The Geometry of Noncommutative Curves of Genus Zero

Adam Nyman
Western Washington University

February 24, 2015

Conventions and Notation

Conventions and Notation

- k a field

Conventions and Notation

- k a field
- All objects and morphisms are /k

Conventions and Notation

- k a field
- All objects and morphisms are /k
- \equiv denotes (k-linear) equivalence of categories

Part 1

Commutative Curves of Genus Zero

Definitions

X is curve if

Definitions

X is curve if

- X is projective variety

Definitions

X is curve if

- X is projective variety
- $\operatorname{dim} X=1$

Definitions

X is curve if

- X is projective variety
- $\operatorname{dim} X=1$
- X is smooth

Definitions

X is curve if

- X is projective variety
- $\operatorname{dim} X=1$
- X is smooth

Definitions

X is curve if

- X is projective variety
- $\operatorname{dim} X=1$
- X is smooth

X has genus zero if

Definitions

X is curve if

- X is projective variety
- $\operatorname{dim} X=1$
- X is smooth
X has genus zero if $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}\right)=0$ iff

Definitions

X is curve if

- X is projective variety
- $\operatorname{dim} X=1$
- X is smooth
X has genus zero if $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}\right)=0$ iff X has a tilting sheaf

Definitions

X is curve if

- X is projective variety
- $\operatorname{dim} X=1$
- X is smooth
X has genus zero if $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}\right)=0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_{X}-module \mathcal{T} such that
- $\operatorname{Ext}_{X}^{1}(\mathcal{T}, \mathcal{T})=0$, and

Definitions

X is curve if

- X is projective variety
- $\operatorname{dim} X=1$
- X is smooth
X has genus zero if $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}\right)=0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_{X}-module \mathcal{T} such that
- $\operatorname{Ext}_{X}^{1}(\mathcal{T}, \mathcal{T})=0$, and
- whenever $\operatorname{Hom}_{X}(\mathcal{T}, \mathcal{M})=0$

Definitions

X is curve if

- X is projective variety
- $\operatorname{dim} X=1$
- X is smooth
X has genus zero if $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}\right)=0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_{X}-module \mathcal{T} such that
- $\operatorname{Ext}_{X}^{1}(\mathcal{T}, \mathcal{T})=0$, and
- whenever $\operatorname{Hom}_{X}(\mathcal{T}, \mathcal{M})=0=\operatorname{Ext}_{X}^{1}(\mathcal{T}, \mathcal{M})$

Definitions

X is curve if

- X is projective variety
- $\operatorname{dim} X=1$
- X is smooth
X has genus zero if $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}\right)=0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_{X}-module \mathcal{T} such that
- $\operatorname{Ext}_{X}^{1}(\mathcal{T}, \mathcal{T})=0$, and
- whenever $\operatorname{Hom}_{X}(\mathcal{T}, \mathcal{M})=0=\operatorname{Ext}_{X}^{1}(\mathcal{T}, \mathcal{M})$ we have $\mathcal{M}=0$.

Definitions

X is curve if

- X is projective variety
- $\operatorname{dim} X=1$
- X is smooth
X has genus zero if $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}\right)=0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_{X}-module \mathcal{T} such that
- $\operatorname{Ext}_{X}^{1}(\mathcal{T}, \mathcal{T})=0$, and
- whenever $\operatorname{Hom}_{X}(\mathcal{T}, \mathcal{M})=0=\operatorname{Ext}_{X}^{1}(\mathcal{T}, \mathcal{M})$ we have $\mathcal{M}=0$.

Examples

Definitions

X is curve if

- X is projective variety
- $\operatorname{dim} X=1$
- X is smooth
X has genus zero if $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}\right)=0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_{X}-module \mathcal{T} such that
- $\operatorname{Ext}_{X}^{1}(\mathcal{T}, \mathcal{T})=0$, and
- whenever $\operatorname{Hom}_{X}(\mathcal{T}, \mathcal{M})=0=\operatorname{Ext}_{X}^{1}(\mathcal{T}, \mathcal{M})$ we have $\mathcal{M}=0$.

Examples

- \mathbb{P}_{k}^{1}

Definitions

X is curve if

- X is projective variety
- $\operatorname{dim} X=1$
- X is smooth
X has genus zero if $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}\right)=0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_{X}-module \mathcal{T} such that
- $\operatorname{Ext}_{X}^{1}(\mathcal{T}, \mathcal{T})=0$, and
- whenever $\operatorname{Hom}_{X}(\mathcal{T}, \mathcal{M})=0=\operatorname{Ext}_{X}^{1}(\mathcal{T}, \mathcal{M})$ we have $\mathcal{M}=0$.

Examples

- \mathbb{P}_{k}^{1}
- $V\left(a X^{2}+b Y^{2}-Z^{2}\right)$ for some $a, b \in k^{\times}$.

Definitions

X is curve if

- X is projective variety
- $\operatorname{dim} X=1$
- X is smooth
X has genus zero if $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}\right)=0$ iff X has a tilting sheaf i.e. a coherent \mathcal{O}_{X}-module \mathcal{T} such that
- $\operatorname{Ext}_{X}^{1}(\mathcal{T}, \mathcal{T})=0$, and
- whenever $\operatorname{Hom}_{X}(\mathcal{T}, \mathcal{M})=0=\operatorname{Ext}_{X}^{1}(\mathcal{T}, \mathcal{M})$ we have $\mathcal{M}=0$.

Examples

- \mathbb{P}_{k}^{1}
- $V\left(a X^{2}+b Y^{2}-Z^{2}\right)$ for some $a, b \in k^{\times}$.

Embeddings

$X=$ curve of genus zero

Embeddings

$X=$ curve of genus zero
$\omega_{X}=$ canonical sheaf

Embeddings

$X=$ curve of genus zero
$\omega_{X}=$ canonical sheaf then

- ω_{X}^{*}

Embeddings

$X=$ curve of genus zero
$\omega_{X}=$ canonical sheaf then

- ω_{X}^{*} is very ample

Embeddings

$X=$ curve of genus zero
$\omega_{X}=$ canonical sheaf then

- ω_{X}^{*} is very ample
- degree $\omega_{X}^{*}=2$

Embeddings

$X=$ curve of genus zero
$\omega_{X}=$ canonical sheaf then

- ω_{X}^{*} is very ample
- degree $\omega_{X}^{*}=2$
- $\operatorname{dim}_{k} H^{0}\left(X, \omega_{X}^{*}\right)=3$

Embeddings

$X=$ curve of genus zero
$\omega_{X}=$ canonical sheaf then

- ω_{X}^{*} is very ample
- degree $\omega_{X}^{*}=2$
- $\operatorname{dim}_{k} H^{0}\left(X, \omega_{X}^{*}\right)=3$

Therefore there is an embedding $X \hookrightarrow \mathbb{P}^{2} w /$ image $=$

$$
\operatorname{Proj}\left(\bigoplus H^{0}\left(X, \omega_{X}^{* \otimes i}\right)\right)
$$

Embeddings

$X=$ curve of genus zero
$\omega_{X}=$ canonical sheaf then

- ω_{X}^{*} is very ample
- degree $\omega_{X}^{*}=2$
- $\operatorname{dim}_{k} \mathrm{H}^{0}\left(X, \omega_{X}^{*}\right)=3$

Therefore there is an embedding $X \hookrightarrow \mathbb{P}^{2} \mathrm{w} /$ image $=$

$$
\operatorname{Proj}\left(\bigoplus H^{0}\left(X, \omega_{X}^{* \otimes i}\right)\right)
$$

Question

When is $X \cong \mathbb{P}^{1}$?

Rational Points

Rational Points

$X=V(f(X, Y, Z))$ has a k-rational point if $\exists P=[c, d, e] \in \mathbb{P}_{k}^{2}$ such that $f(c, d, e)=0$.

Rational Points

$X=V(f(X, Y, Z))$ has a k-rational point if $\exists P=[c, d, e] \in \mathbb{P}_{k}^{2}$ such that $f(c, d, e)=0$.

Theorem

$X($ a curve of genus zero $) \cong \mathbb{P}^{1}$ iff

Rational Points

$X=V(f(X, Y, Z))$ has a k-rational point if $\exists P=[c, d, e] \in \mathbb{P}_{k}^{2}$ such that $f(c, d, e)=0$.

Theorem

X (a curve of genus zero $) \cong \mathbb{P}^{1}$ iff X has a k-rational point

Rational Points

$X=V(f(X, Y, Z))$ has a k-rational point if $\exists P=[c, d, e] \in \mathbb{P}_{k}^{2}$ such that $f(c, d, e)=0$.

Theorem

$X($ a curve of genus zero $) \cong \mathbb{P}^{1}$ iff X has a k-rational point
Proof of \Leftarrow

Rational Points

$X=V(f(X, Y, Z))$ has a k-rational point if $\exists P=[c, d, e] \in \mathbb{P}_{k}^{2}$ such that $f(c, d, e)=0$.

Theorem

X (a curve of genus zero $) \cong \mathbb{P}^{1}$ iff X has a k-rational point

Proof of \Leftarrow

$\mathcal{O}(P)$ is degree one line bundle on X

Rational Points

$X=V(f(X, Y, Z))$ has a k-rational point if $\exists P=[c, d, e] \in \mathbb{P}_{k}^{2}$ such that $f(c, d, e)=0$.

Theorem

X (a curve of genus zero $) \cong \mathbb{P}^{1}$ iff X has a k-rational point

Proof of \Leftarrow

$\mathcal{O}(P)$ is degree one line bundle on X thus $\mathcal{O}(P)$ is very ample

Rational Points

$X=V(f(X, Y, Z))$ has a k-rational point if $\exists P=[c, d, e] \in \mathbb{P}_{k}^{2}$ such that $f(c, d, e)=0$.

Theorem

X (a curve of genus zero $) \cong \mathbb{P}^{1}$ iff X has a k-rational point

Proof of \Leftarrow

$\mathcal{O}(P)$ is degree one line bundle on X thus $\mathcal{O}(P)$ is very ample thus $X \cong \operatorname{Proj}\left(\bigoplus_{i} H^{0}\left(X, \mathcal{O}(P)^{\otimes i}\right)\right)$

Rational Points

$X=V(f(X, Y, Z))$ has a k-rational point if $\exists P=[c, d, e] \in \mathbb{P}_{k}^{2}$ such that $f(c, d, e)=0$.

