The Geometry of Noncommutative Curves of Genus Zero

Adam Nyman

Western Washington University

February 24, 2015

Adam Nyman

Conventions and Notation

Adam Nyman

< ≣ >

Conventions and Notation

• k a field

Adam Nyman

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

- k a field
- All objects and morphisms are /k

イロト イヨト イヨト イヨト

- k a field
- All objects and morphisms are /k
- \equiv denotes (k-linear) equivalence of categories

/⊒ ▶ < ≣ ▶

-≣->

<u>Part 1</u>

Commutative Curves of Genus Zero

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Adam Nyman

X is **curve** if

Adam Nyman

・ロン ・雪 と ・ ヨ と ・ ヨ と

- X is **curve** if
 - X is projective variety

・ロン ・回と ・ヨン・

- X is **curve** if
 - X is projective variety
 - dim *X* = 1

・ロン ・聞 と ・ 聞 と ・ 聞 と

- X is **curve** if
 - X is projective variety
 - dim *X* = 1
 - X is smooth

・ロン ・四と ・日と ・日と

- X is **curve** if
 - X is projective variety
 - dim *X* = 1
 - X is smooth

・ロン ・四と ・日と ・日と

- X is **curve** if
 - X is projective variety
 - dim *X* = 1
 - X is smooth

X has genus zero if

イロト イヨト イヨト イヨト

- X is **curve** if
 - X is projective variety
 - dim *X* = 1
 - X is smooth

X has genus zero if $H^1(X, \mathcal{O}_X) = 0$ iff

・ロト ・回ト ・ヨト

æ

- ∢ ≣ ▶

- X is **curve** if
 - X is projective variety
 - dim *X* = 1
 - X is smooth

X has genus zero if $H^1(X, \mathcal{O}_X) = 0$ iff X has a tilting sheaf

æ

≣ ▶

- X is **curve** if
 - X is projective variety
 - dim *X* = 1
 - X is smooth

X has genus zero if $H^1(X, \mathcal{O}_X) = 0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_X -module \mathcal{T} such that

•
$$\mathsf{Ext}^1_X(\mathcal{T},\mathcal{T})=$$
 0, and

- X is **curve** if
 - X is projective variety
 - dim *X* = 1
 - X is smooth

X has genus zero if $H^1(X, \mathcal{O}_X) = 0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_X -module \mathcal{T} such that

- $\operatorname{Ext}^1_X(\mathcal{T},\mathcal{T}) = 0$, and
- whenever $\operatorname{Hom}_X(\mathcal{T},\mathcal{M})=0$

- X is **curve** if
 - X is projective variety
 - dim *X* = 1
 - X is smooth

X has genus zero if $H^1(X, \mathcal{O}_X) = 0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_X -module \mathcal{T} such that

•
$$\mathsf{Ext}^1_X(\mathcal{T},\mathcal{T})=$$
 0, and

• whenever $\operatorname{Hom}_X(\mathcal{T},\mathcal{M}) = 0 = \operatorname{Ext}^1_X(\mathcal{T},\mathcal{M})$

- X is **curve** if
 - X is projective variety
 - dim *X* = 1
 - X is smooth

X has genus zero if $H^1(X, \mathcal{O}_X) = 0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_X -module \mathcal{T} such that

- $\operatorname{Ext}^1_X(\mathcal{T},\mathcal{T}) = 0$, and
- whenever $\operatorname{Hom}_X(\mathcal{T},\mathcal{M}) = 0 = \operatorname{Ext}^1_X(\mathcal{T},\mathcal{M})$ we have $\mathcal{M} = 0$.

- X is **curve** if
 - X is projective variety
 - dim *X* = 1
 - X is smooth

X has genus zero if $H^1(X, \mathcal{O}_X) = 0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_X -module \mathcal{T} such that

- $\operatorname{Ext}^1_X(\mathcal{T},\mathcal{T}) = 0$, and
- whenever $\operatorname{Hom}_X(\mathcal{T},\mathcal{M}) = 0 = \operatorname{Ext}^1_X(\mathcal{T},\mathcal{M})$ we have $\mathcal{M} = 0$.

イロト イヨト イヨト イヨト

æ

Examples

- X is **curve** if
 - X is projective variety
 - dim *X* = 1
 - X is smooth

X has genus zero if $H^1(X, \mathcal{O}_X) = 0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_X -module \mathcal{T} such that

- $\operatorname{Ext}^1_X(\mathcal{T},\mathcal{T}) = 0$, and
- whenever $\operatorname{Hom}_X(\mathcal{T},\mathcal{M}) = 0 = \operatorname{Ext}^1_X(\mathcal{T},\mathcal{M})$ we have $\mathcal{M} = 0$.

イロト イヨト イヨト イヨト

æ

Examples

• \mathbb{P}^1_k

- X is **curve** if
 - X is projective variety
 - dim *X* = 1
 - X is smooth

X has genus zero if $H^1(X, \mathcal{O}_X) = 0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_X -module \mathcal{T} such that

- $\operatorname{Ext}^1_X(\mathcal{T},\mathcal{T}) = 0$, and
- whenever $\operatorname{Hom}_X(\mathcal{T},\mathcal{M}) = 0 = \operatorname{Ext}^1_X(\mathcal{T},\mathcal{M})$ we have $\mathcal{M} = 0$.

イロト イヨト イヨト イヨト

æ

Examples

•
$$\mathbb{P}_k^1$$

• $V(aX^2 + bY^2 - Z^2)$ for some $a, b \in k^{\times}$.

- X is **curve** if
 - X is projective variety
 - dim *X* = 1
 - X is smooth

X has genus zero if $H^1(X, \mathcal{O}_X) = 0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_X -module \mathcal{T} such that

- $\operatorname{Ext}^1_X(\mathcal{T},\mathcal{T}) = 0$, and
- whenever $\operatorname{Hom}_X(\mathcal{T},\mathcal{M}) = 0 = \operatorname{Ext}^1_X(\mathcal{T},\mathcal{M})$ we have $\mathcal{M} = 0$.

イロト イヨト イヨト イヨト

æ

Examples

•
$$\mathbb{P}_k^1$$

• $V(aX^2 + bY^2 - Z^2)$ for some $a, b \in k^{\times}$.

X =curve of genus zero

・ロト ・回ト ・ヨト ・ヨト

X = curve of genus zero $\omega_X =$ canonical sheaf

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

X =curve of genus zero $\omega_X =$ canonical sheaf then

æ

- ∢ ≣ ▶

X = curve of genus zero $\omega_X =$ canonical sheaf then

• ω_X^* is very ample

æ

X = curve of genus zero $\omega_X =$ canonical sheaf then

• ω_X^* is very ample

• degree $\omega_X^* = 2$

- - 4 回 ト - 4 回 ト

X = curve of genus zero $\omega_X =$ canonical sheaf then

- ω_X^* is very ample
- degree $\omega_X^* = 2$
- dim_k $H^0(X, \omega_X^*) = 3$

<**●** ► < **■** ►

- ∢ ≣ ▶

2

X = curve of genus zero $\omega_X =$ canonical sheaf then

- ω_X^* is very ample
- degree $\omega_X^* = 2$
- dim_k $H^0(X, \omega_X^*) = 3$

Therefore there is an embedding $X \hookrightarrow \mathbb{P}^2$ w/ image =

$$\mathsf{Proj}(igoplus_i H^0(X, \omega_X^{* \otimes i}))$$

/⊒ ▶ < ≣ ▶

X = curve of genus zero $\omega_X =$ canonical sheaf then

- ω_X^* is very ample
- degree $\omega_X^* = 2$
- dim_k $H^0(X, \omega_X^*) = 3$

Therefore there is an embedding $X \hookrightarrow \mathbb{P}^2$ w/ image =

$$\mathsf{Proj}(igoplus_i H^0(X, \omega_X^{* \otimes i}))$$

- 4 回 2 - 4 □ 2 - 4 □

Question

When is $X \cong \mathbb{P}^1$?

Rational Points

Adam Nyman

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

2

<ロ> (日) (日) (日) (日) (日)

Theorem

X (a curve of genus zero) $\cong \mathbb{P}^1$ iff

イロン イヨン イヨン イヨン

Theorem

X (a curve of genus zero) $\cong \mathbb{P}^1$ iff X has a k-rational point

・ロト ・回ト ・ヨト ・ヨト

Theorem

X (a curve of genus zero) $\cong \mathbb{P}^1$ iff X has a k-rational point

Proof of \Leftarrow

・ロト ・回ト ・ヨト ・ヨト

3

Theorem

X (a curve of genus zero) $\cong \mathbb{P}^1$ iff X has a k-rational point

Proof of \Leftarrow

 $\mathcal{O}(P)$ is degree one line bundle on X

イロト イヨト イヨト イヨト
X = V(f(X, Y, Z)) has a k-rational point if $\exists P = [c, d, e] \in \mathbb{P}^2_k$ such that f(c, d, e) = 0.

