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Stable Mean-Shift Algorithm and Its Application
to the Segmentation of Arbitrarily Large
Remote Sensing Images
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Abstract—Segmentation of real-world remote sensing images is
challenging because of the large size of those data, particularly
for very high resolution imagery. However, a lot of high-level
remote sensing methods rely on segmentation at some point and
are therefore difficult to assess at full image scale, for real remote
sensing applications. In this paper, we define a new property called
stability of segmentation algorithms and demonstrate that piece-
or tile-wise computation of a stable segmentation algorithm can
be achieved with identical results with respect to processing the
whole image at once. We also derive a technique to empirically
estimate the stability of a given segmentation algorithm and ap-
ply it to four different algorithms. Among those algorithms, the
mean-shift algorithm is found to be quite unstable. We propose a
modified version of this algorithm enforcing its stability and thus
allowing for tile-wise computation with identical results. Finally,
we present results of this method and discuss the various trends
and applications.

Index Terms—Image processing, image segmentation, mean-
shift, object-based image analysis, remote sensing, stability of
segmentation.

I. INTRODUCTION

OR the past decade, the number of very high resolution

(VHR) optical sensors orbiting around the Earth and imag-
ing it has been constantly increasing. USA satellite programs
such as IKONOS, QuickBird, GeoEye, or WorldView, as well
as the new French constellation of Pleiades satellites, provide
images with a ground sampling distance between 0.41 and 1 m
and a field of view between 15 and 20 km. When including
ground processing such as pan-sharpening or mosaics, the
end users receive tremendously large images whose size can
exceed several tenths of thousands of pixels in both dimen-
sions, challenging both their manual and automatic processing
capabilities. Meanwhile, the fine spatial resolution of these
images drastically increases not only the richness but also
the complexity of the information they contain and therefore
enforces the need for more complex processing methods and
algorithms.
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Indeed, it is well accepted that for such spatial resolutions,
many objects of interest are composed of a large number
pixels with high heterogeneity, and that pixel-based and even
neighborhood-based image analysis techniques fail to capture
this richness due to their limited perception of the spatial
context of each pixel. Therefore, techniques such as object-
based image analysis [1], object-based image classification,
spatial reasoning [2], [3], or geospatial analysis have been
extensively studied during the last years and proven of great
interest for the analysis of VHR optical images, for instance.
Most of these methods perform some kind of segmentation,
either as a preprocessing step or within the processing itself.

However, for VHR optical images delivered by sensors cited
earlier, as well as for VHR SAR delivered by TerraSAR or
CosmoSkymed sensors, and even for images from the upcom-
ing Sentinel2 sensor, with lower resolution but larger swath,
the traditional data processing paradigm hardly applies. Indeed,
loading the whole data into memory, processing it, and retriev-
ing the results from memory can turn impossible because the
amount of memory needed to consume the input data volume
exceeds the available resources. The processing of such large
data or large images can be achieved by dividing the input data
into pieces such as tiles (a tile being a rectangular image sub-
set), processing each tile sequentially [4], and gathering the fi-
nal output. For some kind of image operations, such as pixel- or
neighborhood-wise filtering, this methodology can be applied
with guaranteed identical results with respect to processing the
whole image at once. However, most segmentation algorithms
do not cope well with piece- or tile-wise computation because
they consider long-range interactions between pixels. As a
result, the aforementioned advanced image analysis techniques
have mostly been investigated at the scale of small extracts and
can hardly apply to real-life remote sensing applications with
real data. A few techniques have been proposed to tackle this
issue and are reviewed in Section II. These techniques do not
provide any guarantee regarding the exactitude of the result.
In particular, they might spawn artifacts in the premises of
tiles border because of the convergence of the segmentation
algorithm toward incompatible solution on each side of this
border.

The work presented in this paper consists in two main
contributions. First, we define a new property of segmentation
algorithms called stability, as well as an empirical method to
measure the adequacy of a segmentation algorithm with this
property. We also show that stable segmentation algorithms
can be used for tile-wise segmentation with guaranteed exact
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results, following our proposed methodology. Second, we pro-
pose a stable segmentation algorithm derived from the mean-
shift algorithm [5], which allows combining the accuracy of the
mean-shift algorithm with the benefit brought by the stability
property, particularly regarding large images tile-wise process-
ing. It is noteworthy that the execution of this methodology in
a parallel or distributed environment is straightforward since
each step involves independent operations on image tiles that
are clearly isolated. Ultimately, this methodology provides an
artifact-free segmentation result that can be used to assess
object-based methods at the scale of full VHR data.

The remaining of this paper is organized as follows. In
Section II, we present an overview of existing work. Section III
will introduce the concept of segmentation stability. It will also
describe a methodology to measure this stability and present the
measured stability of four different segmentation algorithms.
Section IV will investigate the instability sources of the mean-
shift segmentation algorithm and propose a stabilized version.
In Section V, we then describe how the guaranteed stability
of a segmentation algorithm leads to a trivial solution for tile-
wise segmentation, yielding identical results to those obtained
by processing the whole image at once. Finally, Section VI will
present some segmentation results on Pleiades images.

II. PREVIOUS WORK

Despite its real interest for operational applications, the use
of a tiling scheme for the segmentation of very large images has
been merely investigated in the literature.

In [6], the authors propose to combine the full lambda
schedule algorithm (FLSA) with such a tiling scheme. They
apply the algorithm on each tile and consider segments entirely
included in an overlapping zone between tiles as not reliable.
Pixels belonging to these segments are reinitialized to one-
pixel segments and considered in the segmentation of the next
tile. Although applied to the FLSA, the authors advertise that
this method can apply to any segmentation algorithm based on
segment merging. If this method is able to process correctly
small segments within the tile overlap zone, larger segments
not entirely included in this zone are not considered and may
therefore exhibit artificial borders induced by the tiling scheme.