Theorem

X (a curve of genus zero $) \cong \mathbb{P}^{1}$ iff X has a k-rational point

Proof of \Leftarrow

$\mathcal{O}(P)$ is degree one line bundle on X thus $\mathcal{O}(P)$ is very ample thus $X \cong \operatorname{Proj}\left(\bigoplus_{i} H^{0}\left(X, \mathcal{O}(P)^{\otimes i}\right)\right) \cong \mathbb{P}^{1}$.

A Factorization

If X has a rational point P, then

A Factorization

If X has a rational point P, then

$$
\mathcal{O}(P)^{\otimes 2} \cong \omega_{X}^{*}
$$

A Factorization

If X has a rational point P, then

$$
\mathcal{O}(P)^{\otimes 2} \cong \omega_{X}^{*}
$$

In this case there is a factorization

A Factorization

If X has a rational point P, then

$$
\mathcal{O}(P)^{\otimes 2} \cong \omega_{X}^{*}
$$

In this case there is a factorization

$$
\begin{aligned}
& X \xrightarrow{\text { antican. emb. }} \operatorname{Proj}\left(\bigoplus_{j} H^{0}\left(X, \omega_{X}^{*}{ }^{\otimes j}\right)\right) \\
& \cong \uparrow \\
& \operatorname{Proj}\left(\bigoplus_{i} H^{0}\left(X, \mathcal{O}(P)^{\otimes i}\right)\right) \xrightarrow[2-\text { Veronese }]{\longrightarrow} \operatorname{Proj}\left(\bigoplus_{j} H^{0}\left(X, \mathcal{O}(P)^{\otimes 2 j}\right)\right)
\end{aligned}
$$

Adam Nyman

X is geometrically irreducible if $X_{\bar{k}}$ is irreducible.

X is geometrically irreducible if $X_{\bar{k}}$ is irreducible.

Theorem (Tsen, 1933)

X is geometrically irreducible if $X_{\bar{k}}$ is irreducible.

Theorem (Tsen, 1933)

Suppose

X is geometrically irreducible if $X_{\bar{k}}$ is irreducible.

Theorem (Tsen, 1933)

Suppose

- $L=\bar{L}$,

X is geometrically irreducible if $X_{\bar{k}}$ is irreducible.

Theorem (Tsen, 1933)

Suppose

- $L=\bar{L}$,
- $k=L(C)$ where C is curve L, and

X is geometrically irreducible if $X_{\bar{k}}$ is irreducible.

Theorem (Tsen, 1933)

Suppose

- $L=\bar{L}$,
- $k=L(C)$ where C is curve L, and
- X / k is geometrically irreducible curve with genus zero.

X is geometrically irreducible if $X_{\bar{k}}$ is irreducible.

Theorem (Tsen, 1933)

Suppose

- $L=\bar{L}$,
- $k=L(C)$ where C is curve L, and
- X / k is geometrically irreducible curve with genus zero.

Then

$$
X \cong_{k} \mathbb{P}_{k}^{1} .
$$

X is geometrically irreducible if $X_{\bar{k}}$ is irreducible.

Theorem (Tsen, 1933)

Suppose

- $L=\bar{L}$,
- $k=L(C)$ where C is curve L, and
- X / k is geometrically irreducible curve with genus zero.

Then

$$
X \cong_{k} \mathbb{P}_{k}^{1}
$$

Morally speaking, Tsen's theorem says: over certain base fields, curves of genus zero are projective lines.

Witt's Theorem

Witt's Theorem

Suppose char $k \neq 2$.

Witt's Theorem

Suppose char $k \neq 2$. For $a, b \in k^{\times}$,

Suppose char $k \neq 2$. For $a, b \in k^{\times}$,

- $(a, b)=4$-d algebra over $k \mathrm{w} /$ basis $1, i, j, k$

Suppose char $k \neq 2$. For $a, b \in k^{\times}$,

- $(a, b)=4$-d algebra over $k \mathrm{w} /$ basis $1, i, j, k$ and mult. $i^{2}=a, j^{2}=b, i j=-j i$.

Suppose char $k \neq 2$. For $a, b \in k^{\times}$,

- $(a, b)=4$-d algebra over $k \mathrm{w} /$ basis $1, i, j, k$ and mult. $i^{2}=a, j^{2}=b, i j=-j i$.
- $C(a, b)=V\left(a X^{2}+b Y^{2}-Z^{2}\right) \subset \mathbb{P}_{k}^{2}$.

Suppose char $k \neq 2$. For $a, b \in k^{\times}$,

- $(a, b)=4$-d algebra over $k \mathrm{w} /$ basis $1, i, j, k$ and mult.
$i^{2}=a, j^{2}=b, i j=-j i$.
- $C(a, b)=V\left(a X^{2}+b Y^{2}-Z^{2}\right) \subset \mathbb{P}_{k}^{2}$.

Theorem (Witt)

There is an isomorphism

$$
C(a, b) \rightarrow C(c, d)
$$

Suppose char $k \neq 2$. For $a, b \in k^{\times}$,

- $(a, b)=4$-d algebra over $k \mathrm{w} /$ basis $1, i, j, k$ and mult.
$i^{2}=a, j^{2}=b, i j=-j i$.
- $C(a, b)=V\left(a X^{2}+b Y^{2}-Z^{2}\right) \subset \mathbb{P}_{k}^{2}$.

Theorem (Witt)

There is an isomorphism

$$
C(a, b) \rightarrow C(c, d)
$$

if and only if

$$
(a, b) \cong(c, d)
$$

Part 2

Noncommutative Curves of Genus Zero (after Kussin)

Noncommutative Spaces

Noncommutative Space := Grothendieck Category

Noncommutative Spaces

Noncommutative Space := Grothendieck Category $=$

- (k-linear) abelian category with

Noncommutative Spaces

Noncommutative Space := Grothendieck Category $=$

- (k-linear) abelian category with
- exact direct limits and

Noncommutative Spaces

Noncommutative Space $:=$ Grothendieck Category $=$

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Noncommutative Spaces

Noncommutative Space := Grothendieck Category $=$

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

Noncommutative Spaces

Noncommutative Space := Grothendieck Category $=$

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

- $\operatorname{Mod} R, R$ a ring

Noncommutative Spaces

Noncommutative Space := Grothendieck Category $=$

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

- $\operatorname{Mod} R, R$ a ring
- Qcoh X

Noncommutative Spaces

Noncommutative Space := Grothendieck Category $=$

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

- $\operatorname{Mod} R, R$ a ring
- Qcoh X
- Proj $A:=\operatorname{Gr} A /$ Tors A where A is \mathbb{Z}-graded

Noncommutative Spaces

Noncommutative Space := Grothendieck Category $=$

- (k-linear) abelian category with
- exact direct limits and
- a generator.

Examples

- Mod R, R a ring
- Qcoh X
- Proj $A:=\operatorname{Gr} A /$ Tors A where A is \mathbb{Z}-graded

Theorem (Gabriel-Rosenberg)

A (quasi-separated) scheme X can be recovered up to isomorphism from Qcoh X.

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to $\operatorname{coh} X, X=$ curve of genus zero

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to $\operatorname{coh} X, X=$ curve of genus zero i.e. abelian noetherian categories H such that H

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to $\operatorname{coh} X, X=$ curve of genus zero
i.e. abelian noetherian categories H such that H

- is Ext-finite,

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to $\operatorname{coh} X, X=$ curve of genus zero
i.e. abelian noetherian categories H such that H

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}_{\mathrm{H}}^{1}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{\mathrm{H}}(\mathcal{N}, \tau \mathcal{M})$,

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to $\operatorname{coh} X, X=$ curve of genus zero
i.e. abelian noetherian categories H such that H

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}_{\mathrm{H}}^{1}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{\mathrm{H}}(\mathcal{N}, \tau \mathcal{M})$,
- H has an object of infinite length

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to $\operatorname{coh} X, X=$ curve of genus zero i.e. abelian noetherian categories H such that H

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}_{\mathrm{H}}^{1}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{\mathrm{H}}(\mathcal{N}, \tau \mathcal{M})$,
- H has an object of infinite length
- has a tilting object \mathcal{T}.

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to $\operatorname{coh} X, X=$ curve of genus zero i.e. abelian noetherian categories H such that H

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}_{\mathrm{H}}^{1}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{\mathrm{H}}(\mathcal{N}, \tau \mathcal{M})$,
- H has an object of infinite length
- has a tilting object \mathcal{T}.

H is homogeneous if $\tau S \cong S$ for all simple $S \in \mathrm{H}$.

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to $\operatorname{coh} X, X=$ curve of genus zero i.e. abelian noetherian categories H such that H

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}_{\mathrm{H}}^{1}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{\mathrm{H}}(\mathcal{N}, \tau \mathcal{M})$,
- H has an object of infinite length
- has a tilting object \mathcal{T}.

H is homogeneous if $\tau S \cong S$ for all simple $S \in \mathrm{H}$.

Basic examples

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to $\operatorname{coh} X, X=$ curve of genus zero i.e. abelian noetherian categories H such that H

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}_{\mathrm{H}}^{1}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{\mathrm{H}}(\mathcal{N}, \tau \mathcal{M})$,
- H has an object of infinite length
- has a tilting object \mathcal{T}.

H is homogeneous if $\tau S \cong S$ for all simple $S \in \mathrm{H}$.

Basic examples

(1) coh X for X a curve of genus zero (homogeneous)

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to $\operatorname{coh} X, X=$ curve of genus zero i.e. abelian noetherian categories H such that H

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}_{\mathrm{H}}^{1}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{\mathrm{H}}(\mathcal{N}, \tau \mathcal{M})$,
- H has an object of infinite length
- has a tilting object \mathcal{T}.

H is homogeneous if $\tau S \cong S$ for all simple $S \in \mathrm{H}$.

Basic examples

(1) $\operatorname{coh} X$ for X a curve of genus zero (homogeneous)
(2) Weighted projective lines (Geigle-Lenzing) (nonhomogeneous)

Kussin's Noncommutative Curves of Genus Zero (2009)

Kussin studies categories similar to $\operatorname{coh} X, X=$ curve of genus zero i.e. abelian noetherian categories H such that H

- is Ext-finite,
- has an AR translation τ on H with $\operatorname{Ext}_{\mathrm{H}}^{1}(\mathcal{M}, \mathcal{N}) \cong \operatorname{DHom}_{\mathrm{H}}(\mathcal{N}, \tau \mathcal{M})$,
- H has an object of infinite length
- has a tilting object \mathcal{T}.

