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Abstract 

Over the last few decades, the lands of northwestern Utah have undergone changes 

that greatly altered the land-use patterns in the area and affected wildlife habitat quality 

and abundance.  One species of special concern is the ferruginous hawk (Buteo regalis), 

which experienced population declines in the last 30 years.  Some of these declines have 

been linked to changes in the characteristics of native vegetation following invasions of 

exotic species and changes in wildfire regimes.  I studied relationships between 

vegetation structure and ferruginous hawk nesting and foraging habitat selection.  I 

mapped vegetation density for 2.1 million acres in northwestern Utah using 1993 Landsat 

TM satellite imagery.  The goal was to create a vegetation data layer that would be used 

to build a ferruginous hawk habitat model and to use this model to map potential habitat 

distribution and abundance for this species in the study area.  Knowledge of the 

distribution and abundance of potential habitat would improve understanding of 

ferruginous hawk population dynamics at a variety of spatial and temporal scales. 

With unsupervised classification, I identified four vegetation classes based on 

variations in percent cover of vegetation communities associated with hawk habitat.  The 

four cover classes were low vegetation density (0-20% cover), medium density (20-25%), 

high density (25-45%), and areas with tree cover above 10%.  The overall classification 

accuracy was 84.95%, with producer’s accuracy for four individual information classes 

ranging from 75.95% to 97.06%.  Further subdivision of the high-density class into three 

categories based on heterogeneity of vegetation stature was unsuccessful due to low 

classification accuracy of the high-density class.  Maps resulting from classification 

showed different patterns of density class distributions at a variety of spatial scales.  

 iv

Five logistic regression models were built to distinguish nest sites from random sites 

in the study area using elevation and vegetation density variables derived from a DEM 

and the classified Landsat TM image.   Four out of five models were significant with the 

overall success rate of 63.9% for three out of five models.  Nest sites had high prediction 

success of 83.3-94.4% for significant models.  Among the seven variables used to build 

the models, elevation, presence of trees, and cover type heterogeneity were important 

predictors of nesting habitat.  Variables measuring the proportion of the area occupied by 

bare ground and low-density vegetation had the most predictive power for ferruginous 



hawk foraging habitat.  These models were used to map suitable nesting, foraging, and 

nesting & foraging habitat in the study area.  Analysis of these maps indicated that BLM 

and Military reservation lands contained 60% and 26%, respectively, of available nesting 

& foraging habitat in the study area. 

The results of the study were consistent with the published literature on ferruginous 

hawk and confirmed that topographic and vegetation characteristics are important to 

ferruginous hawk selection of nesting and foraging habitat.  I also demonstrated that 

variables usually collected with the intensive ground-based surveys could be quantified 

using satellite data.  This allows for mapping of potential ferruginous hawk habitat at 

regional scales and provides an efficient way to monitor changes in habitat quality and 

availability over time. 

 

 v
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Chapter 1: 

ASSESSMENT OF VEGETATION DENSITY AND HETEROGENEITY  

IN SEMI-ARID ENVIRONMENT  

USING LANDSAT TM DATA



Introduction 

Important problems 

Land-use change and biological invasions are two of the key factors affecting wildlife 

diversity through changes in habitat quality and abundance (Harris, 1984; Lovejoy et al., 

1984; Wilcove et al., 1986; Wilcove et al., 1998; Abramovitz, 1991; Soulé, 1991; 

D’Antonio and Vitousek, 1992; Noss and Cooperrider, 1993; Vitousek et al., 1996; Meffe 

et al., 1997; Dale et al., 2000; Mack et al., 2000). One of the major consequences of land-

use change that influences the quality of wildlife habitat is alteration of natural vegetation 

cover.  Hunter (1990) and Rodiek and Bolen (1991) recorded the importance of 

vegetation structure and spatial patterning in explaining animal distributions.  Accurate 

and timely monitoring of changes in vegetation pattern is, therefore, a necessary 

prerequisite for our capacity to model wildlife habitat quality and distribution.  

Conventional ground-based methods of vegetation sampling, which can only be applied 

to local spatial scales due to logistic constraints, do not allow us to directly assess 

changes in vegetation cover on a regular basis over large areas.  Analysis of satellite data, 

however, can provide information on temporal and spatial scales necessary for such 

monitoring.  

Satellite imagery has been successfully used in regional scale analyses of vegetation 

cover in a variety of environments.  Wetland delineation analysis has been conducted in 

both arid and temperate zones (Gilmer et al., 1980; Benger, 1997; Wang et al., 1998). 

Remotely sensed data have been used to determine rates of deforestation and 

fragmentation in the tropical and subtropical forests (Nelson et al., 1987; Sader and 

Joyce, 1988; Green and Sussman, 1990; Skole and Tucker, 1993; Tucker et al., 1984b; 

Stone and Lefebvre, 1998).  Satellite imagery has also been widely used for analysis of 

forest age and structure and change detection studies in the temperate zone around the 

world (Hall et al., 1991; Ripple et al., 1991; Luque et al., 1994; Cohen et al., 1995; 

Turner et al., 1996; Zheng et al., 1997; Sachs et al., 1998; Boyce, 1999; Cushman and 

Wallin, 2000).  Numerous techniques have been developed to assess vegetation extent 

and characteristics in these biomes.  Vegetation indices, such as the normalized 

difference and simple ratio vegetation indices (Tucker, 1979) and linear vegetation 
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indices (Richardson and Wiegand, 1977), have been found to be useful in mapping of 

vegetation cover in areas where it is abundant (Sader et al., 1989).  The Tasseled Cap 

Transformation has also proved successful and it has been used extensively (Cohen, 

1992; Cohen, 1995). 

Considerably fewer successful approaches have been developed for vegetation 

classification in arid and semi-arid environments. These are the areas where large 

quantities of soil and dry litter interfere with detection and classification of vegetation 

cover.  Sparseness of cover, high species richness, and the clumped nature of native 

vegetation all make satellite imagery analysis in arid environments difficult (Tueller, 

1987).  Huete et al. (1984) found that low-density vegetation was extremely difficult to 

distinguish from bare soils.  Vegetation indices lose much of their utility in desert 

environments due to soil brightness influences (Huete and Jackson, 1987), shade 

differences (Tueller and Oleson, 1989) and high heterogeneity of plant structure and 

phenology (Satterwhite and Henley, 1987).  Although normalized difference vegetation 

indices have been used in studies in the semi-arid zone, accuracies of such studies are 

usually lower than ones obtained for vegetation classifications of forested ecosystems. 

Nevertheless, a variety of sensors have been used to map vegetation distribution in 

arid and semi-arid biomes.  Extensive research on mapping arid regions during the 1980’s 

demonstrated the usefulness of AVHRR high temporal resolution data.  This particular 

sensor is particularly useful for regional to continental scale of seasonal and interannual 

vegetation changes that correlate with the movement of the rains in Africa (Tucker et al., 

1984a; Tucker et al., 1985b; Tucker et al., 1985c; Tucker et al., 1986).  More recently, 

Rogers et al. (1997) have used the same sensor to classify land cover in Nigeria using 

discriminant analysis techniques.  Vickrey and Peters (1996) have successfully employed 

AVHRR data to map New Mexico grasslands and Eve and Peters (1996) were able to 

track changes in mesquite (Prosopis glandulosa) biomass to assess the effectiveness of 

shrub control. 
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For smaller study areas, Landsat MSS and TM data, have been successfully used to 

classify desert land cover based on vegetation composition and extent (Tueller et al., 

1978; McGraw and Tueller, 1983; Price et al., 1985; Price et al., 1992; Knick et al., 1997; 

Abeyta and Franklin, 1998).  Often, auxiliary data such as geomorphic layers or digital 



elevation models have to be used in conjunction with image classification in order to 

isolate desired vegetation parameters (Price et al., 1985).  

Whereas knowledge of the extent of broad vegetation communities can be useful for 

general wildlife habitat identification at larger scales, as the Gap Analysis Program 

demonstrated,  it is often not sufficient for analyzing habitat quality and abundance for 

individual wildlife species.  The use of habitat by wildlife is more often correlated with 

vegetation structure rather than vegetation type, therefore an assessment of specific 

vegetation cover attributes that directly relate to animal foraging behavior and 

reproduction is needed in cases where complex habitat models are involved (Short and 

Williamson, 1986).  In the last two decades, a number of studies have utilized satellite 

data to quantify and use ecologically relevant vegetation parameters in modeling 

potential habitat and distribution for various species and groups of species (Thompson et 

al., 1980; Saxon, 1983; Palmeirim, 1988; Avery and Haines-Young, 1990; Rogers and 

Smith, 1991; Aspinall and Veitch, 1993; Lavers et al., 1996). 

While numerous successful methods have been developed  in forested areas to 

classify vegetation attributes directly related to bird habitat (Sader et al., 1991; Hepinstall 

and Sader, 1997; Bosakowski, 1999; Montgomery, 1999; Wallin, in review), such 

methods are still being developed for arid ecosystems due to difficulties with accurate 

detection of vegetation cover discussed earlier.  Nevertheless, several successful 

techniques should be emphasized.  AVHRR data were used by Tucker et al. (1985a) and  

Hielkema et al. (1986) to analyze green vegetation blooms related to desert-locust 

activity.  Wallin et al. (1992) used the same sensor to relate vegetation parameters to the 

breeding bird habitat in arid environments of Africa.  In addition, Knick et al. (1997) 

have used Landsat TM imagery to map vegetation density in the Snake River Birds of 

Prey National Conservation Area in southwestern Idaho for further use in habitat model 

development for raptors. 

 

Objective 
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Substantial losses of ferruginous hawk (Buteo regalis) habitat in the United States and 

Canada have been documented by several studies (Olendorff, 1973; Houston and 

Bechard, 1983; Houston and Bechard, 1984; Schmutz, 1984; USFWS, 1985; Woffinden 



et al., 1985; Woffinden and Murphy, 1989).  Some of  these losses have been associated 

to land-use changes that affect characteristics of native vegetation cover.  Ferruginous 

hawks are normally found in habitats that have not been greatly disturbed by grazing or 

other agricultural activities (Harlow and Bloom, 1989).  These anthropogenic activities 

result in changes in vegetation cover can be detrimental to ferruginous hawk’s prey 

species resulting in a reduction of nesting hawks and lower productivity (Wakeley, 1978).  

More specifically, vegetation density, height, and heterogeneity become decisive factors 

in determining ferruginous hawk habitat suitability and quality (Wakeley, 1978; Jasikoff, 

1982; Woffinden and Murphy, 1989).  In addition to grazing and agriculture, replacement 

of natural communities by exotic species, namely cheatgrass (Bromus tectorum) 

advancement into sagebrush (Artemisia spp.) steppe, has caused major alteration and 

impoverishment of native vegetation cover (Billings, 1990), negatively affecting hawk’s 

ability to capture prey.  Changes in natural fire regimes, caused by the new vegetation 

cover conditions, have resulted in further degradation of habitat quality (Whisenant, 

1990).  It has also been speculated that, in recent decades, decreases in ferruginous hawk 

habitat abundance and lower productivity rates were related to urban expansion and 

increased recreational use (Olendorff 1973; Olendorff, 1975; Olendorff, 1993; Gardner, 

pers. comm.).  

The objective for this study was to use Landsat TM data to map vegetation 

characteristics that are ecologically relevant to delineation of potential nesting and 

foraging habitat for the ferruginous hawk.  This habitat layer would then be used to 

model ferruginous hawk habitat relationships and obtain nesting and foraging habitat 

suitability maps for the study area.

 5



Methodology 

Vegetation sampling plots were selected using aerial photographs and surveyed for 

vegetation density in the summer of 1998.  Field data were subdivided into seven 

information classes based on percent cover and heterogeneity of vegetation. An 

unsupervised classification of a Landsat TM image was performed using Landsat bands 

3-5 and 7, a Soil Adjusted Vegetation Index, greenness and wetness channels of Tassel 

Cap Transformation, and two texture channels.  Spectral classes derived from 

classification were assigned to information classes based on field data.  The resulting land 

cover map consisted of four information classes based on vegetation density.  

Heterogeneity information classes could not be successfully separated. 

  

Study Area 

The study area covers approximately 2.1 million hectares and includes most of 

Tooele and the extreme southern part of Box Elder counties in Utah (Figure 1).  This area 

was chosen because of the availability of good data on ferruginous hawk nesting 

activities during 1992 to 1999.  Land ownership includes a mixture of private, public, and 

military lands, with the largest proportion (42.4%) managed by the Bureau of Land 

Management for multiple use, including grazing and recreation. 

The study area lies at the extreme east of the Great Basin section of the Great Basin 
and Range province of the North American deserts (Macmahon, 1979).  It contains 

mainly northward-trending mountains, rising as high as 3300 m separated by valley 

floors around 1300 m in elevation (Figure 2).  A number of vegetation communities exist 

within the area, the most extensive of which is the desert salt scrub community found at 

elevations below 1600 m.  This community is dominated by a number of species of 

Artiplex, gray molly (Kochia vestita), winterfat (Ceratoides lanata), budsage (Artemisia 

spinescens), halogeten (Halogeten glomeratus), mormon tea (Ephedra spp.), and 

horsebrush (Tetradimia canescens).  Greasewood-dominated (Sarcobatus vermiculatus) 

communities are more common on drier and saline soil types of valley bottoms.  

