∈ GrModC. We also write
ExtqC(M,N ) := ExtqTailsC(M,N ) for M,N ∈ TailsC.

If C is a right coherent connected Z-algebra, then grmodC is an abelian
category, so torsC := grmodC ∩TorsC is a Serre subcategory of grmodC. In
this case, we define tailsC := grmodC/ torsC.

Lemma 3.9. If C is a right coherent connected Z-algebra, then torsC is the
full subcategory of grmodC consisting of finite dimensional modules.

Proof. Let M ∈ torsC. Since M ∈ grmodC, there exist x1, . . . , xm ∈ M
such that M =

∑m
i=1 xiC. Since M ∈ TorsC, xiC is right bounded for every

i = 0, . . . ,m. Since C is locally finite by Lemma 3.5, xiC is finite dimensional
for every i = 1, . . . ,m, so M is finite dimensional. The converse is clear. □
Remark 3.10. If C is a right coherent connected Z-algebra, then tailsC is the
same as cohprojC defined in [17] and [19] by Lemma 3.9, so, for the rest of
the paper, we can and will view tailsC as a full subcategory of TailsC by [17,
Lemma 2.2 (2)].

We use the following Z-algebra version of [4, Lemma 4.3.3] (see also [10,
Proposition 1.7.11]) implicitly in the sequel.

Lemma 3.11. If C is a right coherent connected Z-algebra, then the canonical
functors D b(grmodC) → D(GrModC) and D b(tailsC) → D(TailsC) are
fully faithful.

By the above lemma, we often view D b(grmodC) and D b(tailsC) as full
subcategories of D(GrModC) and D(TailsC), respectively.
The next result follows from a property of a localizing subcategory.

Lemma 3.12. (cf. [17, Theorem 6.8]) If C is a right Ext-finite connected
Z-algebra, then, for every X ∈ D b(GrModC), there exists a triangle

R τ(X) → X → RQ(X)
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in D(GrModC). In particular, for every M ∈ GrModC, there exists an exact
sequence

0 → R0 τ(M) →M → R0Q(M) → R1 τ(M) → 0,

and an isomorphism Rq Q(M) ∼= Rq+1 τ(M) in GrModC for every q ≥ 1.

We have the following analogue of [13, Lemma 6.9].

Lemma 3.13. Let A,B be Z-algebras. If B is a right Ext-finite connected Z-
algebra, then the left-exact functor Q := ωπ : GrModB → GrModB extends
to a left-exact functor

Q : Bimod(A− B) −→ Bimod(A− B)

via functoriality of Q.

Proof. Since Ri τ commutes with direct sums by [13, Lemma 5.9], then by
Lemma 3.12, Q commutes with direct sums. Thus, if M is an object in
Bimod(A−B), then Q(⊕ieiM) ∼= ⊕iQ(eiM) as graded right B-modules. Fur-
thermore, we may define a graded left A-module structure on this module via
functorality of Q, and this makes Q(M) an object in Bimod(A − B) as one
can check. It is also routine to check this defines a functor and we omit the
verification. □

Since Bimod(A− B) has enough injectives, there is a right derived functor

RQ : D+(Bimod(A− B)) → D(Bimod(A− B)).

In what follows, we shall abuse notation by writing τ andQ for the associated
extensions of these functors to bimodule categories.

Lemma 3.14. If C is a right Ext-finite connected Z-algebra, then there exists
a triangle

R τ(C) → C → RQ(C)

in D(Bimod(C − C)). In particular, there exist an exact sequence

0 → R0 τ(C) → C → R0Q(C) → R1 τ(C) → 0,

and an isomorphism Rq+1 τ(C) ∼= Rq Q(C) for every q ≥ 1 in Bimod(C − C).

Proof. Let I denote an injective resolution of C in Bimod(C − C). For each
i ∈ Z, eiI is an injective resolution of Pi in GrModC by [13, Lemma 2.3], and
thus, by Lemma 3.12, there is a short exact sequence of complexes

0 → τ(eiI) → eiI → Q(eiI) → 0

for each i ∈ Z. Since τ and Q commute with direct sums, then, by definition
of the extensions of τ and Q to bimodules, there is a short exact sequence of
complexes of objects in Bimod(C − C)

0 → τ(I) → I → Q(I) → 0.

The result now follows from [7, Remark, p. 63]. □
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For a connected Z-algebra C, the cohomological dimension of τ is defined
by

cd τ := sup{q ∈ N | Rq τ(M) 6= 0 for M ∈ GrModC}.
Note that if cd τ <∞, then DR τ(C) ∈ D b(Bimod(C−C)) is bounded, which
is often an essential condition in the sequel.

Lemma 3.15. Let C be a right Ext-finite connected Z-algebra. If cd τ <
∞, then DRQ(C) ∼= cone(DC → DR τ(C))[−1] in D(Bimod(C − C)). In
particular, DRQ(C) is bounded.

Proof. The fact that DR τ(C) is bounded follows immediately from cd τ <∞.
By Lemma 3.14, there is a triangle

R τ(C) → C → RQ(C)

in D(Bimod(C − C)). Thus, there is a triangle

DRQ(C) → DC → DR τ(C)

which may be rotated to a triangle

DC → DR τ(C) → DRQ(C)[1].

It follows that DRQ(C) ∼= cone(DC → DR τ(C))[−1]. □
Definition 3.16. Let C be a right Ext-finite connected Z-algebra,M ∈ D(TailsC)
and q ∈ Z.

(1) We define a graded right C-module structure on

ExtqC(C,M) := ⊕i∈Z HomC(Pi,M[q])

by

ExtqC(C,M)i × Cij
∼= HomC(Pi,M[q])× HomC(Pj, Pi)

→ HomC(Pi,M[q])× HomC(Pj,Pi)

→ HomC(Pj,M[q])

= ExtqC(C,M)j.

(2) We define a graded left C-module structure on

ExtqC(M, C) := ⊕j∈Z HomC(M[−q],Pj)

by

Cij × ExtqC(M, C)j ∼= HomC(Pj, Pi)× HomC(M[−q],Pj)

→ HomC(Pj,Pi)× HomC(M[−q],Pj)

→ HomC(M[−q],Pi)

= ExtqC(M, C)i.

Lemma 3.17. If C is a right Ext-finite connected Z-algebra, then ω(−) ∼=
HomC(C,−) : TailsC → GrModC as functors. In particular, Rq ω(M) ∼=
ExtqC(C,M) in GrModC for every M ∈ TailsC and q ∈ Z.
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Proof. For M ∈ TailsC,

HomC(C,M) := ⊕i∈Z HomC(Pi,M) ∼= ⊕i∈Z HomC(Pi, ω(M))

=: HomC(C, ω(M)) ∼= ω(M)

as graded vector spaces where the last isomorphism is in GrModC by Lemma
2.2 (1). Since π : GrModC → TailsC is a functor such that πωM ∼= M, we
have the following commutative diagram

(ωM)i × Cij −−−→ (ωM)j

‖ ‖

HomC(Pi, ωM)× HomC(Pj, Pi) −−−→ HomC(Pj, ωM)y y
HomC(Pi,M)× HomC(Pj,Pi) −−−→ HomC(Pj,M)x ‖

HomC(C,M)i × Cij −−−→ HomC(C,M)j

so ωM ∼= HomC(C,M) in GrModC. It follows that

ω(−) ∼= HomC(C,−) : TailsC → GrModC

as functors, so RωM ∼= RHomC(C,M) in D(GrModC), hence Rq ωM =
hq(RωM) ∼= hq(RHomC(C,M)) = ExtqC(C,M) in GrModC for every q ∈
Z. □
Remark 3.18. If C is a right Ext-finite connected Z-algebra, then HomC(C, C)
has a structure of a bigraded C-bimodule as defined in Definition 3.16. On
the other hand, since HomC(C, π(−)) : GrModC → GrModC is a functor
commuting with direct sums, HomC(C, C) has a structure of a bigraded C-
bimodule as defined in the proof of Lemma 3.13. It is routine to check that
these bigraded C-bimodule structures are the same.

The following result plays a key role in the proof of Proposition 4.11, which
gives necessary and sufficient conditions for an algebra to satisfy various reg-
ularity conditions.

Lemma 3.19. If C is a right Ext-finite connected Z-algebra, then

RHomC(C, C) ∼= RQ(C).

Therefore, there exists a triangle

R τ(C) → C → RHomC(C, C)
in D(Bimod(C − C)). In particular, there exists an exact sequence

0 → R0 τ(C) → C → HomC(C, C) → R1 τ(C) → 0

and an isomorphism Rq+1 τ(C) ∼= ExtqC(C, C) for every q ≥ 1 in Bimod(C−C).
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Proof. The second and third part of the result will follow from the first by
Lemma 3.14. To prove the first part of the result, we know that Q(−) ∼=
HomC(C, π(−)) : GrModC → GrModC as functors by Lemma 3.17, so that, if
we extend HomC(C, π(−)) to an endofunctor on Bimod(C−C) using functori-
ality as we did in the proof of Lemma 3.13, we have Q(−) ∼= HomC(C, π(−)) :
Bimod(C − C) → Bimod(C − C) as functors. □
3.2. Local Duality. We will need the following notation from [13]: viewing k
as a graded algebra concentrated in degree 0, we define a connected Z-algebra
K := k, that is,

Kij = kj−i =

{
k if i = j

0 if i 6= j.

Note that Ko = K as Z-algebras, so Bimod(Ko−C) = Bimod(K−C) denotes
the category of bigraded K-C-bimodules.
In [13] and [14], local duality is proven for objects of D−(Bimod(K − C)).

However, for various applications in this paper, we need to apply it to objects
of D−(GrModC). For this reason we introduce the functor

Ii(−) := Kei ⊗k − : GrModC → Bimod(K − C).

Lemma 3.20. Let C be a Z-algebra.
(1) Ii : GrModC → Bimod(K − C) and ej(−) : Bimod(K − C) →

GrModC are exact functors, which induce functors Ii : D(GrModC) →
D(Bimod(K−C)) and ej(−) : D(Bimod(K−C)) → D(GrModC) such
that

ej(−) ◦ Ii ∼=

{
id if i = j

0 if i 6= j.

(2) For every i, j ∈ Z, Ii(Pj) ∈ Bimod(K − C) is a projective bigraded
K-C bimodule.

(3) Ii induces a fully faithful functor D(GrModC) → D(Bimod(K − C)).

Proof. (1) Clearly, Ii and ej(−) are exact functors. If M ∈ GrModC, then

ejIi(M) = ⊕s∈Z(Kei ⊗k M)js

= ⊕s∈Z((Kei)j ⊗k Ms)

=

{
⊕s∈ZMs =M if i = j

0 if i 6= j.

(2) By [13, Lemma 2.4], Ii(Pj) = Kei ⊗k ejC is a projective bigraded K-C
bimodule.

Part (3) follows immediately from (1). □
Using the lemma, we have the following consequence of [14, Theorem 2.1].

Theorem 3.21. Let C be a right Ext-finite connected Z-algebra such that
cd τ <∞. For M ∈ D−(GrModC),

DR τ(M) ∼= RHomC(M,DR τ(C))
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in D(GrModCo).

Proof. For M ∈ D−(GrModC),

DR τ(M) ∼= DR τ(e0I0(M)) [Lemma 3.20 (1)]
∼= D(e0 R τ(I0(M)))
∼= (DR τ(I0(M))e0
∼= RHomC(I0(M), DR τ(C))e0 [14, Theorem 2.1]
∼= RHomC(e0I0(M), DR τ(C))
∼= RHomC(M,DR τ(C)) [Lemma 3.20 (1)]

in D(GrModCo). □
For a connected Z-algebra C, we define the small global dimension of C by

sgldimC := sup{pd(Si) | i ∈ Z}.
For the readers convenience, we recall [14, Lemma 2.2]:

Lemma 3.22. Let C be a right Ext-finite connected Z-algebra. If sgldimC <
∞, then cd τ <∞.