H is homogeneous if $\tau S \cong S$ for all simple $S \in \mathrm{H}$.

Basic examples

(1) $\operatorname{coh} X$ for X a curve of genus zero (homogeneous)
(2) Weighted projective lines (Geigle-Lenzing) (nonhomogeneous)

Reduction to the homogeneous case

Let $\mathrm{H}=$ noncommutative curve of genus zero

Reduction to the homogeneous case

Let $\mathrm{H}=$ noncommutative curve of genus zero
Let $\mathrm{H}_{0}=$ full subcat. of objects in H of finite length

Reduction to the homogeneous case

Let $\mathrm{H}=$ noncommutative curve of genus zero
Let $\mathrm{H}_{0}=$ full subcat. of objects in H of finite length

Some Facts

Reduction to the homogeneous case

Let $\mathrm{H}=$ noncommutative curve of genus zero
Let $\mathrm{H}_{0}=$ full subcat. of objects in H of finite length

Some Facts

- $\mathrm{H} / \mathrm{H}_{0}$ is semisimple $w /$ one simple object

Reduction to the homogeneous case

Let $\mathrm{H}=$ noncommutative curve of genus zero
Let $\mathrm{H}_{0}=$ full subcat. of objects in H of finite length

Some Facts

- $\mathrm{H} / \mathrm{H}_{0}$ is semisimple $\mathrm{w} /$ one simple object \Rightarrow $H / H_{0} \equiv \bmod k(H)$ for some division ring $k(H)$.

Reduction to the homogeneous case

Let $\mathrm{H}=$ noncommutative curve of genus zero
Let $\mathrm{H}_{0}=$ full subcat. of objects in H of finite length

Some Facts

- $\mathrm{H} / \mathrm{H}_{0}$ is semisimple $\mathrm{w} /$ one simple object \Rightarrow $\mathrm{H} / \mathrm{H}_{0} \equiv \bmod k(\mathrm{H})$ for some division ring $k(\mathrm{H})$.
- If H is not homogeneous, there exists homogeneous H^{\prime} such that $k(\mathrm{H}) \cong k\left(\mathrm{H}^{\prime}\right)$.

Reduction to the homogeneous case

Let $\mathrm{H}=$ noncommutative curve of genus zero
Let $\mathrm{H}_{0}=$ full subcat. of objects in H of finite length

Some Facts

- $\mathrm{H} / \mathrm{H}_{0}$ is semisimple $\mathrm{w} /$ one simple object \Rightarrow $\mathrm{H} / \mathrm{H}_{0} \equiv \bmod k(\mathrm{H})$ for some division ring $k(\mathrm{H})$.
- If H is not homogeneous, there exists homogeneous H^{\prime} such that $k(\mathrm{H}) \cong k\left(\mathrm{H}^{\prime}\right)$.

Assumption

From now on we will work only with homogeneous H .

Significance of Tilting Object

Significance of Tilting Object

Let $\mathcal{T}=$ tilting object for H

Significance of Tilting Object

Let $\mathcal{T}=$ tilting object for H
Theorem
There is an equivalence

$$
D^{b}(\mathrm{H}) \rightarrow D^{b}\left(\bmod \left(\operatorname{End}_{\mathrm{H}}(\mathcal{T})\right)\right)
$$

Significance of Tilting Object

Let $\mathcal{T}=$ tilting object for H
Theorem
There is an equivalence

$$
D^{b}(\mathrm{H}) \rightarrow D^{b}\left(\bmod \left(\operatorname{End}_{\mathrm{H}}(\mathcal{T})\right)\right)
$$

Derived equivalences preserve indecomposable objects

Significance of Tilting Object

Let $\mathcal{T}=$ tilting object for H

Theorem

There is an equivalence

$$
D^{b}(\mathrm{H}) \rightarrow D^{b}\left(\bmod \left(\operatorname{End}_{\mathrm{H}}(\mathcal{T})\right)\right)
$$

Derived equivalences preserve indecomposable objects \therefore we have geometry of $\mathrm{H} \leftrightarrow$ rep. theory of $\operatorname{End}_{\mathrm{H}}(\mathcal{T})$.

Vector Bundles over H

Vector Bundles over H

Vector Bundles over H

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.

Vector Bundles over H

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of \mathcal{L} is the dim. of the image of \mathcal{L} under the quotient functor $\mathrm{H} \rightarrow \mathrm{H} / \mathrm{H}_{0}$.

Vector Bundles over H

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of \mathcal{L} is the dim. of the image of \mathcal{L} under the quotient functor $\mathrm{H} \rightarrow \mathrm{H} / \mathrm{H}_{0}$.
$\mathcal{M} \xrightarrow{f} \mathcal{P}$ is irreducible if

Vector Bundles over H

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of \mathcal{L} is the dim. of the image of \mathcal{L} under the quotient functor $\mathrm{H} \rightarrow \mathrm{H} / \mathrm{H}_{0}$.
$\mathcal{M} \xrightarrow{f} \mathcal{P}$ is irreducible if

Vector Bundles over H

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of \mathcal{L} is the dim. of the image of \mathcal{L} under the quotient functor $\mathrm{H} \rightarrow \mathrm{H} / \mathrm{H}_{0}$.
$\mathcal{M} \xrightarrow{f} \mathcal{P}$ is irreducible if
- f does not have a right or left inverse, and

Vector Bundles over H

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of \mathcal{L} is the dim. of the image of \mathcal{L} under the quotient functor $\mathrm{H} \rightarrow \mathrm{H} / \mathrm{H}_{0}$.
$\mathcal{M} \xrightarrow{f} \mathcal{P}$ is irreducible if
- f does not have a right or left inverse, and
- If $f=t s$, then s has a right inverse or t has a left inverse.

Vector Bundles over H

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of \mathcal{L} is the dim. of the image of \mathcal{L} under the quotient functor $\mathrm{H} \rightarrow \mathrm{H} / \mathrm{H}_{0}$.
$\mathcal{M} \xrightarrow{f} \mathcal{P}$ is irreducible if
- f does not have a right or left inverse, and
- If $f=t s$, then s has a right inverse or t has a left inverse.

Classification of indecomposable bundles in H
Given a line bundle \mathcal{L} over H ,

Vector Bundles over H

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of \mathcal{L} is the dim. of the image of \mathcal{L} under the quotient functor $\mathrm{H} \rightarrow \mathrm{H} / \mathrm{H}_{0}$.
$\mathcal{M} \xrightarrow{f} \mathcal{P}$ is irreducible if
- f does not have a right or left inverse, and
- If $f=t s$, then s has a right inverse or t has a left inverse.

Classification of indecomposable bundles in H

Given a line bundle \mathcal{L} over H ,

- \exists ! indecomposable bundle $\overline{\mathcal{L}}$ s.t. there is an irreducible morphism $\mathcal{L} \rightarrow \overline{\mathcal{L}}$

Vector Bundles over H

- A vector bundle \mathcal{L} is an object in H without a simple sub-object.
- The rank of \mathcal{L} is the dim. of the image of \mathcal{L} under the quotient functor $\mathrm{H} \rightarrow \mathrm{H} / \mathrm{H}_{0}$.
$\mathcal{M} \xrightarrow{f} \mathcal{P}$ is irreducible if
- f does not have a right or left inverse, and
- If $f=t s$, then s has a right inverse or t has a left inverse.

Classification of indecomposable bundles in H

Given a line bundle \mathcal{L} over H ,

- \exists ! indecomposable bundle $\overline{\mathcal{L}}$ s.t. there is an irreducible morphism $\mathcal{L} \rightarrow \overline{\mathcal{L}}$
- every indec. bundle is \cong to $\tau^{i}(\mathcal{L})$ or $\tau^{i}(\overline{\mathcal{L}})$.

The Underlying Bimodule

The underlying bimodule of H is the $\operatorname{End}(\overline{\mathcal{L}})-\operatorname{End}(\mathcal{L})$-bimodule $\operatorname{Hom}_{\mathrm{H}}(\mathcal{L}, \overline{\mathcal{L}})$.

The Underlying Bimodule

The underlying bimodule of H is the $\operatorname{End}(\overline{\mathcal{L}})-\operatorname{End}(\mathcal{L})$-bimodule $\operatorname{Hom}_{\mathrm{H}}(\mathcal{L}, \overline{\mathcal{L}})$.

Question

Which properties of H are dictated by the underlying bimodule?

Commutative Examples

Commutative Examples

$\mathrm{H}=\operatorname{coh}^{1}{ }^{1}$

Commutative Examples

$\begin{aligned} \mathrm{H} & =\operatorname{coh} \mathbb{P}^{1} \\ & \text { - } \tau=-\otimes \mathcal{O}(-2),\end{aligned}$

Commutative Examples

$H=\operatorname{cohP}^{1}$

- $\tau=-\otimes \mathcal{O}(-2), \mathcal{L}=\mathcal{O}$,

Commutative Examples

$\mathrm{H}=\operatorname{coh}^{1}{ }^{1}$

$$
\tau=-\otimes \mathcal{O}(-2), \mathcal{L}=\mathcal{O}, \overline{\mathcal{L}}=\mathcal{O}(1)
$$

Commutative Examples

$H=\operatorname{coh} \mathrm{P}^{1}$

- $\tau=-\otimes \mathcal{O}(-2), \mathcal{L}=\mathcal{O}, \overline{\mathcal{L}}=\mathcal{O}(1)$,
- $\operatorname{End}(\overline{\mathcal{L}})=k=\operatorname{End}(\mathcal{L})$,

Commutative Examples

$H=\operatorname{coh} \mathrm{P}^{1}$

- $\tau=-\otimes \mathcal{O}(-2), \mathcal{L}=\mathcal{O}, \overline{\mathcal{L}}=\mathcal{O}(1)$,
- $\operatorname{End}(\overline{\mathcal{L}})=k=\operatorname{End}(\mathcal{L})$,
- $\operatorname{Hom}_{\mathrm{H}}(\mathcal{L}, \overline{\mathcal{L}})=k \oplus k$.

