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Conventions and Notation

k a field

All objects and morphisms are /k

≡ denotes (k-linear) equivalence of categories
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Part 1

Commutative Curves of Genus Zero
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Definitions

X is curve if

X is projective variety

dimX = 1

X is smooth

X has genus zero if H1(X ,OX ) = 0 iff X has a tilting sheaf i.e. a
coherent OX -module T such that

Ext1X (T , T ) = 0, and

whenever HomX (T ,M) = 0 = Ext1X (T ,M) we have M = 0.

Examples

P1
k

V (aX 2 + bY 2 − Z 2) for some a, b ∈ k×.
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Embeddings

X = curve of genus zero

ωX = canonical sheaf then

ω∗X is very ample

degreeω∗X = 2

dimk H0(X , ω∗X ) = 3

Therefore there is an embedding X ↪→ P2 w/ image =

Proj(
⊕
i

H0(X , ω∗X
⊗i ))

Question

When is X ∼= P1?
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Rational Points

X = V (f (X ,Y ,Z )) has a k-rational point if ∃ P = [c , d , e] ∈ P2
k

such that f (c , d , e) = 0.

Theorem

X (a curve of genus zero) ∼= P1 iff X has a k-rational point

Proof of ⇐
O(P) is degree one line bundle on X thus O(P) is very ample thus
X ∼= Proj(

⊕
i H

0(X ,O(P)⊗i )) ∼= P1.
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A Factorization

If X has a rational point P, then

O(P)⊗2 ∼= ω∗X

In this case there is a factorization

X
antican. emb. //

��

Proj(
⊕

j H
0(X , ω∗X

⊗j))

Proj(
⊕

i H
0(X ,O(P)⊗i ))

2−Veronese
// Proj(

⊕
j H

0(X ,O(P)⊗2j))

∼=

OO
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Tsen’s Theorem

X is geometrically irreducible if Xk is irreducible.

Theorem (Tsen, 1933)

Suppose

L = L,

k = L(C ) where C is curve/L, and

X/k is geometrically irreducible curve with genus zero.

Then
X ∼=k P1

k .

Morally speaking, Tsen’s theorem says: over certain base fields,
curves of genus zero are projective lines.

Adam Nyman



Tsen’s Theorem

X is geometrically irreducible if Xk is irreducible.

Theorem (Tsen, 1933)

Suppose

L = L,

k = L(C ) where C is curve/L, and

X/k is geometrically irreducible curve with genus zero.

Then
X ∼=k P1

k .

Morally speaking, Tsen’s theorem says: over certain base fields,
curves of genus zero are projective lines.

Adam Nyman



Tsen’s Theorem

X is geometrically irreducible if Xk is irreducible.

Theorem (Tsen, 1933)

Suppose

L = L,

k = L(C ) where C is curve/L, and

X/k is geometrically irreducible curve with genus zero.

Then
X ∼=k P1

k .

Morally speaking, Tsen’s theorem says: over certain base fields,
curves of genus zero are projective lines.

Adam Nyman



Tsen’s Theorem

X is geometrically irreducible if Xk is irreducible.

Theorem (Tsen, 1933)

Suppose

L = L,

k = L(C ) where C is curve/L, and

X/k is geometrically irreducible curve with genus zero.

Then
X ∼=k P1

k .

Morally speaking, Tsen’s theorem says: over certain base fields,
curves of genus zero are projective lines.

Adam Nyman



Tsen’s Theorem

X is geometrically irreducible if Xk is irreducible.

Theorem (Tsen, 1933)

Suppose

L = L,

k = L(C ) where C is curve/L, and

X/k is geometrically irreducible curve with genus zero.

Then
X ∼=k P1

k .

Morally speaking, Tsen’s theorem says: over certain base fields,
curves of genus zero are projective lines.

Adam Nyman



Tsen’s Theorem

X is geometrically irreducible if Xk is irreducible.

Theorem (Tsen, 1933)

Suppose

L = L,

k = L(C ) where C is curve/L, and

X/k is geometrically irreducible curve with genus zero.

Then
X ∼=k P1

k .

Morally speaking, Tsen’s theorem says: over certain base fields,
curves of genus zero are projective lines.

Adam Nyman



Tsen’s Theorem

X is geometrically irreducible if Xk is irreducible.

Theorem (Tsen, 1933)

Suppose

L = L,

k = L(C ) where C is curve/L, and

X/k is geometrically irreducible curve with genus zero.

Then
X ∼=k P1

k .

Morally speaking, Tsen’s theorem says: over certain base fields,
curves of genus zero are projective lines.