Lemma 3.23. Let C be a connected Z-algebra. If sgldimC < ∞, then the
global dimensions of GrModC and GrModCo are finite.

Proof. By [13, Corollary 4.10], sgldimCo = sgldimC < ∞. Since the func-
tor −⊗CC/C≥1 : GrModC −→ GrModC commutes with direct limits, the

left derived functors TorCi (−, C/C≥1), i > 0 defined in [13, Section 4.2], also
commute with direct limits by the Z-algebra analogue of the usual argument
in the graded context. Therefore, since every graded module is a direct limit
of left-bounded modules, the fact that the global dimension of GrModC is
finite follows by [13, Proposition 4.11], [13, Proposition 4.7], and the fact that
sgldimCo <∞. The fact that the global dimension of GrModCo is finite now
follows by symmetry. □
Lemma 3.24. Let C be a coherent connected Z-algebra. If sgldimC < ∞,
then we have a duality

RHomC(−, C) : D b(grmodC) ↔ D b(grmodCo) : RHomCo(−, Co).

Proof. By [13, Corollary 4.10], sgldimCo = sgldimC < ∞. Thus, by Lemma
3.23 and [7, p. 68, Example 1],

RHomCo(RHomC(−, C), Co) : D(GrModC) → D(GrModC)

is way out on both sides. Furthermore, HomC(−, C) : GrModC → GrModCo

equals the functor HomC(I0(−), C)e0 when HomC(−, C) is considered as a
functor from Bimod(K − C) to Bimod(C −K). Thus, as in the proof of [14,
Theorem 3.7], the functors RHomC(−, C) and RHomCo(−, Co) induce functors
between the categories D b(grmodC) and D b(grmodCo) by Lemma 3.11. The
result now follows from [14, Lemma 3.6 (2)] in the case l = 0 and ν = id (see
the argument in the proof of [14, Theorem 3.7]). □



A CATEGORICAL CHARACTERIZATION OF QUANTUM PROJECTIVE Z-SPACES 21

Definition 3.25. We say L ∈ D b(Bimod(K − C)) is a perfect complex if the
terms of L are finite direct sums of modules of the form Kei ⊗k ejC.

Lemma 3.26. Let C be a right coherent connected Z-algebra. If sgldimC <
∞, then every X ∈ D b(grmodC) has a finitely generated free resolution of
finite length. Therefore, I0(X) is quasi-isomorphic to a perfect complex.

Proof. ForX ∈ D b(grmodC), we may assume thatXq = 0 for all q � 0 and all
q � 0. Since Xq ∈ grmodC is left bounded, pd(Xq) <∞ by [13, Proposition
4.11], so Xq has a unique minimal finitely generated free resolution of finite
length for every q ∈ Z by Lemma 3.2 and [13, Corollary 4.5]. The total complex
of the Cartan-Eilenberg resolution of X is a finitely generated free resolution
of X of finite length. □

The following result, which will be employed to prove Theorem 6.6, is a
Z-algebra version of [9, Proposition 2.1]. The proof employs the functors
Hom•

C(−,−) and Tot(−⊗C−) defined in [13, Section 6].

Proposition 3.27. Let B and C be Z-algebras, X ∈ D b(Bimod(K − C)),
Y ∈ D b(Bimod(B−C)) and Z ∈ D−(Bimod(K−B)). If X is quasi-isomorphic
to a perfect complex, then there is an isomorphism

RHomC(X,Z⊗L
BY ) ∼= Z⊗L

B RHomC(X,Y ).

Proof. By assumption, X is quasi-isomorphic to a perfect complex L. More-
over, by [13, Lemma 2.4], Z is quasi-isomorphic to a bounded above complex
F , whose terms are direct sums of modules of the form Kei ⊗k ejB. Thus, by
[13, Proposition 6.6 (2), Proposition 6.8],

RHomC(X,Z⊗L
BY ) ∼= Hom•

C(L,Tot(F⊗BY )),

and

Z⊗L
B RHomC(X,Y ) ∼= Tot(F⊗B Hom•

C(L, Y )).

Therefore, it suffices to prove that there is a natural isomorphism of complexes

Hom•
C(L,Tot(F⊗BY )) ∼= Tot(F⊗B Hom•

C(L, Y )).

Since, for P a free module in GrModB, M in GrModC a finitely generated
free module, and N in Bimod(B − C), there is a natural isomorphism

P⊗B HomC(M,N) −→ HomC(M,P⊗BN),

in GrModC, the remainder of the proof is the same as that of [9, Proposition
2.1]. □

We also will employ the following variant of [13, Lemma 6.10].

Lemma 3.28. Let C be a right Ext-finite connected Z-algebra. If M is a
complex of free right C-modules, and N is a complex of bigraded C-bimodules,
then there exists a canonical isomorphism

Tot(M⊗CQ(N)) ∼= Q(Tot(M⊗CN)).
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Proof. By Lemma 3.12 and [13, Lemma 5.9], RiQ commutes with direct limits
for i ≥ 0. Thus, the argument in [13, Lemma 6.10] can be applied to prove
the result. □

The following is a Z-algebra version of local duality found in [16].

Theorem 3.29. Let C be a right Ext-finite connected Z-algebra such that
cd τ <∞. For M ∈ D−(Bimod(K − C)),

DRQ(M) ∼= RHomC(M,DRQ(C))

in D(Bimod(C −K)).

Proof. Since cd τ < ∞, the cohomological dimension of Q is finite by Lemma
3.12. Furthermore, by Lemma 3.12 and [13, Lemma 5.9], RiQ commutes with
direct limits for i ≥ 0. Thus, by Lemma 3.28, the argument of [14, Theorem
2.1] can be applied to prove the result. □

4. AS-regular Z-algebras

AS-regular algebras were originally introduced in [1], and play an essential
role in noncommutative algebraic geometry. The related notion of ASF-regular
algebras was originally introduced in [11]. After recalling these notions, we
modify these definitions for the purpose of this paper.

Definition 4.1. Let A be a locally finite connected graded algebra.

(1) A is called AS-regular of dimension d and of Gorenstein parameter ℓ if
• gldimA = d, and

• ExtqA(k,A(j))
∼=

{
k if q = d and j = −ℓ,
0 otherwise.

(2) A is called ASF-regular of dimension d and of Gorenstein parameter ℓ
if

• gldimA = d, and

• DRq τ(A) ∼=

{
A(−ℓ) if q = d,

0 otherwise
as graded left and right A-

modules.

Recall that a connected graded algebra A is right Ext-finite if and only if A
is left Ext-finite by [25], so we may just say that A is Ext-finite, and, in this
case, A is locally finite. If A is an Ext-finite connected graded algebra, then
A is AS-regular of dimension d and of Gorenstein parameter ℓ if and only if A
is ASF-regular of dimension d and of Gorenstein parameter ℓ by [11, Theorem
3.12] and [15, Theorem 2.19].

In this section, we extend these definitions to Z-algebras, and study some
properties and relationships of these Z-algebras.
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4.1. AS-regular Z-algebras and ASF-regular Z-algebras. The following
definition was given in [13].

Definition 4.2. [13, Definition 7.1] A locally finite connected Z-algebra C is
called AS-regular of dimension d and of Gorenstein parameter ℓ if

(ASR1) pdCSi = d for every i ∈ Z, and

(ASR2) ExtqC(Si, Pj) =

{
k if q = d and j = i+ ℓ

0 otherwise,
that is,

RHomC(Si, Pj) ∼=

{
k[−d] if j = i+ ℓ

0 otherwise

in D(Mod k).

Remark 4.3. Since ExtqC(Si, C)j = ExtqC(Si, ejC) = ExtqC(Si, Pj), the condition
(ASR2) is equivalent to

ExtqC(Si, C) ∼=

{
Si+ℓ if q = d

0 otherwise

as graded left C-modules for every i ∈ Z.

The following proposition justifies our definition of an AS-regular Z-algebra
above. A similar result was stated in [26, Section 4.1] although the definition
of an AS-regular Z-algebra in [26, Section 4.1] differs slightly from ours. (In
[26], the Gorenstein parameter is not well-defined.)

Proposition 4.4. Let A be a locally finite connected graded algebra. Then
A is an AS-regular algebra of dimension d and of Gorenstein parameter ℓ if
and only if A is an AS-regular Z-algebra of dimension d and of Gorenstein
parameter ℓ.

It follows from the above proposition and Lemma 2.20 that C is a 1-periodic
AS-regular Z-algebra of dimension d and of Gorenstein parameter ℓ if and
only if there exists an AS-regular algebra A of dimension d and of Gorenstein
parameter ℓ such that C ∼= A.
The next result tells us that AS-regularlity is left-right symmetric.

Theorem 4.5. Let C be a connected Z-algebra. Then C is a right Ext-finite
AS-regular algebra of dimension d and of Gorenstein parameter ℓ if and only
if Co is a right Ext-finite AS-regular algebra of dimension d and of Gorenstein
parameter ℓ.

Proof. Let C be a right Ext-finite AS-regular Z-algebra of dimension d and of
Gorenstein parameter ℓ. Since C is right Ext-finite, Si has a minimal finitely
generated free resolution

0 → F d → · · · → F 0 → Si → 0
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in GrModC. Since F q ∈ add{Pj}j∈Z, we have HomC(F
q, C) ∈ add{Qj}j∈Z =

add{P o
j }j∈Z for every q by Lemma 2.2 (2). By Remark 4.3,

0 → HomC(F
0, C) → · · · → HomC(F

d, C) → ExtdC(Si, C) ∼= Si+ℓ → 0

is a minimal finitely generated free resolution of So
−ℓ−i

∼= Si+ℓ in GrModCo, so
Co is right Ext-finite and pdSo

−ℓ−i = d for every i ∈ Z.
Since RHomCo(RHomC(F,C), C

o) ∼= F by [14, Lemma 3.6 (2)] (see Lemma
3.24),

0 → HomCo(HomC(F
d, C), Co) → · · · → HomCo(HomC(F

0, C), Co) → Si → 0

is isomorphic to the original minimal finitely generated free resolution of Si in
GrModC by the uniqueness of the minimal free resolution, so

ExtqCo(So
−ℓ−i, C

o) =

{
Si

∼= So
−i if q = d

0 otherwise,

hence Co is an AS-regular Z-algebra of dimension d and of Gorenstein param-
eter ℓ by Remark 4.3. □

Remark 4.6. In the setting of the above theorem, since

HomC(Pi, Sj) =

{
k if i = j

0 if i 6= j

by Lemma 2.2 (1), we have F 0 ∼= Pi. Similarly, since

HomCo(P o
i , S

o
j ) =

{
k if i = j

0 if i 6= j,

we have HomC(F
d, C) ∼= P o

−ℓ−i
∼= Qi+ℓ, so we have F d ∼= Pi+ℓ. It follows that

the minimal finitely generated free resolution of Si in GrModC is of the form

0 → Pi+ℓ → · · · → Pi → Si → 0.

The following definition was also given in [13].

Definition 4.7. [13, Definition 7.5] A connected Z-algebra C is called ASF-
regular of dimension d and of Gorenstein parameter ℓ if

(ASF1) sgldimC = d <∞, and

(ASF2) Rq τ(Pj) ∼=

{
D(Qj−ℓ) if q = d

0 otherwise
as graded right C-modules for every

j ∈ Z, that is,
R τ(Pj) ∼= (D(Qj−ℓ))[−d]

in D(GrModC).

As to relationships between AS-regular Z-algebras and ASF-regular Z-algebras,
one implication was proved in [13].
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Theorem 4.8. [13, Corollary 7.7] If C is a right Ext-finite AS-regular Z-
algebra of dimension d and of Gorenstein parameter ℓ, then C is an ASF-
regular Z-algebra of dimension d and of Gorenstein parameter ℓ.