Commutative Examples

$\mathrm{H}=\operatorname{coh}^{\mathrm{P}}{ }^{1}$

- $\tau=-\otimes \mathcal{O}(-2), \mathcal{L}=\mathcal{O}, \overline{\mathcal{L}}=\mathcal{O}(1)$,
- $\operatorname{End}(\overline{\mathcal{L}})=k=\operatorname{End}(\mathcal{L})$,
- $\operatorname{Hom}_{\mathrm{H}}(\mathcal{L}, \overline{\mathcal{L}})=k \oplus k$.
$\mathrm{H}=\operatorname{coh} C(a, b)$ where $C(a, b)$ has no rational point

Commutative Examples

$\mathrm{H}=\operatorname{coh}^{1}{ }^{1}$

- $\tau=-\otimes \mathcal{O}(-2), \mathcal{L}=\mathcal{O}, \overline{\mathcal{L}}=\mathcal{O}(1)$,
- $\operatorname{End}(\overline{\mathcal{L}})=k=\operatorname{End}(\mathcal{L})$,
- $\operatorname{Hom}_{\mathrm{H}}(\mathcal{L}, \overline{\mathcal{L}})=k \oplus k$.
$\mathrm{H}=\operatorname{coh} C(a, b)$ where $C(a, b)$ has no rational point
- $\tau=-\otimes \omega_{C(a, b)}$,

Commutative Examples

$\mathrm{H}=\operatorname{coh}^{1}{ }^{1}$

- $\tau=-\otimes \mathcal{O}(-2), \mathcal{L}=\mathcal{O}, \overline{\mathcal{L}}=\mathcal{O}(1)$,
- $\operatorname{End}(\overline{\mathcal{L}})=k=\operatorname{End}(\mathcal{L})$,
- $\operatorname{Hom}_{\mathrm{H}}(\mathcal{L}, \overline{\mathcal{L}})=k \oplus k$.
$\mathrm{H}=\operatorname{coh} C(a, b)$ where $C(a, b)$ has no rational point
- $\tau=-\otimes \omega_{C(a, b)}, \mathcal{L}=\mathcal{O}_{C(a, b)}$,

Commutative Examples

$\mathrm{H}=\operatorname{coh}^{1}{ }^{1}$

- $\tau=-\otimes \mathcal{O}(-2), \mathcal{L}=\mathcal{O}, \overline{\mathcal{L}}=\mathcal{O}(1)$,
- $\operatorname{End}(\overline{\mathcal{L}})=k=\operatorname{End}(\mathcal{L})$,
- $\operatorname{Hom}_{\mathrm{H}}(\mathcal{L}, \overline{\mathcal{L}})=k \oplus k$.
$\mathrm{H}=\operatorname{coh} C(a, b)$ where $C(a, b)$ has no rational point
- $\tau=-\otimes \omega_{C(a, b)}, \mathcal{L}=\mathcal{O}_{C(a, b)}, \overline{\mathcal{L}}$ has rank two

Commutative Examples

$\mathrm{H}=\operatorname{coh}^{1}{ }^{1}$

- $\tau=-\otimes \mathcal{O}(-2), \mathcal{L}=\mathcal{O}, \overline{\mathcal{L}}=\mathcal{O}(1)$,
- $\operatorname{End}(\overline{\mathcal{L}})=k=\operatorname{End}(\mathcal{L})$,
- $\operatorname{Hom}_{\mathrm{H}}(\mathcal{L}, \overline{\mathcal{L}})=k \oplus k$.
$\mathrm{H}=\operatorname{coh} C(a, b)$ where $C(a, b)$ has no rational point
- $\tau=-\otimes \omega_{C(a, b)}, \mathcal{L}=\mathcal{O}_{C(a, b)}, \overline{\mathcal{L}}$ has rank two
- $\operatorname{End}(\overline{\mathcal{L}})=(a, b)$ and $\operatorname{End}(\mathcal{L})=k$,

Commutative Examples

$\mathrm{H}=\operatorname{cohP}^{1}$

- $\tau=-\otimes \mathcal{O}(-2), \mathcal{L}=\mathcal{O}, \overline{\mathcal{L}}=\mathcal{O}(1)$,
- $\operatorname{End}(\overline{\mathcal{L}})=k=\operatorname{End}(\mathcal{L})$,
- $\operatorname{Hom}_{\mathrm{H}}(\mathcal{L}, \overline{\mathcal{L}})=k \oplus k$.
$\mathrm{H}=\operatorname{coh} C(a, b)$ where $C(a, b)$ has no rational point
- $\tau=-\otimes \omega_{C(a, b)}, \mathcal{L}=\mathcal{O}_{C(a, b)}, \overline{\mathcal{L}}$ has rank two
- $\operatorname{End}(\overline{\mathcal{L}})=(a, b)$ and $\operatorname{End}(\mathcal{L})=k$,
- $\operatorname{Hom}_{\mathrm{H}}(\mathcal{L}, \overline{\mathcal{L}}) \cong{ }_{(a, b)}(a, b)_{k}$.

Commutative Examples

$H=\operatorname{coh} \mathbb{P}^{1}$

- $\tau=-\otimes \mathcal{O}(-2), \mathcal{L}=\mathcal{O}, \overline{\mathcal{L}}=\mathcal{O}(1)$,
- $\operatorname{End}(\overline{\mathcal{L}})=k=\operatorname{End}(\mathcal{L})$,
- $\operatorname{Hom}_{\mathrm{H}}(\mathcal{L}, \overline{\mathcal{L}})=k \oplus k$.
$\mathrm{H}=\operatorname{coh} C(a, b)$ where $C(a, b)$ has no rational point
- $\tau=-\otimes \omega_{C(a, b)}, \mathcal{L}=\mathcal{O}_{C(a, b)}, \overline{\mathcal{L}}$ has rank two
- $\operatorname{End}(\overline{\mathcal{L}})=(a, b)$ and $\operatorname{End}(\mathcal{L})=k$,
- $\operatorname{Hom}_{H}(\mathcal{L}, \overline{\mathcal{L}}) \cong{ }_{(a, b)}(a, b)_{k}$.

In general:

Commutative Examples

$\mathrm{H}=\operatorname{coh} \mathbb{P}^{1}$

- $\tau=-\otimes \mathcal{O}(-2), \mathcal{L}=\mathcal{O}, \overline{\mathcal{L}}=\mathcal{O}(1)$,
- $\operatorname{End}(\overline{\mathcal{L}})=k=\operatorname{End}(\mathcal{L})$,
- $\operatorname{Hom}_{\mathrm{H}}(\mathcal{L}, \overline{\mathcal{L}})=k \oplus k$.
$\mathrm{H}=\operatorname{coh} C(a, b)$ where $C(a, b)$ has no rational point
- $\tau=-\otimes \omega_{C(a, b)}, \mathcal{L}=\mathcal{O}_{C(a, b)}, \overline{\mathcal{L}}$ has rank two
- $\operatorname{End}(\overline{\mathcal{L}})=(a, b)$ and $\operatorname{End}(\mathcal{L})=k$,
- $\operatorname{Hom}_{H}(\mathcal{L}, \overline{\mathcal{L}}) \cong{ }_{(a, b)}(a, b)_{k}$.

In general:

- $\operatorname{End}(\mathcal{L})$ and $\operatorname{End}(\overline{\mathcal{L}})$ will always be division rings f.d. over k.

Commutative Examples

$\mathrm{H}=\operatorname{coh} \mathbb{P}^{1}$

- $\tau=-\otimes \mathcal{O}(-2), \mathcal{L}=\mathcal{O}, \overline{\mathcal{L}}=\mathcal{O}(1)$,
- $\operatorname{End}(\overline{\mathcal{L}})=k=\operatorname{End}(\mathcal{L})$,
- $\operatorname{Hom}_{\mathrm{H}}(\mathcal{L}, \overline{\mathcal{L}})=k \oplus k$.
$\mathrm{H}=\operatorname{coh} C(a, b)$ where $C(a, b)$ has no rational point
- $\tau=-\otimes \omega_{C(a, b)}, \mathcal{L}=\mathcal{O}_{C(a, b)}, \overline{\mathcal{L}}$ has rank two
- $\operatorname{End}(\overline{\mathcal{L}})=(a, b)$ and $\operatorname{End}(\mathcal{L})=k$,
- $\operatorname{Hom}_{\mathrm{H}}(\mathcal{L}, \overline{\mathcal{L}}) \cong{ }_{(a, b)}(a, b)_{k}$.

In general:

- $\operatorname{End}(\mathcal{L})$ and $\operatorname{End}(\overline{\mathcal{L}})$ will always be division rings f.d. over k.
- The underlying bimodule of H will always have left-right dimensions $(1,4)$ or $(2,2)$.

Ample Pairs

Adam Nyman

Ample Pairs

Let σ be an autoequiv. of H .