Theorem

X (a curve of genus zero) $\cong \mathbb{P}^1$ iff X has a k-rational point

Proof of \Leftarrow

 $\mathcal{O}(P)$ is degree one line bundle on X thus $\mathcal{O}(P)$ is very ample

イロン イ部ン イヨン イヨン 三日

X = V(f(X, Y, Z)) has a k-rational point if $\exists P = [c, d, e] \in \mathbb{P}^2_k$ such that f(c, d, e) = 0.

Theorem

X (a curve of genus zero) $\cong \mathbb{P}^1$ iff X has a k-rational point

Proof of \Leftarrow

 $\mathcal{O}(P)$ is degree one line bundle on X thus $\mathcal{O}(P)$ is very ample thus $X \cong \operatorname{Proj}(\bigoplus_i H^0(X, \mathcal{O}(P)^{\otimes i}))$

イロン イ部ン イヨン イヨン 三日

X = V(f(X, Y, Z)) has a k-rational point if $\exists P = [c, d, e] \in \mathbb{P}^2_k$ such that f(c, d, e) = 0.

Theorem

X (a curve of genus zero) $\cong \mathbb{P}^1$ iff X has a k-rational point

Proof of \Leftarrow

 $\mathcal{O}(P)$ is degree one line bundle on X thus $\mathcal{O}(P)$ is very ample thus $X \cong \operatorname{Proj}(\bigoplus_i H^0(X, \mathcal{O}(P)^{\otimes i})) \cong \mathbb{P}^1.$

イロン イ部ン イヨン イヨン 三日

・ロト ・回ト ・ヨト ・ヨト

$$\mathcal{O}(P)^{\otimes 2} \cong \omega_X^*$$

・ロト ・回ト ・ヨト ・ヨト

$$\mathcal{O}(P)^{\otimes 2} \cong \omega_X^*$$

In this case there is a factorization

イロト イヨト イヨト イヨト

$$\mathcal{O}(P)^{\otimes 2} \cong \omega_X^*$$

In this case there is a factorization

Tsen's Theorem

Adam Nyman

・ロト ・回ト ・ヨト ・ヨト

Theorem (Tsen, 1933)

Adam Nyman

イロン イヨン イヨン イヨン

Theorem (Tsen, 1933)

Suppose

・ロン ・回と ・ヨン ・ヨン

Theorem (Tsen, 1933)Suppose• $L = \overline{L}$,

・ロト ・回ト ・ヨト ・ヨト

Theorem (Tsen, 1933) Suppose • $L = \overline{L}$, • k = L(C) where C is curve/L, and

イロン イヨン イヨン イヨン

3

Theorem (Tsen, 1933)

Suppose

- $L = \overline{L}$,
- k = L(C) where C is curve/L, and
- X/k is geometrically irreducible curve with genus zero.

Theorem (Tsen, 1933)

Suppose

- $L = \overline{L}$,
- k = L(C) where C is curve/L, and

• X/k is geometrically irreducible curve with genus zero.

Then

$$X\cong_k \mathbb{P}^1_k.$$

- - 4 回 ト - 4 回 ト

Theorem (Tsen, 1933)

Suppose

- $L = \overline{L}$,
- k = L(C) where C is curve/L, and
- X/k is geometrically irreducible curve with genus zero.

Then

$$X \cong_k \mathbb{P}^1_k.$$

▲圖▶ ▲屋▶ ▲屋▶

Morally speaking, Tsen's theorem says: over certain base fields, curves of genus zero are projective lines.

Adam Nyman

Suppose char $k \neq 2$.

Suppose char $k \neq 2$. For $a, b \in k^{\times}$,

・ロン ・四と ・日と ・日と

Suppose char $k \neq 2$. For $a, b \in k^{\times}$,

• (a, b) = 4-d algebra over k w / basis 1, i, j, k

・ロト ・回ト ・ヨト ・ヨト

2

Suppose char $k \neq 2$. For $a, b \in k^{\times}$,

•
$$(a, b) = 4$$
-d algebra over $k \text{ w/ basis } 1, i, j, k$ and mult.
 $i^2 = a, j^2 = b, ij = -ji$.

・ロン ・四と ・日と ・日と

Suppose char $k \neq 2$. For $a, b \in k^{\times}$,

- (a, b) = 4-d algebra over k w/ basis 1, i, j, k and mult. $i^2 = a, j^2 = b, ij = -ji$.
- $C(a,b) = V(aX^2 + bY^2 Z^2) \subset \mathbb{P}^2_k.$

イロン イヨン イヨン イヨン

2

Suppose char $k \neq 2$. For $a, b \in k^{\times}$,

•
$$(a, b) = 4$$
-d algebra over $k \text{ w/ basis } 1, i, j, k$ and mult.
 $i^2 = a, j^2 = b, ij = -ji$.

•
$$C(a,b) = V(aX^2 + bY^2 - Z^2) \subset \mathbb{P}^2_k.$$

Theorem (Witt)

There is an isomorphism

$$C(a,b) \rightarrow C(c,d)$$

イロト イヨト イヨト イヨト

Suppose char $k \neq 2$. For $a, b \in k^{\times}$,

•
$$(a, b) = 4$$
-d algebra over $k \text{ w/ basis } 1, i, j, k$ and mult.
 $i^2 = a, j^2 = b, ij = -ji$.

•
$$C(a,b) = V(aX^2 + bY^2 - Z^2) \subset \mathbb{P}^2_k.$$

Theorem (Witt)

There is an isomorphism

$$C(a,b) \rightarrow C(c,d)$$

if and only if

$$(a,b)\cong (c,d).$$

イロト イヨト イヨト イヨト

<u>Part 2</u>

Noncommutative Curves of Genus Zero (after Kussin)

æ

- ∢ ≣ ▶

/∰ ▶ < ≣ ▶

Adam Nyman

Noncommutative Space := Grothendieck Category

⊡ ▶ < ≣ ▶

-≣->

Noncommutative Space := Grothendieck Category =

• (k-linear) abelian category with

≣ >

Noncommutative Space := Grothendieck Category =

- (k-linear) abelian category with
- exact direct limits and

Noncommutative Space := Grothendieck Category =

- (k-linear) abelian category with
- exact direct limits and
- a generator.

∢ ≣⇒

Noncommutative Space := Grothendieck Category =

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

<ロ> <同> <同> <三> < 回> < 回> < 三>

_∢ ≣ ≯

Noncommutative Space := Grothendieck Category =

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

• Mod R, R a ring

<ロ> <同> <同> <三>

Noncommutative Space := Grothendieck Category =

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

- Mod R, R a ring
- Qcoh X

イロト イヨト イヨト イヨト

Noncommutative Space := Grothendieck Category =

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

- Mod R, R a ring
- Qcoh X
- Proj A := GrA/TorsA where A is \mathbb{Z} -graded

同 と く ヨ と く ヨ と

Noncommutative Space := Grothendieck Category =

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

- Mod R, R a ring
- Qcoh X
- Proj A := GrA/TorsA where A is \mathbb{Z} -graded

Theorem (Gabriel-Rosenberg)

A (quasi-separated) scheme X can be recovered up to isomorphism from QcohX.

個 と く ヨ と く ヨ と

Kussin's Noncommutative Curves of Genus Zero (2009)

Adam Nyman

- 4 回 2 - 4 □ 2 - 4 □

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to cohX, X=curve of genus zero
Kussin studies categories similar to cohX, X=curve of genus zero i.e. abelian noetherian categories H such that H

• is Ext-finite,

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}^{1}_{H}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{H}(\mathcal{N}, \tau \mathcal{M}),$

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}^{1}_{H}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{H}(\mathcal{N}, \tau \mathcal{M}),$
- H has an object of infinite length

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}^{1}_{H}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{H}(\mathcal{N}, \tau \mathcal{M}),$
- H has an object of infinite length
- has a tilting object \mathcal{T} .

Kussin studies categories similar to cohX, X=curve of genus zero i.e. abelian noetherian categories H such that H

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}^{1}_{H}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{H}(\mathcal{N}, \tau \mathcal{M}),$
- H has an object of infinite length
- has a tilting object \mathcal{T} .

H is **homogeneous** if $\tau S \cong S$ for all simple $S \in H$.

Kussin studies categories similar to cohX, X=curve of genus zero i.e. abelian noetherian categories H such that H

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}^{1}_{H}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{H}(\mathcal{N}, \tau \mathcal{M}),$
- H has an object of infinite length
- has a tilting object \mathcal{T} .

H is **homogeneous** if $\tau S \cong S$ for all simple $S \in H$.

Basic examples

Kussin studies categories similar to cohX, X=curve of genus zero i.e. abelian noetherian categories H such that H

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}^{1}_{H}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{H}(\mathcal{N}, \tau \mathcal{M}),$
- H has an object of infinite length
- has a tilting object \mathcal{T} .

H is **homogeneous** if $\tau S \cong S$ for all simple $S \in H$.