In [7], the authors propose a method for the detection of
road networks on satellite images, based on segmentation. The
normalized cuts algorithm of Shi and Malik is first applied to
obtain an oversegmentation of the image, and segments are then
merged into bigger segments, from which roads are detected.
In their experiment, the image is divided into 200 x 200 pixel
tiles, and the segmentation is applied to each tile independently.
The merging step is applied afterward to all segments from all
tiles, with no specific rule for segments on the tile border, which
leads to some artificial borders in the final result.

In his work on a topological and hierarchical model for the
segmentation of large images [8], Goffe separates the parts
of segment borders that are artificially created by tiling or
segmentation errors from the parts of segment borders that
correspond to real image content. The criterion to detect the
artificial borders shall denote the similitude of the neighboring
segments they separate. The author proposes a criterion based

on colorimetric analysis. However, it cannot be ensured that all
tiles border are properly identified as artificial borders.

Some methods have been proposed to specifically process the
artifacts created by tiled segmentation. In [9], a framework for
the segmentation of large images is described. Segmentation
is performed independently on non-overlapping tiles, and the
FLSA algorithm is used to merge segments having borders in
common with tiles, processing vertical tile borders first, and
then horizontal ones. Merging stops when a minimal cost is
reached. In [10], Happ et al. proposes a method for parallel
segmentation of large images, with a segmentation method
also relying on iterative segment merging. One iteration of the
algorithm is performed independently on each tile, possibly in
parallel, without processing segments that touch the tile border.
Once this iteration is done for all tiles, a single segmentation
task processes segments on borders. This scheme iterates until
there is no possible merging left. Neither methods can guaran-
tee exact results with respect to the same processing applied
without tiling.

In [11], the authors propose a parallel implementation of
a segmentation method based on minimum spanning trees by
dividing the image into non-overlapping tiles. The authors
advertise that the results are consistent whatever the number
of parallel threads is, but no details are given on how this
consistency is ensured.

In [12], instead of using rectangular tiles, the tiles are adapted
to the image contour, with the hope that the tile border will coin-
cide with actual segments and will therefore not create any arti-
ficial segment shape. However, it cannot be guaranteed that the
tile borders adapted with respect to the strength of the local gra-
dient will match the decision of a given segmentation algorithm.

In [13], the author proposes a modification of the recur-
sive hierarchical segmentation algorithm, in which pixels or
segments that have been inappropriately merged during the
segmentation process are identified, split, and re-merged with a
better candidate segment. According to the author, this modified
algorithm provides hierarchical segmentations of images that
are free of processing window artifacts.

In a previous work, Michel et al. proposed a generic tool
for tiled segmentation, vectorization, and stitching of segments
on the tile border based on a simple topological criterion
[14]. While theoretically compatible with any segmentation
algorithms, the stitching criterion is very coarse, and many
artifacts remain in the final result.

III. SEGMENTATION ALGORITHMS STABILITY
A. Terms and Notations

In this paper, I denotes an image, and S : I — S(I) rep-
resents a segmentation algorithm. S(I) forms a partition of
image I, i.e.,

=) R
i=1 (1)
i#j=RNR; =0

S(I) ={R;,i € [1,n]},

where R denotes an element of S(I) and will be referred as a
segment throughout this paper. Whenever needed, a collection
of segments will be indexed by a subscript R;.
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I' C I denotes an image subset and will be called likewise
in this paper. Note that when dealing with implementation,
the term image tile will also be used. It denotes a rectangular
and axis-aligned image subset of /. A segment from an image
subset I’ is represented by R’ € S(I').

Finally, for a segment R € S(I) and an image subset I’ C I,
we define Sr(I’) as follows:

Sr(I')={R € S(I')\ k' C R}. )

Sr(I') is the set of segments R’ € S(I’) that are fully
included in segment R € S(I).

B. Definition of Stability

With those notations, we can give a formal definition of the
stability property.

Definition 1: Algorithm S is said to be stable if VR € S(I)
and V I’ C I, the following properties hold:

RcI'=3R eSUI)\R =R 3)

U r. (4)

R'eSp(I")

RNI'#£0=RNI =

We call property (3) the inner property. It states that any
segment of S(I) inner to I’ is also a segment of S(I').
Property (4) is called the cover property. It states that the re-
striction to image subset I’ of any segment of S(I) overlapping
I’ must decompose into a set of segments from S(I’).

More intuitively, the stability of a segmentation algorithm
implies the following.

e Given an image, given an object of interest within this
image, a segmentation algorithm is considered stable if
any image subset containing this object spawns the exact
same segmentation result of this object, or alternatively,

e Given an image, given two overlapping subsets of this
image, a segmentation algorithm is considered stable if the
segmentation results in the intersection of these two image
subsets match exactly.

C. Benefits of Stability

Stability is a much desirable property for remote sensing
image segmentation. It is obvious that using unstable segmen-
tation with tiling will lead to different results depending on the
tiling scheme, and Section V will show how guaranteed stability
leads to an exact solution for tiled segmentation. However,
even without considering tiling, identical objects with identical
backgrounds located at different places in an image might be
segmented very differently, apart from any consideration of
lightning, sampling, noise, or small changes. For instance, using
an unstable algorithm may be sufficient to fail segmenting
coherently a whole set of identical buildings in an image
(cf. Fig. 1).

While there have been several studies comparing segmen-
tation algorithms and software with various criteria such as
accuracy with respect to ground truth, it is surprising that only
little attention has been given to this stability property. In [15], a

Difference

Clustering (left-right)

Initial
image

Edison
Mean-Shift
algorithm

Stabilized
Mean-Shift
algorithm

/\

Fig. 1. Segmentation of two identical houses in an image: The initial image
is created by merging a 54 X 55 pixels image of a house and its horizontally
flipped version. After segmenting this image with the Edison mean-shift algo-
rithm and the stabilized mean-shift algorithm, the left part of the segmentation
is flipped back and subtracted to the segmentation of the right part. Unlike the
stabilized mean-shift algorithm, differences appear with the Edison mean-shift
algorithm.

comparison of segmentation software is presented, and among
a lot of other properties, the reproducibility when image size is
modified is evaluated, which is somehow similar to the notion
of stability. However, among the seven software inquired, only
eCognition is considered reproducible starting version 3.0, and
there is no detail on how this reproducibility has been evaluated,
which is not the focus of this paper.