Ample Pairs

Let σ be an autoequiv. of H .
Define $A=\oplus_{i} \operatorname{Hom}\left(\mathcal{L}, \sigma^{i} \mathcal{L}\right)$

Ample Pairs

Let σ be an autoequiv. of H .
Define $A=\oplus_{i} \operatorname{Hom}\left(\mathcal{L}, \sigma^{i} \mathcal{L}\right)$ with mult. of $a \in A_{i}$ with $b \in A_{j}$,

Ample Pairs

Let σ be an autoequiv. of H .
Define $A=\oplus_{i} \operatorname{Hom}\left(\mathcal{L}, \sigma^{i} \mathcal{L}\right)$ with mult. of $a \in A_{i}$ with $b \in A_{j}$,

$$
a \cdot b:=\sigma^{j}(a) \circ b
$$

Ample Pairs

Let σ be an autoequiv. of H .
Define $A=\oplus_{i} \operatorname{Hom}\left(\mathcal{L}, \sigma^{i} \mathcal{L}\right)$ with mult. of $a \in A_{i}$ with $b \in A_{j}$,

$$
a \cdot b:=\sigma^{j}(a) \circ b
$$

(\mathcal{L}, σ) is an ample pair if

Ample Pairs

Let σ be an autoequiv. of H .
Define $A=\oplus_{i} \operatorname{Hom}\left(\mathcal{L}, \sigma^{i} \mathcal{L}\right)$ with mult. of $a \in A_{i}$ with $b \in A_{j}$,

$$
a \cdot b:=\sigma^{j}(a) \circ b
$$

(\mathcal{L}, σ) is an ample pair if
(1) For $\mathcal{M} \in \mathrm{H}, \exists$ positive n_{1}, \ldots, n_{p} and an epi

$$
\oplus_{i=1}^{p} \sigma^{-n_{i}} \mathcal{L} \rightarrow \mathcal{M}, \text { and }
$$

Ample Pairs

Let σ be an autoequiv. of H .
Define $A=\oplus_{i} \operatorname{Hom}\left(\mathcal{L}, \sigma^{i} \mathcal{L}\right)$ with mult. of $a \in A_{i}$ with $b \in A_{j}$,

$$
a \cdot b:=\sigma^{j}(a) \circ b
$$

(\mathcal{L}, σ) is an ample pair if
(1) For $\mathcal{M} \in \mathrm{H}, \exists$ positive n_{1}, \ldots, n_{p} and an epi
$\oplus_{i=1}^{p} \sigma^{-n_{i}} \mathcal{L} \rightarrow \mathcal{M}$, and
(2) If $\mathcal{M} \xrightarrow{f} \mathcal{N}$ is an epi in H , then the induced map $\operatorname{Hom}_{\mathrm{H}}\left(\sigma^{-n} \mathcal{L}, f\right)$ is an epi for $n \gg 0$.

Ample Pairs

Let σ be an autoequiv. of H .
Define $A=\oplus_{i} \operatorname{Hom}\left(\mathcal{L}, \sigma^{i} \mathcal{L}\right)$ with mult. of $a \in A_{i}$ with $b \in A_{j}$,

$$
a \cdot b:=\sigma^{j}(a) \circ b
$$

(\mathcal{L}, σ) is an ample pair if
(1) For $\mathcal{M} \in \mathrm{H}, \exists$ positive n_{1}, \ldots, n_{p} and an epi $\oplus_{i=1}^{p} \sigma^{-n_{i}} \mathcal{L} \rightarrow \mathcal{M}$, and
(2) If $\mathcal{M} \xrightarrow{f} \mathcal{N}$ is an epi in H , then the induced map $\operatorname{Hom}_{\mathrm{H}}\left(\sigma^{-n} \mathcal{L}, f\right)$ is an epi for $n \gg 0$.

Theorem (Artin and Zhang (1994))

If (\mathcal{L}, σ) is an ample pair, then there is an equivalence $\mathrm{H} \rightarrow \operatorname{proj} A:=\operatorname{gr} A /$ tors A.

Kussin's Approach

Kussin's Approach

Kussin studies the category H through the category $\operatorname{gr} A$ for various σ.

Kussin's Approach

Kussin studies the category H through the category $\operatorname{gr} A$ for various σ.

A noncommutative conic

Kussin's Approach

Kussin studies the category H through the category $\operatorname{gr} A$ for various σ.

A noncommutative conic

- Let $a, c \in k, K=k(\sqrt{a}, \sqrt{c})$ with $[K: k]=4$.

Kussin's Approach

Kussin studies the category H through the category $\operatorname{gr} A$ for various σ.

A noncommutative conic

- Let $a, c \in k, K=k(\sqrt{a}, \sqrt{c})$ with $[K: k]=4$.
- Kussin constructs H such that the underlying bimodule of H is ${ }_{K} K_{k}$, and

Kussin's Approach

Kussin studies the category H through the category $\operatorname{gr} A$ for various σ.

A noncommutative conic

- Let $a, c \in k, K=k(\sqrt{a}, \sqrt{c})$ with $[K: k]=4$.
- Kussin constructs H such that the underlying bimodule of H is ${ }_{K} K_{k}$, and
- Kussin identifies σ such that the homogeneous coordinate ring A is

$$
k\langle X, Y, Z\rangle /\left\langle X Y-Y X, X Z-Z X, Y Z+Z Y, Z^{2}+a Y^{2}-c X^{2}\right\rangle
$$

Part 3

Noncommutative Symmetric Algebras

Goal

Adam Nyman

Goal

Suppose

Goal

Suppose

- $L=$ field extension of k

Goal

Suppose

- $L=$ field extension of k
- V is L - L-bimodule $w / \operatorname{dim} 2$ on both sides

Goal

Suppose

- $L=$ field extension of k
- V is L - L-bimodule $w / \operatorname{dim} 2$ on both sides
- $\{x, y\}$ is a simultaneous basis

Goal

Suppose

- $L=$ field extension of k
- V is L - L-bimodule $w / \operatorname{dim} 2$ on both sides
- $\{x, y\}$ is a simultaneous basis

Construct nc ring $\mathbb{S}^{n c}(V)$ which specializes to

Goal

Suppose

- $L=$ field extension of k
- V is L - L-bimodule $w / \operatorname{dim} 2$ on both sides
- $\{x, y\}$ is a simultaneous basis

Construct nc ring $\mathbb{S}^{n c}(V)$ which specializes to

$$
\mathbb{S}(V):=\frac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{\langle x \otimes y-y \otimes x\rangle}
$$

when V is L-central.

Goal

Suppose

- $L=$ field extension of k
- V is L - L-bimodule $w / \operatorname{dim} 2$ on both sides
- $\{x, y\}$ is a simultaneous basis

Construct nc ring $\mathbb{S}^{n c}(V)$ which specializes to

$$
\mathbb{S}(V):=\frac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{\langle x \otimes y-y \otimes x\rangle}
$$

when V is L-central.
Should have expected left and right Hilbert series

Attempt 1

Adam Nyman

Attempt 1

Define

$$
\mathbb{S}^{n c}(V):=\frac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{\langle x \otimes y-y \otimes x\rangle}
$$

Attempt 1

Define

$$
\mathbb{S}^{n c}(V):=\frac{L \oplus V \oplus V^{\otimes 2} \oplus \cdots}{\langle x \otimes y-y \otimes x\rangle}
$$

Problem

Too many relations.

Duals

Adam Nyman

Duals

Right dual of V
 $V^{*}:=\operatorname{Hom}_{L}\left(V_{L}, L\right)$

Duals

> Right dual of V
> $V^{*}:=\operatorname{Hom}_{L}\left(V_{L}, L\right)$ with action $(a \cdot \psi \cdot b)(x)=a \psi(b x)$

Duals

Right dual of V

$V^{*}:=\operatorname{Hom}_{L}\left(V_{L}, L\right)$ with action $(a \cdot \psi \cdot b)(x)=a \psi(b x)$.
Left dual of V

* $V:=\operatorname{Hom}_{L}(L V, L)$ with action $(a \cdot \phi \cdot b)(x)=b \phi(x a)$.

Attempt 2

Attempt 2

There exists canonical $\eta_{0}: L \rightarrow V \otimes_{L} V^{*}$:

Attempt 2

There exists canonical $\eta_{0}: L \rightarrow V \otimes_{L} V^{*}:$ If $\delta_{x} \in \operatorname{Hom}_{L}\left(V_{L}, L\right)$ is dual to x etc. then

Attempt 2

There exists canonical $\eta_{0}: L \rightarrow V \otimes_{L} V^{*}:$ If $\delta_{x} \in \operatorname{Hom}_{L}\left(V_{L}, L\right)$ is dual to x etc. then

$$
\eta_{0}(a):=a\left(x \otimes \delta_{x}+y \otimes \delta_{y}\right) .
$$

Attempt 2

There exists canonical $\eta_{0}: L \rightarrow V \otimes_{L} V^{*}:$ If $\delta_{x} \in \operatorname{Hom}_{L}\left(V_{L}, L\right)$ is dual to x etc. then

$$
\eta_{0}(a):=a\left(x \otimes \delta_{x}+y \otimes \delta_{y}\right) .
$$

η_{0} independent of choices.

Attempt 2

There exists canonical $\eta_{0}: L \rightarrow V \otimes_{L} V^{*}:$ If $\delta_{x} \in \operatorname{Hom}_{L}\left(V_{L}, L\right)$ is dual to x etc. then

$$
\eta_{0}(a):=a\left(x \otimes \delta_{x}+y \otimes \delta_{y}\right) .
$$

η_{0} independent of choices. Define

$$
\mathbb{S}^{n c}(V):=L \oplus V \oplus \frac{V \otimes_{L} V^{*}}{\operatorname{im} \eta_{0}} \oplus \frac{V \otimes V^{*} \otimes V^{* *}}{\operatorname{im} \eta_{0} \otimes V^{* *}+V \otimes \operatorname{im} \eta_{1}} \oplus \cdots
$$

Attempt 2

There exists canonical $\eta_{0}: L \rightarrow V \otimes_{L} V^{*}:$ If $\delta_{x} \in \operatorname{Hom}_{L}\left(V_{L}, L\right)$ is dual to x etc. then

$$
\eta_{0}(a):=a\left(x \otimes \delta_{x}+y \otimes \delta_{y}\right) .
$$

η_{0} independent of choices. Define

$$
\mathbb{S}^{n c}(V):=L \oplus V \oplus \frac{V \otimes_{L} V^{*}}{\operatorname{im} \eta_{0}} \oplus \frac{V \otimes V^{*} \otimes V^{* *}}{\operatorname{im} \eta_{0} \otimes V^{* *}+V \otimes \operatorname{im} \eta_{1}} \oplus \cdots
$$

Problem

No natural multiplication: if $x, y \in V, x \cdot y$ not in $\frac{V \otimes V^{*}}{\operatorname{im} \eta_{0}}$.

Z-algebras (Bondal and Polishchuk (1993))

Z-algebras (Bondal and Polishchuk (1993))

An algebra A is a \mathbb{Z}-algebra if

Z-algebras (Bondal and Polishchuk (1993))

An algebra A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A=\oplus_{i \leq j \in \mathbb{Z}} A_{i j}$,

Z-algebras (Bondal and Polishchuk (1993))

An algebra A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A=\oplus_{i \leq j \in \mathbb{Z}} A_{i j}$,
- $A_{i j} A_{j k} \subset A_{i k}$,

Z-algebras (Bondal and Polishchuk (1993))

An algebra A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A=\oplus_{i \leq j \in \mathbb{Z}} A_{i j}$,
- $A_{i j} A_{j k} \subset A_{i k}$,
- $A_{i j} A_{k l}=0$ for $k \neq j$, and

Z-algebras (Bondal and Polishchuk (1993))

An algebra A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A=\oplus_{i \leq j \in \mathbb{Z}} A_{i j}$,
- $A_{i j} A_{j k} \subset A_{i k}$,
- $A_{i j} A_{k l}=0$ for $k \neq j$, and
- the subalgebra $A_{i i}$ contains a unit.