Basic examples

• coh X for X a curve of genus zero (homogeneous)

- 4 回 ト - 4 回 ト

Kussin studies categories similar to cohX, X=curve of genus zero i.e. abelian noetherian categories H such that H

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}^{1}_{H}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{H}(\mathcal{N}, \tau \mathcal{M}),$
- H has an object of infinite length
- has a tilting object \mathcal{T} .

H is **homogeneous** if $\tau S \cong S$ for all simple $S \in H$.

Basic examples

- coh X for X a curve of genus zero (homogeneous)
- Weighted projective lines (Geigle-Lenzing) (nonhomogeneous)

Kussin studies categories similar to cohX, X=curve of genus zero i.e. abelian noetherian categories H such that H

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}^{1}_{H}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{H}(\mathcal{N}, \tau \mathcal{M}),$
- H has an object of infinite length
- has a tilting object \mathcal{T} .

H is **homogeneous** if $\tau S \cong S$ for all simple $S \in H$.

Basic examples

- coh X for X a curve of genus zero (homogeneous)
- Weighted projective lines (Geigle-Lenzing) (nonhomogeneous)

Let $\mathsf{H} = \mathsf{noncommutative}$ curve of genus zero

個 ト く ヨ ト く ヨ ト

Some Facts

/⊒ ▶ < ≣ ▶

Some Facts

 $\bullet~H/H_0$ is semisimple w/ one simple object

Some Facts

• H/H_0 is semisimple w/ one simple object \Rightarrow $H/H_0 \equiv modk(H)$ for some division ring k(H).

Some Facts

- H/H_0 is semisimple w/ one simple object \Rightarrow $H/H_0 \equiv modk(H)$ for some division ring k(H).
- If H is not homogeneous, there exists homogeneous H' such that k(H) ≅ k(H').

Some Facts

- H/H_0 is semisimple w/ one simple object \Rightarrow $H/H_0 \equiv modk(H)$ for some division ring k(H).
- If H is not homogeneous, there exists homogeneous H' such that k(H) ≅ k(H').

白 ト イヨト イヨト

Assumption

From now on we will work only with homogeneous H.

Adam Nyman

・ロト ・聞 ト ・ ヨト ・ ヨト

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

Theorem

There is an equivalence

$$D^b(\mathsf{H}) o D^b(\mathsf{mod}(\mathsf{End}_{\mathsf{H}}(\mathcal{T})))$$

イロト イヨト イヨト イヨト

Theorem

There is an equivalence

$$D^b(\mathsf{H}) o D^b(\mathsf{mod}(\mathsf{End}_{\mathsf{H}}(\mathcal{T})))$$

周▶ ▲ 臣▶

-≣->

Derived equivalences preserve indecomposable objects

Theorem

There is an equivalence

$$D^b(\mathsf{H}) o D^b(\mathsf{mod}(\mathsf{End}_{\mathsf{H}}(\mathcal{T})))$$

Derived equivalences preserve indecomposable objects ... we have

geometry of $H \leftrightarrow rep$. theory of $End_H(\mathcal{T})$.

@▶ 《 ≧ ▶

Adam Nyman

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

Adam Nyman

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

• A vector bundle \mathcal{L} is an object in H without a simple sub-object.

- 4 回 2 4 三 2 4 三 2 4

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of ${\cal L}$ is the dim. of the image of ${\cal L}$ under the quotient functor $H\to H/H_0.$

個 と く ヨ と く ヨ と

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of ${\cal L}$ is the dim. of the image of ${\cal L}$ under the quotient functor $H\to H/H_0.$

 $\mathcal{M} \xrightarrow{f} \mathcal{P}$ is irreducible if

個 と く ヨ と く ヨ と

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of ${\cal L}$ is the dim. of the image of ${\cal L}$ under the quotient functor $H\to H/H_0.$

 $\mathcal{M} \xrightarrow{f} \mathcal{P}$ is irreducible if

個 と く ヨ と く ヨ と

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of ${\cal L}$ is the dim. of the image of ${\cal L}$ under the quotient functor $H\to H/H_0.$

$\mathcal{M} \stackrel{f}{\rightarrow} \mathcal{P}$ is irreducible if

• f does not have a right or left inverse, and

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of ${\cal L}$ is the dim. of the image of ${\cal L}$ under the quotient functor $H\to H/H_0.$

$\mathcal{M} \stackrel{f}{\rightarrow} \mathcal{P}$ is irreducible if

- f does not have a right or left inverse, and
- If f = ts, then s has a right inverse or t has a left inverse.

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of ${\cal L}$ is the dim. of the image of ${\cal L}$ under the quotient functor $H\to H/H_0.$

$\mathcal{M} \stackrel{f}{\rightarrow} \mathcal{P}$ is irreducible if

- f does not have a right or left inverse, and
- If f = ts, then s has a right inverse or t has a left inverse.

Classification of indecomposable bundles in H

Given a line bundle \mathcal{L} over H,

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of ${\cal L}$ is the dim. of the image of ${\cal L}$ under the quotient functor $H\to H/H_0.$

$\mathcal{M} \stackrel{f}{\rightarrow} \mathcal{P}$ is irreducible if

- f does not have a right or left inverse, and
- If f = ts, then s has a right inverse or t has a left inverse.

Classification of indecomposable bundles in H

Given a line bundle \mathcal{L} over H,

• \exists ! indecomposable bundle $\overline{\mathcal{L}}$ s.t. there is an irreducible morphism $\mathcal{L} \to \overline{\mathcal{L}}$

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of ${\cal L}$ is the dim. of the image of ${\cal L}$ under the quotient functor $H\to H/H_0.$

$\mathcal{M} \stackrel{f}{\rightarrow} \mathcal{P}$ is irreducible if

- f does not have a right or left inverse, and
- If f = ts, then s has a right inverse or t has a left inverse.

Classification of indecomposable bundles in H

Given a line bundle \mathcal{L} over H,

- $\exists !$ indecomposable bundle $\overline{\mathcal{L}}$ s.t. there is an irreducible morphism $\mathcal{L} \to \overline{\mathcal{L}}$
- every indec. bundle is \cong to $\tau^i(\mathcal{L})$ or $\tau^i(\overline{\mathcal{L}})$.

The Underlying Bimodule

Adam Nyman

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

The **underlying bimodule** of H is the $End(\overline{\mathcal{L}}) - End(\mathcal{L})$ -bimodule $Hom_H(\mathcal{L}, \overline{\mathcal{L}})$.

・ 母 と ・ ヨ と ・ ヨ と

The **underlying bimodule** of H is the $End(\overline{\mathcal{L}}) - End(\mathcal{L})$ -bimodule $Hom_H(\mathcal{L}, \overline{\mathcal{L}})$.

Question

Which properties of H are dictated by the underlying bimodule?

イロン イ部ン イヨン イヨン 三日
Adam Nyman

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

$\mathsf{H}=\mathsf{coh}\mathbb{P}^1$

・ロン ・団 と ・ 国 と ・ 国 と

$\mathsf{H}=\mathsf{coh}\mathbb{P}^1$

•
$$\tau = - \otimes \mathcal{O}(-2)$$
,

・ロン ・団 と ・ 国 と ・ 国 と

$\mathsf{H}=\mathsf{coh}\mathbb{P}^1$

•
$$au = - \otimes \mathcal{O}(-2), \ \mathcal{L} = \mathcal{O},$$

・ロン ・団 と ・ 国 と ・ 国 と

$\mathsf{H}=\mathsf{coh}\mathbb{P}^1$

•
$$au = - \otimes \mathcal{O}(-2), \ \mathcal{L} = \mathcal{O}, \overline{\mathcal{L}} = \mathcal{O}(1),$$

Adam Nyman

・ロン ・団 と ・ 国 と ・ 国 と

$\mathsf{H}=\mathsf{coh}\mathbb{P}^1$

•
$$au = - \otimes \mathcal{O}(-2), \ \mathcal{L} = \mathcal{O}, \overline{\mathcal{L}} = \mathcal{O}(1),$$

• $\operatorname{End}(\overline{\mathcal{L}}) = k = \operatorname{End}(\mathcal{L})$,

$H = \operatorname{coh} \mathbb{P}^1$

•
$$au = - \otimes \mathcal{O}(-2), \ \mathcal{L} = \mathcal{O}, \overline{\mathcal{L}} = \mathcal{O}(1),$$

• $\operatorname{End}(\overline{\mathcal{L}}) = k = \operatorname{End}(\mathcal{L})$,

•
$$\operatorname{Hom}_{H}(\mathcal{L},\overline{\mathcal{L}}) = k \oplus k$$
.

$\mathsf{H}=\mathsf{coh}\mathbb{P}^1$

•
$$au = - \otimes \mathcal{O}(-2), \ \mathcal{L} = \mathcal{O}, \overline{\mathcal{L}} = \mathcal{O}(1),$$

• $\operatorname{End}(\overline{\mathcal{L}}) = k = \operatorname{End}(\mathcal{L})$,

•
$$\operatorname{Hom}_{H}(\mathcal{L},\overline{\mathcal{L}}) = k \oplus k$$
.