D. Measuring Stability

1) Comparing Segmentation Results: Evaluating quantita-
tively the stability of a segmentation algorithm requires to be
able to compare different segmentation results of the same im-
age. For this purpose, there is a number of quantitative metrics
available in the literature. A review of unsupervised metrics
is available in [16], whereas supervised metrics relying on a
ground truth or reference segmentation, which are more suitable
for our work, have been compared in [17] and [18]. Among the
different proposed methods, we chose to use the Hoover et al.
method [19] and its quantitative extension proposed by
Ortiz et al. [20]. In addition to being based on the same set
theory concepts than our definition of stability, this method
provides both quantitative measures and segment-based clas-
sification of the type of error. Moreover, it uses thresholds that
allow tuning the tolerance of the metric and error classification
with respect to the aim of the experiment. Finally, even if
sometimes criticized, it is cited and used as a reference metric
in most papers proposing new segmentation evaluation metrics.
Note that the sensitivity to the distortion issue raised in [18] is
not relevant in our work since we analyze the quantitative scores
of each segment and not only the count of correctly detected
segments.
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The Hoover method matches one or several segments from
the ground truth segmentation with one or several segments
from the tested segmentation, and each match is called a Hoover
instance. Given two partitions of the same image S'(I) and
S 2([ ), Hoover instances are based on the confusion matrix O,
which is defined as

Oi; = |R; N R| for (R},R?) € S'(I) x S*(I). ()

Let ¢ denote an overlap threshold 0.5 < ¢ < 1. The Hoover
method classifies segments from S'(I) and S?(I) into four
categories. A pair of (R}, R7) € S'(I) x S*(I) is considered
as a match if

{Oij>t><}R11|

In this case, the RC metric from Ortiz measures the match
performance as

1 p2 o) Qi O
RC’(Ri,Rj,t)_mm{|Ri1|,|R?| . (7)

A segment R} € S*(I) is considered as fragmented by a set
R? of m > 2 segments R? = {R? € S?(I),k € [1,m]}if

Jk
{Vk e [L,m), Oy, >tx |R%|

I 8
Sh, Oig, >t |RY|. ®

In this case, the RF metric from Ortiz measures the amount
of fragmentation as

T, (O, (O, —1)
F 1 2 —-1— Zk—l( Jk Jk )
AR Ret) R (RT-D

In a similar way, a segment R3 € S*(I) is considered as
fragmented by a set Rl of m/ > 2 segments Rl = {R;, €
SU(D), k € [Lm']} if

{Vke [1,m/],

Oikj >t X ’Rzlk

“ (10)
>y Oiyy >t x |R3|.

In this case, the RA metric from Ortiz measures the amount
of grouping as

S04 (0i, = 1) .
|UZL:1R111€| x (|U21:1Rllk - 1)

RA (R, R;.t) =1 (11)

Segments from S*(I) or S?(I) that do not belong to any of
the three previous categories are considered as not detected. In
this case, Ortiz defines the missed measure RM (t) = 1.

Global metrics can then be defined for the whole image as
the mean of metrics values weighted by segment sizes.

In the remaining of this paper, we adopt the following color
conventions to display Hoover instances images. Given a score
threshold ¢,

e if RC > tg, the segment is green (correct detection);
e if RC <ty and RF >0, the segment is yellow
(oversegmentation);

. Initial image

Subset

Fig. 2. Initial image and subset.
e if RC <ts and RA >0, the segment is purple
(undersegmentation);

e f 0< RC<ty, RF=0, RA=0 or if RM > 0, the
segment is red (missed detection);
e background is black (if applicable).

In all experiments, the threshold ¢ to build Hoover instances
is set to 0.75, whereas the threshold ¢ to display the instances
is adapted to each experiment.

2) Protocol for Stability Evaluation: In order to verify the
stability of the segmentation algorithms, the influence of the
tiling is simulated by reducing or changing the image subset
observed by these algorithms. The general protocol is the
following one.

First, an image is segmented, and the resulting segmentation
is considered as the reference segmentation.

Second, a subset of the image is selected to create the
compared segmentation (cf. Fig. 2). Finally, the two segmen-
tations are restricted by set intersection to the image subset and
compared with the Hoover method (cf. Section III-D1).

3) Results: The protocol for stability evaluation has been
applied to the mean-shift segmentation algorithm, the water-
shed algorithm applied to the image gradient magnitude, and
the connected-component algorithm [21] using a threshold on
the spectral distance between neighboring pixels as the con-
nection criterion. The watershed algorithm implementation is
provided by the ITK software [22], which performs a top-
down gradient descent toward local minima, as opposed to
the bottom-up watershed strategy starting from seeds at local
minima of the height function. Two implementations of the
mean-shift algorithm have been considered: the original imple-
mentation from Comaniciu et al. [5] distributed as the Edison
software, and the multithreaded implementation from the Orfeo
ToolBox [23].

Please note that in this experiment, the intrinsic performances
are not compared: the aim is only the stability evaluation.
Hence, the parameters used for these experiments were arbi-
trarily chosen and kept identical for both the entire image and
the subset segmentations. Although we cannot guarantee that
results will not change with a different parameter setup, we did
not observe such changes during our experiments.