4.2. ASF+-regular Z-algebras. We now modify the original definition of an
ASF-regular algebra given in Definition 4.1, replacing the condition (ASF2)
with conditions that takes into account both the left and right C-module struc-
ture on R τ(C).

The following definition is closer to the original definition of an ASF-regular
algebra.

Definition 4.9. A locally finite connected Z-algebra C is called ASF+-regular
of dimension d and of Gorenstein parameter ℓ if

(ASF1) sgldimC = d <∞,
(ASF2) (DR τ(C))ej ∼= Cej−ℓ[d] = Qj−ℓ[d] in D(GrModCo) for every j ∈ Z,

and
(ASF2+) ei(DR τ(C)) ∼= ei+ℓC[d] = Pi+ℓ[d] in D(GrModC) for every i ∈ Z.

Remark 4.10. Let C be a connected Z-algebra.
(1) Since

(DR τ(C))ej ∼= D(ej R τ(C)) ∼= D(R τ(ejC)) = DR τ(Pj)

as graded left C-modules, the above condition (ASF2) is equivalent
to the condition (ASF2) in Defintion 4.7. However, since Qj has no
graded right C-module structure, τ(Qj) is not well-defined, so we are
not able to replace ei(DR τ(C)) by DR τ(Qi) in the above condition
(ASF2+).

(2) Since C(0,−ℓ)ej = ⊕i∈ZCi,j−ℓ = Qj−ℓ as graded left C-modules and
eiC(ℓ, 0) = ⊕j∈ZCi+ℓ,j = Pi+ℓ as graded right C-modules, the condition
(ASF2) is equivalent to

DRq τ(C) ∼=

{
C(0,−ℓ) if q = d

0 if q 6= d

as graded left C-modules, and the condition (ASF2+) is equivalent to

DRq τ(C) ∼=

{
C(ℓ, 0) if q = d

0 if q 6= d

as graded right C-modules.
(3) Recall that C(0,−ℓ) has a bigraded C-C(−ℓ) bimodule structure, and

C(ℓ, 0) has a bigraded C(ℓ)-C bimodule structure. Although DRd τ(C)
has a bigraded C-bimodule structure, C(0,−ℓ), C(ℓ, 0) do not have
natural bigraded C-bimodule structures unless C is ℓ-periodic. Even
if C is ℓ-periodic, C(0,−ℓ) and C(ℓ, 0) are not isomorphic to C as
bigraded C-bimodules in general.

Proposition 4.11. Let C be a right Ext-finite connected Z-algebra of sgldimC =
d.
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(1) For d = 1,
• C satisfies (ASF2) if and only if there is an exact sequence

0 → C → HomC(C, C) → D(C(0,−ℓ)) → 0

as graded right C-modules and ExtqC(C, C) = 0 for every q ≥ 1.
• C satisfies (ASF2+) if and only if there is an exact sequence

0 → C → HomC(C, C) → D(C(ℓ, 0)) → 0

as graded left C-modules and ExtqC(C, C) = 0 for every q ≥ 1.
(2) For d ≥ 2,

• C satisfies (ASF2) if and only if

ExtqC(C, C) ∼=


C if q = 0

D(C(0,−ℓ)) if q = d− 1

0 otherwise

as graded right C-modules, and
• C satisfies (ASF2+) if and only if

ExtqC(C, C) ∼=


C if q = 0

D(C(ℓ, 0)) if q = d− 1

0 otherwise

as graded left C-modules.

In the above, we tacitely require that the isomorphism when q = 0 is induced
by the canonical map C ∼= HomC(C,C) → HomC(C, C).
Proof. By Lemma 3.19 and Lemma 4.10 (2), we have a triangle

(D(C(0,−ℓ)))[−d] ∼= R τ(C) → C → RHomC(C, C)
in D(GrModC) and a triangle

(D(C(ℓ, 0)))[−d] ∼= R τ(C) → C → RHomC(C, C)
in D(GrModCo), so the result follows. □
Lemma 4.12. Let A be an Ext-finite connected graded algebra, and Φ :
GrModA → GrModA,Φo : GrModAo → GrModA

o
equivalence functors de-

fined in Lemma 2.17 and Lemma 2.18.

(1) A is right Ext-finite.
(2) Φτ ∼= τΦ : GrModA→ GrModA as functors.
(3) For M ∈ GrModAe, eiR τ(M) ∼= Φ(R τ(M(−i))) for every i ∈ Z

in D(GrModA), and R τ(M)ej ∼= Φo(R τ(M(j))) for every j ∈ Z in

D(GrModA
o
).

Proof. (1) Since Φ(A(−i)) ∼= Pi, if F is a minimal finitely generated free
resoution of k(j) in GrModA, then Φ(F ) is a minimal finitely generated free
resoution of Φ(k(−i)) ∼= Si in GrModA by Lemma 2.17.

(2) Since M is right bounded if and only if Φ(M) is right bounded, Φ
restricts to an equivalence functor Φ : TorsA→ TorsA. Since τ : GrModA→
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TorsA, and τ : GrModA → TorsA are right adjoint to the inclusion functors
TorsA→ GrModA and TorsA→ GrModA, respectively, we have Φτ ∼= τΦ :
GrModA→ GrModA as functors.

(3) For M ∈ GrModAe,

eiτ(M) ∼= τ(eiM) ∼= τΦ(M(−i)) ∼= Φτ(M(−i))
in GrModA by Lemma 2.18 (2), and (2) above, so

ei(−) ◦ τ ◦ (−) ∼= Φ ◦ τ ◦ (−i) : GrModAe → GrModA

as functors for every i ∈ Z. Since functors (−) : GrModAe → Bimod(A−A),
ei(−) : GrModA

e → GrModA, (−i) : GrModAe → GrModAe, and Φ :
GrModAe → GrModA are all exact, eiR τ(M) ∼= Φ(R τ(M(−i))) for every
i ∈ Z in D(GrModA).

On the other hand, since (−) : GrModA → GrModA is an exact functor,
and

(A≥n)ij = (A≥n)j−i =

{
Aj−i if j − i ≥ n
0 if j − i < n

}
=

{
Aij if j − i ≥ n
0 if j − i < n

}
= (A≥n)ij

for every n ∈ Z,
A/A≥n

∼= A/A≥n
∼= A/A≥n,

so

τ(M)ej ∼= lim
n→∞

HomA(A/A≥n,M)ej

= lim
n→∞

HomA(ej(A/A≥n),M)

:= lim
n→∞

(⊕i∈Z HomA(ejA/A≥n, eiM))

∼= lim
n→∞

(⊕i∈Z HomA(Φ((A/A≥n)(−j)),Φ(M(−i)))
∼= lim

n→∞
Φo(⊕i∈Z HomA((A/A≥n)(−j),M(i)))

= Φo( lim
n→∞

HomA(A/A≥n,M(j)))

∼= Φo(τ(M(j)))

in GrModA
o
by [13, Lemma 5.8], Lemma 2.18 (2), and Lemma 2.17, hence

(−)ej ◦ τ ◦ (−) ∼= Φo ◦ τ ◦ (j) : GrModAe → GrModA
o

as functors for every j ∈ Z.
Since the functors (−) : GrModAe → Bimod(A− A), (−)ej : GrModA

e →
GrModA

o
, (j) : GrModAe → GrModAe, and Φo : GrModAe → GrModA

o

are all exact, R τ(M)ej ∼= Φo(R τ(M(j))) for every i ∈ Z in D(GrModA
o
). □

The following theorem justifies the definition of an ASF+-regular Z-algebra.

Theorem 4.13. Let A be an Ext-finite connected graded algebra. Then A
is an ASF-regular algebra of dimension d ≥ 1 and of Gorenstein parameter
ℓ if and only if A is an ASF+-regular Z-algebra of dimension d ≥ 1 and of
Gorenstein parameter ℓ.
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Proof. If Φ : GrModA ∼= GrModA is an equivalence functor defined in Lemma
2.17, then Φ(k(−i)) ∼= Si, so

pdASi = pdAk(−i) = gldimA

for every i ∈ Z.
Since Φo(A(j − ℓ)) ∼= Aej−ℓ in GrModA

o
by Lemma 2.18 (1), and

(DR τ(A))ej ∼= D(ej R τ(A))
∼= DΦ(R τ(A(−j)))
∼= ΦoDR τ(A(−j))

in D(GrModA
o
) by Lemma 4.12 (3) and Lemma 2.18 (3),

(DR τ(A))ej ∼= Aej−ℓ[d]

for every j ∈ Z if and only if

DR τ(A(−j)) ∼= A(j − ℓ)[d]

in D(GrModAo) for every j ∈ Z by Lemma 2.18 (1) if and only if

DR τ(A) ∼= A(−ℓ)[d]

in D(GrModAo).
Similarly, since Φ(A(−i− ℓ)) ∼= ei+ℓA in GrModA by Lemma 2.17, and

ei(DR τ(A)) ∼= D(R τ(A)ei) ∼= DΦo(R τ(A(i))) ∼= ΦDR τ(A(i))

in D(GrModA) by Lemma 4.12 (3) and Lemma 2.18 (3),

ei(DR τ(A)) ∼= ei+ℓA[d]

for every i ∈ Z if and only if DR τ(A(i)) ∼= A(−i − ℓ)[d] in D(GrModA) for
every i ∈ Z by Lemma 2.17 if and only ifDR τ(A) ∼= A(−ℓ)[d] in D(GrModA).

□

We have the following implication.

Theorem 4.14. If C is a right Ext-finite ASF+-regular Z-algebra of dimen-
sion d and of Gorenstein parameter ℓ, then C is an AS-regular Z-algebra of
dimension d and of Gorenstein parameter ℓ.

Proof. First note that in this situation, cd τ <∞ by Lemma 3.22. Since

RHomC(Si, Pj) ∼= RHomC(Si, ej−ℓ(DR τ(C))[−d])
∼= RHomC(Si, DR τ(C))j−ℓ[−d]
∼= DR τ(Si)j−ℓ[−d]
∼= (DSi)j−ℓ[−d]

∼=

{
k[−d] if j = i+ ℓ

0 otherwise
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in D(Mod k) by (ASF2+) and Theorem 3.21, C satisfies (ASR2). Since pdSi ≤
sgldimC = d by (ASF1), while pdSi ≥ d by (ASR2) for every i ∈ Z, C satisfies
(ASR1). □

4.3. ASF++-regular Z-algebras. We introduce another notion of regularity,
which plays an essential role in this paper.

Definition 4.15. A locally finite connected Z-algebra C is called ASF++-regular
of dimension d and of Gorenstein parameter ℓ if

(ASF1) sgldimC = d <∞, and
(ASF2++) DR τ(C) ∼= C(0,−ℓ)ν [d] in D(Bimod(C − C)) for some isomorphism

ν : C → C(−ℓ) of Z-algebras, called the Nakayama isomorphism of C.

Remark 4.16. Let C be a Z-algebra and λ = {λi ∈ Cii}i∈Z is a sequence of
unit elements, then Iλ : C → C defined by Iλ(a) = λ−1

i aλj for a ∈ Cij is an
automorphism of a Z-algebra C, called an inner automorphism of C. If

ν, ν ′ : C → C(−ℓ)

are isomorphisms of Z-algebras, and

φ : C(0,−ℓ)ν → C(0,−ℓ)ν′

is an isomorphism of bigraded C-bimodules, then

φ(ei−ℓ)ν
′(a) = φ(ei−ℓ) ∗ a = φ(ei−ℓ ∗ a) = φ(ei−ℓν(a))

= φ(ν(a)) = φ(ν(a)ej−ℓ) = ν(a)φ(ej−ℓ)

for a ∈ (C(0,−ℓ)ν)i,j+ℓ = Cij so that ν(a), ν ′(a) ∈ C(−ℓ)ij = Ci−ℓ,j−ℓ, so
ν ′ = Iλ ◦ ν where λ = {φ(ei−ℓ) ∈ C(−ℓ)ii}i∈Z. It follows that the Nakayama
isomorphism is unique up to inner automorphism of C(−ℓ) if it exists.

