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Embeddings

X = curve of genus zero
wx = canonical sheaf then

@ wy is very ample
o degreewy =2
o dimy HO(X,w¥) =3

Therefore there is an embedding X < P? w/ image =

Proj(@ HO (X, wk®")

When is X = P1?
- AdamNyman |
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Rational Points

X = V(f(X,Y,Z)) has a k-rational point if 3 P = [c,d, €] € P?
such that f(c,d,e) = 0.

X (a curve of genus zero) = P! iff X has a k-rational point

Proof of «

O(P) is degree one line bundle on X thus O(P) is very ample thus
X = Proj(D; HO(X,O(P)™")) = P".
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If X has a rational point P, then

O(P)®? = w

In this case there is a factorization

X antican. emb. Proj(@j HO(X,wj(®f))
PFOJ(GB, HO(X’O(P)®’)) 2— Veronese PI’O_](@J HO(X7O(P)®2J))
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Tsen's Theorem

X is geometrically irreducible if X is irreducible. J

Theorem (Tsen, 1933)
Suppose

o L=1,

@ k= L(C) where C is curve/L, and

@ X/k is geometrically irreducible curve with genus zero.
Then

X =, P}

Morally speaking, Tsen's theorem says: over certain base fields,
curves of genus zero are projective lines.
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Suppose char k # 2. For a, b € k*,

e (a, b) = 4-d algebra over k w/ basis 1,i,/, k and mult.
i?=a j2=b,ij=—ji.
o C(a,b) = V(aX?+ bY?2 - Z2) C P2

Theorem (Witt)

There is an isomorphism

C(a,b) = C(c,d)

if and only if

(a, b) = (c, d).
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Noncommutative Spaces

Noncommutative Space := Grothendieck Category =
@ (k-linear) abelian category with
@ exact direct limits and

@ a generator.

@ Mod R, R aring
@ Qcoh X
@ Proj A := GrA/TorsA where A is Z-graded

Theorem (Gabriel-Rosenberg)

A (quasi-separated) scheme X can be recovered up to isomorphism
from QcohX.

’
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Reduction to the homogeneous case

Let H = noncommutative curve of genus zero
Let Hp = full subcat. of objects in H of finite length

@ H/Hp is semisimple w/ one simple object =
H/Ho = modk(H) for some division ring k(H).

@ If H is not homogeneous, there exists homogeneous H’ such
that k(H) = k(H’).

From now on we will work only with homogeneous H.
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Significance of Tilting Object

Let T =tilting object for H

Theorem
There is an equivalence

DP(H) — DP(mod(Endn(7)))

Derived equivalences preserve indecomposable objects ... we have

geometry of H <> rep. theory of Endy(7T).
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Vector Bundles over H

@ A vector bundle L is an object in H without a simple
sub-object.

@ The rank of L is the dim. of the image of £ under the
quotient functor H — H/Ho.

M L P is irreducible if
o f does not have a right or left inverse, and

o If f = ts, then s has a right inverse or t has a left inverse.

Classification of indecomposable bundles in H

Given a line bundle £ over H,

o ! indecomposable bundle L s.t. there is an irreducible
morphism £ — L

e every indec. bundle is = to 7/(£) or 7/(L).
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The Underlying Bimodule

The underlying bimodule of H is the End(£) — End(£)-bimodule
Homu (L, £).

Which properties of H are dictated by the underlying bimodule?
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o 7=-00(=2), L=0.L=0(1),

o End(Z) = k = End(L),
o Homy(L,L) = k & k.

A\

H = cohC(a, b) where C(a, b) has no rational point

o T=—®uwc(ap) £=0Oc(p), L has rank two
e End(L) = (a, b) and End(L) = k,
o HomH(ﬁ,Z) = (ayb)(a, b)k.

In general:
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Commutative Examples

o 7=-00(=2), L=0.L=0(1),

o End(Z) = k = End(L),
o Homy(L,L) = k & k.

A\

H = cohC(a, b) where C(a, b) has no rational point

o T=—®uwc(ap) £=0Oc(p), L has rank two

e End(L) = (a, b) and End(L) = k,
o HomH(ﬁ,Z) = (ayb)(a, b)k.

e End(£) and End(£) will always be division rings f.d. over k.
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Commutative Examples

o 7=-00(=2), L=0.L=0(1),

o End(Z) = k = End(L),
o Homy(L,L) = k & k.