Fig. 3 shows the comparison between the reference seg-
mentation created with a 300 x 300 pixels extract from a
Pleiades scene over Paris and the compared segmentations
created with the same extract where the 1-pixel-wide external
crown of pixels is removed. The threshold for the display of the
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M Correct detection
B Under-segmentation
Over-segmentation

M Missed detection

Fig.3. Comparison between the reference segmentation and the segmentation
of a Pleiades scene extract over Paris, France, in the case where the 1-pixel-wide
border is deleted. Because of the cover property, algorithms with good stability
will exhibit both green (RC) and yellow (RF) segments. (a) Mean shift (Edison,
case R C I’). (b) Mean shift (Edison, case R N I’ # ). (c) Mean shift (OTB,
case R C I'). (d) Mean shift (OTB, case RN I’ # (). (e) Watershed (case
R C I'). () Watershed (case RN I’ # ). (g) Connected components (case
R C I). (h) Connected components (case R N I’ # 0). (i) Initial image.

Hoover instance has been set to ¢; = 1 to ensure that the green
segment will only correspond to exact matches. The figure also
distinguishes between the R C I’ case, where only segments
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Fig. 4. Ortiz scores according to image subset shrinking (case R C I’).
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Fig. 5. Ortiz scores according to image subset shrinking (case RN I’ # ().
that do not touch the image borders are considered, and the
RN I’ # () case, where all segments are considered.

We can see that only the connected-component algorithm
seems to comply with the stability criteria: in the R C I’ case,
all segments are correctly detected (in green), whereas in the
RN I # () case, all segments are either correctly detected or
oversegmented (in yellow). In contrast, in the case of the mean-
shift algorithms and the watershed algorithm, some segments
are undersegmented (in purple) or even not detected (in red),
even in the R C I’ case.

Figs. 4 and 5 show the Ortiz scores, computed between 0
(if no segment belongs to this kind of instance) and 1, with
respect to the size of the segmented image subset. In Fig. 4,
segments touching the edges are excluded, whereas in Fig. 5,
all segments are considered.

We can see that the instability of the mean-shift algorithms
and the watershed algorithm is confirmed: both mean-shift
implementations show an erratic behavior, and if the watershed
algorithm curves are smoother, they exhibit instability nonethe-
less. Regardless of the edges, the processed subset shrinking
induces variations of the correctly detected metric (RC).

Moreover, the stability of the connected-component algo-
rithm is confirmed: when segments touching the edges are
excluded, all segments are correctly detected (RC' = 1), which
shows that the algorithm complies with the inner property (3).
When edge segments are included, the correct detection
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decreases in favor of the oversegmentation, which shows that
the cover property (4) is respected. Thus, this algorithm re-
spects the stability definition.

IV. STABILIZING THE MEAN-SHIFT ALGORITHM
A. Why the Mean-Shift Algorithm?

A wide range of segmentation algorithms has been applied
to remote sensing images in the literature. A complete review
of those algorithms is beyond the scope of this paper. Some
elements can be found in [24].

The mean-shift algorithm has received a lot of attention
from the remote sensing community [25]-[27]. Variants such
as variable-bandwidth mean shift [28], medoid shift, and quick
shift [29] have also been investigated in this context. It has
been found to perform well with various remote sensing data
ranging from medium to very high resolution and in various
applications. Its multivariate nature, as the simplicity of the
filtering step, and the availability of various implementations,
among which one is from the authors themselves [30], are some
of the keys to this popularity. We have already been using
this algorithm for various works [31]-[33], and the need to
resolve its instabilities and to allow for scalability to real remote
sensing data has been driven by our applications.

B. Overview of the Algorithm

The mean-shift algorithm is not really a segmentation algo-
rithm by itself. It is a nonparametric method first introduced
by Fukunaga and Hostetler [34] in 1975 for the estimation of
modes in a multivariate density of probability function. In 2002,
Commaniciu [5] proposed a spatial extension of the algorithm
by applying the mode estimation to the joint spatial and spectral
domain.

Here, is the outline of the algorithm. Let x; and z;, ¢ = 1,
...,n, denote pixels from the input and output joint-domain
image. For each pixel, the following steps are computed:

1) initialize j = 1 and y; 1 = x;;

2) while j < jmax and ||yi; — yijs1ll >t do: yij41 =

(ZxkeN(yi,j)K(Xk—Yi,j)xk)/(zxkeN(yi,j)K(Xk—yi,j))§

3) setz; = (X7 ;,¥7;)
where y; ; is the current mode estimation for pixel x; at
step j, K(x) is a kernel function, N(x) is the set of pixels
within the spatial range h, and spectral range h, of x, su-
perscripts s and r denote the spatial and spectral components
of the joint-domain image pixels, jmax denotes the maximum
number of iterations, and ¢ denotes the convergence thresh-
old. Although the Edison implementation allows using both
Gaussian and uniform kernels, the latter is usually chosen in
most applications.

At the end of the process, each pixel is assigned the estimated
spectral signature and spatial location of the local mode of the
probability density function it belongs to. This can be useful for
image denoising, for instance, but is not yet a segmentation of
the image. In the remaining of this paper, we will refer to this
step as the filtering step and refer to it as Fy, p, ;... ().

In Commaniciu’s paper, segmentation is obtained by group-
ing together neighboring pixels that converged toward the same
spectral and spatial mode. However, because the spatial kernel
bandwidth is limited by h, and because of the stopping crite-
rion, each pixel converges toward its own estimate of the mode,
which may slightly differ even for neighboring pixels belonging
to the same object. Therefore, according to this paper, clusters
are formed by grouping together all pixels that converged to
spatial modes that are closer than hs and spectral modes that
are closer than h,., which is known as biconnected components
in graph theory. In this paper, this step will be referred as the
grouping step.

This initial clustering may lead to an important number of
very small segments that do not correspond to any meaningful
object of the scene. In Comaniciu’s paper, segments smaller
than a given number of pixels are simply removed from the
resulting segmentation, but in the Edison implementation [30],
these small segments are merged with the neighboring segment
with the closest spectral mode. This merging process is iterated
until there are no small segments left or until a maximum
number of iterations have been reached. In this paper, these two
operations will be referred to as the small segments filtering step.

C. Sources of Instability

In order to propose a stable version of the mean-shift algo-
rithm, we first need to determine the sources of the instability,
which can be classified into two categories: algorithmic issues
and implementation issues.