Remark 4.17. If A is an AS-regular algebra, then DR τ(A) ∼= A(−ℓ)ν [d] in
D(GrModAe) for some graded algebra automorphism ν ∈ AutA called the
Nakayama automorphism of A. We say that A is Calabi-Yau if ν = id (up
to inner automorphism). For a non-Calabi-Yau AS-regular algebra A, it is
often the case that there exists a Calabi-Yau AS-regular algebra A′ such that
GrModA ∼= GrModA′ (see [8, Theorem 1.1]). In this case, A ∼= A′ as Z-
algebras by [21, Theorem 1.1], so the notion of Calabi-Yau does not make sense
for an AS-regular Z-algebra. (The Nakayama isomorphism for a Z-algebra is
never the identity.)

Lemma 4.18. Let C be a locally finite connected ℓ-periodic Z-algebra, and
M a bigraded C-bimodule. If M ∼= C(0,−ℓ) as graded left C-modules and
M ∼= C(ℓ, 0) as graded right C-modules, then there exists an isomorphism of
Z-algebras ν : C → C(−ℓ) such that M ∼= C(0,−ℓ)ν as bigraded C-bimodules.

Proof. Let ψ : M → C(0,−ℓ) be an isomorphism of graded left C-modules.
Define a bigraded k-linear map ν : C → C(−ℓ) by ν(a) = ψ(ψ−1(ei−ℓ)a) for
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a ∈ Cij. For a ∈ Cij, b ∈ Cjk,

ν(a)ν(b) = ψ(ψ−1(ei−ℓ)a)ψ(ψ
−1(ej−ℓ)b)

= ψ(ψ(ψ−1(ei−ℓ)a)ψ
−1(ej−ℓ)b)

= ψ(ψ−1(ψ(ψ−1(ei−ℓ)a))b)

= ψ(ψ−1(ei−ℓ)ab) = ν(ab),

so ν : C → C(−ℓ) is a homomorphism of Z-algebras.
Since C is ℓ-periodic, there exists an isomorphism ϕ : C → C(−ℓ) of Z-

algebras. By Lemma 2.14 (3), there exists an isomorphism

φ :M → C(ℓ, 0) → C(0,−ℓ)ϕ
of graded right C-modules. If ν(a) = 0, then ψ−1(ei−ℓ)a = 0, so

φ(ψ−1(ei−ℓ))ϕ(a) = φ(ψ−1(ei−ℓ)) ∗ a = φ(ψ−1(ei−ℓ)a) = 0.

Since 0 6= φ(ψ−1(ei−ℓ)) ∈ Ci−ℓ
∼= k, ϕ(a) = 0, so a = 0, hence ν is injective.

Since C is locally finite, ν is surjective, so ν : C → C(−ℓ) is an isomorphism
of Z-algebras.

We now consider the bigraded k-linear map ψ : M → C(0,−ℓ)ν . For a ∈
Cij,m ∈Mjt, b ∈ Cts,

aψ(m) ∗ b = aψ(m)ν(b) = ψ(am)ψ(ψ−1(et−ℓ)b)

= ψ(ψ(am)ψ−1(et−ℓ)b) = ψ(ψ−1(ψ(am))b)

= ψ(amb),

so ψ :M → C(0,−ℓ)ν is an isomorphism of bigraded C-bimodules. □
Theorem 4.19. A locally finite connected Z-algebra is ASF++-regular of di-
mension d and of Gorenstein parameter ℓ if and only if it is ℓ-periodic ASF+-
regular of dimension d and of Gorenstein parameter ℓ.

Proof. If C is an ASF++-regular Z-algebra of dimension d and of Gorenstein
parameter ℓ with the Nakayama isomorphism ν : C → C(−ℓ), then C is clearly
ℓ-periodic. Since

DR τ(C) ∼= C(0,−ℓ)ν [d]
in D(Bimod(C − C)),

DR τ(C)ej ∼= C(0,−ℓ)ej[d] ∼= Qj−ℓ[d]

in D(GrModCo). Similarly, since

DR τ(C) ∼= C(0,−ℓ)ν [d] ∼= ν−1C(ℓ, 0)[d]

in D(Bimod(C − C)) by Lemma 2.14 (3),

eiDR τ(C) ∼= eiC(ℓ, 0)[d] ∼= Pi+ℓ[d]

in D(GrModC), so C is ASF+-regular.
Conversely, let C be an ℓ-periodic ASF+-regular Z-algebra of dimension d

and of Gorenstein parameter ℓ. By Remark 4.10 (2), DRd τ(C) ∼= C(0,−ℓ)
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as graded left C-modules and DRd τ(C) ∼= C(ℓ, 0) as graded right C-modules.
By Lemma 4.18,

DRq τ(C) ∼=

{
C(0,−ℓ)ν if q = d

0 if q 6= d

for some isomorphism ν : C → C(−ℓ), so C is ASF++-regular. □

In summary, for a right Ext-finite connected Z-algebra C, we have the fol-
lowing implications by Theorem 4.8, Theorem 4.14, and Theorem 4.19:

ASF++ ⇒ ASF+ ⇒ AS ⇒ ASF

Moreover, if C has a “balanced dualizing complex”, then AS ⇔ ASF by [13,
Theorem 7.10], and if C is ℓ-periodic, then ASF++ ⇔ ASF+ by Theorem 4.19.

5. C-construction

The C-construction defined below is essential to study Z-algebras. We collect
some properties of the C-construction which will be needed in this paper (see
[12]).

5.1. C-construction.

Definition 5.1. Let C be a k-linear category.

(1) (B-construction) For O ∈ C and s ∈ Autk C , we define a graded
algebra B(C ,O, s) := ⊕i∈Z HomC (O, siO).

(2) (C-construction) For a sequence of objects {Ei}i∈Z in C , we define a
Z-algebra C(C , {Ei}i∈Z) := ⊕i,j∈Z HomC (E−j, E−i).

The following three lemmas are easy to prove, so we omit their proofs.

Lemma 5.2. [12, Lemma 3.3] Let C be a k-linear abelian category. For O ∈ C
and s ∈ Autk C , C(C , {siO}i∈Z) ∼= B(C ,O, s) as Z-algebras so that

GrModC(C , {siO}i∈Z) ∼= GrModB(C ,O, s).

Lemma 5.3. If C is a Z-algebra, then C(r) ∼= C(GrModC, {P−i−r}i∈Z) for
every r ∈ Z.

Lemma 5.4. [5, Lemma 2.5] Let {Ei}i∈Z and {E ′
i}i∈Z be sequences in k-linear

categories C and C ′, respectively.

(1) A functor F : C → C ′ induces a Z-algebra homomorphism

C(C , {Ei}i∈Z) → C(C ′, {F (Ei)}i∈Z).

(2) If there exists a fully faithful functor F : C → C ′ such that F (Ei) ∼= E ′
i

for every i ∈ Z, then C(C , {Ei}i∈Z) ∼= C(C ′, {E ′
i}i∈Z) as Z-algebras.
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Remark 5.5. For a Z-algebra C, the quotient functor π : GrModC → TailsC
induces a homomorphism

C ∼= HomC(C,C)

= C(GrModC, {P−i}i∈Z)
→ C(TailsC, {P−i}i∈Z)
= HomC(C, C)

of Z-algebras by Lemma 5.3 and Lemma 5.4, so C(TailsC, {P−i}i∈Z) has a
bigraded C-bimodule structure. On the other hand, HomC(C, C) has a bigraded
C-bimodule structure as Definition 3.16, and we can see that

C(TailsC, {P−i}i∈Z) = HomC(C, C)
as bigraded C-bimodules.

5.2. Ampleness. The following notion of ampleness is a reindexed version of
that introduced in [19].

Definition 5.6. We say that a sequence of objects {Ei}i∈Z in an abelian category
C is ample if

(A1) for everyX ∈ C and everym ∈ Z, there exists a surjection ⊕s
j=1E−ij →

X in C for some i1, . . . , is ≥ m, and
(A2) for every surjection X → Y in C , there exists m ∈ Z such that

HomC (E−i, X) → HomC (E−i, Y ) is surjective for every i ≥ m.

Remark 5.7. For an abelian category C , O ∈ C and s ∈ AutC , the pair (O, s)
is ample for C in the sense of [2] if and only if the sequence {siO}i∈Z is ample
for C in the above sense.

Theorem 5.8. Let C be a Hom-finite k-linear abelian category. If {Ei}i∈Z
is an ample sequence for C such that EndC (Ei) = k for every i ∈ Z, then
C := C(C , {Ei})≥0 is a right coherent connected Z-algebra and there exists an
equivalence functor F : C → tailsC such that F (E−i) ∼= Pi for every i ∈ Z.

Proof. This follows from [17, Theorem 2.3], which is just a re-indexed version
of [19, Theorem 2.4]. □
5.3. χ-condition.

Definition 5.9. Let C be a right coherent Z-algebra. We say that C satisfies
χi if R

q τ(M) is right bounded for every M ∈ grmodC and every q ≤ i. We
say that C satisfies χ if C satisfies χi for every i ∈ N.

Remark 5.10. Let C be a right Ext-finite connected Z-algebra. By Lemma
3.12, C satisfies χ1 if and only if, for every M ∈ grmodC, there exists m ∈ Z
such that the canonical map M≥m → (ωπM)≥m is an isomorphism.

The following lemma answers [19, Remarks, page 70].

Lemma 5.11. If C is a right coherent connected Z-algebra satisfying χ1, then
tailsC is Hom-finite and {P−i}i∈Z is an ample sequence for tailsC.
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Proof. (A1): For every M ∈ grmodC, there exists a surjection F → M in
grmodC where F ∈ add{Pj}j∈Z which induces a surjection F → M in tailsC
where F ∈ add{Pj}j∈Z, so it is enough to show the condition (A1) for Pi for
every i ∈ Z. Since C is right Ext-finite, for every i ∈ Z, there exists an exact
sequence F → Pi → Si → 0 in grmodC where F ∈ add{Pj}j>i which induces
a surjection F → Pi in tailsC where F ∈ add{Pj}j>i. Applying this argument
finite number of times, for every m ∈ Z, there exists a surjection F → Pi in
tailsC where F ∈ add{Pj}j≥m.

(A2): Every surjection πϕ : πM → πN in tailsC where M,N ∈ grmodC
is induced by a homomorphism ϕ : M → N such that ϕ≥m1 : M≥m1 → N≥m1

is a surjection in grmodC for some m1 ∈ Z. Since C satisfies χ1, there exists
m2,m3 ∈ Z such that M≥m2

∼= (ωπM)≥m2 and N≥m3
∼= (ωπN)≥m3 by Remark

5.10. By Lemma 2.2 (1), we have a commutative diagram

HomC(πPi, πM)
HomC(πPi,πϕ)−−−−−−−−→ HomC(πPi, πN)

∼=
y y∼=

HomC(Pi, ωπM) −−−→ HomC(Pi, ωπN)

∼=
y y∼=

(ωπM)i −−−→ (ωπN)ix x
Mi

ϕi−−−→ Ni,

so HomC(πPi, πϕ) : HomC(πPi, πM) → HomC(πPi, πN) is surjective for every
i ≥ max{m1,m2,m3}.
We finally prove that tailsC is Hom-finite. Let M = πM,N = πN ∈ tailsC

where M,N ∈ grmodC. By Remark 5.10, there exists m ∈ Z such that
N≥m

∼= (ωπN)≥m. By (A1), there exists a surjection ⊕s
j=1Pij → M where

ij ≥ m for every j = 1, . . . , s. By Lemma 2.2 (1),

HomC(M,N ) ⊂ HomC(⊕s
j=1πPij , πN) ∼= ⊕s

j=1 HomC(Pij , ωπN)

= ⊕s
j=1(ωπN)ij = ⊕s

j=1Nij .