Adam Nyman



Tsen’s Theorem

X is geometrically irreducible if Xk is irreducible.

Theorem (Tsen, 1933)

Suppose

L = L,

k = L(C ) where C is curve/L, and

X/k is geometrically irreducible curve with genus zero.

Then
X ∼=k P1

k .

Morally speaking, Tsen’s theorem says: over certain base fields,
curves of genus zero are projective lines.

Adam Nyman



Tsen’s Theorem

X is geometrically irreducible if Xk is irreducible.

Theorem (Tsen, 1933)

Suppose

L = L,

k = L(C ) where C is curve/L, and

X/k is geometrically irreducible curve with genus zero.

Then
X ∼=k P1

k .

Morally speaking, Tsen’s theorem says: over certain base fields,
curves of genus zero are projective lines.

Adam Nyman



Witt’s Theorem

Suppose char k 6= 2. For a, b ∈ k×,

(a, b) = 4-d algebra over k w/ basis 1, i , j , k and mult.
i2 = a, j2 = b, ij = −ji .
C (a, b) = V (aX 2 + bY 2 − Z 2) ⊂ P2

k .

Theorem (Witt)

There is an isomorphism

C (a, b)→ C (c , d)

if and only if
(a, b) ∼= (c, d).

Adam Nyman
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Part 2

Noncommutative Curves of Genus Zero (after Kussin)
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Noncommutative Spaces

Noncommutative Space := Grothendieck Category

=

(k-linear) abelian category with

exact direct limits and

a generator.

Examples

Mod R, R a ring

Qcoh X

Proj A := GrA/TorsA where A is Z-graded

Theorem (Gabriel-Rosenberg)

A (quasi-separated) scheme X can be recovered up to isomorphism
from QcohX .
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Kussin’s Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to cohX , X=curve of genus zero
i.e. abelian noetherian categories H such that H

is Ext-finite,

has an AR translation τ on H with
Ext1H(M,N ) ∼= DHomH(N , τM),

H has an object of infinite length

has a tilting object T .

H is homogeneous if τS ∼= S for all simple S ∈ H.

Basic examples

1 cohX for X a curve of genus zero (homogeneous)

2 Weighted projective lines (Geigle-Lenzing) (nonhomogeneous)

Adam Nyman
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Reduction to the homogeneous case

Let H = noncommutative curve of genus zero

Let H0 = full subcat. of objects in H of finite length

Some Facts

H/H0 is semisimple w/ one simple object ⇒
H/H0 ≡ modk(H) for some division ring k(H).

If H is not homogeneous, there exists homogeneous H′ such
that k(H) ∼= k(H′).

Assumption

From now on we will work only with homogeneous H.

Adam Nyman
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Significance of Tilting Object

Let T =tilting object for H

Theorem

There is an equivalence

Db(H)→ Db(mod(EndH(T )))

Derived equivalences preserve indecomposable objects ∴ we have

geometry of H↔ rep. theory of EndH(T ).
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Vector Bundles over H

A vector bundle L is an object in H without a simple
sub-object.

The rank of L is the dim. of the image of L under the
quotient functor H→ H/H0.

M f→ P is irreducible if

f does not have a right or left inverse, and

If f = ts, then s has a right inverse or t has a left inverse.

Classification of indecomposable bundles in H

Given a line bundle L over H,

∃! indecomposable bundle L s.t. there is an irreducible
morphism L → L
every indec. bundle is ∼= to τ i (L) or τ i (L).
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The Underlying Bimodule

The underlying bimodule of H is the End(L)− End(L)-bimodule
HomH(L,L).

Question

Which properties of H are dictated by the underlying bimodule?
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Commutative Examples

H = cohP1

τ = −⊗O(−2), L = O,L = O(1),

End(L) = k = End(L),

HomH(L,L) = k ⊕ k .

H = cohC (a, b) where C (a, b) has no rational point

τ = −⊗ ωC(a,b), L = OC(a,b), L has rank two

End(L) = (a, b) and End(L) = k ,

HomH(L,L) ∼= (a,b)(a, b)k .

In general:

End(L) and End(L) will always be division rings f.d. over k .

The underlying bimodule of H will always have left-right
dimensions (1, 4) or (2, 2).
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The underlying bimodule of H will always have left-right
dimensions (1, 4) or (2, 2).
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Ample Pairs

Let σ be an autoequiv. of H.
Define A = ⊕i Hom(L, σiL) with mult. of a ∈ Ai with b ∈ Aj ,

a · b := σj(a) ◦ b

.