1) Algorithmic Issues: We found three main causes prevent-
ing the algorithm from being stable: the first occurs during the
filtering step, second comes from the grouping step, and the last
occurs during small segments processing.

As stated in Section IV-B, during the filtering step, the
filtered pixel iteratively moves toward the spatial position of
its mode. When filtering an extract of a given image, it may
therefore happen that pixels from an image subset converges to
a spatial position outside of this subset. In this case, at some
point, the algorithm will be lacking pixels within the spatial
radius because they do not belong to the extract. As a result,
the mode associated with the current pixel will be different than
the one that would have been affected with the algorithm seeing
the whole image.

The grouping step is also unstable by nature: as stated by
graph theory, a pixel might belong to several biconnected com-
ponents of pixels satisfying the close mode predicate, whereas
in image segmentation, a pixel is only associated with a single
segment. For this reason, finding clusters of pixels verifying
the close mode predicate is an ill-posed problem for which
several solutions exist. Fig. 6(a) gives a simple illustration of
this issue. The grouping step algorithm used during mean-shift
segmentation therefore performs a greedy search that depends
on initial conditions and on the order in which pixels are
processed. As shown in Fig. 6(b), it is very easy to exhibit
a toy example of a group of pixels clustered together into a
biconnected component that will be split into several segments
if adding more pixel neighbors, which proves that this part of
the algorithm does not satisfy the cover property (4).
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Fig. 6. Tllustration of the instabilities yielded by the close mode predicate
during the clustering step. (a) Simple example of graph with two possible
clustering. Green nodes can group either in component 1 with red nodes or
in component 2 with blue nodes. (b) Simple example of clustering split by
additional nodes. Green nodes are grouped together in component 1, but when
adding red and blue nodes, component 1 is split and left green nodes are merged
in component 2 while right green nodes go to component 3.

Finally, one more stability issue comes with the processing
of small segments, for two reasons. First, small segments lying
on the border of the segmentation of an extract of the image
cannot be considered as small segments, because they might
actually belong to larger segments that have been split by
the image subset. Any merging decision for these segments is
therefore potentially wrong, but the worst comes when iterating
the merging process: those errors on border segments will
propagate toward the image center and may cause large errors to
happen very far from the image subset border, where we would
assume the result to be free from side effects.

2) Implementation Issues: Some implementations of the al-
gorithm come with some optimizations that have a great impact
on stability. A common optimization is to stop iterating the
algorithm for a given pixel if its spatial trajectory reaches
the vicinity of another pixel whose mode has already been
estimated, in which case the current pixel is assigned the same
mode. This allows running the algorithm faster and also per-
forms some kind of grouping that can be reused for the grouping
step, but it is very unstable by nature: the result depends on the
order in which pixels are processed, and the modes associated
with pixels for which the optimization operates might slightly
differ from the modes that would have been estimated for the
same pixels without the optimization.

The second instability caused by the implementation is nu-
merical instabilities. It can be seen from Section I'V-B that the
algorithm implies iterative computation of weighted means.
Stability implies that any pixel from any image subset will
converge to the exact same mode than with the full image
during the filtering step. It is therefore very important for
the computation of these weighted means to be numerically
invariant to changes of a given pixel spatial position, which
will be different in all extracts. It is also very important to avoid
accumulating numerical errors during the weighted sums and to
avoid multiplying a weighted sum with numerical imprecision
by the spatial radius, for instance, since this may lead to
amplifying a very small error to a significant one.

D. Proposed Stable Version

Now that we carefully reviewed all sources of instability of
the mean-shift algorithm, we propose here to resolve all of them
by slightly modifying the algorithm.

To resolve instabilities related to the algorithm itself, which
are presented in Section IV-C1, we apply the following im-
provements. For a given pixel, the spatial position of the es-
timated mode will not be found farther from this pixel than
the product of the number of iterations by the spatial radius.
We therefore define a margin of m = jyax * hs + 1 from any
image subset border, outside of which we can guarantee that
the filtering step will give the exact same results than with
the entire image. Equivalently, to guarantee the stability of the
filtering step on a given subset, it is sufficient to add a margin
of m pixels to this extract. Please note that the pixels from the
margin do not need to be processed by the algorithm to get
their estimated modes: they only need to be reachable by the
algorithm. Second, we relax the biconnected component search
of the grouping step into a simple connected-component search,
where only neighboring pixels have to satisfy the predicate on
spatial and spectral mode distance. Because this relaxed con-
straint will lead to larger segments by nature, we propose to set
the thresholds on spatial and spectral mode distances to values
lower than the filtering step bandwidths. Finally, regarding the
issue of the small segments filtering step, we simply decide not
to do the merging or pruning of small segments, leaving it to
further processing according to the user needs.

Regarding the implementation issues, we deactivated any
optimization proposed by the implementation to get the closest
implementation possible to the mathematical expression of the
algorithm in Section IV-B.

With these modifications, we are able to define a segmen-
tation algorithm with guaranteed stability that combines the
stabilized filtering mean-shift algorithm and the proven stable
connected-component algorithm:

1) Filter image I by the modified mean-shift filtering step
with parameter A, hs, jmax, t With margin m = jpax *
hs + 1 (except for image borders), to get filtered image
Fhy e s (1)

2) Segment filtered image F},, . ;... (I) into segmentation
Shint (Fhy by jmax (1)) with the connected-component
algorithm using a predicate ensuring both spatial modes
closer than threshold A/, < h; and spectral modes closer
than threshold h!. < h,..

Fig. 1 shows the comparison between the original mean-shift
implementation and the stabilized version. We can observe that
none of the segmentation errors from the original algorithm are
found with the stabilized version.

V. STABILITY AND SEGMENTATION OF LARGE IMAGES

In this section, we first prove the theoretical basis that allows
us to run a stable segmentation algorithm piecewise while
ensuring identical results with respect to the same run on the
full data at once. We then describe and illustrate all steps of the
segmentation methodology.
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A. Theory

The stability property given in definition (1) leads to the
following theorems.

