An Abstract Characterization of Noncommutative Projective Spaces (w/ Izuru Mori)

Adam Nyman

Western Washington University

October 24, 2020

- always work over a field k
- always work with right modules
- always let C denote a (k-linear) abelian category.

Motivation: Serre's Theorem

If A is commutative fg in degree 1 and X is the projective scheme associated to A, then cohproj $A \equiv \operatorname{coh} X$.

Let A be connected coherent \mathbb{Z} -graded algebra.

Definition

- cohA = cat. of (graded right) coherent modules
- torsA = full subcat. of right-bounded modules.
- cohprojA := cohA/torsA

Main Theorem

We describe necessary and sufficient conditions on C so that

 $C \equiv cohprojA$

where A is coherent, AS-regular and compatibly periodic.

Application

Mori-Ueyama show standard smooth quadrics of S. P. Smith and M. Van den Bergh satisfy our criteria. It will follow that they are noncommutative $\mathbb{P}^1 \times \mathbb{P}^1$'s.

<u>Part 1</u>

Noncommutative Quadrics

ヘロア 人間 アメヨア 人間 アー

æ,

The Noncommutative Quadrics of Smith and Van den Bergh (2013)

Let S =connected noetherian \mathbb{Z} -graded ring.

Noncommutative Quadrics

Categories cohprojS/(z) with

- S Gorenstein, Koszul, and Hilbert series $= (1 t)^{-4}$, and
- $z \in S_2$ is central and S/(z) is a domain.

Intuition

cohproj $S = nc\mathbb{P}^3$ and z = 0 is nc quadric hypersurface.

Using deformation theory, M. Van den Bergh proved there should be other noncommutative quadrics!

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

$\mathbb{Z}\text{-}\mathsf{Algebras}$ and Noncommutative $\mathbb{P}^1\times\mathbb{P}^1\text{'s}$

ヘロト 人間 とくほ とくほ とう

2

Z-algebras (Bondal and Polishchuk (1993))

A \mathbb{Z} -algebra is ring A with vector space decomposition

 $\bigoplus_{i,j\in\mathbb{Z}}A_{ij}$

such that

•
$$A_{ij}A_{jk} \subset A_{ik}$$
,

- $A_{ij}A_{kl} = 0$ for $k \neq j$, and
- A_{ii} contains a unit e_i so that $e_i A = \bigoplus_i A_{ij}$.

A does not have unity and is not a domain.

▲御▶ ▲理▶ ▲理▶

Periodic \mathbb{Z} -algebras generalize \mathbb{Z} -graded algebras

Let A be a \mathbb{Z} -algebra. Let $A(\ell)$ be the \mathbb{Z} -algebra with

$$A(\ell)_{ij} := A_{i+\ell,j+\ell}$$

and with multiplication inherited from A.

Definition

A is ℓ -periodic if $A \cong A(\ell)$ as algebras.

Observation

If B is \mathbb{Z} -graded, B is Morita equivalent to a 1-periodic \mathbb{Z} -algebra.

▲御▶ ▲臣▶ ▲臣▶

Definition of AS-Regularity

Let A be a connected \mathbb{Z} -algebra.

A is AS-regular of dimension d and Gorenstein parameter ℓ if

•
$$pd e_i(A/A_{\geq 1}) = d$$
 for all $i \in \mathbb{Z}$, and
• $Ext^q(e_i(A/A_{\geq 1}), e_jA) \cong \begin{cases} k & \text{if } q = d, j \\ c & \text{if } q = d, j \end{cases}$

Theorem (N (2020))

A is a 2-periodic AS-regular of dim 2 and Gorenstein parameter 2, f.g. in degree 1 iff $A \cong \mathbb{S}^{nc}(A_{01})$.

0 otherwise.

 $= i - \ell$

/□ > < 注 > < 注

The AS-regular \mathbb{Z} -algebras of dimension 3 with polynomial growth have yet to be classified. Periodicity should be a key hypothesis.

Noncommutative $\mathbb{P}^1 \times \mathbb{P}^1$ (Van den Bergh (2011))

Definition

A noncommutative $\mathbb{P}^1\times\mathbb{P}^1$ is a category of the form cohprojA where

- A has polynomial growth and
- A is AS-regular of dimension 3 and Gorenstein parameter 4.

イロト イヨト イヨト イヨト 二日

Theorem (Van den Bergh (2011))

Every noncommutative deformation of $\mathbb{P}^1\times\mathbb{P}^1$ is a noncommutative $\mathbb{P}^1\times\mathbb{P}^1.$

Compatible Periodicity

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

æ,

Compatible Periodicity I

A AS-regular of dimension d and Gorenstein parameter ℓ .