(L, σ) is an ample pair if

1 For M∈ H, ∃ positive n1, . . . , np and an epi
⊕p

i=1σ
−niL →M, and

2 If M f→ N is an epi in H, then the induced map
HomH(σ−nL, f ) is an epi for n >> 0.

Theorem (Artin and Zhang (1994))

If (L, σ) is an ample pair, then there is an equivalence
H→ projA := grA/torsA.
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Kussin’s Approach

Kussin studies the category H through the category grA for various
σ.

A noncommutative conic

Let a, c ∈ k , K = k(
√
a,
√
c) with [K : k] = 4.

Kussin constructs H such that the underlying bimodule of H is

KKk , and

Kussin identifies σ such that the homogeneous coordinate ring
A is

k〈X ,Y ,Z 〉/〈XY −YX ,XZ −ZX ,YZ +ZY ,Z 2 + aY 2− cX 2〉
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Part 3

Noncommutative Symmetric Algebras
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Goal

Suppose

L= field extension of k

V is L− L-bimodule w/dim 2 on both sides

{x , y} is a simultaneous basis

Construct nc ring Snc(V ) which specializes to

S(V ) :=
L⊕ V ⊕ V⊗2 ⊕ · · ·
〈x ⊗ y − y ⊗ x〉

when V is L-central.

Should have expected left and right Hilbert series
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Attempt 1

Define

Snc(V ) :=
L⊕ V ⊕ V⊗2 ⊕ · · ·
〈x ⊗ y − y ⊗ x〉

Problem

Too many relations.
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Duals

Right dual of V

V ∗ := HomL(VL, L) with action (a · ψ · b)(x) = aψ(bx).

Left dual of V
∗V := HomL(LV , L) with action (a · φ · b)(x) = bφ(xa).
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Attempt 2

There exists canonical η0 : L→ V ⊗L V
∗: If δx ∈ HomL(VL, L) is

dual to x etc. then

η0(a) := a(x ⊗ δx + y ⊗ δy ).

η0 independent of choices. Define

Snc(V ) := L⊕ V ⊕ V ⊗L V
∗

im η0
⊕ V ⊗ V ∗ ⊗ V ∗∗

im η0 ⊗ V ∗∗ + V ⊗ im η1
⊕ · · ·

Problem

No natural multiplication: if x , y ∈ V , x · y not in V⊗V ∗

im η0
.
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Z-algebras (Bondal and Polishchuk (1993))

An algebra A is a Z-algebra if

∃ vector space decomp A = ⊕i≤j∈ZAij ,

AijAjk ⊂ Aik ,

AijAkl = 0 for k 6= j , and

the subalgebra Aii contains a unit.

Remark: A does not have a unity and is not a domain.

Intuition

Think of A as ring of bi-infinite upper-triangular matrices with
(i , j)-entry coming from Aij .

Example

If (O(n))n∈Z is seq. of objects in a category A, then

Aij = HomA(O(j),O(i))

with mult. = composition makes ⊕i ,j∈ZAij a Z-algebra
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Attempt 3: Snc(V ) is a Z-algebra

Definition of Snc(V ) (Van den Bergh (2000))

Snc(V )ij = V i∗⊗L···⊗LV
j−1∗

relns. gen. by ηi
for j > i ,

Snc(V )ii = L,

Snc(V )ij = 0 if i > j ,

multiplication induced by ⊗L.

More generally, if

X is a smooth scheme of finite type over a k

E is a locally free rank n OX -bimodule

Van den Bergh defines Snc(E).
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Relation to S(V )

If V is L-central, Snc(V ) 6= S(V ).

If A is a Z-algebra,

if i ∈ Z let A(i)jk := Aj+i ,k+i .

A is i-periodic if A ∼= A(i).

If B is Z-graded algebra, define B̌ij := Bj−i .

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a Z-graded ring B such that
A ∼= B̌, and GrA ≡ GrB. It follows that if V is L-central, then

GrSnc(V ) ≡ GrS(V ).
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Noncommutative Bases

R, S = noetherian k-algebras

N = R − S-bimodule free on left (right) of rank m (n)

N is admissible if N i∗ is free of left-right dimension (m, n) if i is
even and (n,m) if i is odd.

Lemma (D. Chan and N (2015))

1 N is admissible ⇒ Snc(N) exists. This holds in particular if R
and S are f.d. simple.

2 If R and S are f.d. division rings and N has left-right
dimension (2, 2) or (1, 4), then dimSnc(N)ij = j − i + 1 on
either side.