$H = \operatorname{coh} C(a, b)$ where C(a, b) has no rational point

《曰》《聞》《臣》《臣》 三臣

$\mathsf{H}=\mathsf{coh}\mathbb{P}^1$

•
$$au = - \otimes \mathcal{O}(-2), \ \mathcal{L} = \mathcal{O}, \overline{\mathcal{L}} = \mathcal{O}(1),$$

• $\operatorname{End}(\overline{\mathcal{L}}) = k = \operatorname{End}(\mathcal{L}),$

•
$$\operatorname{Hom}_{H}(\mathcal{L},\overline{\mathcal{L}}) = k \oplus k$$
.

$H = \operatorname{coh} C(a, b)$ where C(a, b) has no rational point

•
$$\tau = - \otimes \omega_{C(a,b)}$$
,

《曰》《聞》《臣》《臣》 三臣

$\mathsf{H}=\mathsf{coh}\mathbb{P}^1$

•
$$au = - \otimes \mathcal{O}(-2), \ \mathcal{L} = \mathcal{O}, \overline{\mathcal{L}} = \mathcal{O}(1),$$

• $\operatorname{End}(\overline{\mathcal{L}}) = k = \operatorname{End}(\mathcal{L}),$

•
$$\operatorname{Hom}_{H}(\mathcal{L},\overline{\mathcal{L}}) = k \oplus k$$
.

$H = \operatorname{coh} C(a, b)$ where C(a, b) has no rational point

•
$$\tau = - \otimes \omega_{\mathcal{C}(a,b)}, \ \mathcal{L} = \mathcal{O}_{\mathcal{C}(a,b)},$$

《曰》《聞》《臣》《臣》 三臣

$\mathsf{H}=\mathsf{coh}\mathbb{P}^1$

•
$$au = - \otimes \mathcal{O}(-2), \ \mathcal{L} = \mathcal{O}, \overline{\mathcal{L}} = \mathcal{O}(1),$$

• $\operatorname{End}(\overline{\mathcal{L}}) = k = \operatorname{End}(\mathcal{L})$,

•
$$\operatorname{Hom}_{H}(\mathcal{L},\overline{\mathcal{L}}) = k \oplus k$$
.

$H = \operatorname{coh} C(a, b)$ where C(a, b) has no rational point

•
$$au = - \otimes \omega_{\mathcal{C}(a,b)}, \ \mathcal{L} = \mathcal{O}_{\mathcal{C}(a,b)}, \ \overline{\mathcal{L}}$$
 has rank two

$\mathsf{H}=\mathsf{coh}\mathbb{P}^1$

•
$$au = - \otimes \mathcal{O}(-2), \ \mathcal{L} = \mathcal{O}, \overline{\mathcal{L}} = \mathcal{O}(1),$$

• $\operatorname{End}(\overline{\mathcal{L}}) = k = \operatorname{End}(\mathcal{L})$,

•
$$\operatorname{Hom}_{H}(\mathcal{L},\overline{\mathcal{L}}) = k \oplus k$$
.

$H = \operatorname{coh} C(a, b)$ where C(a, b) has no rational point

•
$$au = - \otimes \omega_{\mathcal{C}(a,b)}$$
, $\mathcal{L} = \mathcal{O}_{\mathcal{C}(a,b)}$, $\overline{\mathcal{L}}$ has rank two

•
$$\operatorname{End}(\overline{\mathcal{L}}) = (a, b)$$
 and $\operatorname{End}(\mathcal{L}) = k$,

$\mathsf{H}=\mathsf{coh}\mathbb{P}^1$

•
$$au = - \otimes \mathcal{O}(-2), \ \mathcal{L} = \mathcal{O}, \overline{\mathcal{L}} = \mathcal{O}(1),$$

• $\operatorname{End}(\overline{\mathcal{L}}) = k = \operatorname{End}(\mathcal{L}),$

•
$$\operatorname{Hom}_{H}(\mathcal{L},\overline{\mathcal{L}}) = k \oplus k$$
.

$H = \operatorname{coh} C(a, b)$ where C(a, b) has no rational point

•
$$au = - \otimes \omega_{\mathcal{C}(a,b)}$$
, $\mathcal{L} = \mathcal{O}_{\mathcal{C}(a,b)}$, $\overline{\mathcal{L}}$ has rank two

•
$$\operatorname{End}(\overline{\mathcal{L}}) = (a, b)$$
 and $\operatorname{End}(\mathcal{L}) = k$,

•
$$\operatorname{Hom}_{H}(\mathcal{L},\overline{\mathcal{L}})\cong_{(a,b)}(a,b)_{k}.$$

$\mathsf{H}=\mathsf{coh}\mathbb{P}^1$

•
$$au = - \otimes \mathcal{O}(-2), \ \mathcal{L} = \mathcal{O}, \overline{\mathcal{L}} = \mathcal{O}(1),$$

• $\operatorname{End}(\overline{\mathcal{L}}) = k = \operatorname{End}(\mathcal{L})$,

•
$$\operatorname{Hom}_{H}(\mathcal{L},\overline{\mathcal{L}}) = k \oplus k$$
.

$H = \operatorname{coh} C(a, b)$ where C(a, b) has no rational point

•
$$au=-\otimes \omega_{\mathcal{C}(a,b)}$$
, $\mathcal{L}=\mathcal{O}_{\mathcal{C}(a,b)}$, $\overline{\mathcal{L}}$ has rank two

•
$$\operatorname{End}(\overline{\mathcal{L}}) = (a, b)$$
 and $\operatorname{End}(\mathcal{L}) = k$,

•
$$\mathsf{Hom}_{\mathsf{H}}(\mathcal{L},\overline{\mathcal{L}})\cong{}_{(a,b)}(a,b)_{k}$$

In general:

$\mathsf{H}=\mathsf{coh}\mathbb{P}^1$

•
$$au = - \otimes \mathcal{O}(-2), \ \mathcal{L} = \mathcal{O}, \overline{\mathcal{L}} = \mathcal{O}(1),$$

• $\operatorname{End}(\overline{\mathcal{L}}) = k = \operatorname{End}(\mathcal{L})$,

•
$$\operatorname{Hom}_{H}(\mathcal{L},\overline{\mathcal{L}}) = k \oplus k$$
.

$H = \operatorname{coh} C(a, b)$ where C(a, b) has no rational point

•
$$au=-\otimes \omega_{\mathcal{C}(a,b)}$$
, $\mathcal{L}=\mathcal{O}_{\mathcal{C}(a,b)}$, $\overline{\mathcal{L}}$ has rank two

•
$$\operatorname{End}(\overline{\mathcal{L}}) = (a, b)$$
 and $\operatorname{End}(\mathcal{L}) = k$,

•
$$\mathsf{Hom}_{\mathsf{H}}(\mathcal{L},\overline{\mathcal{L}})\cong_{(a,b)}(a,b)_k$$

In general:

• End(\mathcal{L}) and End($\overline{\mathcal{L}}$) will always be division rings f.d. over k.

Adam Nyman

$\mathsf{H}=\mathsf{coh}\mathbb{P}^1$

•
$$au = -\otimes \mathcal{O}(-2)$$
, $\mathcal{L} = \mathcal{O}, \overline{\mathcal{L}} = \mathcal{O}(1)$,

• $\operatorname{End}(\overline{\mathcal{L}}) = k = \operatorname{End}(\mathcal{L})$,

•
$$\operatorname{Hom}_{H}(\mathcal{L},\overline{\mathcal{L}}) = k \oplus k$$
.

$H = \operatorname{coh} C(a, b)$ where C(a, b) has no rational point

•
$$au=-\otimes \omega_{\mathcal{C}(a,b)}$$
, $\mathcal{L}=\mathcal{O}_{\mathcal{C}(a,b)}$, $\overline{\mathcal{L}}$ has rank two

•
$$\operatorname{End}(\overline{\mathcal{L}}) = (a, b)$$
 and $\operatorname{End}(\mathcal{L}) = k$,

•
$$\mathsf{Hom}_{\mathsf{H}}(\mathcal{L},\overline{\mathcal{L}})\cong_{(a,b)}(a,b)_k$$

In general:

- $End(\mathcal{L})$ and $End(\overline{\mathcal{L}})$ will always be division rings f.d. over k.
- The underlying bimodule of H will always have left-right dimensions (1,4) or (2,2).

Adam Nyman

Let σ be an autoequiv. of H.

・ロン ・団 と ・ 国 と ・ 国 と

Let σ be an autoequiv. of H. Define $A = \bigoplus_i \operatorname{Hom}(\mathcal{L}, \sigma^i \mathcal{L})$

(本部) (本語) (本語)

Let σ be an autoequiv. of H.

Define $A = \bigoplus_i \operatorname{Hom}(\mathcal{L}, \sigma^i \mathcal{L})$ with mult. of $a \in A_i$ with $b \in A_j$,

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Let σ be an autoequiv. of H.

Define $A = \bigoplus_i \operatorname{Hom}(\mathcal{L}, \sigma^i \mathcal{L})$ with mult. of $a \in A_i$ with $b \in A_j$,

 $a \cdot b := \sigma^j(a) \circ b$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

.