Theorem (Mori-N (2020))

Let D denote duality with respect to k. There is an isomorphism

$$\lim_{n\to\infty}\underline{\operatorname{Ext}}^d(A/A_{\geq n},e_iA)\longrightarrow D(Ae_{i+\ell}).$$

Definition

If A is ℓ -periodic with periodicity $\psi : A \to A(\ell)$, then A is compatibly ℓ -periodic if for all $a_{ij} \in A_{ij}$

commutes.

Theorem (Mori-N (2020))

If *B* is \mathbb{Z} -graded coherent AS-regular algebra of Gorenstein parameter ℓ , then there exists a \mathbb{Z} -algebra *A* which is

- compatibly ℓ -periodic
- coherent
- \bullet AS-regular of Gorenstein parameter ℓ

such that

 $\operatorname{cohproj} B \equiv \operatorname{cohproj} A.$

イロト イヨト イヨト イヨト

Geometric Helices

Exceptional Sequences (Bondal and Polishchuk (1993))

Let T be triangulated, $(\mathcal{E}_1, \ldots, \mathcal{E}_n)$ objects in T.

Definition

The sequence
$$(\mathcal{E}_1,\ldots,\mathcal{E}_n)$$
 is

• full if
$$\langle \mathcal{E}_1, \ldots, \mathcal{E}_n \rangle = \mathsf{T}$$
.

• exceptional of length n if

Examples

•
$$T = D^b(\operatorname{coh}\mathbb{P}^n)$$
, $(\mathcal{O}_{\mathbb{P}^n}(a), \mathcal{O}_{\mathbb{P}^n}(a+1), \dots, \mathcal{O}_{\mathbb{P}^n}(a+n))$ is full and exceptional.

Generation Kapranov proves T = D^b(cohℙ¹ × ℙ¹), has full exceptional sequences of length 4.

Canonical Bimodules (Mori-Ueyama (2019))

Definition

A <u>canonical bimodule of C</u> is an autoequivalence $- \otimes \omega_{\rm C}$ such that for some *n*

 $-\otimes^{\mathsf{L}}\omega_{\mathsf{C}}[n]$

イロン イヨン イヨン イヨン

is a Serre functor on $D^b(C)$.

Motivation

If X is a smooth projective variety, then tensoring with the canonical sheaf is the canonical bimodule.

Suppose C has a canonical bimodule ω_{C} .

Definition A geometric helix of period ℓ is a sequence of objects $(\mathcal{E}_i)_{i \in \mathbb{Z}}$ in $D^b(C)$ such that for every i• $(\mathcal{E}_i, \dots, \mathcal{E}_{i+\ell-1})$ is exceptional and full, • $\mathcal{E}_{i+\ell} \otimes^{L} \omega_C \cong \mathcal{E}_i$ • $(\mathcal{E}_i)_{i \in \mathbb{Z}}$ is geometric, i.e. $\operatorname{Hom}(\mathcal{E}_i, \mathcal{E}_j[q]) = 0$ for $q \neq 0$ and $i \leq j$.

The Main Theorem

<ロ> <四> <ヨ> <ヨ> 三田

Theorem (Mori-N (2020))

There is an equivalence $C \equiv \text{cohproj}A$ where A is

- coherent,
- \bullet compatibly $\ell\mbox{-periodic},$ and
- AS-regular $\mathbb{Z}\text{-algebra}$ of dimension gldim C+1 and Gorenstein parameter ℓ

if and only if

C has a canonical bimodule and a geometric helix of period ℓ .

- \bullet Generalizes the $\mathbb{Z}\text{-}\mathsf{graded}$ version of Mori and Ueyama.
- Main technical challenge: to prove AS-regular coherent Z-algebras have canonical bimodule, we must establish local duality for Z-algebras

Application to Noncommutative Quadrics (Mori-N (2020))

Mori-Ueyama prove (standard) noncommutative quadrics of Smith and Van den Bergh have

- a canonical bimodule
- and a geometric helix of period 4

Main Theorem \Rightarrow such spaces are of the form cohproj*A* where *A* is AS-regular of dimension 3 and Gorenstein parameter 4. We observe *A* has polynomial growth. Thus cohproj*A* is a noncommutative $\mathbb{P}^1 \times \mathbb{P}^1$'s.

Thank you!

個 ト イヨト イヨト