Associated species include shadscale (Atriplex confertifolia), seepweed (Suaeda 

torreyana), and halogeton (Halogeton glomeratus). 
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Figure 1: Land ownership and ferruginous hawk nest site locations in the study 
area. 
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Figure 2: Elevation ranges (in meters) and ferruginous hawk nest site locations in 
the study area. 
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The sagebrush (Artemisia spp.) vegetation zone is found between about 1600 m to 

1800 m elevations, where more moisture is available, and on deeper, alkaline and 

somewhat sandy or gravelly soils.  Associated shrub species include rabbitbrush 

(Chrysothamnus spp.), snakeweed (Guterrezia sarothrae), winterfat (Ceratoides lanata), 

shadscale (Artiplex confertifolia), and bitterbrush (Purshia tridentata).  Associated grass 

species include bluebunch wheatgrass (Agropyron spicatum), sandburg bluegrass (Poa 

secunda), crested wheatgrass (Agropyron cristatum), needlegrass (Stipa comata), sand 

dropseed (Sporobulus cryptandrus), Indian ricegrass (Oryzopsis hymenoides), and galleta 

(Hilaria jamesii).  The juniper forest community is found at yet higher elevations ( ~ 

1800 m to 1900 m).  Although this community is not used by the hawks directly for 

hunting, individual trees in the ecotone between juniper and shrub communities are often 

used as nesting substrates. 

 

Field Data Collection 
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In order to map vegetation density and heterogeneity in the study area, sample 

vegetation data were collected using aerial photography and field work.  Eighty three 

1:40,000 scale panchromatic aerial photographs for June of 1993 were obtained from the 

USDA Aerial Photography Field Office for delineation of vegetation sampling plots.  

These were the most recent photographs available for the study area.  Twenty-two stereo-

pairs of photographs were selected near locations of ferruginous hawk nesting sites, 

which were surveyed in the summers of 1995 through 1999.  The remaining thirty nine 

aerial photos were chosen randomly within the vegetation zones used by the hawks to 

represent full range of vegetation conditions that exist in the study area.  I used a general 

vegetation map, produced by the Utah Gap Analysis Program (Edwards et al., 1995), to 

determine the location of these zones (Figure 3).  Salt desert scrub, sagebrush and 

greasewood shrublands, perennial and annual grasslands, including desert grasslands, co-

dominant sagebrush and grassland community, and juniper forest community were 

isolated using ArcView GIS software package to create the mask.  One to seven 400- by 

400-m sampling areas were selected on each photograph for a total of 284 areas.  All 

sampling areas were homogenous in vegetation cover and were selected to represent a 

variety of vegetation conditions on the landscape (Figure 4).  A fairly large size and 



Figure 3: Vegetation mask created from the Gap Analysis Program GIS layer 
(Edwards et al., 1995).  Vegetation classes shown are associated with ferruginous 
hawk nesting and foraging activities. 
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Figure 
The 1:4
delineat

 

N

4: An example of field sampling area selection using aerial photographs.   
0,000 panchromatic photographs (reduced here to 1:53333) were used to 
e vegetation sampling areas approximately 400 x 400 meter in size. 
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homogeneity of the sampling area were necessary in order to insure geometric 

registration between the field plots and the satellite imagery. 

Field work was conducted during June, July and September of 1998. The sampling 

areas outlined on the aerial photographs were located in the field using 1:24,000 USGS 

quadrangles.  Sampling areas that appeared to have burned recently or proved to be 

inaccessible were either omitted or moved to a different location.  One 75- by 75-m field 

plot was placed within each 400- by 400- m sampling area. One of the four corners of 

each field plot was surveyed using Trimble Pathfinder GPS equipment.  The sides of field 

plots were then laid out from the corner at ninety-degree angles and compass directions 

were recorded for computer processing. 

At each 75- by 75-m field plot, vegetation was characterized using thirty-two 0.5m2 

point vegetation sampling frames (Floyd and Anderson, 1982) placed, in pairs, every 25 

meters within the field plot (Figure 5).  The vegetation sampling frame consisted of two 

layers of fifty 10- by 10-cm cells to facilitate vertical projection of each cell.  For each 

cell, the dominant cover was recorded as either bare ground, litter, or a plant species.  

When a tree was encountered, the sampling frame was moved to the closest area outside 

the tree crown.  A total of one hundred and eighty three field plots were surveyed. 

Adequacy of sampling was determined using calculations of successive means 

(Greig-Smith, 1983).  The mean number of cells occupied by vegetation was calculated 

for each added sampling station and plotted against the number of sampling stations.  An 

adequate sample size is the point where the mean stabilizes.  In this case, inspections of 

successive mean graphs for a sample of field plots indicated that the mean stabilized at 

about eight or nine sampling stations (Figure 6).  

 

Field Data Processing 

The GPS positions for vegetation plots were differentially corrected in the lab using 

Pathfinder Office software (Trimble Navigation Ltd., 1996).  Compass directions and 

distance measures were used to construct polygons for each plot using Arc/Info COGO 

software. 
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For each 75- by 75-m field plot, the ground cover entries for each cell of the 

vegetation sampling frame were combined in the lab to determine the total percent cover 



Figure 5: Layout of the field sampling plot and vegetation density sampling frame 
design.  The height of each leg was adjusted to keep the top of the frame horizontal. 
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Figure 6: Successive mean estimation graph for one of the field sampling plots.  For 
most of the field plots surveyed, the mean stabilized at eight or nine sampling 
stations.  



for bare ground, litter, and each plant species.  For the plots with tree cover, tree densities 

were estimated using aerial photographs that were scanned and overlaid with a point grid.  

Percent cover for bare ground, litter, and plant species for these plots were then 

recalculated.  Additional twenty-seven plots in the juniper forest community were 

delineated using aerial photos. 

Data for field plots with total vegetation density above 45% were discarded from the 

analysis to avoid potential classification errors due to fire occurrence since 1993.  These 

field plots were mainly composed of cheatgrass (Bromus tectorum) that invaded the area 

after a wildfire.  Since native vegetation characteristics in the study area do not change 

rapidly, one could be fairly certain that the same cover existed in the plots with native 

vegetation in 1993 and 1998.  On the other hand, cheatgrass can invade an area within a 

year, especially after fire.  Since there was a five-year lag between the date when the 

photographs were taken and the time the field data was collected, there was no way to tell 

when the disturbance occurred and whether the sampled vegetation corresponded to the 

conditions present in the area in 1993. 

All field plots were overlaid on the satellite image and a number of them were 

discarded due to cloud cover.  The remaining field data were subdivided into four 

information classes based on vegetation density and heterogeneity so that each category 

had an approximately even number of plots: 

1) low vegetation density (<20% cover); 

2) medium vegetation density (20-25% cover); 

3) high vegetation density (25-45% cover); 

a) low heterogeneity - shrubs; 

b) low heterogeneity - grasses; 

c) high heterogeneity; 

4) areas with juniper density higher than 10%. 
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Heterogeneity of the high-density plots was determined based on density of three life 

forms (shrubs, grasses, and forbs) within the plots.  Plots with only one life form with 

density above 10% were considered homogeneous.  There were only a few plots with 

high forb density, hence forbs were combined with shrubs.  Plots with two life forms with 

density above 10% for each life form were considered heterogeneous. 



Vegetation Mapping 

Landsat TM satellite imagery of the study area was obtained for May 24, 1993.  This 

scene was chosen to coincide with peak annual growth in the study area (McGraw and 

Tueller, 1983; Price et al., 1985) and due to the scene’s sparse cloud cover.  The image 

was georeferenced using GPS coordinates collected in the field and from 1:24,000 USGS 

quadrangles.  Nearest neighbor resampling was used to produce a 25- by 25-m grid cell 

size.  Clouds were masked out using the thermal channel (TM channel 6), cloud shadows 

were masked out using the near-infrared channel (TM channel 4).  The vegetation mask 

created from the Gap Analysis Program vegetation layer (Edwards et al., 1995) was used 

to reduce spectral variability of the image by isolating grass and shrub vegetation 

communities associated with ferruginous hawk nesting activities. 

In order to identify four information classes based on variations in percent cover of 

vegetation types associated with ferruginous hawk habitat, an unsupervised classification 

was performed using TM bands 3-5 and 7 (Price et al., 1992), brightness, greenness and 

wetness of Tassel Cap Transformation (Crist and Cicone, 1984), a Soil Adjusted 

Vegetation Index (Huete, 1988), and two texture indices.  Texture data layers were 

derived from an absolute difference algorithm filter (Rubin, 1990) applied to brightness 

and greenness channels of the Tassel Cap Transformation (Cohen and Spies, 1992).  A 

moving 3x3 pixel window was used.  ISOCLUS algorithm was used for the unsupervised 

classification (PCI, 1998). 

Information classes were linked to spectral classes using field data.  Spectral classes 

that were confused between two or more information classes were reclassified using the 

same ISOCLUS algorithm.  This procedure was repeated until no more spectral classes 

could be assigned to a unique information class.  The pixels within these classes (2.69% 

of the classified area) were then assigned to the information classes based on an area-

weighted method.  For each spectral class, this involved calculating the number of pixels 

within four vegetation density classes and then normalizing the number of pixels by the 

number of field plots within that vegetation class.  The spectral class was assigned to the 

vegetation class that contained the largest proportion of its pixels (Appendix A). Some 

spectral classes did not contain any field data pixels (2.15% of the classified area) and, 
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therefore, could not be assigned to any of the information classes.  These pixels were 

processed with a maximum likelihood classifier using signatures generated from pixels 

already assigned to information classes (PCI, 1998).  Pixels remaining unassigned after 

the maximum likelihood classifier was applied (0.51% of the classified area) were 

assigned to an information class based on proximity. 

I attempted to further subdivide the high-density vegetation class into three subclasses 

based on heterogeneity.  However, because the classification accuracy for this high-

density class was low, the accuracy of heterogeneity subclasses would have been even 

lower.  Consequently, the classification analysis was terminated at this point. 
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Results 

Data Distribution 

Vegetation densities observed in the field ranged from 0% to 60%, with about 90% of 

field plots having densities between 15% and 35% (Figure 7).  Field plots occupied by 

native vegetation had densities no higher than 45%.  A large number of the plots with 

densities above 35% were characterized by a combination of either native shrubs and  

B. tectorum or introduced annuals and B. tectorum.  Vegetation densities higher than 45% 

were found only in field plots represented by the areas that have been recently burned and 

were either entirely occupied by B. tectorum or artificially planted with non-native 

grasses to prevent the invasion of B. tectorum.  As was mentioned in the methods section, 

plots with densities above 45% were not included in the image classification since it was 

unknown if the disturbance occurred before or after 1993. 

 

Accuracy Assessment 

The classification resulted in three density cover classes associated with shrublands 

and grasslands of lower elevations and one forest cover class where the density of juniper 

trees exceeded 10%.  The first three classes were low-density, medium-density, and high-

density vegetation classes with 0-20%, 20-25%, and 25-45% cover, respectively.  The 

overall classification accuracy was calculated at 84.95%, with producer’s accuracy for 

individual cover classes ranging from 97.06% to 75.95% (Table 1).  The high-density 

vegetation class had the lowest producer’s accuracy, however, the user’s accuracy was 

calculated at 95.24%.  Even proportions of this category (about 8%) were confused with 

each of the other three density classes.  Since the producer’s accuracy of the high-density 

vegetation class was relatively low, I did not attempt to further subdivide it based on 

vegetation heterogeneity.  Further separation would have resulted in producer’s 

accuracies below 76% for all heterogeneity classes.  Low-density vegetation class had the 

highest accuracy of 97.06%. 

I calculated the Kappa statistic for the classification to be 0.79, indicating that the 

classification is about 79% better than that expected if I randomly assigned a cover class 

to each image pixel (Verbyla, 1995). 
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Field Data Distribution
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Figure 7: Frequency plot for field data vegetation density.  For most of the field 
plots surveyed, the mean stabilized at about eight or nine sampling stattions. 
 
 
 
 
Table 1: Error matrix for the land cover map.  See text for description of classes. 
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Land Cover  

The distribution of cover classes across the landscape generally followed an elevation 

gradient with low and high-density vegetation found at lower and higher elevations, 

respectively (Figure 8).  Trees with densities above 10% were generally found above 

1800 m.  Within the classified area, the most abundant class was the high-density 

vegetation, occupying 37% of the classified image (Table 2).  The low-density class was 

the next in abundance (26% of the classified image).  Medium-density vegetation and 

juniper forests occupied equal areas, each comprising about 18% of the classified image.   

The relative abundance of each vegetation density class varied substantially among 

land ownership categories (Figure 9).  BLM and State ownership included a relatively 

even distribution of the four land cover types as a result of the uniform distribution of 

federal- and state-owned lands across the landscape (Figure 1).  As expected, military 

lands contained primarily low-density vegetation cover class, since they are primarily 

located at lower elevations of the study area (Figures 1 and 2).  Forest Service lands at 

higher elevations contained high percentage of forested areas and high-density shrublands 

adjacent to the forest.  Private and Native American lands consisted primarily of high-

density vegetation class reflecting a large amount of ranching activities on gentle slopes 

of the mountain ranges that dominate this part of the state. 
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Figure 8: Results of the unsupervised classification of the Landsat TM image.  See  
text for description of classes. 
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Table 2: Number of hectares and % occupied area for each cover class within the 
study area. 