Let σ be an autoequiv. of H.

Define $A = \bigoplus_i \operatorname{Hom}(\mathcal{L}, \sigma^i \mathcal{L})$ with mult. of $a \in A_i$ with $b \in A_j$,

 $a \cdot b := \sigma^j(a) \circ b$

 (\mathcal{L}, σ) is an **ample pair** if

伺▶ 《 臣 ▶

-≣->

.

Let σ be an autoequiv. of H.

Define $A = \bigoplus_i \operatorname{Hom}(\mathcal{L}, \sigma^i \mathcal{L})$ with mult. of $a \in A_i$ with $b \in A_j$,

 $a \cdot b := \sigma^j(a) \circ b$

 (\mathcal{L}, σ) is an **ample pair** if • For $\mathcal{M} \in H$, \exists positive n_1, \ldots, n_p and an epi $\bigoplus_{i=1}^p \sigma^{-n_i} \mathcal{L} \to \mathcal{M}$, and

白 と く ヨ と く ヨ と

Let σ be an autoequiv. of H.

Define $A = \bigoplus_i \operatorname{Hom}(\mathcal{L}, \sigma^i \mathcal{L})$ with mult. of $a \in A_i$ with $b \in A_j$,

 $a \cdot b := \sigma^j(a) \circ b$

(L, σ) is an ample pair if
For M ∈ H, ∃ positive n₁,..., n_p and an epi ⊕^p_{i=1}σ^{-n_i}L → M, and
If M ^f→ N is an epi in H, then the induced map Hom_H(σ⁻ⁿL, f) is an epi for n >> 0.

白 と く ヨ と く ヨ と …

Let σ be an autoequiv. of H.

Define $A = \bigoplus_i \operatorname{Hom}(\mathcal{L}, \sigma^i \mathcal{L})$ with mult. of $a \in A_i$ with $b \in A_j$,

 $a \cdot b := \sigma^j(a) \circ b$

(L, σ) is an ample pair if
For M ∈ H, ∃ positive n₁,..., n_p and an epi ⊕^p_{i=1}σ^{-n_i}L → M, and
If M → N is an epi in H, then the induced map Hom_H(σ⁻ⁿL, f) is an epi for n >> 0.

Theorem (Artin and Zhang (1994))

If (\mathcal{L}, σ) is an ample pair, then there is an equivalence $H \rightarrow \text{proj}A := \text{gr}A/\text{tors}A$.

Kussin's Approach

Adam Nyman

・ロト ・聞 ト ・ ヨト ・ ヨト

⊡ ▶ < ≣ ▶

≣ ▶

A noncommutative conic

・ロト ・回ト ・ヨト

문 문 문

A noncommutative conic

• Let $a, c \in k$, $K = k(\sqrt{a}, \sqrt{c})$ with [K : k] = 4.

イロト イヨト イヨト イヨト

3

A noncommutative conic

- Let $a, c \in k$, $K = k(\sqrt{a}, \sqrt{c})$ with [K : k] = 4.
- Kussin constructs H such that the underlying bimodule of H is ${}_{{\cal K}}{\cal K}_k,$ and

イロト イヨト イヨト イヨト

A noncommutative conic

- Let $a, c \in k$, $K = k(\sqrt{a}, \sqrt{c})$ with [K : k] = 4.
- Kussin constructs H such that the underlying bimodule of H is ${}_{{\cal K}}{\cal K}_k,$ and
- $\bullet\,$ Kussin identifies σ such that the homogeneous coordinate ring A is

$$k\langle X, Y, Z \rangle / \langle XY - YX, XZ - ZX, YZ + ZY, Z^2 + aY^2 - cX^2 \rangle$$

イロト イヨト イヨト イヨト

Part 3

Noncommutative Symmetric Algebras

・ロン ・回と ・ ヨン・

Goal

Adam Nyman

◆□ → ◆□ → ◆目 → ◆目 → ◆□ →

Suppose

・ロ・・(四・・)を注・・(注・・)注

Suppose

• L= field extension of k

Goal

Suppose

- L= field extension of k
- V is L L-bimodule w/dim 2 on both sides

・ロン ・四と ・日と ・日と
Suppose

- L= field extension of k
- V is L L-bimodule w/dim 2 on both sides
- $\{x, y\}$ is a simultaneous basis

・ロン ・四と ・日と ・日と

Suppose

- L= field extension of k
- V is L L-bimodule w/dim 2 on both sides
- $\{x, y\}$ is a simultaneous basis

Construct nc ring $\mathbb{S}^{nc}(V)$ which specializes to

<ロ> <同> <同> <三>

-≣->

Suppose

- L = field extension of k
- V is L L-bimodule w/dim 2 on both sides
- $\{x, y\}$ is a simultaneous basis

Construct nc ring $\mathbb{S}^{nc}(V)$ which specializes to

$$\mathbb{S}(V) := rac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{\langle x \otimes y - y \otimes x
angle}$$

・ 回 ト ・ ヨ ト ・ ヨ ト

æ

when V is L-central.

Suppose

- L = field extension of k
- V is L L-bimodule w/dim 2 on both sides
- $\{x, y\}$ is a simultaneous basis

Construct nc ring $\mathbb{S}^{nc}(V)$ which specializes to

$$\mathbb{S}(V) := rac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{\langle x \otimes y - y \otimes x
angle}$$

個 と く ヨ と く ヨ と …

when V is L-central.

Should have expected left and right Hilbert series

Attempt 1

Adam Nyman

▲□→ ▲圖→ ▲厘→ ▲厘→

Define

$$\mathbb{S}^{nc}(V) := \frac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{\langle x \otimes y - y \otimes x \rangle}$$

Define

$$\mathbb{S}^{nc}(V) := \frac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{\langle x \otimes y - y \otimes x \rangle}$$

Problem

Too many relations.

Duals

Adam Nyman

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

Right dual of V

 $V^* := \operatorname{Hom}_L(V_L, L)$

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Right dual of V

 $V^* := \operatorname{Hom}_L(V_L, L)$ with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Right dual of V

$$V^* := \operatorname{Hom}_L(V_L, L)$$
 with action $(a \cdot \psi \cdot b)(x) = a\psi(bx)$.

Left dual of V

*
$$V := \operatorname{Hom}_{L}(_{L}V, L)$$
 with action $(a \cdot \phi \cdot b)(x) = b\phi(xa)$.

Adam Nyman

▲□→ ▲圖→ ▲厘→ ▲厘→

There exists canonical $\eta_0 : L \to V \otimes_L V^*$:

・ロン ・四と ・日と ・日と

・ロン ・四と ・日と ・日と

 $\eta_0(a) := a(x \otimes \delta_x + y \otimes \delta_y).$

・ロト ・四ト ・ヨト ・ヨトー

 $\eta_0(a) := a(x \otimes \delta_x + y \otimes \delta_y).$

 η_0 independent of choices.

▲圖▶ ▲屋▶ ▲屋▶

 $\eta_0(a) := a(x \otimes \delta_x + y \otimes \delta_y).$

 η_0 independent of choices. Define

$$\mathbb{S}^{nc}(V) := L \oplus V \oplus \frac{V \otimes_L V^*}{\operatorname{im} \eta_0} \oplus \frac{V \otimes V^* \otimes V^{**}}{\operatorname{im} \eta_0 \otimes V^{**} + V \otimes \operatorname{im} \eta_1} \oplus \cdots$$

 $\eta_0(a) := a(x \otimes \delta_x + y \otimes \delta_y).$

 η_0 independent of choices. Define

$$\mathbb{S}^{nc}(V) := L \oplus V \oplus \frac{V \otimes_L V^*}{\operatorname{im} \eta_0} \oplus \frac{V \otimes V^* \otimes V^{**}}{\operatorname{im} \eta_0 \otimes V^{**} + V \otimes \operatorname{im} \eta_1} \oplus \cdots$$

Problem

No natural multiplication: if $x, y \in V$, $x \cdot y$ **not** in $\frac{V \otimes V^*}{\operatorname{im} \eta_0}$.

Adam Nyman

・ロン ・四と ・日と ・日と

An algebra A is a \mathbb{Z} -algebra if

▲圖▶ ▲ 圖▶ ▲ 圖▶ -

An algebra A is a \mathbb{Z} -algebra if

• \exists vector space decomp $A = \bigoplus_{i \le j \in \mathbb{Z}} A_{ij}$,

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

An algebra A is a \mathbb{Z} -algebra if

• \exists vector space decomp $A = \bigoplus_{i \leq j \in \mathbb{Z}} A_{ij}$,

•
$$A_{ij}A_{jk} \subset A_{ik}$$
,

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

An algebra A is a \mathbb{Z} -algebra if

- \exists vector space decomp $A = \bigoplus_{i \leq j \in \mathbb{Z}} A_{ij}$,
- $A_{ij}A_{jk} \subset A_{ik}$,
- $A_{ij}A_{kl} = 0$ for $k \neq j$, and

- * @ * * 注 * * 注 * ……注

An algebra A is a \mathbb{Z} -algebra if

- \exists vector space decomp $A = \bigoplus_{i \leq j \in \mathbb{Z}} A_{ij}$,
- $A_{ij}A_{jk} \subset A_{ik}$,
- $A_{ij}A_{kl} = 0$ for $k \neq j$, and
- the subalgebra A_{ii} contains a unit.