A\

H = cohC(a, b) where C(a, b) has no rational point

o T=—®uwc(ap) £=0Oc(p), L has rank two
e End(L) = (a, b) and End(L) = k,
o HomH(ﬁ,Z) = (ayb)(a, b)k.

In general:

e End(£) and End(L) will always be division rings f.d. over k.

@ The underlying bimodule of H will always have left-right
dimensions (1,4) or (2,2).
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a-b:=0di(a)ob

(L,0) is an ample pair if
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Ample Pairs

Let o be an autoequiv. of H.
Define A = ®; Hom(L,o'L) with mult. of a € A; with b € A},

a-b:=0di(a)ob

(L,0) is an ample pair if
© For M € H, 3 positive ny,...,n, and an epi
®F_07"L - M, and

0 If ML Nisan epi in H, then the induced map
Homy (o™ "L, f) is an epi for n >> 0.

Theorem (Artin and Zhang (1994))

If (£, o) is an ample pair, then there is an equivalence
H — projA := grA/torsA.

v
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Kussin's Approach

Kussin studies the category H through the category grA for various
ag.

o Let a,c € k, K = k(v/a,v/c) with [K : k] = 4.
@ Kussin constructs H such that the underlying bimodule of H is
KKkv and

@ Kussin identifies o such that the homogeneous coordinate ring
Als

K(X,Y,Z)(XY =YX, XZ - ZX,YZ+2ZY,Z°+aY? - cX?)

<
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e {x,y} is a simultaneous basis

Construct nc ring S"(V) which specializes to

_ LoVaoVvVe2ag...

V) (x®y—-y®x)

when V is L-central.

Adam Nyman



Suppose
o [= field extension of k
e Vis L — L-bimodule w/dim 2 on both sides

e {x,y} is a simultaneous basis

Construct nc ring S"(V) which specializes to

_ LoVaoVvVe2ag...
 (x®y-—y®x)

S(V):

when V is L-central.

Should have expected left and right Hilbert series
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- LoV \/®2@...

FHV) x®y-yox)
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Define

- LoV \/®2@...
T x@y-y®x)

Problem
Too many relations.

S™(V) :
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Duals

Right dual of V
V* = HomL(VL, L)
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Duals
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V* := Hom(Vy, L) with action (a- v - b)(x) = ay(bx).
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Duals

Right dual of V

V* := Hom(Vy, L) with action (a- v - b)(x) = ay(bx).

Left dual of V

*V :=Hom, (. V, L) with action (a- ¢ - b)(x) = bo(xa).
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There exists canonical g : L — V ®; V*: If §x € Hom (V,L) is
dual to x etc. then

no(a) == a(x ® dx +y ® 0 ). J

1o independent of choices. Define

V(X)LV*EB VeV V** ©
im770 imno®V**—|—V®im771

S"(V)=Lo Ve

Problem

A%

No natural multiplication: if x,y € V, x -y not in e
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Z-algebras (Bondal and Polishchuk (1993))

An algebra A is a Z-algebra if
@ J vector space decomp A = ®;<jczAjj,
] A,'J'Ajk C A,
e AjjAw =0 for k # j, and
@ the subalgebra Aj; contains a unit.
Remark: A does not have a unity and is not a domain.

Intuition

Think of A as ring of bi-infinite upper-triangular matrices with
(i,j)-entry coming from Aj.

If (O(n))nez is seq. of objects in a category A, then

Ajj = Homa(O(j), O(i))
with mult. = composition makes ®; jczAj; a Z-algebra

v
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Definition of S"¢(V) (Van den Bergh (2000))

ne o Vi*®L_“®ij—1* . .
° 8"(V); = relns. gen. by »; e jj > 0

o S"(V);i = L,
o S"(V); =0ifi>],
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Attempt 3: S"(V) is a Z-algebra

Definition of S"¢(V) (Van den Bergh (2000))

7 Vi* Vj—l* . .
o S™(V); = reIns?LgfnL. by for j > |,
e S"(V);i=1L,
o S™(V); =0if i >},

@ multiplication induced by ®;.

More generally, if
@ X is a smooth scheme of finite type over a k
@ & is a locally free rank n Ox-bimodule

Van den Bergh defines S"¢(&).
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o if i € Z let A(i)jk := Ajyik+i-
o Ais i-periodic if A= A(/).
If B is Z-graded algebra, define Bj; := B;_;.