Theorem I1: Let T(I) = {I} C I,i € [1, N]} denote a set of
subset of image I such that {J;c; nj i = I. Let S be a stable
segmentation algorithm, for which property (1) holds, i.e.,

VReS(I), R= | U = (12)

i€[L,N] \ r7eSr(1})
Proof: Provided that | J;c(; yj I; = I, itis trivial that

R= |J RnI,

i€[1,N]

In addition, from the cover property (4), we know thatV I’ € T'(I)

RnI'= |

R'eSp(I")

R

Thus

r= U

i€[1,N]

U =] O

R'eSgr(I))

Theorem 1 states that a segment R exactly decomposes into
a set of segments from each segmentation of image subsets I’ €
T'(I), which can be a tiling scheme, for instance. Note that 7'(1)
does not need to form a partition of 7, only U,cy ny I = I is
needed. As a result, the different subsets I} may overlap, which
will be useful in the following.
Theorem 2: Let I' C I denote a subset of image I and S be
a stable segmentation algorithm, for which the cover property
(4)holds. VR € S(I),YR € S(I')
RNR=0< R ¢R. (13)
Proof: First, let R € S(I) and R’ € S(I') such that R' N
R = (). From the cover property (4), we know that

U r-

R'eSp(I)

RNI' =

However, since R’ C I’
RNR =RNI'NR =0.
Thus

U R'NR =0

RI'eSp(I)

which means that R’ & Sg(I’), and therefore, R’ ¢ R.

Second, let R € S(I) and R’ € S(I') such that R’ ¢ R.
According to (2), if R' ¢ R, then R’ ¢ Si(I"). From the cover
property (4), we know that

RNI =

U =

R'eSR(I')

Since R C I

RNI'NR =RNR = U
R/eSp(I')

We can also note that Sg(I") € S(I'). According to (1), S(I")
is a partition of I’, and

R ¢ Sr(I')=R'NR =1
Thus

R'NR.

VR € Sp(I').

RNR =0.

U
Theorem 3: Let I{ C I and I} C I such that I N I} # ().

Let S be a stable segmentation algorithm, for which property
(1) holds. Let R € S(I), R} € S(I}), and R, € S(I}), i.e.,

RiNR,#0=3RecS(U)\ (R, CRand R, CR). (14)
Proof: Let R' = R} N R, Ttis trivial that
dRe S(I)\RNR #10.
Therefore
RN R} #0and RN R, # 0.
Thus, from Theorem 2, we have
Ry C Rand R, C R. O

From Theorem 3, we learn how to set together segments from
the segmentations S(I7) and S(I3) of overlapping subsets I}
and I: if those segments overlap, they belong to the same final
segment R in segmentation S(I).

Those three theorems will be used in the following section to
build an algorithm for the piecewise segmentation of an arbi-
trarily large image on top of the stabilized mean-shift algorithm
proposed in Section IV-D.

It is very interesting to note that both proofs rely on the
cover property (4) and not on the inner property (3). This means
that an algorithm that only respects the cover property can be
computed piecewise at large scale with our method. No artifacts
will be found on boundaries, but in this case, there will be no
guarantee that the result will exactly match the segmentation of
the whole image at once.

B. Algorithm for Large-Scale Segmentation

We propose the following methodology based on the theoret-
ical proofs given in Section V-A. For a given image I, spatial
radius hg, range radius h,., maximum number of iteration jyax,
and tile size (t,,t,) (note that if the proposed methodology is
valid for any shape of image subset, for the sake of implemen-
tation, rectangular tiles are used):

1) extract and filter each tile;

2) segment each filtered tile with connected components;

3) relabel segmented tiles;

4) process small segments.

Fig. 7 illustrates each of the steps above. In particular, we can
see how the relabelization step merges exactly segments across
multiple tiles.
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Fig. 7. Tllustration of the main steps of the proposed large-scale segmentation
method on a pan-sharpened Pleiades extract over Saint Denis, France. (c), (e),
and (g) show the labeled images, whereas (d), (f), and (h) show a colorized
version of the labeled images maximizing color differences between adjacent
segments, for better visual interpretation. (a) Input image. (b) Filtered image.
(c) Tile segmentation. (d) Tile segmentation (colorized). (e) Tile relabeling.
(f) Tile relabeling (colorized). (g) Small segments processing. (h) Small seg-
ments processing (colorized).

1) Filtering Step: First, the stabilized mean-shift filtering
algorithm is applied to each tile of size (¢, + m,t, + m), with
margin m = jmax * hs + 1, which leads to overlapping tiles,
as shown in Fig. 8. As mentioned in Section IV-D, pixels
belonging to the margin do not need to be filtered, but they must

D Tile with margin
[] Tite without margin

Fig. 8. Overlapping tiling used for the filtering step.

122

D Tile with margin
D Tile without margin

R

tz +1

Fig. 9. Overlapping tiling used for the segmentation step.

be reachable by the filtering algorithm. The processing of each
tile is completely independent and is therefore compatible with
parallel or distributed execution. Once all tiles with margin have
been processed, they can be stitched together to form exactly
the result of the filtering of the whole image.

2) Segmentation Step: Once the filtering step is achieved,
we extract tiles of size (¢, + 1,¢, + 1) from the filtered image,
as shown in Fig. 9. Note that one can also use a tile size
completely different from the filtering step here, as long as
the 1-pixel overlap is respected. This overlap will be used
during the relabeling step. Each tile is independently pro-
cessed by the connected-component algorithm, as explained in
Section IV-D, which is again compatible with parallel or dis-
tributed execution.

Since we proved in Section IV-D that this combination of
the mean-shift filtering and the connected-component algorithm
makes a stable segmentation algorithm, the inner property
defined in (3) already ensures us that any segment from the
segmentation of the whole image I that is fully contained in
a given tile will be exactly recovered by the segmentation of
this tile.