Information Class area (ha) % study area
% classified 

area

Not classified 954185 53.06

Low density vegetation (0-20%) 218418 12.15 25.88

Med. density vegetation (20-25%) 155181 8.63 18.38

High density vegetation (25-45%) 311811 17.34 36.94

Trees with density > 10% 158690 8.82 18.80

1798285Total
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Figure 9: Distribution of land cover classes by ownership category (in percent of 
ownership category). 
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Discussion 

Accuracy and class definitions 

A relatively high overall classification accuracy (84.95%) was achieved for this 

study. This high accuracy might have been partially influenced by the fact that the 

months of January and February of 1993 were unusually wet in the study area (WRCC, 

2000), resulting in explosive vegetation growth in the beginning of the growing season 

that was sustained throughout the summer.  These circumstances have most likely 

increased the amount of vegetation cover and facilitated its detection by the satellite. 

The remaining errors could be associated with several factors relating to soil 

characteristics in the study area.  Soil texture varies considerably across the study area 

from heavy clays to sandy loams and sands (Gates et al., 1956).  This contributes to the 

overall spectral variation within the image.  Price et al. (1985) found that confusion 

among information classes in his Landsat MSS classification could be reduced by using 

soil texture and geomorphologic units as additional layers in classification procedures.  I 

was not able to do so in this study due to lack of a complete soil database for the entire 

study area.  In addition to variability in soil texture, variations in soil moisture could also 

be a source of some of the errors.  Some parts of the study area experienced periods of 

rain during two days prior to the acquisition date of the satellite image (May 24, 1993).  

On May 22 and May 23 approximately 0.31 inches and 0.08 inches of rain fell in the 

study area (NOAA, 1993). 
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The reflectance value of an individual pixel within a satellite image is an integration 

of the reflectance values of all cover types found in that pixel area.  In the study area, 

bare soil, litter, and both live and dead vegetation are the cover types that contribute to 

the resulting reflectance value.  In addition, species composition and vegetation stature 

play a role in determining the ultimate numeric value of a pixel.  Such complexity can 

easily mask or greatly modify the vegetation signal present in a pixel.  In areas where 

vegetation density is low, the spectral signature of soil tends to dominate the reflectance 

value of a pixel.  It is, therefore, possible that the good separation of low-density cover 

classes was largely based on the unique spectral characteristics of soils that dominate the 

ground cover in these areas, rather than accurate detection of vegetation density itself.  It 

has been shown that, among other factors, the stature and type of vegetation in the study 



area are limited by soil salinity, which in turn is affected by the depth of water table 

(Flowers, 1934).  It has been also shown that reflectance values obtained from satellite 

imagery can be correlated with groundwater depth of the salt flats (Johnson, 1998).  

Thus, the spectral classes obtained from the unsupervised classification could be largely 

determined by salinity and drainage properties of the soil and only indirectly relate to 

vegetation density. 

Another aspect of this classification that should be considered is the pixel to pixel 

variability within a single plot of 75 by 75 meters that was used to determine vegetation 

density in the field.  Pixel to pixel spectral variability of the low-density vegetation plots 

was in general relatively low, since soil is the only cover type that dominated these plots 

(up to 75% cover), and since vegetation cover was too sparse to significantly influence 

the integrated spectral signature of any single pixel within the plot.  On the other hand, 

pixel to pixel spectral variability of the high-density vegetation plots was rather high.  

Native high-density vegetation cover in the study area only amounted to a maximum of 

45% cover, hence high-density plots were characterized by the presence of high diversity 

of cover types (a variety of vegetation species of different statures, soils, and litter)  Each 

of these cover types generated its unique and highly contrasting spectral signature, 

resulting in highly variable spectral reflectance values among pixels representing a single 

high-density plot.  My methodology assigned a field plot to the information class that had 

the most pixels in that plot.  It follows that not all pixels in the plot had to belong to the 

same information class, just the majority.  If enough pixels composed of bare ground 

existed within a high-density plot, that plot was misclassified as belonging to one of the 

lower vegetation density classes.  If this interpretation is correct, then the resulting 

information classes could not only be viewed as pertaining to density, but also to the 

heterogeneity of the ground cover.  The decreasing producer’s accuracies for each 

consecutive density class, excluding trees, could then be an indication of increasing 

heterogeneity of reflectance values within plots representing those particular classes.  
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In this study, the division of the field data into information classes was based on a 

continuous density gradient rather than on natural breaks in the data.  Hence, it was 

expected that most errors would be associated with field plots with densities calculated 

close to boundary regions on either side of a cover class.  Classification errors were 



examined on plot by plot basis to see if they consistently occurred in the boundary 

regions.  Only about twenty percent of the misclassified plots could be considered to fit 

this category.  In addition, a disproportionately large number of plots that were surveyed 

as “high-density” plots were misclassified as “low-density” (Table 1).  I also found no 

consistency in vegetation type of misclassified plots.  About an equal amount contained 

large amounts of grass, or shrubs or were heterogeneous in their composition.  This 

provided further evidence that successful separation of the cover classes was based on 

soil parameters in addition to, or other than, vegetation density.  

One of the goals of this study was to determine how many categories of vegetation, 

based on vegetation density and heterogeneity, could be separated in our study area 

before the accuracy started to decline and became unreliable.  Cohen et al. (1995) found 

that increasing the number of information classes in a classification of Pacific Northwest 

forests caused a decline in overall accuracy.  In their case, seven classes of forest of 

different densities and structures could be distinguished reliably.  Knick et al. (1997) 

were able to successfully separate five categories of shrubland and grassland vegetation 

types, in an environment similar to this study area.  They, however, were not able to 

distinguish vegetation categories based on percent ground cover. 

This study was able to distinguish three classes of shrubland based on density and one 

tree class using my classification methods before the accuracy started to decline.  While 

the studies that attempt to map vegetation categories based on composition require the 

sampling of only pure stands of homogeneous vegetation, mapping of vegetation density 

necessitates the sampling of both pure and mixed pixels.  It is possible that the use of 

vegetation parameters other than vegetation type made the separation of more numerous 

classes difficult. 

 

 Choice of spectral variables 

 24

The classification approach used here involves the use of information layers 

conventionally employed in mapping of vegetation cover, as well as the use of texture 

layers.  It has been found that the texture layers, derived from brightness and greenness 

components of the Tasseled Cap transformation (Crist and Cicone, 1984), are useful for 

classifying a number of stand attributes in the analysis of the Pacific Northwest forest 



(Cohen and Spies, 1992).  Texture attributes have also been used for mapping bird 

species probability of occurrence in Maine (Hepinstall and Sader, 1997).  Although 

texture layers were not useful in this study for identification of individual plant forms 

because these elements are smaller than the image pixels (Woodcock and Strahler, 1987), 

they might have contributed to my ability to separate large vegetation stands from bare 

soil by highlighting the boundaries between the two ground cover types. 

While the use of brightness and greenness components of the Tasseled Cap 

transformation is widely accepted as useful in mapping of vegetation parameters, the 

utility of wetness component has not been fully determined.  Cohen and Spies (1992) 

found that wetness related not only to the amount of moisture in the Landsat TM scene, 

but also to forest stand structure in their study area.  I included this layer in the 

unsupervised classification in hopes that that it would be useful in identification of 

heterogeneity in vegetation structure in arid environments.  Although I was not able to 

classify my image based on vegetation structure itself, wetness might have effectively 

captured the heterogeneous character of the cover types present in the high-density field 

plots discussed earlier.  Since wetness quantifies the contrast between the Landsat TM  

mid-infrared bands (bands 5 and 7) and the other four bands, thus bringing out the 

spectral contrast between soils and vegetation cover types in the study area, its presence 

as one of the spectral variables in the unsupervised classification might have contributed 

to lower producer’s accuracy for high-density and forest cover classes. 

 

 Landscape Pattern and Ferruginous Hawk Habitat Characteristics 

The use of landscape by wildlife occurs at different spatial and temporal scales.  A 

landscape scale overview of the satellite image reveals a high degree of spatial 

heterogeneity in the distribution of cover classes.  A smoothing filter was not applied to 
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the classified image, because I felt that the spatial heterogeneity in the vegetation density 

map was a reflection of ecologically relevant heterogeneity in the system (Figure 10).  

Jasikoff (1982) and Wakeley (1978) both suggested that vegetation heterogeneity might 

augment ferruginous hawks’ hunting success.  Presence of patches of low and medium-

density vegetation within high-density stands could allow for increased ability to locate 

and access prey. 



Figure 10: A sample of landscape scale heterogeneity of vegetation cover types. 
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On the local scale, some degree of homogeneity in vegetation density is evident 

(Figure 11).  This aspect of vegetation cover might play an important role by providing 

concealment to species preyed upon by hawks.  It is possible, that the combination of 

different densities of the vegetation cover at different scales supports an adequate prey 

base for a long period of time. 

One of the questions I wanted to address in the study is how changes in vegetation 

density and heterogeneity due to replacement of native communities by exotic species 

influence ferruginous hawk habitat use.  Changes in vegetation cover following biotic 

invasions affect the wildlife habitat quality in a variety of ways.  Following a fire event, 

native patchy and relatively low-density vegetation of the study area is often completely 

replaced by continuous, high-density cover of B. tectorum, changing drastically 

vegetation composition and structure across the landscape.  These habitat alterations, 

along with changes in spatial pattern of habitat elements, and changes in suitable habitat 

availability due to seasonal variability alter the foraging patterns of the hawks and thus 

influence nesting site selection and nesting success.  Unfortunately, the affects of B. 

tectorum invasion on ferruginous hawk nesting patterns could not be determined due to 

large time-lag between the acquisition date of the satellite imagery and the date of field 

data collection.  Since areas dominated by B. tectorum were not sampled in the field, they 

were incorporated into one of the four density classes, possibly misrepresenting the true 

state of vegetation cover.  B. tectorum exhibits a very different spectral signature (reddish 

in the early growing season) from that of native grasslands and cannot be assumed to fall 

into the same information class following the unsupervised classification. It is, therefore, 

possible that these high-density areas were classified as low-density or forested cover 

types. 
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Monitoring of temporal changes in vegetation characteristics and landscape patterns 

gives wildlife scientists a more complete and detailed picture of habitat use by a species 

and aids in creation of spatially explicit animal models that are important in land 

management (Turner et al., 1995).  Temporal monitoring is especially crucial in areas 

such as the Great Basin ecoregion, where the recent land-use changes are happening with 

an astounding rapidity (Knick and Rotenberry, 2000).  Decrease in fire return interval 

from 100 years to as little as 2 years, coupled with invasion of non-native species, not 



Figure 11: Aggregation of land cover types at local scale. 
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only dramatically changed wildlife habitat attributes but also made the use of traditional 

ground-based inventory of land cover virtually impossible. In order to assess the 

influence of vegetation cover changes on wildlife habitat, monitoring should be 

performed at temporal scales similar to those of disturbance regimes. Satellite imagery 

provides an ideal tool for such monitoring and it has been widely used in change 

detection studies in a variety of environments (Zheng et al., 1997; Boyce, 1999; Mas, 

1999; Sohl, 1999; Cushman and Wallin, 2000).  This study provided an initial step in 

what could become an extensive vegetation cover monitoring program in the study area.  

I have demonstrated that satellite imagery can be used to map vegetation parameters that 

are ecologically relevant to the use of habitat by wildlife.  Further investigations into 

alternative methods of classification and mapping of different vegetation parameters are 

necessary to effectively use this information in wildlife habitat models. 
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Conclusions 

Results of this study indicate that with the unsupervised classification using Landsat 

TM imagery, aerial photographs, and ground reference data, four vegetation density 

classes can be accurately mapped in the study area.  A more detailed classification may 

have been achieved if the acquisition date of the satellite image and aerial photos more 

closely coincided with the time of collection of ground reference data, allowing for 

mapping of disturbance vegetation classes. 

I found that classification accuracy decreased with the increase of fine-scale 

heterogeneity in land cover types within the field sampling plots.  High-density 

vegetation class, which had the lowest producer’s classification accuracy, was 

characterized by plots with a mixture of about equal proportions of vegetation, ground, 

and litter cover types.  Information classes with lower vegetation density characteristics 

contained predominantly the bare ground cover type and had higher classification 

accuracies.  Inclusion of variables such as texture and wetness into the classification may 

have contributed to the high classification accuracy by capturing the spectral variability 

associated with cover type.  Techniques, such as mixture modeling (Smith et al., 1990) or 

higher spectral and spatial resolution imagery may further minimize confusion associated 

with this heterogeneity.  Due to dominance of soil cover types in the landscape, however, 

it seems unlikely that the accuracy and detail of land-cover classifications in arid 

environments could ever approach those of forested ecosystems. 