An algebra A is a \mathbb{Z} -algebra if

- \exists vector space decomp $A = \bigoplus_{i \leq j \in \mathbb{Z}} A_{ij}$,
- $A_{ij}A_{jk} \subset A_{ik}$,
- $A_{ij}A_{kl} = 0$ for $k \neq j$, and
- the subalgebra A_{ii} contains a unit.

Remark: A does not have a unity and is not a domain.

・日・ ・ ヨ・ ・ ヨ・

An algebra A is a \mathbb{Z} -algebra if

- \exists vector space decomp $A = \bigoplus_{i \leq j \in \mathbb{Z}} A_{ij}$,
- $A_{ij}A_{jk} \subset A_{ik}$,
- $A_{ij}A_{kl} = 0$ for $k \neq j$, and
- the subalgebra A_{ii} contains a unit.

Remark: A does not have a unity and is not a domain.

Intuition

Think of A as ring of bi-infinite upper-triangular matrices with (i, j)-entry coming from A_{ij} .

・回 ・ ・ ヨ ・ ・ ヨ ・

An algebra A is a \mathbb{Z} -algebra if

- \exists vector space decomp $A = \bigoplus_{i \leq j \in \mathbb{Z}} A_{ij}$,
- $A_{ij}A_{jk} \subset A_{ik}$,
- $A_{ij}A_{kl} = 0$ for $k \neq j$, and
- the subalgebra A_{ii} contains a unit.

Remark: A does not have a unity and is not a domain.

Intuition

Think of A as ring of bi-infinite upper-triangular matrices with (i, j)-entry coming from A_{ij} .

Example

If $(\mathcal{O}(n))_{n\in\mathbb{Z}}$ is seq. of objects in a category A, then

```
A_{ij} = \operatorname{Hom}_{\mathsf{A}}(\mathcal{O}(j), \mathcal{O}(i))
```

with mult. = composition makes $\bigoplus_{i,j\in\mathbb{Z}}A_{ij}$ a \mathbb{Z} -algebra

Adam Nyman

◆□ > ◆□ > ◆臣 > ◆臣 > ○

•
$$\mathbb{S}^{nc}(V)_{ij} = \frac{V^{i*} \otimes_{L} \cdots \otimes_{L} V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$$

•
$$\mathbb{S}^{nc}(V)_{ij} = \frac{V^{i*} \otimes_L \cdots \otimes_L V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$$

•
$$\mathbb{S}^{nc}(V)_{ij} = \frac{V^{i*} \otimes_L \cdots \otimes_L V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$$

•
$$\mathbb{S}^{nc}(V)_{ii} = L$$
,

•
$$S^{nc}(V)_{ij} = 0$$
 if $i > j$,

《曰》《聞》《臣》《臣》 三臣

•
$$\mathbb{S}^{nc}(V)_{ij} = \frac{V^{i*} \otimes_L \cdots \otimes_L V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$$

•
$$\mathbb{S}^{nc}(V)_{ii} = L$$
,

•
$$\mathbb{S}^{nc}(V)_{ij} = 0$$
 if $i > j$,

• multiplication induced by \otimes_L .

•
$$\mathbb{S}^{nc}(V)_{ij} = \frac{V^{i*} \otimes_L \cdots \otimes_L V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$$

•
$$\mathbb{S}^{nc}(V)_{ii} = L$$
,

•
$$S^{nc}(V)_{ij} = 0$$
 if $i > j$,

• multiplication induced by \otimes_L .

More generally, if

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

•
$$\mathbb{S}^{nc}(V)_{ij} = \frac{V^{i*} \otimes_L \cdots \otimes_L V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$$

• $\mathbb{S}^{nc}(V)_{ii} = L$,

•
$$S^{nc}(V)_{ij} = 0$$
 if $i > j$,

• multiplication induced by \otimes_L .

More generally, if

• X is a smooth scheme of finite type over a k

•
$$\mathbb{S}^{nc}(V)_{ij} = \frac{V^{i*} \otimes_L \cdots \otimes_L V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$$

• $\mathbb{S}^{nc}(V)_{ii} = L$,

•
$$S^{nc}(V)_{ij} = 0$$
 if $i > j$,

• multiplication induced by \otimes_L .

More generally, if

- X is a smooth scheme of finite type over a k
- \mathcal{E} is a locally free rank $n \mathcal{O}_X$ -bimodule

▲圖▶ ▲屋▶ ▲屋▶

•
$$\mathbb{S}^{nc}(V)_{ij} = \frac{V^{i*} \otimes_L \cdots \otimes_L V^{j-1*}}{\text{relns. gen. by } \eta_i} \text{ for } j > i,$$

• $\mathbb{S}^{nc}(V)_{ii} = L$,

•
$$S^{nc}(V)_{ij} = 0$$
 if $i > j$,

• multiplication induced by \otimes_L .

More generally, if

- X is a smooth scheme of finite type over a k
- \mathcal{E} is a locally free rank $n \mathcal{O}_X$ -bimodule

Van den Bergh defines $\mathbb{S}^{nc}(\mathcal{E})$.

(4回) (4回) (4回)
Adam Nyman

・ロト ・聞 ト ・ ヨト ・ ヨト

If V is L-central, $\mathbb{S}^{nc}(V) \neq \mathbb{S}(V)$.

・ロン ・回と ・ ヨン・

If V is L-central, $\mathbb{S}^{nc}(V) \neq \mathbb{S}(V)$.

If A is a \mathbb{Z} -algebra,

・ロン ・四と ・日と ・日と

If V is L-central, $\mathbb{S}^{nc}(V) \neq \mathbb{S}(V)$.

If A is a \mathbb{Z} -algebra,

• if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.

・ロト ・回ト ・ヨト ・ヨト

If V is L-central, $\mathbb{S}^{nc}(V) \neq \mathbb{S}(V)$.

If A is a \mathbb{Z} -algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
- A is *i*-periodic if $A \cong A(i)$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

2

If V is L-central, $\mathbb{S}^{nc}(V) \neq \mathbb{S}(V)$.

If A is a \mathbb{Z} -algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
- A is *i*-periodic if $A \cong A(i)$.

If B is \mathbb{Z} -graded algebra, define $\check{B}_{ij} := B_{j-i}$.

∰ ▶ € ▶

If V is L-central, $\mathbb{S}^{nc}(V) \neq \mathbb{S}(V)$.

If A is a \mathbb{Z} -algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
- A is *i*-periodic if $A \cong A(i)$.

If B is \mathbb{Z} -graded algebra, define $\check{B}_{ij} := B_{j-i}$.

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a $\mathbb{Z}\text{-}\mathsf{graded}$ ring B such that $A\cong\check{B},$

- 4 回 2 - 4 □ 2 - 4 □

If V is L-central, $\mathbb{S}^{nc}(V) \neq \mathbb{S}(V)$.

If A is a \mathbb{Z} -algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
- A is *i*-periodic if $A \cong A(i)$.

If B is \mathbb{Z} -graded algebra, define $\check{B}_{ij} := B_{j-i}$.

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a \mathbb{Z} -graded ring B such that $A \cong \check{B}$, and $\operatorname{Gr} A \equiv \operatorname{Gr} B$.

@ ▶ ∢ ≣ ▶

If V is L-central, $\mathbb{S}^{nc}(V) \neq \mathbb{S}(V)$.

If A is a \mathbb{Z} -algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{jk} := A_{j+i,k+i}$.
- A is *i*-periodic if $A \cong A(i)$.

If B is \mathbb{Z} -graded algebra, define $\check{B}_{ij} := B_{j-i}$.

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a \mathbb{Z} -graded ring B such that $A \cong \check{B}$, and $\operatorname{Gr} A \equiv \operatorname{Gr} B$. It follows that if V is L-central, then

 $\operatorname{Gr}\mathbb{S}^{nc}(V) \equiv \operatorname{Gr}\mathbb{S}(V).$

個 と く ヨ と く ヨ と

Adam Nyman

・ロ・ ・ 日・ ・ 日・ ・ 日・

・ロ・ ・ 日・ ・ 日・ ・ 日・

- R, S = noetherian k-algebras
- N = R S-bimodule free on left (right) of rank m(n)

□ > 《 E > 《 E >

- R, S = noetherian k-algebras
- N = R S-bimodule free on left (right) of rank m(n)

□ > 《 E > 《 E >

- R, S = noetherian k-algebras
- N = R S-bimodule free on left (right) of rank m(n)

N is **admissible** if N^{i*} is free of left-right dimension (m, n) if *i* is even and (n, m) if *i* is odd.