3) Relabeling Step: After the segmentation step, provided
that we ensure unique labels by shifting their values from one
tile to another, we can already recover a full segmentation of
the input image 7. However, in this segmentation, we still have
segments split across multiple tiles, and even split into several
pieces within each tile, in the case of concave segments.

However, since our segmentation algorithm is stable, we
know that Theorem 1 applies. Therefore, we know that if
we identify which segments of the segmentations of each tile
belong to the same segment of the final segmentation, then
we can reconstruct this segment of the final segmentation by
a simple union of the segments from each tile segmentations.
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[ Tile 1
[] Tile 2

B Extracted border

Fig. 10. Overlap of 1 pixel used to build the equivalence table.

The solution to identify which segments from the segmenta-
tions of each tile belong to the same final segment comes from
Theorem 3. It states that for a pair of overlapping tiles, any pair
of overlapping segments belongs to the same final segment. We
only need a small overlap to determine which pairs of segments
should be merged; this is why we chose the minimal overlap of
1 pixel presented in Figs. 9 and 10.

To recover the final segmentation, we explore all overlaps
between all neighboring tiles to fill a label equivalence table
and then relabel and merge all tiles at once.

4) Small Segments Pruning: In Section IV-D, we explicitly
removed the small segments filtering step from our algorithm
as a major source of instability. However, in most cases, those
small segments are merely segmentation noise and can decrease
the performances of downstream processing methods that as-
sume a certain level of segmentation quality. In our large-scale
segmentation method, we included a last step to filter those
segments, with two possibilities: removing them or merging
them. This step cannot be performed earlier in the process
because we cannot ensure that small segments on the border
of a tile are not actually belonging to a larger segment.

The removing of small segments is straightforward: one last
pass on the final segmentation image to evaluate the number
of pixels in each segment and build a table to relabel all small
segments as background. The merging strategy is a bit more
complex. In the original mean-shift implementation, segments
with size below a user-defined threshold are merged to the clos-
est neighboring segment in terms of radiometry. This process is
iterated until no small segments are left or a maximum number
of iterations have been reached. We choose a slightly different
strategy: we merge segments by increasing sizes, starting with
segments of size 1, until segments of the minimal acceptable
size. This strategy is more conservative because it ensures that
the noisier (i.e., smaller) segments will be merged first. Fig. 11
shows the results of these different strategies.

VI. RESULTS AND PERFORMANCE ASSESSMENT
A. Experimental Verification of Stability

This first experiment aims at demonstrating the stability of
our method with respect to the tiling scheme. To do so, a
1000 x 1000 pixels extract of a pan-sharpened Pleiades image
is segmented with our method and with increasing number
of tiles. The segmentation results are compared using Ortiz
metrics to a reference segmentation obtained by processing the
image with a single tile. We use a range bandwidth of 50, a
spatial bandwidth of 10, a maximum number of iterations of 10,
and a convergence threshold of 0.1. The connected-component
predicate uses a threshold of half the spatial and spectral
bandwidths, and segments smaller than 50 pixels are processed
by merging. With number of tiles ranging from 2 x 2 (i.e.,

Fig. 11. Examples of the different strategies to process small segments: no
processing in (b), pruning in (c), and merging in (d). Only the colorized version
of the labeled images maximizing color differences between adjacent segments
is shown, for better visual interpretation. (a) Input image. (b) Segmented image.
(c) Removing small segments. (d) Merging small segments.

Fig. 12. Extract of segmentation results of full Rennes image (9091 X
12707 pixels). The image has been divided into 20 x 20 tiles of 455 x 604 pixels
for processing. In the extract, tile borders are represented by the dashed blue
lines (8 of them are fully visible in the figure), while segments are outlined in red.

500 x 500 pixel tiles) to 10 x 10 (i.e., 100 x 100 pixel tiles),
the same exact result is obtained: RC = 1 and other metrics
are null. This supports our theoretical demonstration that our
method performs an exact reconstruction of the segmentation
result from the segmentation of individual tiles.

B. Large-Scale Performances

In this section, we apply our segmentation method to a
Pleiades pan-sharpened scene of Rennes city in France. This
extract contains 9000 x 12000 pixels with four spectral bands.
For the filtering step, we used a spatial radius of 5, a range
radius of 50, a maximum number of iterations of 4, and a
convergence threshold of 0.1. During the segmentation step, we
used a distance threshold of 30 for the connected components
and a minimum size of 0 pixels. A shadow mask is also used
to avoid considering shadowed pixels during the segmentation
step. Finally, we performed the merging of small segments up
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TABLE 1
EVOLUTION OF PROCESSING TIME AND FILE SI1ZES WITH RESPECT TO THE INPUT IMAGE SIZE IN PIXELS
Image size Proc. time | Nb. segments | In. raster size | Out. vector size
9000x12000 5h15 171k 1.7Go 500Mo
4500x6000 1h00 96k 420Mo 150Mo
2250x3000 Oh10 53k 110Mo 40Mo
1 . .
1 RC ——
R —
0.8 R
. p RM -
9000x12000 pixels 0.6

2250x3000 pixels  4500x6000 pixels

I Filtering [l Segmentation = Small segments [ Vectorization

Fig. 13. Distribution of processing time among the different steps of the method.

to a segment size of 200 pixels. In each step, we used a tiling
scheme of 20 x 20 tiles. While it is not possible to display
such large results in this paper, Fig. 12 shows a detailed view
of an extract of those results. This experiment confirms that no
artifacts related to tiling can be observed in the segmentation
result, as stated by theory.