If R 6= S , (following Van den Bergh) we let Snc(N)ii = R if i is
even and Snc(N)ii = S if i is odd.
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Part 4

Noncommutative P1-bundles over Division Rings and
Noncommutative Tsen’s Theorem
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Noncommutative P1-bundles over Division Rings

Let R and S be f.d. division algebras,

V an R − S-bimodule of left-right dimension (2, 2) or (1, 4)

Snc(V ) is noncommutative symmetric algebra of V

Pnc(V ) := grSnc(V )/torsSnc(V )

Proposition (N (2014))

Pnc(V ) is a homogeneous noncommutative curve of genus zero.
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Noncommutative Tsen’s Theorem I

Theorem (N (2014))

Let H be a noncommutative curve of genus zero with underlying
bimodule M. Then there is a k-linear equivalence

H→ Pnc(M).
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Noncommutative Tsen’s Theorem II

Main Idea

Build Z-algebra H from quiver:

τL2

  

L0

##

τ−1L−2

τL3

==

L1

??

τ−1L−1

99

Let

Hij =

{
Hom(O(j),O(i)) if j ≥ i

0 if i > j

and defining multiplication as composition. Then

Snc(M) ∼= H.
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Key Technical Lemma

To construct isomorphism

Snc(M)→ H

need an isom.
M i∗ → Hii+1.

Lemma (Dlab and Ringel (1979))

Let N be an indecomposable bundle on H and let

0→ N → E → τ−1N → 0

be an AR sequence. Then

E ∼= P⊕n for some indecomposable bundle P and
∗HomH(N ,P) ∼= HomH(P, τ−1N ).

Therefore, ∗M = ∗HomH(L,L) ∼= HomH(L, τ−1L).
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Consequence

τL
M∗

��

L
∗M

!!

τ−1L

τL

M∗∗
==

L

M

@@

τ−1L

∗∗M

::
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Recall the commutative picture when X has rational point P:

X
antican. emb. //

��

Proj(
⊕

j H
0(X , ω∗X

⊗j))

Proj(
⊕

i H
0(X ,O(P)⊗i ))

2−Veronese
// Proj(

⊕
j H

0(X ,O(P)⊗2j))

∼=

OO

In the noncommutative case we always have:

H
antican. emb.//

��

proj(
⊕

j HomH(L, τ−jL))

Pnc(M) ∼= proj(
⊕

ij Hij)
2−Veronese

// proj(
⊕

ij H2i2j)

1−per
OO

This holds even if H = cohX and X doesn’t have a rational point.
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Part 5

Noncommutative Witt’s Theorem
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Classification of Noncommutative Homogeneous Curves of
Genus Zero

Since H is built only out of its underlying bimodule M, one should
be able to construct natural isomorphism invariants for H out of M.

Theorem (N (2015))

There is an equivalence

Pnc(D1MD2)→ Pnc(E1NE2)

if and only if either

There are isomorphisms Di → Ei of k-algebras yielding an
isomorphism of bimodules M → N or

There are isomorphisms D1 → E2 and D2 → E1 of k-algebras
yielding an isomorphism of bimodules M → N∗.

If M has left-right dimension (1, 4) only case one is possible.
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Noncommutative Witt’s Theorem

A noncommutative conic is a noncommutative curve of genus
zero of the form Pnc(N) where N has left-right dimension (1, 4).

Corollary (N (2015))

There is an equivalence

Pnc(D1MD2)→ Pnc(E1NE2)

of noncommutative conics if and only if there are isomorphisms
Di → Ei of k-algebras yielding an isomorphism of bimodules
M → N.
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Proof of Witt’s Theorem from Noncommutative Witt’s
Theorem

Recall the classification for conics without rational points

Witt’s Theorem

The conics w/o rational points C (a, b) and C (c , d) are isomorphic
if and only if (a, b) ∼= (c , d).

Proof of ⇒
If C (a, b) ∼= C (c, d) then cohC (a, b) ≡ cohC (c, d). Thus
Pnc((a,b)(a, b)k) ≡ Pnc((c,d)(c , d)k) so nc Witt’s theorem implies
(a, b) ∼= (c , d).

Proof of ⇐
If (a, b) ∼= (c, d) then by nc Witt’s theorem this induces
Pnc((a,b)(a, b)k) ≡ Pnc((c,d)(c , d)k) which induces
cohC (a, b) ≡ cohC (c , d). By Gabriel-Rosenberg reconstruction
theorem, C (a, b) ∼= C (c , d).
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Thank you for your attention!

Adam Nyman