- R, S = noetherian k-algebras
- N = R S-bimodule free on left (right) of rank m(n)

N is **admissible** if N^{i*} is free of left-right dimension (m, n) if *i* is even and (n, m) if *i* is odd.

Lemma (D. Chan and N (2015))

回 と く ヨ と く ヨ と

- R, S = noetherian k-algebras
- N = R S-bimodule free on left (right) of rank m(n)

N is **admissible** if N^{i*} is free of left-right dimension (m, n) if *i* is even and (n, m) if *i* is odd.

Lemma (D. Chan and N (2015))

N is admissible ⇒ S^{nc}(N) exists. This holds in particular if R and S are f.d. simple.

- R, S = noetherian k-algebras
- N = R S-bimodule free on left (right) of rank m(n)

N is **admissible** if N^{i*} is free of left-right dimension (m, n) if *i* is even and (n, m) if *i* is odd.

Lemma (D. Chan and N (2015))

- N is admissible ⇒ S^{nc}(N) exists. This holds in particular if R and S are f.d. simple.
- If R and S are f.d. division rings and N has left-right dimension (2,2) or (1,4), then dim S^{nc}(N)_{ij} = j − i + 1 on either side.

・ 回 ト ・ ヨ ト ・ ヨ ト

- R, S = noetherian k-algebras
- N = R S-bimodule free on left (right) of rank m(n)

N is **admissible** if N^{i*} is free of left-right dimension (m, n) if *i* is even and (n, m) if *i* is odd.

Lemma (D. Chan and N (2015))

- N is admissible ⇒ S^{nc}(N) exists. This holds in particular if R and S are f.d. simple.
- If R and S are f.d. division rings and N has left-right dimension (2,2) or (1,4), then dim S^{nc}(N)_{ij} = j − i + 1 on either side.

If $R \neq S$, (following Van den Bergh) we let $\mathbb{S}^{nc}(N)_{ii} = R$ if *i* is even and $\mathbb{S}^{nc}(N)_{ii} = S$ if *i* is odd.

<u>Part 4</u>

Noncommutative $\mathbb{P}^1\text{-}\mathsf{bundles}$ over Division Rings and Noncommutative Tsen's Theorem

æ

個 と く ヨ と く ヨ と

Adam Nyman

Adam Nyman

● ▶ 《 三 ▶

æ

- ∢ ≣ ▶

• Let R and S be f.d. division algebras,

個 と く ヨ と く ヨ と

- Let R and S be f.d. division algebras,
- V an R S-bimodule of left-right dimension (2,2) or (1,4)

- Let R and S be f.d. division algebras,
- V an R S-bimodule of left-right dimension (2,2) or (1,4)
- $\mathbb{S}^{nc}(V)$ is noncommutative symmetric algebra of V

- Let R and S be f.d. division algebras,
- V an R S-bimodule of left-right dimension (2,2) or (1,4)
- $\mathbb{S}^{nc}(V)$ is noncommutative symmetric algebra of V

 $\mathbb{P}^{nc}(V) := \operatorname{gr}\mathbb{S}^{nc}(V)/\operatorname{tors}\mathbb{S}^{nc}(V)$

白 ト イヨト イヨト

- Let R and S be f.d. division algebras,
- V an R S-bimodule of left-right dimension (2,2) or (1,4)
- $\mathbb{S}^{nc}(V)$ is noncommutative symmetric algebra of V

$$\mathbb{P}^{nc}(V) := \mathsf{gr}\mathbb{S}^{nc}(V)/\mathsf{tors}\mathbb{S}^{nc}(V)$$

Proposition (N (2014))

 $\mathbb{P}^{nc}(V)$ is a homogeneous noncommutative curve of genus zero.

・ 回 ト ・ ヨ ト ・ ヨ ト

Adam Nyman

・ロン ・団 と ・ 国 と ・ 国 と

Theorem (N (2014))

Let H be a noncommutative curve of genus zero with underlying bimodule M.

3

イロン イ団 とくほと くほとう

Theorem (N (2014))

Let H be a noncommutative curve of genus zero with underlying bimodule M. Then there is a k-linear equivalence

 $\mathsf{H} \to \mathbb{P}^{nc}(M).$

イロト イヨト イヨト イヨト

3

Adam Nyman

・ロン ・団 と ・ 国 と ・ 国 と

Adam Nyman

・ロン ・四と ・日と ・日と

Build \mathbb{Z} -algebra *H* from quiver:

æ

- ∢ ≣ ▶

Imp ► < E ►</p>

Build \mathbb{Z} -algebra *H* from quiver:

æ

個 と く ヨ と く ヨ と

Build \mathbb{Z} -algebra *H* from quiver:

Let

$$H_{ij} = \begin{cases} \mathsf{Hom}(\mathcal{O}(j), \mathcal{O}(i)) & \text{if } j \ge i \\ 0 & \text{if } i > j \end{cases}$$

/⊒ ▶ < ≣ ▶

and defining multiplication as composition. Then

Build \mathbb{Z} -algebra *H* from quiver:

Let

$$H_{ij} = \begin{cases} \mathsf{Hom}(\mathcal{O}(j), \mathcal{O}(i)) & \text{if } j \ge i \\ 0 & \text{if } i > j \end{cases}$$

and defining multiplication as composition. Then

$$\mathbb{S}^{nc}(M)\cong H.$$

/⊒ ▶ < ≣ ▶

Key Technical Lemma

Adam Nyman

・ロン ・団 と ・ 国 と ・ 国 と

Key Technical Lemma

To construct isomorphism

$$\mathbb{S}^{nc}(M) \to H$$

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >
To construct isomorphism

$$\mathbb{S}^{nc}(M) \to H$$

need an isom.

$$M^{i*} \rightarrow H_{ii+1}$$
.

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

æ

To construct isomorphism

$$\mathbb{S}^{nc}(M) \to H$$

need an isom.

$$M^{i*} \rightarrow H_{ii+1}.$$

Lemma (Dlab and Ringel (1979))

Let $\ensuremath{\mathcal{N}}$ be an indecomposable bundle on H and let

$$0
ightarrow \mathcal{N}
ightarrow \mathcal{E}
ightarrow au^{-1} \mathcal{N}
ightarrow 0$$

⊡ ▶ < ≣ ▶

be an AR sequence.

To construct isomorphism

$$\mathbb{S}^{nc}(M) \to H$$

need an isom.

$$M^{i*} \rightarrow H_{ii+1}.$$

Lemma (Dlab and Ringel (1979))

Let $\ensuremath{\mathcal{N}}$ be an indecomposable bundle on H and let

$$0
ightarrow \mathcal{N}
ightarrow \mathcal{E}
ightarrow au^{-1} \mathcal{N}
ightarrow 0$$

be an AR sequence. Then

To construct isomorphism

$$\mathbb{S}^{nc}(M) \to H$$

need an isom.

$$M^{i*} \rightarrow H_{ii+1}.$$

Lemma (Dlab and Ringel (1979))

Let ${\mathcal N}$ be an indecomposable bundle on H and let

$$0
ightarrow \mathcal{N}
ightarrow \mathcal{E}
ightarrow au^{-1} \mathcal{N}
ightarrow 0$$

be an AR sequence. Then

• $\mathcal{E} \cong \mathcal{P}^{\oplus n}$ for some indecomposable bundle \mathcal{P} and

To construct isomorphism

$$\mathbb{S}^{nc}(M) \to H$$

need an isom.

$$M^{i*} \rightarrow H_{ii+1}.$$

Lemma (Dlab and Ringel (1979))

Let ${\mathcal N}$ be an indecomposable bundle on H and let

$$0
ightarrow \mathcal{N}
ightarrow \mathcal{E}
ightarrow au^{-1} \mathcal{N}
ightarrow 0$$

A ■

be an AR sequence. Then

• $\mathcal{E} \cong \mathcal{P}^{\oplus n}$ for some indecomposable bundle \mathcal{P} and

• * Hom_H(
$$\mathcal{N}, \mathcal{P}$$
) \cong Hom_H($\mathcal{P}, \tau^{-1}\mathcal{N}$).

Therefore, $^*M = ^* \operatorname{Hom}_{H}(\mathcal{L}, \overline{\mathcal{L}})$

To construct isomorphism

$$\mathbb{S}^{nc}(M) \to H$$

need an isom.

$$M^{i*} \rightarrow H_{ii+1}.$$

Lemma (Dlab and Ringel (1979))

Let ${\mathcal N}$ be an indecomposable bundle on H and let

$$0
ightarrow \mathcal{N}
ightarrow \mathcal{E}
ightarrow au^{-1} \mathcal{N}
ightarrow 0$$

be an AR sequence. Then

• $\mathcal{E} \cong \mathcal{P}^{\oplus n}$ for some indecomposable bundle \mathcal{P} and

• * Hom_H(
$$\mathcal{N}, \mathcal{P}$$
) \cong Hom_H($\mathcal{P}, \tau^{-1}\mathcal{N}$).