Since C is locally finite by Lemma 3.5, N is locally finite, so HomC(πM, πN)
is finite dimensional. □
Lemma 5.12. If C is a right coherent ASF-regular Z-algebra of dimension
d ≥ 1, then C satisfies χ, so tailsC is Hom-finite and {P−i}i∈Z is an ample
sequence for tailsC.

Proof. Since C is right coherent, for every M ∈ grmodC, there exist F ∈
add{Pi}i∈Z and L ∈ grmodC such that 0 → L → F → M → 0 is an exact
sequence, which induces an exact sequence Rq τ(F ) → Rq(M) → Rq+1 τ(L) in
GrModC for every q ∈ Z. Since C is ASF-regular, Rq τ(Pi) is right bounded
for every i ∈ Z and q ∈ Z, so Rq τ(F ) is right bounded for every q ∈ Z.
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Since pd(M) ≤ d by [13, Proposition 4.11], Rq τ(M) = Rq τ(L) = 0 are right
bounded for every q > d. In particular, Rd+1 τ(L) = 0, so Rd τ(M) is right
bounded. By the same argument, Rd τ(L) is right bounded, so Rd−1 τ(M) is
right bounded. By induction, Rq τ(M) is right bounded for every q ∈ Z, so
C satisfies χ. By Lemma 5.11, tailsC is Hom-finite and {P−i}i∈Z is an ample
sequence for tailsC. □

5.4. Quasi-Veronese Z-algebras.

Definition 5.13. Let Ij := {i ∈ Z | jr ≤ i ≤ (j + 1)r − 1} for each j ∈ Z.
For a Z-algebra C and r ∈ N+, the r-th quasi-Veronese Z-algebra C [r] of C is
defined by (C [r])st := ⊕−i∈I−s,−j∈I−tCij

Note that if C = C(C , {Ei}i∈Z), then C [r] = C(C , {⊕i∈IjEi}j∈Z).

Lemma 5.14. For a Z-algebra C and r ∈ N+, GrModC ∼= GrModC [r].

Proof. Since C [r] ∼= C as algebras (not as Z-algebras unless r = 1) by a variant
of [12, Corollary 3.6], the result holds by Lemma 2.13. □

Lemma 5.15. A sequence of objects {Ei}i∈Z in an abelian category C is ample
if and only if {⊕i∈IjEi}j∈Z is ample.

Proof. (A1) Let M ∈ C . If {Ei}i∈Z is ample, then, for every m ∈ Z, there
exists a surjection ⊕s

q=1E−iq → M in C for some i1, . . . , is ≥ rm − (r − 1).
Since, for 1 ≤ q ≤ s, iq ≥ rm − (r − 1), we have −iq ≤ −rm + (r − 1), and
thus there exists ℓq ∈ Z such that ℓq ≥ m and

−rℓq ≤ −iq ≤ −rℓq + (r − 1).

Thus, −iq ∈ I−ℓq and therefore there exists a surjection

s⊕
q=1

⊕
i∈I−ℓq

Ei →M.

Conversely, if {⊕i∈IjEi}j∈Z is ample, then, for every m ∈ Z, there exists a
surjection ⊕s

q=1(⊕i∈I−jq
Ei) → M in C for some j1, . . . , js ≥ (m + r − 1)/r.

Thus, for 1 ≤ q ≤ s, rjq ≥ m + (r − 1) and thus −rjq + (r − 1) ≤ −m. It
follows that if i ∈ I−jq , then −i ≥ m, and so {Ei}i∈Z is ample.

(A2) LetM → N be a surjection in C . If {Ei}i∈Z is ample, then there exists
m ∈ Z such that HomC (E−i,M) → HomC (E−i, N) is surjective for every i ≥
m. Now suppose ℓ ≥ (m+ r−1)/r. Then rℓ− (r−1) ≥ m and thus if w ∈ I−ℓ

then m ≤ −w. It follows that HomC (⊕i∈I−ℓ
Ei,M) → HomC (⊕i∈I−ℓ

Ei, N) is
surjective for every ℓ ≥ (m+ r − 1)/r.

Conversely, if {⊕i∈IjEi}j∈Z is ample, then there exists m ∈ Z such that
HomC (⊕i∈I−j

Ei,M) → HomC (⊕i∈I−j
Ei, N) is surjective for every j ≥ m.

Now suppose −i ≥ mr − (r − 1). Then i ≤ −mr + (r − 1) and thus i ∈ I−j

for some j ≥ m so that HomC (Ei,M) → HomC (Ei, N) is surjective. □
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5.5. Helices. In this subsection, we recall some notions from [15].

Definition 5.16. Let C be a Hom-finite k-linear category. A Serre functor for C
is a k-linear autoequivalence S ∈ Autk C such that there exists a bifunctorial
isomorphism

FX,Y : HomC (X,Y ) → DHomC (Y, S(X))

for X,Y ∈ C .

Remark 5.17. We explain the functoriality of a Serre functor S in Y in the
above definition. (See [15, Remark 3.2] for the functoriality in X.) Define func-
torsG = HomC (X,−) andH = DHomC (−, S(X)) = Homk(HomC (−, S(X)), k).
Fix β ∈ HomC (Y, Y

′). Then

G(β) : HomC (X,Y ) → HomC (X,Y
′)

is given by (G(β))(α) = β ◦ α. On the other hand,

H(β) : Homk(HomC (Y, S(X)), k) → Homk(HomC (Y
′, S(X)), k)

is given by ((H(β))(ϕ))(γ) = ϕ(γ ◦ β) for γ ∈ HomC (Y
′, S(X)). By functori-

ality, we have a commutative diagram

HomC (X,Y )
G(β)−−−→ HomC (X,Y

′)

FX,Y

y yFX,Y ′

DHomC (Y, S(X))
H(β)−−−→ DHomC (Y

′, S(X)),

so, for α ∈ HomC (X,Y ) and γ ∈ HomC (Y
′, S ′(X)), we have

FX,Y ′(β◦α)(γ) = (FX,Y ′(G(β)(α)))(γ) = (H(β)(FX,Y (α)))(γ) = FX,Y (α)(γ◦β).

Definition 5.18. Let C be an abelian category. A bimodule L over C is an
adjoint pair of functors from C to itself with the suggestive notation L =
(− ⊗C L,HomC (L,−)). A bimodule L over C is invertible if − ⊗C L is an
autoequivalence of C . In this case, the inverse bimodule of L is defined by
L−1 = (−⊗C L−1,HomC (L−1,−)) = (HomC (L,−),−⊗C L).

Definition 5.19. Let C be a Hom-finite k-linear abelian category. A canonical
bimodule for C is an invertible bimodule ωC over C such that, for some n ∈ Z,
the autoequivalence −⊗L

C ωC [n] of D b(C ) induced by −⊗C ωC is a Serre functor
for D b(C ).

Definition 5.20. Let T be a triangulated category. For a set of objects E in T ,
we denote by 〈E〉 the smallest full triangulated subcategory of T containing
E closed under isomorphisms and direct summands. We say that S classically
generates T if 〈E〉 = T .

Definition 5.21. Let T be a k-linear triangulated category, and E = {E0, . . . , Eℓ−1}
a sequence of objects in T .

(1) E is called exceptional if
(E1) EndT (Ei) = k for every i = 0, . . . , ℓ− 1,
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(E2) HomT (Ei, Ei[q]) = 0 for every q 6= 0 and every i = 0, . . . , ℓ − 1,
and

(E3) HomT (Ei, Ej[q]) = 0 for every q and every 0 ≤ j < i ≤ ℓ− 1.
(2) E is called full if 〈E〉 = T .

Definition 5.22. Let C be a k-linear abelian category having the canonical
bimodule ωC , and E = {Ei}i∈Z a sequence of objects in D b(C ).

(1) E is called a helix of period ℓ if
(H1) Ei+ℓ

∼= Ei ⊗L
C ω

−1
C for every i,

(H2) ExtqC (Ei, Ei) ∼=

{
k if q = 0,

0 if q 6= 0
for every i, and

(H3) ExtqC (Ei, Ej) = 0 for every q and every 0 < i − j < ℓ (or equiva-
lentry every j < i < j + ℓ).

(2) A helix E of period ℓ is called geometric if ExtqC (Ei, Ej) = 0 for every
q 6= 0 and every i ≤ j.

(3) A helix E of period ℓ is called full if 〈Ei, . . . , Ei+ℓ−1〉 = D b(C ) for every
i.

Remark 5.23. Let C be a k-linear abelian category having the canonical bi-
module ωC , and E := {Ei}i∈Z a (full) helix of period ℓ for D b(C ).

(1) {Ei, . . . , Ei+ℓ−1} is a (full) exceptional sequence for D b(C ) for every i.
(2) If gldimC = n, then the Serre functor for D b(C ) is given by −⊗L

C ωC [n]
by [15, Remark 3.5], so

HomC (Ei, Ej) ∼= DHomC (Ej, Ei ⊗L
C ωC [n]) ∼= DExtnC (Ej, Ei−ℓ)

for every i, j ∈ Z.
(3) The above definition of a helix is not exactly the same as the one defined

by mutation in [3] (see [15, Remark 3.17]).

Lemma 5.24. If C is a k-linear abelian category having the canonical bimodule
ωC , and {Ei}i∈Z is a helix of period ℓ for D b(C ), then C = C(C , {Ei}i∈Z) is
ℓ-periodic.

Proof. Since ω−1
C : C → C is an equivalence functor such that Ei⊗ω−1

C
∼= Ei+ℓ

for every i ∈ Z, C(ℓ) = C(C , {Ei+ℓ}i∈Z) ∼= C(C , {Ei}i∈Z) = C as Z-algebras
by Lemma 5.4, so C is ℓ-periodic. □

6. A Categorical Characterization of Quantum Projective
Z-spaces

The main theorem of [15] is a categorical characterization of quantum pro-
jective spaces, which are defined to be the noncommutative projective schemes
associated to AS-regular algebras. In this last section, we will give a Z-algebra
version of this result. As a biproduct, we give a family of non-trivial examples
of AS-regular Z-algebras, which are constructed from noncommutative quadric
hypersurfaces.
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6.1. A Categorical Characterization.

Definition 6.1. Let C be a Hom-finite k-linear abelian category. We say that
C satisfies (GH) of period ℓ if

(GH1) C has a canonical bimodule ωC , and
(GH2) C has an ample sequence {Ei}i∈Z which is a full geometric helix of

period ℓ for D b(C ).

Let C be a Hom-finite k-linear abelian category satisfying (GH) of period
ℓ. We write

• T := E0 ⊕ · · · ⊕ Eℓ−1 ∈ C ,
• R := EndC (T ), and
• ΠR := B(C , T,−⊗C ω

−1
C )≥0.

Lemma 6.2. If C is a Hom-finite k-linear abelian category satisfying (GH)
of period ℓ, then gldimΠR = gldimC + 1 <∞.