I chose the information classes in the classification based on break points that were 

ecologically relevant to ferruginous hawk habitat use.  Examination of classification 

results at different spatial scales revealed patterns that could be important to ferruginous 

hawk foraging activities.  The next step in this research is building of habitat model to 

reveal any important relationships between vegetation density and ferruginous hawk 

habitat use.
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Chapter 2: 

MODELING FERRUGINOUS HAWK (BUTEO REGALIS)  

HABITAT  

USING VARIABLES DERIVED FROM  

SATELLITE IMAGERY. 



Introduction 

Ferruginous Hawk Ecology 

The ferruginous hawk (Buteo regalis) is an open country species found in grasslands, 

sagebrush, and desert scrub habitats in the Great Plains and Great Basin regions.  Several 

studies documented a major decline in populations of ferruginous hawks throughout its 

range in the United States and Canada in the 1970s and 1980s (Olendorff, 1973; Houston 

and Bechard, 1983; Houston and Bechard, 1984; Schmutz, 1984; USFWS, 1985; Perkins, 

1989; Woffinden and Murphy, 1985; Woffinden and Murphy, 1989).  These declines 

have been linked to changes in land-use, including increased urbanization and recreation, 

and replacement of native vegetation communities by exotic species.  Olendorff (1973) 

found urbanization to be detrimental to nest establishment by the hawks.  White and 

Thurow (1985) documented the effects of human activities on ferruginous hawk 

reproduction success.  They found that the hawks are most sensitive when a pair is 

establishing a nest, when the female bird is incubating eggs, or when she is protecting 

newly-hatched young.  Nest disturbances resulted in the adults abandoning the nest and 

higher nesting mortality. 

Land cover of the Great Basin has been profoundly affected by the replacement of 

native vegetation cover by exotic species (Billings, 1990).  Cheatgrass (Bromus tectorum) 

was accidentally introduced in several locations in the western U.S. through 

contaminated grain-seed supplies from the eastern United States and Europe.  As a winter 

annual, cheatgrass is well adapted to the climate of the Great Basin and it spread rapidly 

through the overgrazed sagebrush range, occupying vacant habitat that was previously 

filled with native grasses.  This invasion replaced the discontinuous vegetation cover of 

the native sagebrush (Artemisia spp.) steppe with continuous fuel, facilitating the spread 

of fires.  Fire further reduced vegetation diversity allowing cheatgrass to dominate the 

landscape, since it matures earlier than native species (Young and Evans, 1978).  Easily 

ignited cheatgrass cover conditions led to more frequent fires, reducing the fire return 

interval from an average of  85 years to less than 5 years (Whisenant, 1990).  These 

dramatic changes in vegetation structure had a number of negative impact on the quality 

of ferruginous hawk foraging habitat. 
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Following studies of population declines and rapid reductions of ferruginous hawk 

habitat, Ure et al. petitioned the U.S. Fish and Wildlife Service in 1991 to list the 

ferruginous hawk under the Endangered Species Act.  The petition was denied on the 

grounds that there was not sufficient information to warrant the requested action 

(USFWS., 1992).  The 1992 U.S. Fish and Wildlife Service study actually suggested that 

populations had increased 1979.  However, the 1979 population estimates were later 

revised upward and it is now thought that populations have experienced significant 

declines (Olendorff, 1993). 

Documented ferruginous hawk population declines throughout a significant portion of 

its range and the need for more information for listing under the Endangered Species Act, 

have motivated efforts to obtain more information on ferruginous hawk foraging and 

nesting habitat requirements.  It is known that for nesting habitat, the hawks are 

dependent on a variety of habitat conditions in order to successfully establish nests and 

reproduce.  Generally they avoid elevations above 2100 m, narrow canyons, and interior 

regions of forests (Olendorff, 1993).  This species prefers elevated nest sites, such as 

boulders, low cliffs, or trees (Harlow and Bloom, 1989).  A pair will establish a breeding 

territory, often with four or five alternative nests.  Each year, individual birds return to 

the same nesting area and often the same nest.  In the Great Basin, because ferruginous 

hawks prefer tree substrate for their nest, but forage in shrubland, their nests are most 

commonly found in the ecotone between the juniper forest and the shrubland where 

individual trees are still present, but the landscape is open (Powers et al., 1975; Thurow et 

al., 1980). 
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It has also been found that prey species ecology can dramatically influence 

ferruginous hawk nesting and reproductive success.  In north-western Utah, the 

ferruginous hawk depends on only a few prey species.  Based on biomass, black-tailed 

jackrabbits (Lepus californicus) have historically been the hawk’s most important prey 

base in this area (Howard, 1975). Because alternative food sources are limited, the hawk 

population is susceptible to large fluctuations in densities that directly correspond to 

population cycles of the primary prey species (Woffinden and Murphy, 1977; Thurow et 

al., 1980; Smith et al., 1981).  Low prey densities can cause the birds to abandon a nest or 

travel further away from the nest to look for alternative sources of food.  This can lead to 



an increase in chick mortality rates due to exposure to the elements and to predation from 

Golden Eagles (Aquila chrysaetos) (Gardner, pers. comm.). 

Changes in vegetation structure can influence the abundance of ferruginous hawk 

prey species, which directly influences foraging habitat quality.  Prey species’ numbers 

can be reduced by conversion of native grasslands and shrublands into agricultural lands 

or by B. tectorum invasions.  Jackrabbits prefer tall cover and open spaces while feeding 

on native grasses and/or shrub depending on the season (Taylor and Lay, 1944; 

Leichleitner, 1958; Fagerstone et al., 1981).  Plant cover in cultivated areas and areas 

dominated by B. tectorum is usually lower and denser than that of natural vegetation 

(Houston and Bechard, 1984).  Hence, vegetation density, height, and heterogeneity 

become important factors in determining the abundance of hawk prey. 

In addition to prey density, several studies found prey accessibility to be an important 

factor influencing ferruginous hawk foraging habitat quality (Craighead and Craighead, 

1956; Wakeley, 1978; Woffinden and Murphy, 1983; Woffinden and Murphy, 1989).  

Wakeley (1978) assessed the relationship between vegetation type, density and prey 

distribution and the use of hunting sites by ferruginous hawk.  He found that juniper and 

grass-shrub cover types contained the highest amounts of prey, but also discovered that 

the hawk use of bare ground areas for hunting was disproportionately larger than 

expected.  He concluded that vegetation density, which directly influences prey 

accessibility, plays a larger role in hawks’ choice of hunting areas than prey density. 

Bechard (1982) came to the same conclusion while studying Swainson’s hawk (Buteo 

swainsoni) in a similar environmental setting. 

Following these studies, it is clear that one of the major impacts on ferruginous hawk 

habitat quality and abundance will come from the land-use changes that alter vegetation 

structure.  Although much has been learned about ferruginous hawk habitat requirements 

as they relate to vegetation characteristics, more information is needed to determine how 

these requirements change in space and over time, and whether or not the habitat quality 

and abundance have been actually declining in recent years.  Multivariate regional habitat 

analysis using satellite data and GIS layers could aid in estimation of ferruginous hawk 

habitat availability and quality and assess its changes through time.  
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Habitat Modeling 

The roots of multivariate habitat analysis and quantification of habitat characteristics 

of an organism can be traced to niche theory work by Hutchinson (1957), who  pioneered 

the concept of the niche as a multidimensional space.  This theory and its similarities to 

n-dimensional statistical techniques, gave birth to a number of studies that quantified the 

organism’s realized niche on the basis of a series of microhabitat variables that are most 

important to its individual responses to the environment (Shugart, 1981).  Multivariate 

microhabitat analyses have made it possible to make predictions about the distribution 

and abundance of wildlife species in space and time.  These studies have greatly 

increased our understanding of complex ecological interactions.  Microhabitat data could 

only be obtained using intensive ground-based inventories and, for this reason, 

knowledge of microhabitat requirements prior to 1980s did not allow for regional-scale 

analysis.  Tools and methods for the assessment of macrohabitat characteristics were 

needed and were eventually achieved with the growing power of computers, development 

of spatial pattern analysis programs, and widespread use of satellite remote sensing 

techniques.   

Currently, techniques available for large-scale wildlife habitat modeling can be 

subdivided into two major categories that include general habitat association models and 

species-specific models (Berry, 1986).  In remote sensing, these two general types of 

habitat models can be built by using a coarse or a fine-filter approach (Wallin, in review).  

General habitat association models typically assign wildlife species to broad vegetation 

communities based on their reproduction and feeding habitat requirements.  This coarse-

filter approach is often result in maps with a few general vegetation types, each 

associated with a particular suite of species.  Such models are often too coarse to 

determine how individual species use the habitat or how it will be affected by subtle 

changes in vegetation structure and composition.  Also, in developing these models, 

accuracy assessments are rarely performed, since knowledge of individual species and 

field data are limited.   

The other type of wildlife habitat model, a species-specific model, mostly focusing on 

their relationship with various habitat attributes, such as vegetation structure and 
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composition, topography, or human activity.  These models are often applied to species 

whose life history attributes have been extensively studied.  Development of these 

models requires substantial field work, but also allows for accuracy assessment using 

data collected in the field.  Results can include the development of potential habitat maps, 

assessment of population levels, and ability to predict changes in population distribution 

and abundance with changes in habitat characteristics. 

In the last two decades, a number of studies have utilized satellite data and other 

ancillary data to predict occurrence and map potential avian habitat in a variety of 

environments (Palmeirim, 1988; Sader et al., 1991; Wallin et al., 1992; Aspinall and 

Veitch, 1993; Lavers et al., 1996; Hepinstall and Sader, 1997; Bosakowski, 1999; 

Montgomery, 1999; Drolet et al., 1999; Wallin, in review).  Satellite imagery has also 

been used for habitat modeling in environments similar to my study area. Knick et al. 

(1997) used Landsat TM imagery to map vegetation density in the Snake River Birds of 

Prey National Conservation Area in southwestern Idaho for further use in developing 

habitat models for raptors.  And Vander Haegen et al. (2000) have used a Landsat TM 

vegetation structure layer to model habitat for songbirds in eastern Washington.   

In addition to remote sensing, a variety of multivariate statistical techniques are now 

available to aid in quantifying species occurrence and predicting the distribution of 

potential habitat.  Although such techniques simplify complex ecological processes and 

are often lacking complete data sets, they can provide valuable insight into environmental 

interactions that might not be easily detected otherwise.  Discriminant function analyses 

and logistic regression analyses are the two techniques that have been used most 

frequently in wildlife habitat modeling in recent decades (Capen et al., 1986).  This study 

uses logistic regression, because it provides more flexibility in the variable types selected 

for the analysis and does not the have stringent distribution requirements characteristic of 

parametric techniques(Tabachnick and Fidell, 1989) . 
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Logistic regression analysis has been used either on its own or as a validation of other 

multivariate techniques in a number of studies.  Capen et al. (1986) used logistic 

regression to compare to the results of the multivariate discriminant function models that 

differentiated occupied and unoccupied songbird habitat in the New England Forest.  

Pereira and Itami (1991) used logistic regression to model habitat suitability for the Mt. 



Graham red squirrel in Arizona, while Mladenoff et al. (1995) mapped potential gray 

wolf habitat for northern Wisconsin.  More recently, Drolet et al. (1999) used logistic 

regression to assess relationships between songbird occurrence and forested landscape 

structure in eastern Canada.  Vander Haegen et al. (2000) have used the same statistical 

techniques to develop models of species occurrence for shrubsteppe birds in eastern 

Washington and McBride (2000) developed a series of habitat models at different spatial 

scales for the Magellanic woodpecker (Campephilus magellanicus) in forests of Terra del 

Fuego.   

 

Objectives 

Multivariate wildlife habitat models have a number of advantages over conventional 

ground-based methods of wildlife habitat assessment.  They can be used to map the 

distribution and abundance of potential habitat at the regional scales.  This information 

can then be used to estimate potential population sizes and evaluate the potential impact 

of alternative management plans.  As discussed above, the use of habitat by ferruginous 

hawks is more often correlated with vegetation structure rather than vegetation 

composition, therefore this study is aimed at assessing specific vegetation structural 

attributes that directly relate to foraging behavior and reproduction.  More specifically, 

this study develops a spatial habitat layer based on vegetation density and heterogeneity 

that determines ferruginous hawk nest site selection.  My objective was to build a series 

of statistical models with the use of elevation data and variables derived from a classified 

Landsat TM image that could be used to  

1. determine which parts of a ferruginous hawk pair’s home ranch are most useful 

for discriminating between nest sites and random sites; 

2. assess the variation of suitability of ferruginous hawk potential nesting and/or 

foraging habitat in the study area to prioritize areas for habitat management and 

protection; 

3. discuss management implications for the species and provide recommendations 

for further research. 

 47



Methods 

Study Area 

The study area includes most of Tooele and the extreme southern part of Box Elder 

counties in Utah (Figure 1).  It covers approximately 2.1 million hectares. This area was 

chosen because of the availability of good data on ferruginous hawk nesting activities 

from 1992 to 1999.  Land ownership includes a mixture of private, public, and military 

lands, with the largest proportion (42.4%) managed by the Bureau of Land Management 

for multiple use, including grazing and recreation. 