Theorem (Van den Bergh (2000))

If Ais 1-periodic, then there exists a Z-graded ring B such that
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Relation to S(V)

If V is L-central, S"™(V) # S(V). J

If Ais a Z-algebra,
o if i € Z let A(i)jk := Ajyik+i-
o Ais i-periodic if A= A(/).
If B is Z-graded algebra, define Bj; := B;_;.

Theorem (Van den Bergh (2000))

If Ais 1-periodic, then there exists a Z-graded ring B such that
A= B and GrA = GrB. It follows that if V is L-central, then

GrS" (V) = GrS(V).
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Noncommutative Bases

@ R, S = noetherian k-algebras
e N = R — S-bimodule free on left (right) of rank m (n)

N is admissible if N'* is free of left-right dimension (m, n) if i is
even and (n, m) if / is odd.

Lemma (D. Chan and N (2015))
@ N is admissible = S"°(N) exists. This holds in particular if R
and S are f.d. simple.

@ If R and S are f.d. division rings and N has left-right
dimension (2,2) or (1,4), then dimS"(N); =, —i+1on
either side.

If R #S, (following Van den Bergh) we let S"(N);; = R if i is
even and S"(N); = S if i is odd.
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Noncommutative P!-bundles over Division Rings and
Noncommutative Tsen’s Theorem
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Noncommutative P*-bundles over Division Rings

@ Let R and S be f.d. division algebras,
@ V an R — S-bimodule of left-right dimension (2,2) or (1,4)

e S"(V) is noncommutative symmetric algebra of V

P (V) := grS™ (V) /torsS™ (V) ]
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Noncommutative P*-bundles over Division Rings

@ Let R and S be f.d. division algebras,
@ V an R — S-bimodule of left-right dimension (2,2) or (1,4)

e S"(V) is noncommutative symmetric algebra of V

Pe(V) := grS™ (V) /torsS™ (V)

S

Proposition (N (2014))

P"¢(V) is a homogeneous noncommutative curve of genus zero.
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Theorem (N (2014))

Let H be a noncommutative curve of genus zero with underlying
bimodule M.
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Noncommutative Tsen's Theorem |

Theorem (N (2014))

Let H be a noncommutative curve of genus zero with underlying
bimodule M. Then there is a k-linear equivalence

H — P"(M).
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Noncommutative Tsen's Theorem Il

Build Z-algebra H from quiver:

NN

e {Hom(ou)’o(i)) ifj > i

0 ifi>j

-2

Let

and defining multiplication as composition. Then

S"(M) = H
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Key Technical Lemma

To construct isomorphism
S"™(M) — H

need an isom.
%
M"™* — Hii+1~

Lemma (Dlab and Ringel (1979))
Let A be an indecomposable bundle on H and let

0N =E-T NS0

be an AR sequence. Then
e £ = PP for some indecomposable bundle P and
o *Homy(N,P) = Homy (P, 77 IN).

Therefore, *M = * Homy (£, £) = Homy(Z, 771L).



Consequence

L L L
L L L
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Recall the commutative picture when X has rational point P:

X

antican. emb, Proj(EBj HO(X’w§<®j))

Proj(; H(X. O(P)™) —5 g Proi(@; HU(X. O(P)**))
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Recall the commutative picture when X has rational point P:

1{ antican. emb. Proj(D; HO(X, wi )
Proj(@; HO(X, O(P)®'))

2— Veronese PrOJ(@J HO(X’ O(P)®2J))

In the noncommutative case we always have:

H antican. embproj(@j HomH(E,T_jE))
l 1perT
Pre(M) = Proj(@ij Hij)

2— Veronese proj(@ij H2i2j)
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Recall the commutative picture when X has rational point P:

1{ antican. emb. Proj(D; HO(X, wi )
Proj(@; HO(X, O(P)®'))

2— Veronese PrOJ(@J HO(X’ O(P)®2J))

In the noncommutative case we always have:

H antican. embproj(@j HomH(E,T_jE))
l 1perT
Pre(M) = Proj(@ij Hij)

2— Veronese proj(@ij H2i2j)

This holds even if H= cohX and X doesn’t have a rational point. J
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Noncommutative Witt's Theorem
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Theorem (N (2015))

There is an equivalence

PnC(D1 MDz) — PnC(El NEz)

if and only if either
@ There are isomorphisms D; — E; of k-algebras yielding an
isomorphism of bimodules M — N or

@ There are isomorphisms D; — Ep and D, — E; of k-algebras
yielding an isomorphism of bimodules M — N*.
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Classification of Noncommutative Homogeneous Curves of

Genus Zero

Since H is built only out of its underlying bimodule M, one should
be able to construct natural isomorphism invariants for H out of M.