Proof. Since {T ⊗C (ω−1
C )⊗j}j∈Z = {⊕i∈IjEi}j∈Z where

Ij = {i ∈ Z | jℓ ≤ i ≤ (j + 1)ℓ− 1}

is ample for C by Lemma 5.15, (T,− ⊗C ω−1
C ) is ample for C in the sense

of [2] by Remark 5.7. By [15, Lemma 3.18, Lemma 3.19, Theorem 3.11 (2)],
gldimΠR = gldimC + 1 <∞. □

Remark 6.3. In the above lemma, {T⊗C (ω
−1
C )⊗i}i∈Z is a “full geometric relative

helix of period 1” for D b(C ) in the sense of [15, Definition 3.14] by [15, Lemma
3.18], so T is a “regular tilting object” for D b(C ) in the sense of [15, Definition
3.9] by [15, Lemma 3.19]. In the literature, R = EndC (T ) is called a “Fano
algebra”, and ΠR := B(C , T,−⊗C ω

−1
C )≥0 is called the “preprojective algebra”

of R (cf. [11]).

The following theorem is a generalization of [3, Theorem 4.2] and one direc-
tion of [15, Theorem 4.1]. Our definition of a helix is not the same as the one
defined in [3], so that the Koszul condition plays no role in the theorem below
(see [15, Remark 3.17, Corollary 4.2]).

Theorem 6.4. If C is a Hom-finite k-linear abelian category satisfying (GH)
of period ℓ, then C := C(C , {Ei}i∈Z)≥0 is a right coherent ASF++-regular Z-
algebra of dimension gldimC + 1 and of Gorenstein parameter ℓ such that
C ∼= tailsC.

Proof. Suppose that C satisfies (GH) of period ℓ with n = gldimC < ∞.
Since C is Hom-finite, C is locally finite. Since Cii = HomC (Ei, Ei) = k by
(H2), C is a connected Z-algebra. By Theorem 5.8, C is right coherent and
C ∼= tailsC, so it is enough to show that C is an ℓ-periodic ASF+-regular
Z-algebra of dimension n+1 and of Gorenstein parameter ℓ by Theorem 4.19.
Let T := E0 ⊕ · · · ⊕ Eℓ−1 ∈ C and R := EndC (T ).
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First suppose that n = 0. Since {E0, . . . , Eℓ−1} is an exceptional sequence,

R = EndC (⊕ℓ−1
i=0Ei) =


k HomC (E0, E1) · · · HomC (E0, Eℓ−1)
0 k · · · HomC (E1, Eℓ−1)
...

...
. . .

...
0 0 · · · k

 is an up-

per triangular matrix algebra over k. By Remark 6.3 and [15, Theorem 3.10],
R is semisimple, so R ∼= kℓ, hence HomC (Ei, Ej) = 0 for any 0 ≤ i 6= j ≤ ℓ−1.
Since Db(C ) ∼= Db(modR), we have ωC = idC , so Ei+sℓ

∼= Ei for every s ∈ Z.
It follows that, for every i, j ∈ Z, there exists 0 ≤ i′, j ′ ≤ ℓ − 1 such that
Ei

∼= Ei′ , Ej
∼= Ej′ , so

C(C , {Ei}i∈Z)ij ∼= HomC (E−j, E−i) ∼= HomC (E−j′ , E−i′)

∼=

{
k if i′ = j′, or equivalently if ℓ | j − i

0 if i′ 6= j′, or equivalently if ℓ 6 | j − i,

∼= k[x, x−1]j−i
∼= k[x, x−1]ij

where deg x = ℓ. Since we have a canonical commutative diagram

C(C , {Ei}i∈Z)i,i+sℓ ⊗ C(C , {Ei}i∈Z)i+sℓ,i+(s+t)ℓ −−−→ C(C , {Ei}i∈Z)i,i+(s+t)ℓ

∼=
y y∼=

HomC (E−(i+sℓ), E−i)⊗ HomC (E−(i+(s+t)ℓ), E−(i+sℓ)) −−−→ HomC (E−(i+(s+t)ℓ), E−i)

∼=
y y∼=

HomC (E−i, E−i)⊗ HomC (E−i, E−i) −−−→ HomC (E−i, E−i)

∼=
y y∼=

k ⊗ k −−−→ k

∼=
y y∼=

kxs ⊗ kxt −−−→ kxs+t

∼=
y y∼=

k[x, x−1]i,i+sℓ ⊗ k[x, x−1]i+sℓ,i+(s+t)ℓ −−−→ k[x, x−1]i,i+(s+t)ℓ

C := C(C , {Ei}i∈Z)≥0
∼= k[x, x−1]≥0

∼= k[x] as Z-algebras. Since k[x] is an
ASF-regular algebra of dimension 1 and of Gorenstein parameter ℓ, C is an
ℓ-periodic (in fact 1-periodic) ASF+-regular Z-algebra of dimension 1 and of
Gorenstein parameter ℓ by Theorem 4.13.

Now suppose that n ≥ 1. If j < i < j + ℓ, then HomC (Ei, Ej) = 0 by
(H3). If j + ℓ ≤ i, then HomC (Ei, Ej) ∼= DExtnC (Ej, Ei−ℓ) = 0 since {Ei} is
geometric and n ≥ 1. It follows that C = C(C , {Ei}i∈Z), so C is ℓ-periodic by
Lemma 5.24.
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(ASF1): Since Ei⊗L
C ω

−1
C

∼= Ei+ℓ for every i ∈ Z by (H1), and HomC (Ei, Ej) =
0 for every j < i as shown above,

ΠR := B(C , T,−⊗C ω
−1
C )≥0 = B(C , T,−⊗C ω

−1
C ).

Since T ⊗C (ω−1
C )⊗j = ⊕i∈IjEi where Ij = {i ∈ Z | jℓ ≤ i ≤ (j + 1)ℓ− 1},

ΠR = B(C , T,−⊗C ω
−1
C )

∼= C(D b(C ), {T ⊗L
C ω

−j
C }j∈Z)

∼= C(D b(C ), {⊕i∈IjEi}j∈Z})
∼= C(C , {Ei}i∈Z)[ℓ]

= C [ℓ],

so GrModC ∼= GrModC [ℓ] ∼= GrModΠR ∼= GrModΠR by Lemma 5.14 and
Lemma 2.17. Since {Si}i∈Z is the set of complete representatives of isomor-
phism classes of simple objects in GrModC,

sgldimC = sgldimΠR = gldimΠR = n+ 1

by [11, Proposition 2.7] and Lemma 6.2.

(ASF2), (ASF2+): We will check the equivalent conditions given in Propo-
sition 4.11. Since {Ei}i∈Z is ample for C , there exists an equivalence func-
tor C → tailsC sending E−i to Pi for every i ∈ Z by Theorem 5.8. Since
HomC(C, C) = C(tailsC, {P−i}i∈Z) ∼= C(C , {Ei}i∈Z) =: C as bigraded C-
bimodules by Lemma 5.4 and Remark 5.5, ei HomC(C, C) ∼= eiC = Pi as graded
right C-modules for every i ∈ Z and HomC(C, C)ej ∼= Cej = Qj as graded left
C-modules for every j ∈ Z.

If i ≤ j, then ExtqC(Pj,Pi) ∼= ExtqC (E−j, E−i) = 0 for all q 6= 0 since {Ei}i∈Z
is geometric. If i− ℓ < j < i, then ExtqC(Pj,Pi) ∼= ExtqC (E−j, E−i) = 0 for all
q by (H3). If j ≤ i− ℓ, then

ExtqC(Pj,Pi) ∼= ExtqC (E−j, E−i) ∼= DExtn−q
C (E−i, E−j−ℓ) = 0

for all q 6= n since {Ei}i∈Z is geometric. It follows that

ExtqC(C, C) = ⊕i,j∈Z Ext
q
C(Pj,Pi) = 0

unless q = 0, n.
We will prove only (ASF2+). The proof for (ASF2) is similar (see the proof

of [15, Theorem 4.1]). Let Fij be the isomorphism

Extd−1
C (E−j, E−i) ∼= HomC (E−j[1− d], E−i)

→ DHomC (E−i, S(E−j[1− d]))
∼= DHomC (E−i, E−j ⊗L

C ωC )
∼= DHomC (E−i, E−j−ℓ)
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induced by the Serre functor, and consider the diagram

Cij × Extd−1
C (C, C)jk −−−→ Extd−1

C (C, C)iky y
HomC (E−j, E−i)× HomC (E−k[1− d], E−j)

Φ−−−→ HomC(E−k[1− d], E−i)

id×Fjk

y yFik

HomC (E−j, E−i)×DHomC (E−j, E−k−ℓ)
Ψ−−−→ DHomC(E−i, E−k−ℓ)y y

Cij ×D(C(ℓ, 0))jk −−−→ D(C(ℓ, 0))ik.

The top square commutes since this is the way to define the graded left C-
module structure for Extd−1

C (C, C) as in Definition 3.16 (2). The middle square
commutes by the bifunctoriality of the Serre functor as follows: For (β, α) ∈
HomC (E−j, E−i)×HomC (E−k[1−d], E−j), we have Φ(β, α) = β ◦α. Moreover,
for (β, ϕ) ∈ HomC (E−j, E−i) × DHomC (E−j, E−k−ℓ), we have Ψ(β, ϕ)(γ) =
ϕ(γ ◦ β) for every γ ∈ HomC(E−i, E−k−ℓ). By Remark 5.17,

Fik(Φ(β, α))(γ) = Fik(β ◦ α)(γ) = Fjk(α)(γ ◦ β)
= Ψ(β, Fjk(α))(γ) = Ψ((id×Fjk)(β, α))(γ).

The bottom square commutes since this is the way to define the graded left
C-module structure for D(C(ℓ, 0)), so Extd−1

C (C, C) ∼= D(C(ℓ, 0)) as graded left
C-modules, hence (ASF2+) holds. □
Theorem 6.5. Let C be a k-linear abelian category. If C satisfies (GH), then
the following are equivalent:

(1) C := C(C , {Ei}i∈Z)≥0 is right noetherian.
(2) C is a noetherian category.
(3) Ei ∈ C is a noetherian object for every i ∈ Z.

Proof. (1) ⇒ (2): If C is right noetherian, then grmodC is a noetherian
category by Lemma 2.10. It follows that, for every M ∈ tailsC, there exists
a noetherian object M ∈ grmodC such that M ∼= πM ∈ tailsC. Since C
is a right coherent connected Z-algebra by Lemma 2.9, TorsC is a localizing
subcategory of GrModC by Lemma 3.7, so M ∼= πM ∈ TailsC is a noetherian
object by [20, Lemma 5.8.3], hence tailsC is a noetherian category.

(2) ⇒ (3): If C is a noetherian category, then Ei ∈ C is a noetherian object
for every i ∈ Z by definition.

(3) ⇒ (1): If Ei ∈ C is a noetherian object for every i ∈ Z, then T :=
E1 ⊕ · · · ⊕ Eℓ−1 ∈ C is a noetherian object, so ΠR is right noetherian by [15,
Theorem 4.1]. It follows that grmodC ∼= grmodΠR is a noetherian category,
so C is right noetherian by Lemma 2.10. □

We will next show the converse to Theorem 6.4 to complete our categorical
characterization (a generalization of the other direction of [15, Theorem 4.1]).
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Theorem 6.6. Let C be a right coherent ASF++-regular Z-algebra. If X,Y ∈
D b(grmodC), then we have a bifunctorial isomorphism

RHomC(I0(X), I0(Y )⊗L
CDRQ(C)) ∼= DRHomC(I0(Y ),RQ(I0(X))).