The study area lies at the extreme east of the Great Basin section of the Great Basin 

and Range province of the North American deserts (Macmahon, 1979).  It contains 

mainly northward-trending mountains, rising as high as 3300 m separated by valley 

floors around 1300 m in elevation (Figure 2).  A number of vegetation communities exist 

within the area, the most extensive of which is the desert salt scrub community found 

below 1600 m elevations.  This community is dominated by a number of species of 

Artiplex, gray molly (Kochia vestita), winterfat (Ceratoides lanata), budsage (Artemisia 

spinescens), halogeten (Halogeten glomeratus), mormon tea (Ephedra spp.), and 

horsebrush (Tetradimia canescens).  Greasewood-dominated (Sarcobatus vermiculatus) 

communities are more common on drier and saline soil types of valley bottoms.  

Associated species include shadscale (Atriplex confertifolia), seepweed (Suaeda 

torreyana), and halogeton (Halogeton glomeratus).  The sagebrush (Artemisia spp.) 

vegetation zone is found between 1600 m and 1800 m elevations, where more moisture is 

available, and on deeper, alkaline and somewhat sandy or gravelly soils.  Associated 

shrub species include rabbitbrush (Chrysothamnus spp.), snakeweed (Guterrezia 

sarothrae), winterfat (Ceratoides lanata), shadscale (Artiplex confertifolia), and 

bitterbrush (Purshia tridentata).  Associated grass species include bluebunch wheatgrass 

(Agropyron spicatum), sandburg bluegrass (Poa secunda), crested wheatgrass 

(Agropyron cristatum), needlegrass (Stipa comata), sand dropseed (Sporobulus 

cryptandrus), Indian ricegrass (Oryzopsis hymenoides), and galleta (Hilaria jamesii).  

The juniper forest community is found at yet higher elevations ( ~ 1800 m to 1900 m).  

Although this community is not used by the hawks directly for hunting, individual trees 
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Figure 1: Land ownership and ferruginous hawk nest site locations in the study 
area.  Nest sites were surveyed using the GPS equipment between 1995 and 1999. 
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Figure 2: Elevation ranges (in meters) and ferruginous hawk nest site locations in 
the study area. 
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in the ecotone between juniper and shrub communities are often used as nesting 

substrates (Woffinden and Murphy, 1983). 

Land-use changes in the Great Basin have also been representative of such changes in 

the north-western Utah, where ferruginous hawks were once abundant.  In addition to a 

decrease of occupied ferruginous hawk nesting sites that has been documented over the 

past twenty years (Woffinden, 1975; Woffinden and Murphy, 1977; Woffinden and 

Murphy, 1989; Attix, 1996), the area has experienced rapid loss of ferruginous hawk 

habitat due to rapid urban expansion and increased recreational use (Gardner, pers. 

comm.).  Human activity was also found to be a major factor in the direct ferruginous 

hawk mortality (Howard, 1975).  A number of young and adult birds have been 

reportedly shot over the last five years (Gardner, pers. comm.).  It is illegal to harass 

raptors in Utah, however these incidents continue to occur due to the lack of public 

awareness. 

 

Nest Data  

The location of one hundred and thirty-one ferruginous hawk nest sites in the study 

area were obtained from the Bureau of Land Management, Salt Lake Field Office.  The 

locations were surveyed using Trimble Pathfinder GPS equipment during the summers of  

1995 through 1999 (Figure 1).  Most of the nests were in good condition and were 

probably constructed or rebuilt during the 1980’s or 1990’s.  Activity surveys have been 

conducted by the BLM employees intermittently since 1982, so, only limited information 

exists on nesting activity or nesting success.  Of the 131 nests, 69.5 % of the nests were 

located in juniper trees (dead or live), 22 % on rock ledges, 7% on rock pinnacles, and 

1.5 % on artificial structures.   

Within their home range, a pair builds several nests that are used in alternate years.  

Therefore, even though several nest sites might exist in a small area, they are used by 

only one pair and will result in pseudoreplication in statistical analysis if all known nests 

are used in habitat analysis.  Published literature on ferruginous hawk habitat use was 

reviewed to determine the most reasonable nearest neighbor distance between active nest 

sites for use in statistical analysis.  Ferruginous hawk’s home range size averages 7.0 km2 
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(Olendorff, 1993).  In rare cases, two pairs may nest as close as 0.3 km from one another 

(Woffinden and Murphy, 1983).  This close proximity of active sites might allow mutual 

defense of the overlapping territories from other raptor species (Thurow and White, 

1983).  Olendorff’s (1993) review of 20 studies from several western states yielded an 

average nearest neighbor distance of 3.4 km, with a minimum nearest neighbor distance 

of 0.8 km.  Howard (1975) also reported 0.8 km as the smallest nearest neighbor distance 

between two active nests in his study and Wakeley (1978) reported a distance of less than 

1 km between two active nests in his study.  In the present study area, the smallest nearest 

neighbor distance between active nest sites was 0.8 km.  

Howard and Wolfe (1976) and McAnnis (1990) found that hunting forays usually do 

not extend beyond 800 m and 700 m, respectively, from the nest site.  To avoid 

pseudoreplication but account for the clumping of the active nest sites and maximize the 

dataset size, 0.8 km was selected as the nearest neighbor distance.  A 400-m buffer was 

placed around each nest and only one nest was selected if the buffers overlapped.  We 

tried to select nests that were either known to be active sometime near 1993 or nests that 

were in very good condition.  This process resulted in 72 ferruginous hawk nesting 

territories that were retained for use in the analysis. 

 

Satellite Image Classification Data 

In order to build the habitat model for the hawk, vegetation information was extracted 

from a classified Landsat TM image from May 24, 1993.  The original 30-m resolution 

image was resampled to 25-m resolution for ease of calculations.  The classification was 

performed only on “potential” ferruginous hawk habitat, i.e. only on vegetation 

communities that are known to be used by the hawks.  Other communities, representing 

non-habitat were masked out using a generalized vegetation map produced for the Utah 

State Gap Analysis Program (Edwards et al., 1995).  This allowed the development of a 

more detailed classification that provided additional information for plant communities 

that are used by the hawk.  The image was classified based on native vegetation density 

in the study area (See Part 1).  The resulting image contained the following land cover 

classes: 
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1) low vegetation density (<20% cover); 

2) medium vegetation density (20-25% cover); 

3) high density (25-45% cover); 

4) areas with juniper density higher than 10%. 

The overall classification accuracy for the image was 85%, with producer’s accuracy 

for individual cover classes ranging from 97% to 76% .  The high density vegetation class 

had the lowest producer’s accuracy, however, the user’s accuracy was 95%.  The low 

density vegetation class had the highest accuracy of 97%. 

 

Variable extraction 

A square sampling window was centered over the location of each of the 72 

ferruginous hawk nesting sites.  This sampling window was used to extract vegetation 

density variables from the classified image with the help of a series of programs written 

in C language (Table 1).  These same variables were also collected for same number of 

randomly selected points within the study area.  In addition to these vegetation variables, 

site elevation was used as an additional variable.  I hoped that this variable would allow 

us to isolate the shrub steppe - juniper forest ecotone where ferruginous hawks often 

build their nests.  To extract the elevation values, a 100-m contour elevation layer was 

extrapolated into a continuous elevation GRID coverage in ArcView . 
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Five different sampling window sizes were chosen based on ferruginous hawk habitat 

use (Figure 3).  The Nesting habitat model was built using the smallest extraction 

window, which extended to 125 m from the center and represented the area immediately 

around the nest.  A larger window was used to build the Perching habitat model.  This 

window extended to 300 m from the center and contained the area around the nest that is 

generally used for perching but not necessarily hunting (McAnnis, 1990).  A still larger 

window, extending to 700 m, was used for the Nesting & foraging model.  This window 

approximated an area around the nest where hawks spend the majority of their time 

during the nesting season (McAnnis, 1990).  The Foraging habitat model was built using 

variables extracted from a “doughnut-shaped” window containing areas that extended 

from 300 m to 700 m from the center.  It was shown that hawk’s foraging activities are 

concentrated within this area around the nest (McAnnis, 1990).  The largest window size 



2 4

5 

1 

3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Window
Size

Distance
(m)

Habitat Use

1 125 nesting
2 300 nesting & perching
3 700 nesting & foraging
4 300-700 foraging
5 1325 home range

Figure 3: Five sizes of sampling windows used for variable  
extraction from the satellite image. 
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was used to build the Home Range model.  This window extended to 1325 m from the 

nest site and approximated the average home range of a ferruginous hawk (~ 7 km2) 

(Olendorff, 1993). 

 

Table 1: Variables extracted from the satellite image for use in logistic regression 
models: 
_______________________________________________________________________ 
 
PLOW  - proportion of the window occupied by the low density class (0-20% cover); 
 
PMED - proportion of the window occupied by the medium density class (20-25% cover); 
 
PHIGH - proportion of the window occupied by the high density class (25-45% cover); 
 
PTREE  - proportion of the window occupied by the areas with tree density >10%; 
 
MODE  - cover class with the highest frequency of occurrence within the window; 
 
RICHNESS - number of cover classes present within the window. 
_______________________________________________________________________ 
 

Habitat Model 

Binary logistic regression analysis was used to build five statistical models in the 

SPSS software package to distinguish between ferruginous hawk nest sites and randomly 

selected locations within the classified image.  This statistical approach was chosen due 

to the binary nature of the outcome variable and discrete nature of some of the 

independent variables (Tabachnick and Fidell, 1996).  Each model was built based on 

variables extracted from sampling windows around the nest sites and random sites (see 

above for window sizes).  For each analysis, nest sites and random sites with more than 

10% of the window occupied by unclassified pixels were not used.  This selection 

process resulted in 72 nest sites used for the Nesting model, 69 nest sites used in the 

Perching, Foraging, and Nesting & foraging models, and 63 nest sites used for the Home 

Range model.  An equal number of nest sites and random locations was used for each 

model.  Seventy five percent of the nests and random sites were used to build the models 

and obtain coefficients for classification, and the rest were used to independently validate 

the model.   
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All explanatory variables were subject to an exploratory analysis to determine if there 

was a significant difference between nest sites and random sites.  An α-level of 0.10 was 

used for assessment of significance, since I was more interested in trends than rigorous 

significance testing.  A univariate logistic regression model was built for each variable 

and a Kruskal-Wallis test was run for all variables except MODE, which was a nominal-

scale variable.  The expectation was that variables describing the random sites would 

have a different mean and a larger variance than the variables describing the nest sites, 

since random sites include both the potential hawk habitat and non-habitat.  Continuous 

variables were examined for multicollinearity using a correlation matrix. 

All variables were used in the multivariate analysis to account for any interaction that 

might exist among them.  Forward Likelihood Ratio procedures were used (p-to-enter = 

0.1, p-to-remove =0.15) with the Cut Point value ranging between 0.47 and 0.55.  The 

Cut Point values were chosen in such a way as to maximize the classification accuracy of 

the nest sites, with target success rates above 80%.  Lower classification accuracy was 

accepted for the random sites, since this category included random sites as well as 

potential nest sites.  In addition, a lower classification accuracy of random sites was 

expected since the majority of non-habitat sites were eliminated before the analysis by 

masking out the vegetation communities not used by the hawks.  Model assessments were 

performed using tests of individual variables, log likelihood techniques, classification 

accuracies of the response variable, Hosmer & Lemeshow tests, percent variance 

explained, and KHAT statistics. 

 

Map of Potential Habitat 

A C program, in conjunction with the coefficients derived from the logistic regression 

model, was used to paint maps of habitat suitability over the study area.  The entire study 

area was analyzed by applying the logistic regression classification function to the central 

grid cell of the sampling window that was systematically moved across the data layers 

used for variable extraction.  Finally, for each potential habitat image, the distribution and 

abundance of different categories of habitat were summarized by land ownership 

category using the land ownership layers obtained from the BLM Utah State office. 
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Results 

Univariate Analysis 

Analysis of descriptive statistics for interval-scaled variables for of the five models 

confirmed earlier expectations that variables describing random sites would have higher 

variability than the same variables describing the ferruginous hawk nest sites (Table 2).  

Coefficients of variation, shown in Table 2, were consistently smaller for the variables 

describing nests than the ones describing random sites, although the difference 

diminished as larger and larger area around the site was included in the model.  Variable 

representing the proportion of the sampling window occupied by low density vegetation 

(PLOW) was the only one that consistently had larger values of CV for nest sites than 

random sites, although the difference was not large.   

In the univariate analyses, the differences between nest sites and random sites for 

each variable were consistent with published habitat association data for the species 

(Olendorff, 1993).  For most of the sampling windows, areas around nest sites had a 

consistently larger proportion occupied by the low-density vegetation classes (PLOW and 

PMED) and forested class (PTREE), indicating the importance of low-density vegetation 

for hunting and nest selection in close proximity to forested areas (Figures 4(a, b, d) 

through 8(a, b, d)).  For example, I found PTREE to be a significant discriminator 

between nest sites and random sites in the Perching model (Kruskal-Wallis test, p < 0.10) 

(Figure 5(d)).  Alternatively, in most of the models, areas around the nest sites had lower 

proportion occupied by the high density vegetation class (PHIGH) (Figures 4(c) through 

8(c)). 