Therefore, ${}^*M = {}^*\operatorname{Hom}_{H}(\mathcal{L},\overline{\mathcal{L}}) \cong \operatorname{Hom}_{H}(\overline{\mathcal{L}},\tau_{\Box}^{-1}\mathcal{L})_{\Box}$

・ロ・ ・ 日・ ・ 田・ ・ 田・

æ

Adam Nyman

・ロト・(四ト・(川下・(日下・(日下)

Recall the commutative picture when X has rational point P:

個 と く き と く き と … き

Recall the commutative picture when X has rational point P:

In the noncommutative case we always have:

$$\mathbb{P}^{nc}(M) \cong \operatorname{proj}(\bigoplus_{ij} \operatorname{H}_{ij}) \xrightarrow{2-Veronese} \operatorname{proj}(\bigoplus_{ij} \operatorname{Hom}_{H}(\mathcal{L}, \tau^{-j}\mathcal{L}))$$

æ

< ≣ >

Recall the commutative picture when X has rational point P:

In the noncommutative case we *always* have:

$$\mathbb{P}^{nc}(M) \cong \operatorname{proj}(\bigoplus_{ij} \operatorname{H}_{ij}) \xrightarrow{2-Veronese} \operatorname{proj}(\bigoplus_{ij} \operatorname{Hom}_{H}(\mathcal{L}, \tau^{-j}\mathcal{L}))$$

This holds even if $H = \operatorname{coh} X$ and X doesn't have a rational point.

→ Ξ → < Ξ →</p>

A ■

Part 5

Noncommutative Witt's Theorem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Adam Nyman

個 と く ヨ と く ヨ と

Since H is built only out of its underlying bimodule M, one should be able to construct natural isomorphism invariants for H out of M.

Since H is built only out of its underlying bimodule M, one should be able to construct natural isomorphism invariants for H out of M.

Theorem (N (2015))

There is an equivalence

$$\mathbb{P}^{nc}(_{D_1}M_{D_2}) \to \mathbb{P}^{nc}(_{E_1}N_{E_2})$$

if and only if either

Since H is built only out of its underlying bimodule M, one should be able to construct natural isomorphism invariants for H out of M.

Theorem (N (2015))

There is an equivalence

$$\mathbb{P}^{nc}(_{D_1}M_{D_2}) \to \mathbb{P}^{nc}(_{E_1}N_{E_2})$$

if and only if either

Since H is built only out of its underlying bimodule M, one should be able to construct natural isomorphism invariants for H out of M.

Theorem (N (2015))

There is an equivalence

$$\mathbb{P}^{nc}(_{D_1}M_{D_2}) \to \mathbb{P}^{nc}(_{E_1}N_{E_2})$$

if and only if either

There are isomorphisms D_i → E_i of k-algebras yielding an isomorphism of bimodules M → N or

Since H is built only out of its underlying bimodule M, one should be able to construct natural isomorphism invariants for H out of M.

Theorem (N (2015))

There is an equivalence

$$\mathbb{P}^{nc}(_{D_1}M_{D_2}) \to \mathbb{P}^{nc}(_{E_1}N_{E_2})$$

if and only if either

- There are isomorphisms D_i → E_i of k-algebras yielding an isomorphism of bimodules M → N or
- There are isomorphisms $D_1 \rightarrow E_2$ and $D_2 \rightarrow E_1$ of k-algebras yielding an isomorphism of bimodules $M \rightarrow N^*$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Since H is built only out of its underlying bimodule M, one should be able to construct natural isomorphism invariants for H out of M.

Theorem (N (2015))

There is an equivalence

$$\mathbb{P}^{nc}(_{D_1}M_{D_2}) \to \mathbb{P}^{nc}(_{E_1}N_{E_2})$$

if and only if either

- There are isomorphisms $D_i \rightarrow E_i$ of k-algebras yielding an isomorphism of bimodules $M \rightarrow N$ or
- There are isomorphisms $D_1 \rightarrow E_2$ and $D_2 \rightarrow E_1$ of k-algebras yielding an isomorphism of bimodules $M \rightarrow N^*$.

If M has left-right dimension (1,4) only case one is possible.

Noncommutative Witt's Theorem

Adam Nyman

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

æ

A **noncommutative conic** is a noncommutative curve of genus zero of the form $\mathbb{P}^{nc}(N)$ where N has left-right dimension (1, 4).

A **noncommutative conic** is a noncommutative curve of genus zero of the form $\mathbb{P}^{nc}(N)$ where N has left-right dimension (1, 4).

Corollary (N (2015))

There is an equivalence

$$\mathbb{P}^{nc}(_{D_1}M_{D_2}) \to \mathbb{P}^{nc}(_{E_1}N_{E_2})$$

of noncommutative conics if and only if there are isomorphisms $D_i \rightarrow E_i$ of k-algebras yielding an isomorphism of bimodules $M \rightarrow N$.

イロト イヨト イヨト イヨト

æ

Recall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points C(a, b) and C(c, d) are isomorphic if and only if $(a, b) \cong (c, d)$.

Recall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points C(a, b) and C(c, d) are isomorphic if and only if $(a, b) \cong (c, d)$.

Proof of \Rightarrow

If $C(a, b) \cong C(c, d)$ then $\operatorname{coh} C(a, b) \equiv \operatorname{coh} C(c, d)$.

Recall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points C(a, b) and C(c, d) are isomorphic if and only if $(a, b) \cong (c, d)$.

Proof of \Rightarrow

If $C(a, b) \cong C(c, d)$ then $\operatorname{coh} C(a, b) \equiv \operatorname{coh} C(c, d)$. Thus $\mathbb{P}^{nc}(_{(a,b)}(a, b)_k) \equiv \mathbb{P}^{nc}(_{(c,d)}(c, d)_k)$

Recall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points C(a, b) and C(c, d) are isomorphic if and only if $(a, b) \cong (c, d)$.

Proof of \Rightarrow

If $C(a, b) \cong C(c, d)$ then $\operatorname{coh} C(a, b) \equiv \operatorname{coh} C(c, d)$. Thus $\mathbb{P}^{nc}(_{(a,b)}(a, b)_k) \equiv \mathbb{P}^{nc}(_{(c,d)}(c, d)_k)$ so nc Witt's theorem implies $(a, b) \cong (c, d)$.

· < @ > < 문 > < 문 > · · 문

Recall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points C(a, b) and C(c, d) are isomorphic if and only if $(a, b) \cong (c, d)$.

Proof of \Rightarrow

If $C(a, b) \cong C(c, d)$ then $\operatorname{coh} C(a, b) \equiv \operatorname{coh} C(c, d)$. Thus $\mathbb{P}^{nc}(_{(a,b)}(a, b)_k) \equiv \mathbb{P}^{nc}(_{(c,d)}(c, d)_k)$ so nc Witt's theorem implies $(a, b) \cong (c, d)$.

Proof of \Leftarrow

If $(a, b) \cong (c, d)$ then by nc Witt's theorem this induces $\mathbb{P}^{nc}(_{(a,b)}(a,b)_k) \equiv \mathbb{P}^{nc}(_{(c,d)}(c,d)_k)$

Recall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points C(a, b) and C(c, d) are isomorphic if and only if $(a, b) \cong (c, d)$.

Proof of \Rightarrow

If $C(a, b) \cong C(c, d)$ then $\operatorname{coh} C(a, b) \equiv \operatorname{coh} C(c, d)$. Thus $\mathbb{P}^{nc}(_{(a,b)}(a, b)_k) \equiv \mathbb{P}^{nc}(_{(c,d)}(c, d)_k)$ so nc Witt's theorem implies $(a, b) \cong (c, d)$.

Proof of \Leftarrow

If $(a, b) \cong (c, d)$ then by nc Witt's theorem this induces $\mathbb{P}^{nc}(_{(a,b)}(a, b)_k) \equiv \mathbb{P}^{nc}(_{(c,d)}(c, d)_k)$ which induces $\operatorname{coh} C(a, b) \equiv \operatorname{coh} C(c, d).$

Recall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points C(a, b) and C(c, d) are isomorphic if and only if $(a, b) \cong (c, d)$.

Proof of \Rightarrow

If $C(a, b) \cong C(c, d)$ then $\operatorname{coh} C(a, b) \equiv \operatorname{coh} C(c, d)$. Thus $\mathbb{P}^{nc}(_{(a,b)}(a, b)_k) \equiv \mathbb{P}^{nc}(_{(c,d)}(c, d)_k)$ so nc Witt's theorem implies $(a, b) \cong (c, d)$.

Proof of \Leftarrow

If $(a, b) \cong (c, d)$ then by nc Witt's theorem this induces $\mathbb{P}^{nc}(_{(a,b)}(a,b)_k) \equiv \mathbb{P}^{nc}(_{(c,d)}(c,d)_k)$ which induces $\operatorname{coh} C(a,b) \equiv \operatorname{coh} C(c,d)$. By Gabriel-Rosenberg reconstruction theorem, $C(a,b) \cong C(c,d)$.

Thank you for your attention!

æ