All experiments were conducted on an Intel Xeon(R) quadri-
core CPU at 2.67 GHz with 8 Gb of RAM. For the sake of
compactness of the information and also compatibility with GIS
software, we convert our raster segmentation to a vector layer
of polygons. Table I shows some figures denoting the perfor-
mances of the method for different input image sizes. We can
see that the full scene is processed in 5 h and 15 min and con-
tains around 170 000 segments. While the input image file size
was 1.7 Go, the vector containing one polygon per segment,
as well as statistics on image radiometry and additional shape
descriptors, only weighs 500 Mo. Fig. 13 shows the distribution
of the processing time among the different steps. We can see
that the filtering step and the processing of small segments
account for the majority of it. Note that as our work focuses
on overcoming memory limitations by performing controlled
tile-wise segmentation, we did nothing particular regarding
processing time. Much speed up can be excepted from an
optimized implementation or port to the graphics processing
unit (GPU) of the filtering or processing of small segments
steps, for instance, as long as the stability constraint is met.
Moreover, Steps 1-3 of our large-scale segmentation method
can be applied independently to each tile, and this method is
therefore compatible with cluster or grid parallelism.

C. Comparison With the Original Mean-Shift Algorithm

As described in Section IV, our method uses a modified
version of the mean-shift algorithm. In this section, we there-
fore try to assess how close our segmentation results are to the
original algorithm. As a reminder, the two main changes that
may affect the results are as follows: 1) the relaxed connected
components with range and spatial thresholds on mode, with
respect to the original grouping step strategy; and 2) the pro-
cessing of small segments steps.

The first main change adds two new parameters to the
algorithm: the range and spatial thresholds used during the
connected-component step. To evaluate the influence of those

(a)

RC ——
S
0.8 RA ]
06
0.4
03 s
0
01 02 03 04 05 06 07 08 09 1

Percentage of range and spatial radius for threshold
()

Fig. 14. Evolution of Ortiz scores for both the small segments processing
strategy with respect to the percentage of range and spatial radius used as the
connected-component threshold. (a) Removal strategy. (b) Merging strategy.

parameters on the segmentation quality with respect to the orig-
inal mean shift, the following experiment has been conducted.
A pan-sharpened Pleiades image has been segmented with both
the original and stable algorithms. For both algorithms, we
used a spatial radius of 10, a range radius of 50, a maximum
number of iteration of 10, a convergence threshold of 0.1, and a
minimum segment size of 50. We compute the Ortiz scores with
respect to the original mean-shift result while varying the addi-
tional range threshold and spatial threshold parameters of the
stable mean shift from 10% of range and spatial radii to 100%
of range and spatial radii. We also evaluate both small segments
processing strategies. Fig. 14 shows the variation of the Ortiz
scores with respect to the percentage of radii used as thresholds.
We can see that for both small segments processing strategies,
there is an optimal around 50%, where we reach an RC score of
0.7 for the removal strategy and 0.6 for the merging strategy.
We can also observe that these threshold parameters allow
setting the tradeoff between oversegmentation and underseg-
mentation with respect to the original algorithm results. Other
combination with other properties can be obtained by using
different ratios for spatial and range thresholds. For instance,
when trying to segment elongated homogeneous objects, setting
higher spatial thresholds may lead to a better delineation.
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Fig. 15.

Correct detection
Under-segmentation
Over-segmentation
Missed detection

()

Hoover scores between results from the original mean shift, connected components, and stable mean shift for both merging strategies, for range and

spatial threshold set to 50% of range and spatial radius (in the case of connected components, only range threshold is used and set to range radius). Note that the
threshold to display Hoover instances has been decreased to ts = 0.8 (typical value for segmentation evaluation). Only the colorized version of the labeled images
maximizing color differences between adjacent segments is shown, for better visual interpretation. (a) Original mean shift, removal. (b) Hoover scores (a)—(c).
(c) Stable mean shift, removal. (d) Hoover scores (c)—(e). (e) Connected components, removal. (f) Input image. (h) Original mean shift, merging. (i) Hoover
scores (h)—(j). (j) Stable mean shift, merging. (k) Hoover scores (j)—(1). (I) Connected components, merging.

Fig. 15 shows the Ortiz scores between original and stable
mean-shift results when using a threshold of 50% of radii for
both strategies, which seems optimal according to Fig. 14. It
shows that both segmentation results are very similar, even if
some oversegmentation occurs mainly because of the relaxed
constraint induced by the connected-component algorithm. In
the same figure, we also compare the results from our method
to those from the connected-component algorithm alone, with a
distance threshold of 50% of the range radius. We can observe
that the results of our method are far more close to the original
mean shift than to the connected components. Using a distance
threshold of 100% yields even more different results and poorer
segmentation. This highlights the strength of our method, which
combines the stability brought by connected components and
the accuracy of the original mean-shift algorithm.

VII. CONCLUSION

In this paper, we have formally defined a stability property
for segmentation algorithms and proposed a method for mea-
suring the actual stability of different segmentation algorithms.
We experimentally showed that the mean-shift algorithm that
is widely used in remote sensing applications is not stable
according to our definition and proposed a modified version
of the algorithm with guaranteed stability. We then proved
that the stability property allows deriving a simple solution for
piecewise processing of the segmentation results and applied
this principle to the proposed stable mean shift, leading to a
segmentation methodology scalable to real-world data. We then

experimentally demonstrated the capabilities of this new seg-
mentation methodology by showing that results are independent
of the tiling scheme, and we showed an example of applying
the method to large imagery. While this method works around
the scientific locks of segmenting data at large scale, it does
not, of course, resolve the well-known issues of robustness with
respect to scene variability and parameter tuning. However,
allowing for real and larger data processing might allow for a
better knowledge of these issues in the future. Additional work
may also include applying this methodology to other segmen-
tation algorithms, and better sketching the intrinsic properties
those algorithms must exhibit to be compatible large-scale pro-
cessing. Further work to reduce processing time by optimizing
or porting to GPU some steps of our methodology might also be
needed to meet expectations of time-constrained applications.
Please note that the complete source code and ready-to-use bi-
naries are available in the Orfeo ToolBox open-source software
3.20 or later. The Orfeo ToolBox cookbook also provides a step-
by-step guide to large-scale segmentation using these tools [35].
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