The importance of vegetation density was also confirmed by frequent significance of 

the MODE variable, which recorded the most frequently occurring cover class within the 

sampling window.  In the univariate logistic regression analysis, MODE was a significant 

discriminator (p < 0.10) between suitable and unsuitable habitat for the Perching model  

(Figure 5(g)).  For both the Nesting & foraging and the Foraging models, MODE was the 

only variable for which there was a significant difference (p < 0.01 and p < 0.001, 

respectively) between nest sites and random sites (Figures 5(g) and 7(g)). 
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Table 2: Descriptive statistics for the interval-scaled variables in five models. CV = 
Coefficient of Variation = (standard deviation/mean)*100. 

NESTING Nest Sites (n = 72) 
Variables Mean Median Variance CV 
PLOW .206 .132 .044 101.82 
PMED .138 .084 .020 102.48 
PHIGH .443 .469 .058 54.36 
PTREE .213 .167 .037 90.31 
Elevation 1460.931 1462.500 4204.713 4.44 
 

NESTING Random Sites (n = 72) 
Variables Mean Median Variance CV 
PLOW .205 .079 .059 118.49 
PMED .138 .037 .039 143.10 
PHIGH .459 .438 .086 63.89 
PTREE .199 .149 .049 111.24 
Elevation 1505.181 1438.000 36884.460 12.76 
 
 

PERCHING Nest Sites (n = 69) 
Variables Mean Median Variance CV 
PLOW .209 .171 .033 86.92 
PMED .150 .092 .018 89.44 
PHIGH .439 .431 .045 48.32 
PTREE .202 .169 .028 82.84 
Elevation 1462.623 1464.000 4135.768 4.40 
 

PERCHING Random Sites (n = 69) 
Variables Mean Median Variance CV 
PLOW .204 .150 .035 91.71 
PMED .184 .087 .043 112.70 
PHIGH .436 .495 .057 54.76 
PTREE .176 .137 .037 109.29 
Elevation 1483.957 1411.000 25051.042 10.67 
 
 

NESTING & 
FORAGING 

Nest Sites (n = 69) 

Variables Mean Median Variance CV 
PLOW .215 .182 .031 81.89 
PMED .153 .108 .017 85.22 
PHIGH .428 .440 .037 44.94 
PTREE .204 .190 .025 77.51 
Elevation 1462.623 1464.000 4135.768 4.40 
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NESING & 
FORAGING 

Random Sites (n = 69) 

Variables Mean Median Variance CV 
PLOW .210 .187 .028 79.68 
PMED .182 .077 .037 105.69 
PHIGH .422 .446 .045 50.27 
PTREE .186 .117 .036 102.01 
Elevation 1483.957 1411.000 25051.042 10.67 
 
 

FORAGING Nest Sites (n = 69) 
Variables Mean Median Variance CV 
PLOW .217 .186 .031 81.14 
PMED .154 .095 .017 84.66 
PHIGH .425 .417 .037 45.26 
PTREE .204 .186 .025 77.51 
Elevation 1462.623 1464.000 4135.768 4.40 
 

FORAGING Random Sites (n = 69) 
Variables Mean Median Variance CV 
PLOW .212 .198 .027 77.51 
PMED .182 .079 .036 104.25 
PHIGH .417 .423 .044 50.30 
PTREE .189 .120 .037 101.77 
Elevation 1483.957 1411.000 25051.042 10.67 
 
 
HOME RANGE Nest Sites (n = 63) 
Variables Mean Median Variance CV 
PLOW .204 .136 .027 80.55 
PMED .156 .115 .016 81.08 
PHIGH .432 .429 .033 42.05 
PTREE .208 .203 .023 72.91 
Elevation 1468.4 1473.000 3975.673 4.29 
 
HOME RANGE Random Sites (n = 63) 
Variables Mean Median Variance CV 
PLOW .226 .205 .031 77.91 
PMED .174 .100 .030 99.54 
PHIGH .413 .403 .040 48.43 
PTREE .187 .138 .032 95.66 
Elevation 1451.88 1400.000 18141.391 9.28 
 



Figure 4: Cumulative frequency graphs and p-values for variables considered for 
the Nesting model. The p-values are derived from the univariate logistic regression 
analyses and 2-independent-samples Kruskal-Wallis tests. 
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Figure 5: Cumulative frequency graphs and p-values for variables considered for 
the Perching model.  The p-values are derived from the univariate logistic 
regression analyses and 2-independent-samples Kruskal-Wallis tests. 

100 )

-.1

cu
m

ul
at

iv
e 

%
100

80

60

40

20

0

 

P1P

0.0

cu
m

ul
at

iv
e 

%

100

80

60

40

20

0

P3P

1200

cu
m

ul
at

iv
e 

%

100

80

60

40

20

0

eleELE

 
(g) Fo
 

(a)
-.1

cu
m

ul
at

iv
e 

%

80

60

40

20

0

p(LR) = 0.877

p(K-W) = 0.968

.6.5.4.3.2.10.0

random sites

nest sites

 (proportion)LOW (proportion) P2P

-.1

cu
m

ul
at

iv
e 

%

100

80

60

40

20

0

p(LR) = 0.937

p(K-W) = 0.983

.8.6.4.2

random sites

nest sites

 

 (proportion)HIGH (proportion) P4P

2.8

cu
m

ul
at

iv
e 

%

100

80

60

40

20

0

p(LR) = 0.298

p(K-W) = 0.330

1900180017001600150014001300

random sites

nest sites

) 

vation (m)VATION (m) rR

r the variable MODE: P (LR) = 0.053 
61
(b
p(LR) = 0.251

p(K-W) = 0.934

.7.6.5.4.3.2.10.0

random sites

nest sites

 (proportion)MED (proportion) 
(c)
 T

icI
(d)
p(LR) = 0.391

p(K-W) = 0.058

.7.6.5.4.3.2.10.0

random sites

nest sites

(proportion)REE (proportion) 
(e
 (f)
p(LR) = 0.141

p(K-W) = 0.075

4.24.03.83.63.43.23.0

random sites

nest sites

hnessCHNESS 



Figure 6: Cumulative frequency graphs and p-values for variables considered for 
the Nesting & foraging model. The p-values are derived from the univariate logistic 
regression analyses and 2-independent-samples Kruskal-Wallis tests. 
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Figure 7: Cumulative frequency graphs and p-values for variables considered for 
the Foraging model. The p-values are derived from the univariate logistic regression 
analyses and 2-independent-samples Kruskal-Wallis tests. 
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Figure 8: Cumulative frequency graphs and p-values for variables considered for 
the Home Range model. The p-values are derived from the univariate logistic 
regression analyses and 2-independent-samples Kruskal-Wallis tests. 
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Although some of the vegetation density class differences between nest sites and 

random sites were statistically significant, as indicated above, most of them proved not to 

be significant discriminators in the univariate analyses.  Some variables, such as PTREE, 

had non-significant trends (p < 0.15) in the Kruskal-Wallis test in the Foraging, the 

Nesting & foraging, and the Home Range models (Figures 6(d), 7(d), and 8(d)). 

For all models, except the Home Range model, areas around the nests had a higher 

diversity of vegetation density classes than areas around random sites (Figures 4(f) 

through 8(f)).  For the Nesting model, RICHNESS was significantly different (p < 0.01) 

for nest sites and random sites in both univariate logistic regression and Kruskal-Wallis 

analyses (Figure 4(f)).  For the Perching model, RICHNESS was also a significant 

discriminator between suitable and unsuitable habitat, but at lower significance level 

(Kruskal-Wallis test; p < 0.10) (Figure 5(f)).   

In all of the five models, the range of elevation values was smaller for nest sites than 

for random sites, indicating hawk’s selection the elevation zone that includes the near 

shrubland-forest ecotone (Figures 4(e) through 8(e)).  More specifically, for the Nesting 

model, in the univariate logistic regression analysis nest sites and random sites showed a 

significant difference in ELEVATION (p < 0.10) (Figure 4(e)).  And for Home Range 

model, ELEVATION was the only significant variable in the Kruskal-Wallis test (P < 

0.05) (Figure 8(e)). 

 

Multivariate Analysis 

Five binary logistic regression models were built using one to four of the explanatory 

variables (Table 3).  I chose three different tests to evaluate the goodness-of-fit of the 

models, since no one test is universally preferred, and since different tests can assess 

different aspects of the model (Tabachnick and Fidell, 1996; Hosmer and Lemeshow, 

1989).  The likelihood ratio test, or Model χ2 in SPSS, tests the null hypothesis that there 

is no significant difference between a full model (model with all the predictor variables 

and the constant) and a constant-only model (Tabachnick and Fidell, 1996).  The 

difference for all the models was statistically significant at 0.10 α -level, with p-values 

ranging from < 0.001 to 0.088 (Table 4).  I used the Hosmer & Lemeshow test, which 

 65



Table 3: Logistic regression parameter estimates and classification results for the probability of a site in the study area being a 
potential ferruginous hawk nesting or foraging habitat.  Standard errors of parameter coefficients are given in parentheses.  
C.P. = Cut Point is used in logistic regression to assign cases to an outcome group based on estimated probabilities.  
Classification accuracy is based on data not used for model building. 

Model C.P. % correctly classified (n) 
nest       random    overall 

Model logit =  

Nesting 0.47 83.3 44.4 63.9 4.150(2.571) - 0.004(0.002)ELEVATION + 1.913(1.142)PTREE + 
0.495(0.267)RICHNESS 

Perching 0.48 83.3 27.8 55.6 -0.511(0.730) + 1.338(0.859)MODE1 - 0.470(0.996)MODE2 + 
0.444(0.775)MODE3 

Nesting & 
Foraging 

0.49 83.3 38.9 61.1 3.419(3.607) - 0.004(0.002)ELEVATION + 4.705(2.191)PTREE  + 
3.421(1.386)MODE1 - 0.498(1.711)MODE2 + 1.451(1.061)MODE3 

Foraging 0.5 94.4 33.3 63.9 -0.223(0.671) + 0.985(0.812)MODE1 - 1.281(1.030)MODE2 + 
0.223(0.719)MODE3 

Home Range 0.48     56.3 43.8 50.0 -0.462(0.337) + 2.471(1.430)PTREE
 
 
 
Table 4: Evaluation parameters for the five models. 

Model Hosmer & Lemeshow test Likelihood Ratio test Corrected R2 
(Nagelkerke, 1991) 

KHAT 

 χ2 p-value     Model χ2 d.f. p-value  
Nesting 9.894       0.273 10.77 3 0.013 0.127 .278
Perching 0.000       1.000 6.55 3 0.088 0.083 .112
Nesting & Foraging 11.165       0.193 24.18 6 < 0.001 0.281 .278
Foraging 0.000       1.000 7.91 3 0.048 0.099 .278
Home Range 16.357       0.038 3.114 1 0.078 0.043 .000
 



falls into the category of deciles-of-risk statistics, to compare the actual number of cases 

in each decile to the number of cases predicted in the same decile by the logistic 

regression model.  This test produces a non-significant chi-square if there is no difference 

between the actual and the regression-generated number of cases in deciles, which is an 

indication of a useful model (Tabachnick and Fidell, 1996).  A non-significant chi-square 

was produced for all models, except the Home Range model, indicating that most of the 

nest sites were in the higher deciles-of-risk and most random sites in the lower ones 

(Table 4).  In addition to the likelihood ratio and the Hosmer & Lemeshow tests, change 

in deviance (-2 log likelihood) was used to evaluate the goodness-of-fit (results not 

shown).  In stepwise methods, the change in deviance tests the null hypothesis that the 

coefficients of the variables removed from the model are zero (SPSS, 1999).  In all 

models the changes in deviance were significant at 0.10 α-level.  

Although statistically reliable for all the models, prediction accuracy was modest, 

with the highest overall success rate of 63.9% for three out of five models (Table 3).  The 

Home Range model had the lowest overall classification accuracy of 50.0%.  Prediction 

success varied considerably between nest sites and random sites.  Four out of five models 

correctly predicted nest sites more than 80% of the time, where as the highest prediction 

accuracy for the random sites did not exceed 45% in any of the models and was as low as 

27.8% in the Perching model. 

Percentage of variation explained by the models was low in most cases (Table 3), 

indicating that variables other than vegetation characteristics used in these models could 

be more important in ferruginous hawk habitat selection.  KHAT values indicate that 

three out of five models were 27.8% better than a random model (Table 3).  The Perching 

model showed only an 11.2% improvement over a random case, and the Home Range 

model’s KHAT indicated no improvement from randomness. 
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Based on the order in which variables entered the models, ELEVATION, MODE, and 

percent of the area occupied by low density vegetation (PLOW) had the most predictive 

power of the seven variables used.  Among the four dummy variables representing the 

mode, the low density vegetation class was usually the only one that made a significant 

contribution to discrimination among nest sites and random sites.  Because of poor 

classification results and goodness of fit tests (Tables 3 and 4), the Perching and the 



Home Range models were not used in further analysis.  For the Nesting model, 

ELEVATION, PTREE, and RICHNESS were the best predictors of nesting habitat, 

indicating that hawks will likely nest at lower elevations and select areas that are in close 

proximity to forest and contain high diversity of vegetation density classes (Table 3).  In 

the Foraging model, MODE was the only reliable predictor of potential habitat.  Presence 

of areas with low and high density vegetation seemed to be important for foraging 

activities. ELEVATION, PLOW, PHIGH, and mode were the significant components of 

the Nesting & foraging model. 