Theorem (N (2015))

There is an equivalence
PnC(D1 MDz) — PnC(El NEz)

if and only if either

@ There are isomorphisms D; — E; of k-algebras yielding an
isomorphism of bimodules M — N or

@ There are isomorphisms D; — Ep and D, — E; of k-algebras
yielding an isomorphism of bimodules M — N*.

If M has left-right dimension (1,4) only case one is possible.
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Noncommutative Witt's Theorem

A noncommutative conic is a noncommutative curve of genus
zero of the form P"(N) where N has left-right dimension (1, 4).
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Noncommutative Witt's Theorem

A noncommutative conic is a noncommutative curve of genus
zero of the form P"(N) where N has left-right dimension (1, 4).

Corollary (N (2015))

There is an equivalence

P"(p,Mp,) — P"(g, NE,)

of noncommutative conics if and only if there are isomorphisms
D; — E; of k-algebras yielding an isomorphism of bimodules
M — N.

Adam Nyman



Proof of Witt's Theorem from Noncommutative Witt's

Theorem
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Proof of Witt's Theorem from Noncommutative Witt's

Theorem

Recall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points C(a, b) and C(c, d) are isomorphic
if and only if (a, b) = (¢, d).
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Proof of Witt's Theorem from Noncommutative Witt's

Theorem

Recall the classification for conics without rational points

The conics w/o rational points C(a, b) and C(c, d) are isomorphic
if and only if (a, b) = (¢, d).

If C(a,b) = C(c,d) then cohC(a, b) = cohC(c, d).
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Proof of Witt's Theorem from Noncommutative Witt's

Theorem

Recall the classification for conics without rational points

The conics w/o rational points C(a, b) and C(c, d) are isomorphic
if and only if (a, b) = (¢, d).

Proof of =
If C(a,b) = C(c,d) then cohC(a,
P ((a,6)(a, b)) = P ((c,a)(c, d)x

b) = cohC(c,d). Thus
)
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Proof of Witt's Theorem from Noncommutative Witt's

Theorem

Recall the classification for conics without rational points

The conics w/o rational points C(a, b) and C(c, d) are isomorphic
if and only if (a, b) = (¢, d).

Proof of =
If C(a,b) = C(c,d) then cohC(a, b) = cohC(c,d). Thus
P ((a,6)(a, b)k) = P"((c,9)(c, d)x) so nc Witt's theorem implies

(a, b) = (¢, d).
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Proof of Witt's Theorem from Noncommutative Witt's

Theorem

Recall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points C(a, b) and C(c, d) are isomorphic
if and only if (a, b) = (¢, d).

Proof of =

If C(a,b) = C(c,d) then cohC(a, b) = cohC(c,d). Thus
P ((a,6)(a, b)k) = P"((c,9)(c, d)x) so nc Witt's theorem implies
(3,b) = (c, d).

Proof of «

If (a, b) = (¢, d) then by nc Witt's theorem this induces
P ((a,b) (2, b)k) = P ((c,a)(c, d)k)

| A




Proof of Witt's Theorem from Noncommutative Witt's

Theorem

Recall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points C(a, b) and C(c, d) are isomorphic
if and only if (a, b) = (¢, d).

Proof of =

If C(a,b) = C(c,d) then cohC(a, b) = cohC(c,d). Thus

P ((a,6)(a, b)k) = P"((c,9)(c, d)x) so nc Witt's theorem implies
(a,b) = (c, d).

Proof of «

If (a, b) = (¢, d) then by nc Witt's theorem this induces
P ((a,6)(a, b)k) = P"((c,0)(c, d)k) which induces
cohC(a, b) = cohC(c, d).
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Proof of Witt's Theorem from Noncommutative Witt's

Theorem

Recall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points C(a, b) and C(c, d) are isomorphic
if and only if (a, b) = (¢, d).

Proof of =

If C(a,b) = C(c,d) then cohC(a, b) = cohC(c,d). Thus

P ((a,6)(a, b)k) = P"((c,9)(c, d)x) so nc Witt's theorem implies
(a,b) = (c, d).

Proof of «

If (a, b) = (¢, d) then by nc Witt's theorem this induces

P ((a,6)(a, b)k) = P"((c,0)(c, d)k) which induces

cohC(a, b) = cohC(c, d). By Gabriel-Rosenberg reconstruction
theorem, C(a, b) = C(c, d).




Thank you for your attention!

Adam Nyman