Proof. By Lemma 3.26, I0(X) and I0(Y ) are quasi-isomorphic to perfect com-
plexes. Furthermore, since X is bounded and DRQ(C) is bounded by Lemma
3.15, DRQ(I0(X)) ∈ D b(Bimod(C−K)) by Theorem 3.29. We next note that
by Lemma 3.12, there is a triangle

(DRQ(X))j → (DX)j → (DR τ(X))j

in D(Mod k). Since, by Theorem 3.21, DR τ(X) has locally finite homology,
so does DRQ(X). It follows that DRQ(I0(X)) has locally finite homology.
Therefore, by Proposition 3.27, Theorem 3.29 and [13, Corollary 6.2], we have
bifunctorial isomorphisms

RHomC(I0(X), I0(Y )⊗L
CDRQ(C)) ∼= I0(Y )⊗L

C RHomC(I0(X), DRQ(C))

∼= I0(Y )⊗L
CDRQ(I0(X))

∼= DRHomC(I0(Y ),RQ(I0(X))),

where in the last isomorphism, in order to apply [13, Corollary 6.2], we use
[25, Proposition 3.1(1)], which holds since the last two expressions have locally
finite homology by [7, Proposition 7.3(i)] and the fact that I0(Y ) is quasi-
isomorphic to a perfect complex and RQ(I0(X))) has locally finite homology.

□
Lemma 6.7. If C is a right coherent ASF++-regular Z-algebra and X,Y ∈
D b(grmodC), then

(1) if Y≥n = 0 for some n ∈ Z, then RHomC(X≥n, Y ) = 0, and
(2) RHomC(X≥n,RQ(Y )) ∼= RHomC(X≥n, Y ) for some n ∈ Z.

Proof. (1) Since C is right coherent, X/X≥n ∈ D b(grmodC), so X≥n ∈
D b(grmodC). If F is the minimal free resolution of X≥n, then F<n = 0,
so

RHomC(X≥n, Y ) = HomC(F, Y ) = 0,

hence the result.
(2) For X,Y ∈ D b(grmodC) and n ∈ Z, we have a triangle R τ(Y ) → Y →

RQ(Y ) in D(GrModC) by Lemma 3.12, which induces a triangle

RHomC(X≥n,R τ(Y )) → RHomC(X≥n, Y ) → RHomC(X≥n,RQ(Y )).

Since C is right coherent and sgldimC <∞, Y ∈ D b(grmodC) has a finitely
generated free resolution G of finite length by Lemma 3.26. Since C is ASF++-
regular, it is ASF-regular and so R τ(Pj) ∼= (D(Qj−ℓ))[−d] is a complex whose
terms are right bounded for every j ∈ Z, so R τ(G)≥n = 0 for some n ∈ Z, and
so the result now follows from (1). □

The proof of the following result was inspired by the proof of [16, Appendix
A].
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Theorem 6.8. Suppose that C is a coherent ASF++-regular Z-algebra of di-
mension d ≥ 1 and of Gorenstein parameter ℓ with Nakayama isomorphism
ν : C → C(−ℓ). For X,Y ∈ D b(grmodC), there is a bifunctorial isomorphism

HomDb(tailsC)(πX, π(Y (−ℓ))ν [d− 1]) ∼= DHomDb(tailsC)(πY, πX)

i.e. the autoequivalence S = (−)(−ℓ)ν [d − 1] : D b(tailsC) → D b(tailsC) is a
Serre functor.

Proof. The fact that the equivalence (−)(−ℓ)ν : GrModC → GrModC de-
scends to an autoequivalence of tailsC is a straightforward exercise using
[22, Lemma 1.1]. It follows that there is an induced autoequivalence S on
D b(tailsC) as in the statement of the theorem.
First note that, forX ∈ D b(grmodC) and for any n ∈ Z,X≥n ∈ D b(grmodC)

and πX ∼= πX≥n. Let D := D(GrModC) and C := D(TailsC). Since
RQ ∼= Rω ◦ π : D → D by the proof of [4, Lemma 4.1.6] and (π,Rω) is an
adjoint pair of functors between D and C , we have bifunctorial isomorphisms

HomC (πX, π(Y (−ℓ))ν [d− 1]) ∼= HomD(X≥n,RQ(Y (−ℓ))ν)[d− 1]),

and

DHomC (πY, πX) ∼= DHomD(Y,RQ(X≥n))

for any n ∈ Z, so it is enough to show

DHomD(Y,RQ(X≥n)) ∼= HomD(X≥n,RQ(Y (−ℓ))ν)[d− 1])

for some n ∈ Z by Lemma 3.11.
By Theorem 6.6, we have a bifunctorial isomorphism

DRHomC(I0(Y ),RQI0(X≥n)) ∼= RHomC(I0(X≥n), I0(Y )⊗L
CDRQ(C)),

so, taking zeroeth cohomology on both sides,

DHomD(Y,RQ(X≥n)) ∼= HomD(X≥n, Y⊗L
CDRQ(C))

by Lemma 3.20 (3).
In order to compute this last expression, we first note that by Lemma 3.14,

there is a triangle

DC[−1] → DR τ(C)[−1] ∼= C(0,−ℓ)ν [d− 1] → DRQ(C)

in D(Bimod(C − C)). Since (Y⊗L
CDC[−1])≥n = 0 for some n ∈ Z, we have

HomD(X≥n, Y⊗L
CDC[−1]) = 0 by Lemma 6.7 (1). Since HomD(X≥n,−) is

cohomological,

HomD(X≥n, Y⊗L
CDRQ(C)) ∼= HomD(X≥n, Y⊗L

CC(0,−ℓ)ν [d− 1])

for any n� 0. Finally, since

HomD(X≥n, Y⊗L
CC(0,−ℓ)ν [d− 1]) ∼= HomD(X≥n, Y (−ℓ)ν [d− 1])

∼= HomD(X≥n,RQ(Y (−ℓ)ν)[d− 1])

for any n� 0 by Lemma 2.15 (3) and Lemma 6.7 (2), the result follows. □
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The following lemma is standard. We include the proof for the convenience
of the reader.

Lemma 6.9. Let C be an abelian category and E a set of objects in C . If X is
a bounded complex such that Xq ∈ E for every q ∈ Z, then X ∈ 〈E〉 ⊂ D b(C ).

Proof. Since 〈E〉 is closed under shifting complexes, we may assume that Xq =
0 for every q < −n and 0 < q. If n = 0, then the result is trivial. In general,
since there is an exact triangle

X−n[n− 1] → X≥−n+1 → X → X−n[n],

and X−n[n− 1], X≥−n+1 ∈ 〈E〉 by induction, we have X ∈ 〈E〉. □
Lemma 6.10. If C is a right coherent AS-regular Z-algebra of dimension d
and of Gorenstein parameter ℓ, then 〈Pj, . . . ,Pj+ℓ−1〉 = D b(tailsC) for every
j ∈ Z.

Proof. If C is a right coherent AS-regular Z-algebra of dimension d and of
Gorenstein parameter ℓ, then we have exact sequences

0 → Pj+ℓ → F d−1 → · · · → F 1 → Pj → Sj → 0

0 → Pj+ℓ−1 → Gd−1 → · · · → G1 → Pj−1 → Sj−1 → 0

in grmodC where F s ∈ add{Pi}j<i<j+ℓ for 1 ≤ s ≤ d−1 andGt ∈ add{Pi}j−1<i<j+ℓ−1

for 1 ≤ t ≤ d− 1 by Remark 4.6, which induce exact sequences

0 → Pj+ℓ → Fd−1 → · · · → F1 → Pj → 0

0 → Pj+ℓ−1 → Gd−1 → · · · → G1 → Pj−1 → 0

in tailsC, so Pj−1,Pj+ℓ ∈ 〈Pj, . . . ,Pj+ℓ−1〉 by Lemma 6.9. By induction,
Pi ∈ 〈Pj, . . . ,Pj+ℓ−1〉 for every i ∈ Z. Since every X ∈ Db(grmodC) has a
finitely generated free resolution of finite length by Lemma 3.26,

〈Pj, . . . ,Pj+ℓ−1〉 = 〈{Pi}i∈Z〉 = Db(tailsC)

by Lemma 6.9. □
The theorem below is the converse to Theorem 6.4, a generalization of the

other direction of [15, Theorem 4.1]. (See also [12, Theorem 4.7]).

Theorem 6.11. If C is a right coherent ASF++-regular Z-algebra of dimension
d ≥ 1 and of Gorenstein parameter ℓ with the Nakayama isomorphism ν : C →
C(−ℓ), then
(GH1) (−)⊗C ωC := (−)(−ℓ)ν is a canonical bimodule for tailsC, and
(GH2) {P−i}i∈Z is an ample sequence for tailsC which is a full geometric helix

of period ℓ for Db(tailsC),

so that tailsC satisfies (GH) of period ℓ.

Proof. (GH1): This follows from Theorem 6.8.
(GH2): By Lemma 5.12, {P−i}i∈Z is an ample sequence for tailsC. Since C

is ℓ-periodic, P−j−ℓ
∼= P−j(ℓ)ν−1

∼= P−j⊗L
C ω

−1
C for every j ∈ Z by Lemma 2.16,
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so {P−i}i∈Z satisfies (H1). Since (D(C(0,−ℓ)))ij = D(C(0,−ℓ)ji) = D(Cj,i−ℓ),
if d = 1, then

ExtqC(Pj,Pi) ∼= ExtqC(C, C)ij

∼=

{
(C ⊕D(C(0,−ℓ)))ij = Cij ⊕D(Cj,i−ℓ) if q = 0

0 otherwise,

and, if d ≥ 2, then

ExtqC(Pj,Pi) ∼= ExtqC(C, C)ij ∼=


Cij if q = 0

(D(C(0,−ℓ)))ij = D(Cj,i−ℓ) if q = d− 1

0 otherwise

by Proposition 4.11. Since D(Ci,i−ℓ) = 0, we have

ExtqC(Pi,Pi) ∼=

{
Cii = k if q = 0,

0 if q 6= 0

for every i, so {P−i}i∈Z satisfies (H2). If j < i, then Cij = 0 and if i < j+ℓ, then
D(Cj,i−ℓ) = 0, so, in either case, ExtqC(Pj,Pi) = 0 for every q and j < i < j+ℓ,
so {P−i}i∈Z satisfies (H3). Moreover, ExtqC(Pj,Pi) = 0 for every q 6= 0 and
every i ≤ j, so {Pi}i∈Z is a geometric helix of period ℓ for Db(tailsC). By
Lemma 6.10, {Pi}i∈Z is full. □
6.2. An Application to Noncommutative Quadric Hypersurfaces. For
the rest of the paper, we assume that k is an algebraically closed field of
characteristic 0. If C is a 3-dimensional “cubic” AS-regular Z-algebra C in
the sense of [26], which in particular implies that C is a right noetherian
AS-regular Z-algebra of dimension 3 and of Gorenstein parameter 4 (cf. [26,
Corollary 5.5.9]), then tailsC is considered as a noncommutative P1 × P1.
On the other hand, if S is a 4-dimensional noetherian quadratic AS-regular
algebra, and f ∈ S2 is a regular normal element, then tails S/(f) is considered
as a noncommutative quadric surface (see [23]). Since P1×P1 is isomorphic to
a smooth quadric in P3 in commutative algebraic geometry, we expect a similar
result in noncommutative algebraic geometry. The following implication was
known:

Theorem 6.12. [26, Corollary 6.7] For every 3-dimensional “cubic” AS-regular
Z-algebra C, there exist a 4-dimensional right noetherian quadratic AS-regular
algebra S and a regular normal element f ∈ S2 such that tailsC ∼= tailsS/(f).

This paper gives a partial converse.

Theorem 6.13. If S is a 4-dimensional noetherian quadratic AS-regular al-
gebra and f ∈ S2 is a regular central element such that

• S/(f) is a domain,
• S/(f) is a noncommutative graded isolated singularity in the sense that
gldim(tailsS/(f)) <∞ (that is, tailsS/(f) is “smooth”), and

• S/(f) is “standard” in the sense of [15, Section 5],
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then there exists a right noetherian AS-regular Z-algebra C of dimension 3 and
of Gorenstein parameter 4 such that tailsS/(f) ∼= tailsC.