 

Maps of Potential Habitat 

Maps of potential ferruginous hawk habitat were developed using the results of the 

Nesting, the Nesting & foraging, and the Foraging models (Table 3).  The statistical 

models calculated the probability that each pixel represented suitable ferruginous hawk 

habitat.  Two types of maps were created from model outputs:  five-class probability 

maps and binary maps identifying non-habitat and potential suitable and unsuitable 

habitat.  Non-habitat represented plant communities that were not used by the hawks for 

nesting or foraging (see Methods section).  Suitable habitat contained areas with a 

probability greater than or equal to the Cut Point value determined for each model (Table 

3).  Five-class probability map for the Nesting model revealed a continuous gradient of 

probability of occupancy in the study area and a surprising scarcity of high probability 

habitat (Figure 9).  Very few areas had a probability of occupancy higher than 0.8 and the 

majority of nesting sites were located in the areas of 0.4-0.8 probability(Figure 10).  This 

indicates that there might be other variables influencing hawk nest site selection that were 

not included in the analysis or that quality of nesting habitat is not as important as quality 

of foraging habitat.  

Since only a single nominal scale variable (MODE) was used to generate the 

Foraging model, the probability map derived from this model contained only four 

probability values (Figure 11).  The map showed the probability values of pixels being 

good ferruginous hawk foraging areas and revealed an interesting mosaic pattern where 

many of the areas with the high probability of 0.68 were adjacent to areas of low 
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Nesting Model

Figure 9: Five probability categories for ferruginous hawk habitat based on the 
Nesting model. 
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 Figure 10: Percent of nest sites and percent of habitat at five probability categories 
for the Nesting model probability map (Figure 9).  Category “other” includes areas 
that were masked out due to cloud cover. 
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Foraging Model 

Figure 11: Four values for predicted probability of a pixel being suitable 
ferruginous hawk foraging habitat.  Only four probability values were calculated 
because MODE was the only variable selected in the Foraging model. 
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probability of 0.18.  The majority of the high quality habitat was located in the northern 

and south-central parts of the study area.  A disproportionate number of the nests was 

located in pixels with the probability of 0.68 (Figure 12).  Only seven percent of habitat 

had that probability value, as opposed to thirty two percent of nest sites.  Forty four 

percent of the nest sites were found in pixels with the probability of 0.5. 

The predicted probability map based on the Nesting & foraging model revealed a 

wide range of habitat suitability conditions throughout the study area (Figure 13).  Most 

of the nest sites in the northern and southern parts of the study area were located within 

the 0.6-0.8 and 0.8-1.0 probability categories, while the nesting sites in the center and 

west were found within the 0.4-0.6 category.  As with the Foraging model probability 

map, the majority of high quality habitat was located in the northern and south-central 

regions of the map.  Overall, forty one percent of nest sites were located within pixels 

with probability between 0.8 and 1.0 (Figure 14), indicating that the combination of 

nesting and foraging characteristics can produce an occupancy probability superior to one 

created by either of the habitat types alone. 

In addition to probability maps derived from the three models, binary habitat maps 

were created using the Nesting & Foraging model and the overlay of the Nesting and the 

Foraging models using their respective Cut Point values from Table 3.  The Nesting & 

foraging binary map showed large continuous tracks of suitable nesting and foraging 

habitat in the western part of the study area, however the pattern appeared quite patchy in 

the east (Figure 15).  Two binary habitat maps were created using the Nesting and the 

Foraging models and then overlaid on top of each other to identify background, potential 

nesting habitat, potential foraging habitat, and potential nesting and foraging habitat 

(Figure 16).  This image was then compared with the Nesting & foraging image, which 

also modeled potential habitat based on both nesting and foraging criteria.  I expected 

that both of these image would show similar results. 

Comparison of Figures15 and 16 revealed slight differences in the amount of 

potential habitat available to the hawks.  Overall, the combined model showed less 

habitat than the 1.9 km2 model by approximately 100,000 hectares (Table 5).  The largest 

differences between the two maps existed along the Pony Express Trail as it follows the 
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 Figure 12: Percent of the nest sites and percent of habitat at four probability values 
for the Foraging model probability map (Figure 11).  Category “other” includes 
areas that were masked out due to cloud cover. 
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Figure 13: Five probability categories for ferrugi
habitat based on the Nesting & foraging model. 
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 Figure 14: Percent of nest sites and percent of habitat at five probability categories 
for the Nesting & foraging model probability map (Figure 13).  Category “other” 
includes areas that were masked out due to cloud cover. 
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Figure 15: Binary representation of ferruginous h
based on the Nesting & foraging model and using
from Table 3.   
A – areas between the Pony Express Trail and th
Stansbury Mountains; C – Stansbury Island (see 
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Nesting & foraging 
Model 
awk nesting and foraging habitat 
 the optimum Cut Point value 

e Onaqui Mountains; B – 
explanations in the text). 



Figure 16: Binary representation of ferruginous hawk nesting and foraging habitat 
based on the overlay of the Nesting and the Foraging binary models and using the 
optimum Cut Point values from Table 3 for each of the models. 
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Table 5: Availability of potential ferruginous hawk habitat in the study area by land ownership category based on the Nesting 
& foraging binary model (Figure 15) and the overlay of the Nesting and the Foraging binary models (Figure 16). 

Nesting & foraging Model

Ownership Category NESTING & FORAGING NESTING & 
FORAGING FORAGING NESTING

BLM 230593 167644 81517 95523
PRIVATE 36087 21041 9416 11430

STATE 21952 16338 7263 9528
MILITARY 79368 72209 8102 33526

FOREST SERVICE 920 73 1605 193
NATIVE AMERICAN 2879 2170 323 241

Total 371800 279474 108226 150442

Overlayed Nesting and Foraging models
Area (ha)



Onaqui Mountains, in the areas to the east and west of the Stansbury Mountains, and on 

most of Stansbury Island (A, B, and C, respectively, in Figure 15). 

Analysis of the Nesting & foraging binary map based on land ownership category 

indicated that 62% of the potential nesting and foraging habitat exists on BLM land 

(Figure 17).  Military reservations contain about 21% of the potential habitat, private 

lands about 10%, and state lands 6%.  Forest Service and Native American reservation 

lands each contained under 1% of the habitat.  On the combined map, there was a similar 

distribution of potential nesting and foraging habitat among the ownership categories 

(Figure 18).  In addition, BLM lands contained 75% of all potential foraging habitat and 

over 60% of potential nesting habitat.  Military reservations contained 7.5% and 22% of 

those categories, respectively.
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Figure 17: Distribution of potential ferruginous hawk nesting and foraging habitat 
by ownership category (in percentage of total potential habitat area).  Results based 
on the Nesting & foraging model shown in Figure 15. 
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Figure 18: Distribution of potential ferruginous hawk nesting and foraging habitat 
by ownership category (in percentage of habitat category).  Results based on the 
overlay of the Nesting and the Foraging binary models shown in Figure 16. 
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Discussion 

Variable Selection  

The results of this study demonstrate that various vegetation characteristics derived 

from satellite imagery data can be used to model potential ferruginous hawk nesting 

and/or foraging habitat.  Delineation of nesting vs. foraging habitat was based on 

different suites of variables (Table 3), and these differences are consistent with what is 

known of the species biology.  Selection of ELEVATION, RICHNESS, and PTREE 

variables for the Nesting model helped to delineate the ecotone between the forest and the 

shrubland, which is the most common location of nesting sites for the ferruginous hawk.  

This forest-shrubland ecotone is usually located at lower elevations of the study area 

where the juniper forest community is gradually replaced by the shrubland.  High 

heterogeneity of vegetation and presence of isolated juniper trees, which are often used as 

nesting substrates, characterize these areas.  These characteristics of nesting habitat 

explain the negative sign of the ELEVATION coefficient in the logistic regression model 

and positive coefficients for the RICHNESS and PTREE variables.   

For the Foraging model, MODE was the only variable selected in the analysis.  

Among the dummy variables, representing the dominance of one of the four vegetation 

density classes, MODE3 and the intercept were not good predictors of suitable habitat, 

because the 68% confidence interval of the coefficients included 0 (Table 4) (Wright, 

1995).  Low density vegetation (MODE1) had the positive coefficients in the model and  

MODE2, representing the dominance of medium density vegetation received a negative 

coefficients.  These results are consistent with published literature on ferruginous hawks 

themselves and their prey species (Taylor and Lay, 1944; Leichleitner, 1958; Wakeley, 

1978; Fagerstone et al., 1984).  The presence of open areas improves prey accessibility 

by the hawks.  On the other hand, prey abundance is highest in areas with tall vegetation 

cover that are represented in the study area by native grasslands and big sagebrush- and 

greasewood-dominated communities.  These areas most often fall into the high density 

vegetation category. 

The Nesting & foraging model contained a combination of variables that included 

characteristics of both nesting and foraging ferruginous hawk habitat.  Although the 
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variables in this model contributed significantly to discrimination between nest sites and 

random sites (p-value < 0.001), the model is difficult to interpret. Some variables 

included in the model described the similar habitat characteristics and, therefore, might 

have introduced the problem of multicollinearity.  Specifically, the model assigned a 

negative coefficient to PLOW and a positive coefficients to MODE1, although both of 

these variables are related to the abundance of low density vegetation in the sampling 

window.  Similar inconsistencies occurred between variables PHIGH and MODE3.  

According to Capen et al. (1986) such contradictions of signs are a common occurrence 

in stepwise procedures when model includes variables that are highly correlated.  

Multicollinearity could not be assessed for the MODE before the analysis since it was a 

nominal scale variable.  However, adjustments could have been made after the 

assessment of the resulting model.  Since MODE was entered first in the regression 

analysis and its coefficients make more sense ecologically, PLOW and PHIGH should 

probably have been removed from the model as redundant variables (Hosmer and 

Lemeshow, 1989).  Removal of these two variables would have also reduced the 

variable/case ratio of the model, potentially making the model more reliable (Wright, 

1995). 

 

Model Accuracy 

Four out of five models had high classification accuracy for nest sites in this study, 

indicating high correlation between ferruginous hawk habitat selection and vegetation 

characteristics in the study area.  The range of values for the nest site classification 

accuracy among the models suggested that areas of foraging habitat can be predicted with 

greater success than areas of nesting habitat. A prediction success of 94.4% was attained 

for the Foraging habitat model, however the Nesting habitat model had a lower accuracy 

of 83.3%.  The Nesting & foraging model, representing both types of habitat, had an 

intermediate prediction success of 88.9%. 

The overall success rate of the models was low (50-63.9%) and could be attributed to 

several factors associated with both the quality and detail of the available data and the 

nature of wildlife habitat analysis in general.  The largest contribution to poor overall 
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success rate came from the poor classification success of the random sites, which ranged 

from 27.8% for the Perching model to 44.4% for the Nesting model.  This can be 

partially explained if one considers that the random site category also includes potential 

nesting sites that would be classified the same as the existing nest sites producing lower 

classification accuracy for the random site category.  In addition, the variability of 

random sites was narrowed down significantly before the model building by elimination 

of areas that did not contain vegetation communities known to be used by the hawks (see 

Methods section).  Doing so allowed a narrower focus on the analysis of vegetation 

characteristics such as density rather than vegetation type, but also made discrimination 

between nesting sites and random sites difficult.  Hence, univariate analysis results show 

very few variables as significant discriminators of suitable and unsuitable habitat and 

those differences only appear as a result of interactions among the variables in the 

multivariate analysis. 

Another factor contributing to low overall classification accuracy could be the errors 

associated with the satellite image analysis from which the variables for this study were 

derived.  The overall classification accuracy of the vegetation layer used for model 

building was estimated at 85%.  Errors present in this layer could negatively affect the 

ability of the model to separate habitat characteristics associated with nest sites and 

random sites and  have a multiplicative effect on overall model accuracy.  This effect 

could potentially be eliminated with better image classifications, however some degree of 

error will always remain in analyses conducted at regional scales. 

 84

I used a square window to extract vegetation variables relevant to ferruginous hawk 

habitat selection.  Although I used an ecologically appropriate size for the window 

(Wakeley, 1978; McAnnis, 1990; Olendorff, 1993), the shape of the window did not 

correspond to findings by other studies on ferruginous hawk foraging activities.  It has 

been shown that the hawks select foraging habitat based on topographic and vegetative 

patterns and may switch foraging areas throughout the nesting season depending on 

foraging success (Wakeley, 1978; Woffinden and Murphy, 1983).  The resulting foraging 

areas are amoeboid, rather than square, and are temporally dynamic, rather than static.  

However there is not sufficient data to quantify these dynamics.  The selection of a 

square sampling window in this study simplified the variable extraction and potential 



habitat mapping procedures, but also introduced noise into the models and possibly 

contributed to low predictive power. 