Z-algebras (Bondal and Polishchuk (1993))

An algebra A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A=\oplus_{i \leq j \in \mathbb{Z}} A_{i j}$,
- $A_{i j} A_{j k} \subset A_{i k}$,
- $A_{i j} A_{k l}=0$ for $k \neq j$, and
- the subalgebra $A_{i i}$ contains a unit.

Remark: A does not have a unity and is not a domain.

Z-algebras (Bondal and Polishchuk (1993))

An algebra A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A=\oplus_{i \leq j \in \mathbb{Z}} A_{i j}$,
- $A_{i j} A_{j k} \subset A_{i k}$,
- $A_{i j} A_{k l}=0$ for $k \neq j$, and
- the subalgebra $A_{i i}$ contains a unit.

Remark: A does not have a unity and is not a domain.

Intuition

Think of A as ring of bi-infinite upper-triangular matrices with (i, j)-entry coming from $A_{i j}$.

\mathbb{Z}-algebras (Bondal and Polishchuk (1993))

An algebra A is a \mathbb{Z}-algebra if

- \exists vector space decomp $A=\oplus_{i \leq j \in \mathbb{Z}} A_{i j}$,
- $A_{i j} A_{j k} \subset A_{i k}$,
- $A_{i j} A_{k l}=0$ for $k \neq j$, and
- the subalgebra $A_{i i}$ contains a unit.

Remark: A does not have a unity and is not a domain.

Intuition

Think of A as ring of bi-infinite upper-triangular matrices with (i, j)-entry coming from $A_{i j}$.

Example

If $(\mathcal{O}(n))_{n \in \mathbb{Z}}$ is seq. of objects in a category A , then

$$
A_{i j}=\operatorname{Hom}_{\mathrm{A}}(\mathcal{O}(j), \mathcal{O}(i))
$$

with mult. $=$ composition makes $\oplus_{i, j \in \mathbb{Z}} A_{i j}$ a \mathbb{Z}-algebra

Attempt 3: $\mathbb{S}^{n c}(V)$ is a \mathbb{Z}-algebra

Attempt 3: $\mathbb{S}^{n c}(V)$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{n c}(V)$ (Van den Bergh (2000))

- $\mathbb{S}^{n c}(V)_{i j}=\frac{V^{i *} \otimes L^{\cdots} \otimes \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,

Attempt 3: $\mathbb{S}^{n c}(V)$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{n c}(V)(V a n$ den Bergh (2000))

- $\mathbb{S}^{n c}(V)_{i j}=\frac{V^{i *} \otimes L^{\cdots} \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,
- $\mathbb{S}^{n c}(V)_{i i}=L$,

Attempt 3: $\mathbb{S}^{n c}(V)$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{n c}(V)(V a n$ den Bergh (2000))

- $\mathbb{S}^{n c}(V)_{i j}=\frac{V^{i *} \otimes L^{\cdots} \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,
- $\mathbb{S}^{n c}(V)_{i i}=L$,
- $\mathbb{S}^{n c}(V)_{i j}=0$ if $i>j$,

Attempt 3: $\mathbb{S}^{n c}(V)$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{n c}(V)(V a n$ den Bergh (2000))

- $\mathbb{S}^{n c}(V)_{i j}=\frac{V^{i *} \otimes_{L} \cdots \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,
- $\mathbb{S}^{n c}(V)_{i i}=L$,
- $\mathbb{S}^{n c}(V)_{i j}=0$ if $i>j$,
- multiplication induced by \otimes_{L}.

Attempt 3: $\mathbb{S}^{n c}(V)$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{n c}(V)(V a n$ den Bergh (2000))

- $\mathbb{S}^{n c}(V)_{i j}=\frac{V^{i *} \otimes L^{\cdots} \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,
- $\mathbb{S}^{n c}(V)_{i i}=L$,
- $\mathbb{S}^{n c}(V)_{i j}=0$ if $i>j$,
- multiplication induced by \otimes_{L}.

More generally, if

Attempt 3: $\mathbb{S}^{n c}(V)$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{n c}(V)(V a n$ den Bergh (2000))

- $\mathbb{S}^{n c}(V)_{i j}=\frac{V^{i *} \otimes_{L} \cdots \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,
- $\mathbb{S}^{n c}(V)_{i i}=L$,
- $\mathbb{S}^{n c}(V)_{i j}=0$ if $i>j$,
- multiplication induced by \otimes_{L}.

More generally, if

- X is a smooth scheme of finite type over a k

Attempt 3: $\mathbb{S}^{n c}(V)$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{n c}(V)(V a n$ den Bergh (2000))

- $\mathbb{S}^{n c}(V)_{i j}=\frac{V^{i *} \otimes_{L} \cdots \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,
- $\mathbb{S}^{n c}(V)_{i i}=L$,
- $\mathbb{S}^{n c}(V)_{i j}=0$ if $i>j$,
- multiplication induced by \otimes_{L}.

More generally, if

- X is a smooth scheme of finite type over a k
- \mathcal{E} is a locally free rank $n \mathcal{O}_{X}$-bimodule

Attempt 3: $\mathbb{S}^{n c}(V)$ is a \mathbb{Z}-algebra

Definition of $\mathbb{S}^{n c}(V)(V a n$ den Bergh (2000))

- $\mathbb{S}^{n c}(V)_{i j}=\frac{V^{i *} \otimes_{L} \cdots \otimes_{L} V^{j-1 *}}{\text { relns. gen. by } \eta_{i}}$ for $j>i$,
- $\mathbb{S}^{n c}(V)_{i i}=L$,
- $\mathbb{S}^{n c}(V)_{i j}=0$ if $i>j$,
- multiplication induced by \otimes_{L}.

More generally, if

- X is a smooth scheme of finite type over a k
- \mathcal{E} is a locally free rank $n \mathcal{O}_{X}$-bimodule

Van den Bergh defines $\mathbb{S}^{n c}(\mathcal{E})$.

Relation to $\mathbb{S}(V)$

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{n c}(V) \neq \mathbb{S}(V)$.

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{n c}(V) \neq \mathbb{S}(V)$.
If A is a \mathbb{Z}-algebra,

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{n c}(V) \neq \mathbb{S}(V)$.
If A is a \mathbb{Z}-algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{j k}:=A_{j+i, k+i}$.

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{n c}(V) \neq \mathbb{S}(V)$.
If A is a \mathbb{Z}-algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{j k}:=A_{j+i, k+i}$.
- A is i-periodic if $A \cong A(i)$.

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{n c}(V) \neq \mathbb{S}(V)$.
If A is a \mathbb{Z}-algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{j k}:=A_{j+i, k+i}$.
- A is i-periodic if $A \cong A(i)$.

If B is \mathbb{Z}-graded algebra, define $\check{B}_{i j}:=B_{j-i}$.

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{n c}(V) \neq \mathbb{S}(V)$.
If A is a \mathbb{Z}-algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{j k}:=A_{j+i, k+i}$.
- A is i-periodic if $A \cong A(i)$.

If B is \mathbb{Z}-graded algebra, define $\check{B}_{i j}:=B_{j-i}$.

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a \mathbb{Z}-graded ring B such that $A \cong \check{B}$,

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{n c}(V) \neq \mathbb{S}(V)$.
If A is a \mathbb{Z}-algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{j k}:=A_{j+i, k+i}$.
- A is i-periodic if $A \cong A(i)$.

If B is \mathbb{Z}-graded algebra, define $\check{B}_{i j}:=B_{j-i}$.

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a \mathbb{Z}-graded ring B such that $A \cong \check{B}$, and $\mathrm{Gr} A \equiv \mathrm{Gr} B$.

Relation to $\mathbb{S}(V)$

If V is L-central, $\mathbb{S}^{n c}(V) \neq \mathbb{S}(V)$.
If A is a \mathbb{Z}-algebra,

- if $i \in \mathbb{Z}$ let $A(i)_{j k}:=A_{j+i, k+i}$.
- A is i-periodic if $A \cong A(i)$.

If B is \mathbb{Z}-graded algebra, define $\check{B}_{i j}:=B_{j-i}$.

Theorem (Van den Bergh (2000))

If A is 1-periodic, then there exists a \mathbb{Z}-graded ring B such that $A \cong \check{B}$, and $\operatorname{Gr} A \equiv \mathrm{Gr} B$. It follows that if V is L-central, then

$$
\operatorname{GrS}^{n c}(V) \equiv \operatorname{GrS}(V)
$$

Noncommutative Bases

Noncommutative Bases

- $R, S=$ noetherian k-algebras

Noncommutative Bases

- $R, S=$ noetherian k-algebras
- $N=R-S$-bimodule free on left (right) of rank $m(n)$

Noncommutative Bases

- $R, S=$ noetherian k-algebras
- $N=R-S$-bimodule free on left (right) of rank $m(n)$

Noncommutative Bases

- $R, S=$ noetherian k-algebras
- $N=R-S$-bimodule free on left (right) of rank $m(n)$
N is admissible if $N^{i *}$ is free of left-right dimension (m, n) if i is even and (n, m) if i is odd.

Noncommutative Bases

- $R, S=$ noetherian k-algebras
- $N=R-S$-bimodule free on left (right) of rank $m(n)$
N is admissible if $N^{i *}$ is free of left-right dimension (m, n) if i is even and (n, m) if i is odd.

Lemma (D. Chan and N (2015))

Noncommutative Bases

- $R, S=$ noetherian k-algebras
- $N=R-S$-bimodule free on left (right) of rank m (n)
N is admissible if $N^{i *}$ is free of left-right dimension (m, n) if i is even and (n, m) if i is odd.

Lemma (D. Chan and N (2015))

(1) N is admissible $\Rightarrow \mathbb{S}^{n c}(N)$ exists. This holds in particular if R and S are f.d. simple.