Proof. It is known that gldimS/(f) = 2 (cf. [15, Section 5]). By [15, Theorem
5.16], there exists a full geometric helix {Ei}i∈Z of period 4 for D(tailsS/(f)).
By the proof of [15, Theorem 5.17] and Lemma 5.15, {Ei}i∈Z is ample, so
tailsS/(f) satisfies (GH) of period 4, hence there exists an AS-regular Z-
algebra C of dimension 3 and of Gorenstein parameter 4 such that tails S/(f) ∼=
tailsC by Theorem 6.4. Since S/(f) is right noetherian, tails S/(f) is a noe-
therian categoy, so C is right noetherian by Theorem 6.5. □

We partially extend the above theorem to noncommutative quadric hypesur-
faces below.

Theorem 6.14. Let S := k〈x1, . . . , xn〉/(xixj − ϵijxjxi) be a ±1 skew poly-
nomial algebra where ϵii = 1 for every i, ϵij = ϵji = ±1 for every i 6= j, and
A := S/(x21+· · ·+x2n). If n ≥ 3, then there exists a right noetherian AS-regular
Z-algebra C of dimension n− 1 such that tailsA ∼= tailsC. In particular, for
every (commutative) smooth quadric hypersurface Q ⊂ Pn−1, there exists a
right noetherian AS-regular Z-algebra C of dimension n−1 and of Gorenstein

parameter ℓ =

{
n− 1 if n is odd,

n if n is even,
such that tailsC ∼= cohQ, the category

of coherent sheaves on Q.

Proof. Since A is right noetherian, tailsA is a noetherian category, so it is
enough to show that tailsA satisfies (GH) by Theorem 6.4 and Theorem 6.5.

(GH1): It is known that A is a noetherian AS-Gorenstein algebra of dimen-
siona n− 1 ≥ 2 (cf. [24, Section 2.1]) and of Gorenstein parameter n− 2 ≥ 1
and that gldim(tailsA) = n−2 (cf. [24, Section 2.2]), so tailsA has a canonical
bimodule ωA = Aν(−n+ 2) where ν is the Nakayama automorphism of A (cf.
[24, Lemma 2.2].)

(GH2): Let Ind0(CMZ(A)) = {A,X1, X2, . . . , Xα} be the set of complete
representatives of isomorphism classes of indecomposable graded maximal Cohen-
Macaulay right A-modules generated in degree 0 where we say that M ∈
grmodA is a graded maximal Cohen-Macaulay if ExtqA(M,A) = 0 for every
q 6= 0. We label the sequence

A(−n+ 3), . . . ,A(−1),A,X1,X2, . . . ,Xα

by E0, . . . , Eℓ−1 where ℓ = n − 2 + α. We extend in both directions the
sequence E0, . . . , Eℓ−1 to {Ei}i∈Z by Ei+rℓ := Ei ⊗L

A (ω−1
A )⊗r so that {Ei}i∈Z

satisfies (H1). By [24, Lemma 3.15] and Lemma 5.15, {Ei}i∈Z is an ample
sequence for tailsA.

If X ∈ Ind0(CMZ(A)), then X ⊗A ω
⊗r
A (r(n− 2)) ∼= Xνr ∈ Ind0(CMZ(A)) for

every r ∈ Z, so, for every i ∈ Z, there exists s ∈ Z and X ∈ Ind0(CMZ(A))
such that Ei

∼= X (s). SinceA(i)⊗L
Aω

⊗r
A

∼= Aνr(i−r(n−2)) ∼= A(i−r(n−2)) for
every i ∈ Z, there exists a permutation σ on {1, . . . , α} such that Xj ⊗L

Aω
⊗r
A

∼=
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Xσr(j)(−r(n − 2)) (cf. the proof of [24, Lemma 3.15]). It follows that the
sequence {Ei}i∈Z looks like

· · · , A(r(n− 2)− n+ 3), . . . ,A(r(n− 2)− 1),A(r(n− 2)),

Xσ−r(1)(r(n− 2)),Xσ−r(2)(r(n− 2)), . . . ,Xσ−r(α)(r(n− 2)),

A((r + 1)(n− 2)− n+ 3) = A(r(n− 2) + 1), . . . ,A((r + 1)(n− 2)− 1),A((r + 1)(n− 2)),

Xσ−(r+1)(1)((r + 1)(n− 2)),Xσ−(r+1)(2)((r + 1)(n− 2)), . . . ,Xσ−(r+1)(α)((r + 1)(n− 2)), · · ·

Since E0, . . . , Eℓ−1 is an exceptional sequence by [24, Lemma 3.12],

ExtqA(Ei, Ei) ∼=

{
k if q = 0,

0 if q 6= 0,

so {Ei}i∈Z satisfies (H2).
Since gldim(tailsA) = n− 2, ExtqA = 0 for every q ≥ n− 1. For A 6∼= X,Y ∈

Ind0(CMZ(A)),

(1) ExtqA(A(s),A(t)) ∼=


At−s if q = 0,

0 if 1 ≤ q ≤ n− 3,

D(As−t−n+2) if q = n− 2,

(2) ExtqA(A(s),X (t)) ∼=


Xt−s if q = 0,

0 if 1 ≤ q ≤ n− 3,

D(HomA(X,A)s−t−n+2) if q = n− 2,

(3) ExtqA(X (s),A(t)) ∼=


HomA(X,A)t−s if q = 0,

0 if 0 ≤ q ≤ n− 3,

D((Xν)s−t−n+2) if q = n− 2,

(4) ExtqA(X (s),Y(t)) ∼=

{
ExtqA(X,Y )t−s if 0 ≤ q ≤ n− 3,

D(HomA(Y,Xν)s−t−n+2) if q = n− 2,

by [24, Lemma 2.3] (cf. the proof of [24, Lemma 3.13]). We also use the
following facts:

(i) If i ≤ 0, then HomA(X,A)i = 0 ([24, Lemma 3.7]).
(ii) If i < 0, or i ≤ 0 and X ≇ Y , then HomA(X,Y )i = 0 ([24, Lemma

3.9]).
(iii) If q ≥ 1 and i 6= −q, then ExtqA(X,Y )i = 0 ([24, Lemma 3.8]).

We will now show that ExtqC (Ei, Ej) = 0 for every q when 0 < i− j < ℓ. It is
enough to consider the following cases where A 6∼= X,Y ∈ Ind0(CMZ(A)).

(1) The case Ei = A(s), Ej = A(t) for some s, t ∈ Z: If 0 < i− j < ℓ, then
0 < s − t < n − 2. Since t − s < 0 and s − t − n + 2 < 0, we have
ExtqA(A(s),A(t)) = 0 for every q ∈ Z.
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(2) The case Ei = A(s), Ej = X (t) for some s, t ∈ Z: If j < i < j+ ℓ, then
Ei = A(s), Ej = X (t) are positioned as follows

Xσ−r(1)(r(n− 2)), . . .X (t) = X (r(n− 2)), . . . ,Xσ−r(α)(r(n− 2)),

A(r(n− 2) + 1), . . . ,A(s), . . . ,A((r + 1)(n− 2)),

that is, t = r(n − 2) and r(n − 2) + 1 ≤ s ≤ (r + 1)(n − 2) for some
r ∈ Z, so t < s ≤ t+ n− 2. Since t− s < 0 and s− t− n+ 2 ≤ 0, we
have ExtqA(A(s),X (t)) = 0 for every q ∈ Z by (i).

(3) The case Ei = X (s), Ej = A(t) for some s, t ∈ Z: If j < i < j+ ℓ, then
Ei = X (s), Ej = A(t) are positioned as follows

A(r(n− 2)− n+ 3), . . . ,A(t), . . . ,A(r(n− 2)),

Xσ−r(1)(r(n− 2)), . . .X (s) = X (r(n− 2)), . . . ,Xσ−r(α)(r(n− 2)),

that is, r(n − 2) − n + 3 ≤ t ≤ r(n − 2) and s = r(n − 2) for some
r ∈ Z, so t ≤ s < t+ n− 2. Since t− s ≤ 0 and s− t− n+ 2 < 0, we
have ExtqA(X (s),A(t)) = 0 for every q ∈ Z by (i).

(4) The case Ei = X (s), Ej = Y(t) for some s, t ∈ Z: If j < i < j+ ℓ, then
Ei = X (s), Ej = Y(t) are positioned as either

Xσ−r(1)(r(n−2)), . . . ,Y(t) = Y(r(n−2)), . . . ,X (s) = X (r(n−2)), . . . ,Xσ−r(α)(r(n−2))

or

Xσ−r(1)(r(n− 2)), . . . ,Xν(r(n− 2)), · · · ,Y(t) = Y(r(n− 2)), . . . ,Xσ−r(α)(r(n− 2)),

A(r(n− 2) + 1), . . . ,A((r + 1)(n− 2)− 1),A((r + 1)(n− 2)),

Xσ−(r+1)(1)((r + 1)(n− 2)), . . . ,X (s) = X ((r + 1)(n− 2)), . . . ,Xσ−(r+1)(α)((r + 1)(n− 2)),

so either s = t and Y 6∼= X, or s = t+n−2 and Y ≇ X⊗AωA(n−2) ∼=
Xν .
(a) The case s = t and Y ≇ X: If 0 ≤ q ≤ n− 3, then

ExtqA(X (s),Y(t)) ∼= ExtqA(X,Y )0 = 0

by (ii) and (iii) since Y ≇ X. If q = n− 2, then Extn−2
A (X (s),Y(t)) ∼=

D(HomA(Y,Xν)s−t−n+2) = 0 by (ii) since s− t− n+ 2 = −n+ 2 < 0.
(b) The case s = t + n − 2 and Y ≇ Xν : If 0 ≤ q ≤ n − 3,

then ExtqA(X (s),Y(t)) ∼= ExtqA(X,Y )t−s = 0 by (ii) and (iii) since
t − s = −n + 2 < 0 and t − s = −n + 2 6= −q. If q = n − 2, then
Extn−2

A (X (s),Y(t)) ∼= D(HomA(Y,Xν)0) = 0 by (ii) since Y ≇ Xν .

It follows that {Ei}i∈Z satisfies (H3).
On the other hand, if i ≤ j and Ei = X (s), Ej = Y(t) for some X,Y ∈

Ind0(CMZ(A)) and s, t ∈ Z, then s ≤ t, so t − s ≥ 0 and s − t − n + 2 < 0,
hence ExtqA(X (s),Y(t)) = 0 for every q 6= 0 by (i), (ii), and (iii). It follows
that {Ei}i∈Z is a geometric helix of period ℓ for D b(tailsA).
Since E0, . . . , Eℓ−1 is full by [24, Lemma 3.12], {Ei}i∈Z is full by [15, Lemma

3.16, Remark 3.17].
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It follows that C := C(tailsA, {Ei}i∈Z) is a right noetherian AS-regular Z-
algebra of dimension n − 1 such that tailsA ∼= tailsC by Theorem 6.4 and
Theorem 6.5.

If Q ⊂ Pn−1 is a (commutative) smooth quadric hypersurface, then

Q ∼= Proj k[x1, . . . , xn]/(x
2
1 + · · ·+ x2n),

so

cohQ ∼= tails k[x1, . . . , xn]/(x
2
1 + · · ·+ x2n),

hence the final assertion (cf. [24, Theorem 1.1]). □
Remark 6.15. (1) Presumably, the AS-regular Z-algebra C constructed above

is not 1-periodic (see the quiver presentations of EndA(⊕ℓ−1
i=0Ei) in [24,

Section 3.5]), so that C is not a Z-algebra associated to any (AS-
regular) graded algebra by Lemma 2.20.

(2) Let Q ⊂ Pn−1 be a (commutative) smooth quadric hypersurface. If n
is odd, then the final assertion of the above theorem follows from [3,
Proposition 3.3]. If n is even, then the Z-algebra C constructed in the
above theorem is AS-regular, but not Koszul.
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