The predictive power of the model could potentially be improved by including 

additional variables that are important to ferruginous hawk habitat selection.  The low 

percent of variation explained by the models (R2) indicates the existence of additional 

characteristics that are important for habitat selection.  Jasikoff (1982) identified several 

variables influencing quality of nesting and foraging habitat in his ferruginous hawk 

habitat suitability index model.  Average vegetation height, vegetation heterogeneity, and 

size of continuous cropland are important because they determine the availability and 

accessibility of prey.  Although heterogeneity was not directly measured when field data 

were collected for the image classification, an attempt was made to use information on 

diversity of life forms to create additional classes within the density classification.  These 

classes could not be accurately discriminated and the classification was limited to 

vegetation density.  Also, since this species is very sensitive to disturbance, inclusion of 

variables such as distance to roads would likely improve the power of the models.  

Unfortunately, I was not able to use this variable in my study, because the majority of the 

ferruginous hawk nests were found during surveys conducted along roads.  This would 

bias the true influence that the presence of roads has on nest site selection. 

Further studies should also include variables associated with landscape pattern, as 

well as landscape structure.  During the satellite image classification portion of this study, 

I noticed that different landscape patterns emerged at different scales (see Discussion 

section in Part I).  Namely, homogeneity of vegetation density classes was observed at 

larger scales, where as at smaller scales patterns appeared quite heterogeneous.  It is 

conceivable that patch size and/or patch configuration of areas with similar vegetation 

density influence ferruginous hawk foraging habitat selection or abundance of 

ferruginous hawk prey species in a given area.  Equally important might be the minimum 

size of suitable habitat patch.  Further studies should determine the minimum size of 

suitable habitat patch required for a pair to establish a nest and explore the relationship 

between patch quality and optimum patch size. 
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From the standpoint of ferruginous hawk ecology, the low classification accuracy of 

the Perching and the Home Range models could result from differences in hawk’s use of 



its home range.  The Perching model focused on an area around the nest that is usually 

used for nesting and perching, but not necessarily hunting.  In this respect, vegetation 

density characteristics might not be important in this area and might not differ 

significantly from an area around a random site.  The Home Range model had the lowest 

classification accuracy.  Besides the areas contained in the Perching model, whose 

vegetation characteristics proved to be unimportant for nesting or foraging, this model 

also included areas on the periphery of the home range that are rarely used (Wakeley, 

1978; McAnnis, 1990).  Because these two areas have characteristics similar to those of 

random sites, it might have overwhelmed any significant variables that were present in 

the model. 

 

Conclusions and Management Implications 

The results of this research are consistent with the findings from the ground-based 

studies on ferruginous hawk.  Collectively, the these studies and the current study 

provided important insights into habitat selection by these birds of prey.  Different factors 

influence the selection of nesting vs. foraging habitat.  The presence of nesting substrate, 

indirectly indicated in the models by the proximity to forested areas, heterogeneity of 

vegetation cover, and elevation, appeared to be the most important criterion for 

discriminating between nest sites and random sites.  However, discriminating between 

foraging habitat and random sites was based solely on vegetation density.  The presence 

of bare ground and low density vegetation appeared to be the most important components 

of foraging habitat, allowing easy prey access.  Presence of high density vegetation was 

also important, indicating areas selected by prey species because of good cover and, 

consequently, areas of high prey density. 

My results showed that not all parts of the ferruginous hawk home range are equally 

important for nesting and foraging activities (Tables 3 and 4).  While a good prediction of 

nesting habitat was possible by analysis of the area immediately around the nest site 

(areas extending to 125 meters), use of areas that extended from 300 to 700 meters away 

from the nest site resulted in the best models of foraging habitat.  The difference of 

100,000 ha in the amount of suitable nesting and foraging habitat identified by the two 
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binary models (Figures 15 and 16) was likely the result of the Nesting & foraging model 

incorporating areas other than the ones directly used by the hawks, thus introducing noise 

into the model. 

I found that large portions of the study area were suitable ferruginous hawk habitat.  

This was especially true for nesting habitat in the eastern part of the study area. Seventy 

four percent of potential habitat areas were included in the category of suitable habitat 

(Figure 16).  The apparent presence of such large amount of suitable nesting habitat could 

be explained by the fact that the variables used in this study did not directly measure 

presence or absence of nesting substrates.  Vegetation density per se did not appear to 

limit nesting habitat selection by ferruginous hawks and that the variables selected for the 

Nesting model were more closely related to topographic and vegetation community 

characteristics of areas where nest substrates could be present (Table 3).  Therefore, areas 

outlined on the binary maps as suitable nesting habitat probably represent suitable nesting 

habitat if natural nesting substrates are present.  Absence of such substrates would make 

these areas unsuitable for nesting. 

Suitable foraging habitat availability appeared to be more limiting than the nesting 

habitat.  Sixty eight percent of potential habitat was classified as suitable foraging habitat 

(Figure 16).  The maps also showed that suitable foraging and nesting habitats were not 

necessarily located in the same parts of the study area.  Analysis of the overlaid binary 

maps indicated that only 49% of potential habitat could be classified as suitable for both 

foraging and nesting activities.  This figure still represents an overestimate of available 

habitat in the classified portions of the study area, since human disturbance was not taken 

into account in the models.  Several studies in South and North Dakotas and Washington 

suggest that ferruginous hawks avoid human disturbance (Blair, 1978; Gaines, 1985; 

Bechard et al., 1990).  Distance of at least 0.7 km and as large as 3.3 km from human 

activities was found to be necessary to prevent negative impacts on ferruginous hawk 

nesting success.  Establishing buffers of reasonable distance around roads and areas of 

human habitation could make a more reasonable estimate of the amount of suitable 

habitat in the study area. 
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It is important to emphasize that the classes of suitable and unsuitable habitat 

generated by these models represent a continuous gradient rather than a categorical or  



binary outcome as it appears on the maps (This does not apply to Foraging model 

probability map, which contains only four probability values).  For each point (or pixel) 

on the landscape a logistic regression model generates  the pixel’s probability of being a 

suitable habitat.  Therefore, large categories of potential habitat that appear on the 

resulting maps do not all represent high quality or low quality, but a range of habitat 

conditions that can be improved by the land managers if certain lacking elements are 

added.  

Analysis of suitable habitat in relation to land ownership categories in the study area 

indicated that the BLM lands contained the majority of available habitat.  This further 

justifies the agency’s nesting surveys, which it has been conducting for several years, and  

incorporation of ferruginous hawk habitat protection in its land management guidelines. 

The importance of Military reservations should be emphasize, since a quarter of suitable 

nesting and foraging habitat is located on these lands.  These areas have limited access 

and, as of yet, no nesting surveys have been conducted there.  These areas could contain 

large numbers of nesting pairs that are not taken into account when population numbers 

are assessed.  In addition, large percentages of only nesting and only foraging habitat are 

also available there.  These areas could potentially be improved to include both types of 

habitat. 
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It is apparent that further research is needed to fully understand the relationships 

between ferruginous hawk nesting and foraging site selection and habitat characteristics. 

Because selected methodology for this study required the synchronization of aerial 

photography and satellite imagery acquisition dates, and because aerial photography for 

the study area could only be obtained for 1993, there was a five-year lag between the date 

of acquisition of digital data and the time when vegetation data were collected in the field 

for classification purposes.  This resulted in two uncertainties that need to be addressed 

with further study.  First, I was unable to incorporate areas that were invaded by 

cheatgrass following a fire into the analysis.  Consequently, I can only speculate on what 

effect cheatgrass would have on ferruginous hawk habitat quality. The invasion of B. 

tectorum in the study area as a result of fire has been recognized as having possible 

detrimental effects on the ferruginous hawks (Hoffman, 1991).  Based on the results, it 

can be speculated that the presence of B. tectorum could potentially decrease the value of 



habitat for ferruginous hawks due to its tendency to attain a much higher density than 

native vegetation.  During the vegetation field surveys for the image classification part of 

this study I found that plots dominated by B. tectorum all had vegetation densities above 

45%.  In addition, the homogeneous nature of the cover of this species could decrease its 

utility as hunting grounds for the hawks.  Presence of areas with low vegetation density 

consistently appeared as an important factor in models addressing foraging habitat. This 

analysis would be consistent with findings by Call (1979) who found that jackrabbits 

survive best in the habitats that include both shrubs and grasses and that the 

homogeneous grass fields were detrimental to their production. 

Second, temporal ferruginous hawk habitat analysis becomes difficult when one 

considers the time scale of land-use changes that are occurring throughout the ferruginous 

hawk range.  Since the imagery was acquired and, again, since vegetation surveys were 

conducted, dramatic change in vegetation cover have occurred in the study area due to 

fire and replacement of native communities by B. tectorum both on the Military 

reservations and elsewhere in the study area.  Since habitat suitability maps resulting 

from this study correspond only to a single year, the results are not necessarily relevant to 

current cover conditions and might have limited usefulness for long-term management.  

These arguments emphasize the need for further research.  This study should be 

considered as the first step towards creation of a complete, detailed habitat model for the 

ferruginous hawk that could be applied to various areas of its range.  I have demonstrated 

that satellite imagery and GIS layers can be successfully used for identifying important 

ferruginous hawk habitat characteristics and mapping suitable ferruginous hawk habitat at 

regional scales.  Now that the methodology has been developed, similar studies can be 

conducted much faster, allowing the analysis of short- and long-term trends in vegetation 

cover changes and habitat availability.  
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Appendix A: Procedures for image classification, including area-weighted method 

and maximum likelihood classifier. 

1) Run classification iteration; 

2) Run ‘pixcnt.eas’ in PCI EASI program (see template below).  Note that ‘pixcnt.eas’ 

file should be copied to User directory in the PCI directory at the hard drive.  

VIMAGE will collect statistics. 
‘pixcnt.eas’ 

! model for getting pixel counts for each statistical class 

local integer i 

FOR i = 1 TO a BY 1 

  FILE = “pathway to .pix file (in quotes)” 

  DBIC = b 

  FILV = “pathway to .pix file containing vector segment (in quotes)” 

  DBVS = c 

  OCOLUMN = “col”+F$STRING(i) 

  SAMPTYP = “HIST”+F$STRING(i) 

  UNDEFVAL = 0 

  RUN VIMAGE 

ENDFOR 

Where, 

a = highest number of spectral class created by classification; 

b = number of channel with classification results; 

c = number of the vector segment containing field data polygons. 

3) Run VECREP in PCI Xpace in the form of ‘Table.’  

4) Delete header in report in word processor. 

5) Import report to spreadsheet: 

a) delete unnecessary columns; 

b) sort by information class; 

c) calculate the sum of pixels for each spectral class within each information 

class; 

d) for each information class, divide the sums by the total number of plots. 
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6) In PCI Imageworks aggregate results in a new channel by putting all spectral classes 

that were unique to one information class in one category (0) and the rest (including 

spectral classes that did not contain any pixels) into another category (1). 

7) Create a bitmap using THR module in Xpace with all the pixels in category 1 turned 

on. 

8) Run the next iteration under the bitmap created in #7. Caution: make sure that you 

save all the channels containing classification iterations!  Aggregation channels can 

be cleared and used again once the bitmap is created. 

9) Repeat #2 through #8 until no spectral classes can be assigned to a unique 

information class or do not contain any pixels. 

10) Using the last iteration, assign confused spectral classes to information classes based 

on area-weighted method: i.e. at the end of step 5, compare areas occupied by a 

spectral class within each information class and assign the spectral class to the 

information class that shows the largest area. 

11) Create a model similar to the example below to combine all assigned spectral classes 

from all the classification iterations, including the last one, to information classes.  

Attention: do not include spectral classes of the last iteration that do not contain any 

pixels (they have not been assigned to any information class yet).  Run the model in 

PCI EASI program.  Note: the file cannot be run through Xpace MODEL module due 

to presence of ‘elseif’ statements.  You will get ‘syntax error’ message. 
ag_comb.eas 

IF (%13 = 5) or (%14 = 10) or (%15 = 2) or (%16 = 4) or (%16 = 13) or … or (%22 = 29) THEN 

 %24 = 3; 

elseif (%14 = 33) or (%14 =36) or (%14 =37) or (%14 = 38) or (%15 = 14) or (%15 = 22) or (%15 = 48) or 

(%16 = 37) or … or (%22 = 17) THEN 

 %24 = 1; 

elseif (%15 = 21) or (%15 = 43) or (%16 = 46) or (%16 = 48) or … or (%20 = 167) THEN 

 %24 = 2; 

elseif (%14 = 2) or (%18 = 6) or … or (%22 =40) THEN 

 %24 = 4; 

else 

 %24 = 0; 

ENDIF; 
 97



 98

12) Using the channel created in #11 (containing aggregated classification results), create 

signatures for all information classes using CSG module in Xpace. Same data layers 

should be used for signature generation as were used in classification iterations.   

13) From the last classification iteration, aggregate, in Imageworks, all spectral classes 

that did not contain any pixels and create a bitmap using procedures in #7. 

14) Classify pixels under the bitmap created in #13 in MLC module in Xpace using 

signatures generated in #12.   

15) Some pixels might not be assigned to an information class in #15 if they fall outside 

of the parameters specified by signatures.  Those pixels (NULL pixels) can be 

aggregated into spectral classes again (with classification procedures used in #1) and 

assigned to information classes based on their proximity to pixels that have already 

been assigned. 

16) Add results from the channels created in #11, #14, and #15 into a new channel using 

ARI module in Xpace.  This is your final classification result. 
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