Noncommutative Bases

- $R, S=$ noetherian k-algebras
- $N=R-S$-bimodule free on left (right) of rank m (n)
N is admissible if $N^{i *}$ is free of left-right dimension (m, n) if i is even and (n, m) if i is odd.

Lemma (D. Chan and N (2015))

(1) N is admissible $\Rightarrow \mathbb{S}^{n c}(N)$ exists. This holds in particular if R and S are f.d. simple.
(2) If R and S are f.d. division rings and N has left-right dimension $(2,2)$ or $(1,4)$, then $\operatorname{dim} \mathbb{S}^{n c}(N)_{i j}=j-i+1$ on either side.

Noncommutative Bases

- $R, S=$ noetherian k-algebras
- $N=R-S$-bimodule free on left (right) of rank $m(n)$
N is admissible if $N^{i *}$ is free of left-right dimension (m, n) if i is even and (n, m) if i is odd.

Lemma (D. Chan and N (2015))

(1) N is admissible $\Rightarrow \mathbb{S}^{n c}(N)$ exists. This holds in particular if R and S are f.d. simple.
(2) If R and S are f.d. division rings and N has left-right dimension $(2,2)$ or $(1,4)$, then $\operatorname{dim} \mathbb{S}^{n c}(N)_{i j}=j-i+1$ on either side.

If $R \neq S$, (following Van den Bergh) we let $\mathbb{S}^{n c}(N)_{i i}=R$ if i is even and $\mathbb{S}^{n c}(N)_{i i}=S$ if i is odd.

Part 4

Noncommutative \mathbb{P}^{1}-bundles over Division Rings and Noncommutative Tsen's Theorem

Noncommutative \mathbb{P}^{1}-bundles over Division Rings

Noncommutative \mathbb{P}^{1}-bundles over Division Rings

- Let R and S be f.d. division algebras,

Noncommutative \mathbb{P}^{1}-bundles over Division Rings

- Let R and S be f.d. division algebras,
- V an R - S-bimodule of left-right dimension $(2,2)$ or $(1,4)$

Noncommutative \mathbb{P}^{1}-bundles over Division Rings

- Let R and S be f.d. division algebras,
- V an R - S-bimodule of left-right dimension $(2,2)$ or $(1,4)$
- $\mathbb{S}^{n c}(V)$ is noncommutative symmetric algebra of V

Noncommutative \mathbb{P}^{1}-bundles over Division Rings

- Let R and S be f.d. division algebras,
- V an R - S-bimodule of left-right dimension $(2,2)$ or $(1,4)$
- $\mathbb{S}^{n c}(V)$ is noncommutative symmetric algebra of V

$$
\mathbb{P}^{n c}(V):=\operatorname{gr} \mathbb{S}^{n c}(V) / \operatorname{tors}^{n c}(V)
$$

Noncommutative \mathbb{P}^{1}-bundles over Division Rings

- Let R and S be f.d. division algebras,
- V an R - S-bimodule of left-right dimension $(2,2)$ or $(1,4)$
- $\mathbb{S}^{n c}(V)$ is noncommutative symmetric algebra of V

$$
\mathbb{P}^{n c}(V):=\operatorname{gr}^{n c}(V) / \operatorname{tors}^{n} \mathbb{S}^{n c}(V)
$$

Proposition (N (2014))

$\mathbb{P}^{n c}(V)$ is a homogeneous noncommutative curve of genus zero.

Noncommutative Tsen's Theorem I

Noncommutative Tsen's Theorem I

Theorem (N (2014))

Let H be a noncommutative curve of genus zero with underlying bimodule M.

Noncommutative Tsen's Theorem I

Theorem (N (2014))

Let H be a noncommutative curve of genus zero with underlying bimodule M. Then there is a k-linear equivalence

$$
\mathrm{H} \rightarrow \mathbb{P}^{n c}(M)
$$

Noncommutative Tsen's Theorem II

Main Idea

Main Idea

Build \mathbb{Z}-algebra H from quiver:

Noncommutative Tsen's Theorem II

Main Idea

Build \mathbb{Z}-algebra H from quiver:

Noncommutative Tsen's Theorem II

Main Idea

Build \mathbb{Z}-algebra H from quiver:

Let

$$
H_{i j}= \begin{cases}\operatorname{Hom}(\mathcal{O}(j), \mathcal{O}(i)) & \text { if } j \geq i \\ 0 & \text { if } i>j\end{cases}
$$

and defining multiplication as composition. Then

Noncommutative Tsen's Theorem II

Main Idea

Build \mathbb{Z}-algebra H from quiver:

Let

$$
H_{i j}= \begin{cases}\operatorname{Hom}(\mathcal{O}(j), \mathcal{O}(i)) & \text { if } j \geq i \\ 0 & \text { if } i>j\end{cases}
$$

and defining multiplication as composition. Then

$$
\mathbb{S}^{n c}(M) \cong H
$$

Key Technical Lemma

Key Technical Lemma

To construct isomorphism

$$
\mathbb{S}^{n c}(M) \rightarrow H
$$

Key Technical Lemma

To construct isomorphism

$$
\mathbb{S}^{n c}(M) \rightarrow H
$$

need an isom.

$$
M^{i *} \rightarrow H_{i i+1} .
$$

Key Technical Lemma

To construct isomorphism

$$
\mathbb{S}^{n c}(M) \rightarrow H
$$

need an isom.

$$
M^{i *} \rightarrow H_{i i+1}
$$

Lemma (Dlab and Ringel (1979))

Let \mathcal{N} be an indecomposable bundle on H and let

$$
0 \rightarrow \mathcal{N} \rightarrow \mathcal{E} \rightarrow \tau^{-1} \mathcal{N} \rightarrow 0
$$

be an $A R$ sequence.

Key Technical Lemma

To construct isomorphism

$$
\mathbb{S}^{n c}(M) \rightarrow H
$$

need an isom.

$$
M^{i *} \rightarrow H_{i i+1}
$$

Lemma (Dlab and Ringel (1979))

Let \mathcal{N} be an indecomposable bundle on H and let

$$
0 \rightarrow \mathcal{N} \rightarrow \mathcal{E} \rightarrow \tau^{-1} \mathcal{N} \rightarrow 0
$$

be an AR sequence. Then

Key Technical Lemma

To construct isomorphism

$$
\mathbb{S}^{n c}(M) \rightarrow H
$$

need an isom.

$$
M^{i *} \rightarrow H_{i i+1}
$$

Lemma (Dlab and Ringel (1979))

Let \mathcal{N} be an indecomposable bundle on H and let

$$
0 \rightarrow \mathcal{N} \rightarrow \mathcal{E} \rightarrow \tau^{-1} \mathcal{N} \rightarrow 0
$$

be an $A R$ sequence. Then

- $\mathcal{E} \cong \mathcal{P}^{\oplus n}$ for some indecomposable bundle \mathcal{P} and

Key Technical Lemma

To construct isomorphism

$$
\mathbb{S}^{n c}(M) \rightarrow H
$$

need an isom.

$$
M^{i *} \rightarrow H_{i i+1} .
$$

Lemma (Dlab and Ringel (1979))

Let \mathcal{N} be an indecomposable bundle on H and let

$$
0 \rightarrow \mathcal{N} \rightarrow \mathcal{E} \rightarrow \tau^{-1} \mathcal{N} \rightarrow 0
$$

be an $A R$ sequence. Then

- $\mathcal{E} \cong \mathcal{P}^{\oplus n}$ for some indecomposable bundle \mathcal{P} and
- * $\operatorname{Hom}_{\mathrm{H}}(\mathcal{N}, \mathcal{P}) \cong \operatorname{Hom}_{\mathrm{H}}\left(\mathcal{P}, \tau^{-1} \mathcal{N}\right)$.

Therefore, ${ }^{*} M={ }^{*} \operatorname{Hom}_{H}(\mathcal{L}, \overline{\mathcal{L}})$

Key Technical Lemma

To construct isomorphism

$$
\mathbb{S}^{n c}(M) \rightarrow H
$$

need an isom.

$$
M^{i *} \rightarrow H_{i i+1}
$$

Lemma (Dlab and Ringel (1979))

Let \mathcal{N} be an indecomposable bundle on H and let

$$
0 \rightarrow \mathcal{N} \rightarrow \mathcal{E} \rightarrow \tau^{-1} \mathcal{N} \rightarrow 0
$$

be an AR sequence. Then

- $\mathcal{E} \cong \mathcal{P}^{\oplus n}$ for some indecomposable bundle \mathcal{P} and
- * $\operatorname{Hom}_{\mathrm{H}}(\mathcal{N}, \mathcal{P}) \cong \operatorname{Hom}_{\mathrm{H}}\left(\mathcal{P}, \tau^{-1} \mathcal{N}\right)$.

Therefore, ${ }^{*} M={ }^{*} \operatorname{Hom}_{H}(\mathcal{L}, \overline{\mathcal{L}}) \cong \operatorname{Hom}_{\mathrm{H}}\left(\overline{\mathcal{L}}, \tau^{-1} \mathcal{L}\right)$.

Consequence

Adam Nyman

Recall the commutative picture when X has rational point P :

$$
\begin{array}{r}
\| \xrightarrow{X} \stackrel{\text { antican. emb }}{>} \operatorname{Proj}\left(\bigoplus_{j} H^{0}\left(X, \omega_{X}^{*} \otimes j\right)\right) \\
\operatorname{Proj}\left(\bigoplus_{i} H^{0}\left(X, \mathcal{O}(P)^{\otimes i}\right)\right) \xrightarrow[2-\text { Veronese }]{\longrightarrow} \operatorname{Proj}\left(\bigoplus_{j} H^{0}\left(X, \mathcal{O}(P)^{\otimes 2 j}\right)\right)
\end{array}
$$

Recall the commutative picture when X has rational point P :

$$
\operatorname{Proj}\left(\oplus_{i} H^{0}\left(X, \mathcal{O}(P)^{\otimes i}\right)\right) \xrightarrow[2-\text { Veronese }]{X} \operatorname{Proj}\left(\oplus_{j} H^{0}\left(X, \mathcal{O}(P)^{\otimes 2 j}\right)\right)
$$

In the noncommutative case we always have:

$$
\mathbb{P}^{n c}(M) \cong \operatorname{proj}\left(\bigoplus_{\mathrm{ij}} \mathrm{H}_{\mathrm{ij}}\right) \xrightarrow[2-\text { Veronese }]{\text { antican. emb } \operatorname{proj}\left(\oplus_{\mathrm{j}} \operatorname{Hom}_{\mathrm{H}}\left(\mathcal{L}, \tau^{-\mathrm{j}} \mathcal{L}\right)\right)} \operatorname{proj}\left(\oplus_{\mathrm{ij}}^{1-\operatorname{per} \uparrow} \mathrm{H}_{2 \mathrm{i} 2 \mathrm{j}}\right)
$$

Recall the commutative picture when X has rational point P :

$$
\operatorname{Proj}\left(\oplus_{i} H^{0}\left(X, \mathcal{O}(P)^{\otimes i}\right)\right) \xrightarrow[2-\text { Veronese }]{X} \operatorname{Proj}\left(\oplus_{j} H^{0}\left(X, \mathcal{O}(P)^{\otimes 2 j}\right)\right)
$$

In the noncommutative case we always have:

This holds even if $\mathrm{H}=\operatorname{coh} X$ and X doesn't have a rational point.

Part 5

Noncommutative Witt's Theorem

Classification of Noncommutative Homogeneous Curves of Genus Zero

Classification of Noncommutative Homogeneous Curves of Genus Zero

Since H is built only out of its underlying bimodule M, one should be able to construct natural isomorphism invariants for H out of M.

Classification of Noncommutative Homogeneous Curves of Genus Zero

Since H is built only out of its underlying bimodule M, one should be able to construct natural isomorphism invariants for H out of M.

Theorem (N (2015))

There is an equivalence

$$
\mathbb{P}^{n c}\left(D_{1} M_{D_{2}}\right) \rightarrow \mathbb{P}^{n c}\left(E_{1} N_{E_{2}}\right)
$$

if and only if either

Classification of Noncommutative Homogeneous Curves of Genus Zero

Since H is built only out of its underlying bimodule M, one should be able to construct natural isomorphism invariants for H out of M.

Theorem (N (2015))

There is an equivalence

$$
\mathbb{P}^{n c}\left(D_{1} M_{D_{2}}\right) \rightarrow \mathbb{P}^{n c}\left(E_{1} N_{E_{2}}\right)
$$

if and only if either

Classification of Noncommutative Homogeneous Curves of Genus Zero

Since H is built only out of its underlying bimodule M, one should be able to construct natural isomorphism invariants for H out of M.

Theorem (N (2015))

There is an equivalence

$$
\mathbb{P}^{n c}\left(D_{1} M_{D_{2}}\right) \rightarrow \mathbb{P}^{n c}\left(E_{1} N_{E_{2}}\right)
$$

if and only if either

- There are isomorphisms $D_{i} \rightarrow E_{i}$ of k-algebras yielding an isomorphism of bimodules $M \rightarrow N$ or

Classification of Noncommutative Homogeneous Curves of Genus Zero

Since H is built only out of its underlying bimodule M, one should be able to construct natural isomorphism invariants for H out of M.

Theorem (N (2015))

There is an equivalence

$$
\mathbb{P}^{n c}\left(D_{1} M_{D_{2}}\right) \rightarrow \mathbb{P}^{n c}\left(E_{1} N_{E_{2}}\right)
$$

if and only if either

- There are isomorphisms $D_{i} \rightarrow E_{i}$ of k-algebras yielding an isomorphism of bimodules $M \rightarrow N$ or
- There are isomorphisms $D_{1} \rightarrow E_{2}$ and $D_{2} \rightarrow E_{1}$ of k-algebras yielding an isomorphism of bimodules $M \rightarrow N^{*}$.

Classification of Noncommutative Homogeneous Curves of Genus Zero

Since H is built only out of its underlying bimodule M, one should be able to construct natural isomorphism invariants for H out of M.

Theorem (N (2015))

There is an equivalence

$$
\mathbb{P}^{n c}\left(D_{1} M_{D_{2}}\right) \rightarrow \mathbb{P}^{n c}\left(E_{1} N_{E_{2}}\right)
$$

if and only if either

- There are isomorphisms $D_{i} \rightarrow E_{i}$ of k-algebras yielding an isomorphism of bimodules $M \rightarrow N$ or
- There are isomorphisms $D_{1} \rightarrow E_{2}$ and $D_{2} \rightarrow E_{1}$ of k-algebras yielding an isomorphism of bimodules $M \rightarrow N^{*}$.

If M has left-right dimension $(1,4)$ only case one is possible.

Noncommutative Witt's Theorem

Noncommutative Witt's Theorem

A noncommutative conic is a noncommutative curve of genus zero of the form $\mathbb{P}^{n c}(N)$ where N has left-right dimension (1,4).

Noncommutative Witt's Theorem

A noncommutative conic is a noncommutative curve of genus zero of the form $\mathbb{P}^{n c}(N)$ where N has left-right dimension (1,4).

Corollary (N (2015))

There is an equivalence

$$
\mathbb{P}^{n c}\left(D_{1} M_{D_{2}}\right) \rightarrow \mathbb{P}^{n c}\left(E_{1} N_{E_{2}}\right)
$$

of noncommutative conics if and only if there are isomorphisms $D_{i} \rightarrow E_{i}$ of k-algebras yielding an isomorphism of bimodules $M \rightarrow N$.

Proof of Witt's Theorem from Noncommutative Witt's

 Theorem
Proof of Witt's Theorem from Noncommutative Witt's

 TheoremRecall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points $C(a, b)$ and $C(c, d)$ are isomorphic if and only if $(a, b) \cong(c, d)$.

Proof of Witt's Theorem from Noncommutative Witt's

 TheoremRecall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points $C(a, b)$ and $C(c, d)$ are isomorphic if and only if $(a, b) \cong(c, d)$.

Proof of \Rightarrow

If $C(a, b) \cong C(c, d)$ then $\operatorname{coh} C(a, b) \equiv \operatorname{coh} C(c, d)$.

Proof of Witt's Theorem from Noncommutative Witt's

 TheoremRecall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points $C(a, b)$ and $C(c, d)$ are isomorphic if and only if $(a, b) \cong(c, d)$.

Proof of \Rightarrow

If $C(a, b) \cong C(c, d)$ then $\operatorname{coh} C(a, b) \equiv \operatorname{coh} C(c, d)$. Thus
$\mathbb{P}^{n c}\left((a, b)(a, b)_{k}\right) \equiv \mathbb{P}^{n c}\left((c, d)(c, d)_{k}\right)$

Proof of Witt's Theorem from Noncommutative Witt's

Theorem

Recall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points $C(a, b)$ and $C(c, d)$ are isomorphic if and only if $(a, b) \cong(c, d)$.

Proof of \Rightarrow

If $C(a, b) \cong C(c, d)$ then $\operatorname{coh} C(a, b) \equiv \operatorname{coh} C(c, d)$. Thus $\mathbb{P}^{n c}\left((a, b)(a, b)_{k}\right) \equiv \mathbb{P}^{n c}\left((c, d)(c, d)_{k}\right)$ so nc Witt's theorem implies $(a, b) \cong(c, d)$.

Proof of Witt's Theorem from Noncommutative Witt's

Theorem

Recall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points $C(a, b)$ and $C(c, d)$ are isomorphic if and only if $(a, b) \cong(c, d)$.

Proof of \Rightarrow

If $C(a, b) \cong C(c, d)$ then $\operatorname{coh} C(a, b) \equiv \operatorname{coh} C(c, d)$. Thus $\mathbb{P}^{n c}\left((a, b)(a, b)_{k}\right) \equiv \mathbb{P}^{n c}\left((c, d)(c, d)_{k}\right)$ so nc Witt's theorem implies $(a, b) \cong(c, d)$.

Proof of \Leftarrow

If $(a, b) \cong(c, d)$ then by nc Witt's theorem this induces $\mathbb{P}^{n c}\left({ }_{(a, b)}(a, b)_{k}\right) \equiv \mathbb{P}^{n c}\left({ }_{(c, d)}(c, d)_{k}\right)$

Proof of Witt's Theorem from Noncommutative Witt's

Theorem

Recall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points $C(a, b)$ and $C(c, d)$ are isomorphic if and only if $(a, b) \cong(c, d)$.

Proof of \Rightarrow

If $C(a, b) \cong C(c, d)$ then $\operatorname{coh} C(a, b) \equiv \operatorname{coh} C(c, d)$. Thus
$\mathbb{P}^{n c}\left((a, b)(a, b)_{k}\right) \equiv \mathbb{P}^{n c}\left((c, d)(c, d)_{k}\right)$ so nc Witt's theorem implies
$(a, b) \cong(c, d)$.

Proof of \Leftarrow

If $(a, b) \cong(c, d)$ then by nc Witt's theorem this induces $\mathbb{P}^{n c}\left({ }_{(a, b)}(a, b)_{k}\right) \equiv \mathbb{P}^{n c}\left({ }_{(c, d)}(c, d)_{k}\right)$ which induces $\operatorname{coh} C(a, b) \equiv \operatorname{coh} C(c, d)$.

Proof of Witt's Theorem from Noncommutative Witt's

Theorem

Recall the classification for conics without rational points

Witt's Theorem

The conics w/o rational points $C(a, b)$ and $C(c, d)$ are isomorphic if and only if $(a, b) \cong(c, d)$.

Proof of \Rightarrow

If $C(a, b) \cong C(c, d)$ then $\operatorname{coh} C(a, b) \equiv \operatorname{coh} C(c, d)$. Thus
$\mathbb{P}^{n c}\left((a, b)(a, b)_{k}\right) \equiv \mathbb{P}^{n c}\left((c, d)(c, d)_{k}\right)$ so nc Witt's theorem implies $(a, b) \cong(c, d)$.

Proof of \Leftarrow

If $(a, b) \cong(c, d)$ then by nc Witt's theorem this induces
$\mathbb{P}^{n c}\left({ }_{(a, b)}(a, b)_{k}\right) \equiv \mathbb{P}^{n c}\left({ }_{(c, d)}(c, d)_{k}\right)$ which induces
$\operatorname{coh} C(a, b) \equiv \operatorname{coh} C(c, d)$. By Gabriel-Rosenberg reconstruction theorem, $C(a, b) \cong C(c, d)$.

Thank you for your attention!

