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ABSTRACT 

 

Anthropogenic alterations to natural landscapes and the associated habitat fragmentation, 

habitat degradation, and climatic shifts threaten biodiversity from the local to the global 

scale. These perturbations disrupt historical patterns of gene flow causing reduced population 

connectivity, loss of genetic diversity, and increased risk of extinction.  A landscape that is 

permeable to animal movement counteracts local population fluctuations, increases genetic 

diversity, increases adaptive potential, and provides corridors for range shifts in response to 

climate change. Maintaining population connectivity is critical for the conservation of small 

populations isolated by fragmented landscapes. This strategy requires an accurate 

understanding of the landscape’s effect on gene flow and the processes, such as isolation by 

barrier (IBB), isolation by distance (IBD), or isolation by resistance (IBR), that are driving 

genetic isolation. 

 Although the mountain goat (Oreamnos americanus) is not globally threatened, 

mountain goats in Washington have declined by more than 50% since the 1950s. While past 

unsustainable harvest is likely the cause of this decline, many populations have not 

recovered, and former historical habitat remains unoccupied despite nearly 20 years of 

drastically reduced hunting pressure. Mountain goats in Washington exhibit lower genetic 

diversity than populations from the core of the species’ range, raising the possibility that 

genetic factors are limiting population recovery. Previous research revealed that 

transportation corridors impede mountain goat gene flow in Washington. In this study, I 

sought to understand the relationship between the mountain goat population in Washington 
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and the much larger and more genetically diverse mountain goat populations in southern 

British Columbia. Anthropogenic activities in the Fraser lowlands and Okanagan Valley in 

British Columbia potentially diminish or sever historical linkages between the Washington 

population and the much larger populations in the Coast Range, Selkirk Mountains, and 

Purcell Mountains in British Columbia. To this end, I collected 261 genetic samples from 

scat, tissue, bone, and hair to generate indices of genetic diversity and an accurate model of 

population connectivity.  

 In Chapter 1, I used methods based on both discrete and clinal population models to 

present alternative representations of genetic diversity. Discrete models identified four 

subpopulations separated by transportation corridors, urbanized areas, and agriculture. 

Genetic diversity was higher in British Columbia than Washington, illustrating the 

importance of maintaining gene flow from British Columbia into Washington. Clinal models 

of population structure found several regions of lower and higher diversity within the 

subpopulations identified by discrete models, refuting the assumption of IBB and panmixia 

within subpopulations. In Chapter 2, I examined the relative influence of IBB, IBD, and IBR 

on genetic isolation. I developed multiple hypotheses of IBR by systematically varying 

model parameters for four landscape features: distance to escape terrain, roads, landcover 

type, and elevation. I employed a causal modeling framework to create a multivariate model 

based on landscape features that met strict criteria for inclusion. This allows for a nonlinear 

relationship between landscape features and gene flow, accounts for interactions between 

variables, and minimizes the risk of spurious correlations. The optimized IBR model that I 

developed was highly correlated with genetic structure and better supported than the 
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alternative models of genetic isolation, IBB and IBD. The best supported model of IBR 

indicated that urban landcover, agricultural landcover, and freeways present high resistance 

to mountain goat gene flow, while low elevation valleys resist gene flow to a lesser degree. I 

used this model of IBR to model gene flow across the study area and identify locations where 

population connectivity is compromised. 
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PREFACE 

 

The mountain goat (Oreamnos americanus) is listed as a species of “least concern” (IUCN 

2012) for global extinction because of the species’ wide distribution, large population, 

regulated harvest, and minimal habitat loss and fragmentation. This global security is largely 

due to the inaccessible nature of the remote alpine environment mountain goats are 

specialized to inhabit (Festa-Bianchet 2008). Despite the stable global population trend, 

mountain goats are sensitive to overharvest (Hamel et al. 2006, Rice and Gay 2010) and 

modern land use changes do threaten some local populations. In particular, the Washington 

mountain goat population may be at risk due to historical overharvest coupled with 

anthropogenic development in Washington (Shirk 2009, Shirk et al. 2010). Population 

connectivity is a key factor affecting a population’s viability and resilience when faced with 

habitat fragmentation, habitat degradation, and climate change. Mountain goats are capable 

of dispersing long distances, including movements through unsuitable habitat, suggesting that 

mountain goat conservation should take population connectivity into account (Festa-Bianchet 

and Côté 2008). Wildlife populations are not defined by political boundaries, and research 

that transcends regional and national borders sets the framework for conservation of 

landscape and population connectivity rather than conservation of populations by 

jurisdiction.   

 The development of groups that bridge political and agency/organizational 

boundaries, such as the Washington Wildlife Habitat Working Group (WHCWG), highlights 

the growing emphasis on research with broader implications for the conservation of 

ecosystems and biodiversity. Mountain goats were selected as a focal species by the 
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WHCWG as a species with habitat needs representative of wildlife in the subalpine forests 

and alpine vegetation classes (WHCWG 2010). Modeling of landscape connectivity by the 

WHCWG for mountain goats was based on an empirical study by Shirk et al. (2010) within 

the Cascade Range of Washington. Analysis by the WHCWG includes substantial portions of 

surrounding states and the province of British Columbia. While the WHCWG analysis results 

in a more holistic model of mountain goat population connectivity, no data outside of 

Washington were available to explicitly test the predictions of Shirk’s model in the extended 

area.   

 Though mountain goats are not at risk of global extinction, the loss of this species 

from the montane ecosystem of Washington would have local consequences. Mountain goats 

play a role in shaping alpine plant communities (Weisberg and Bugmann 2003) and serve as 

prey for large predators within the state including mountain lions, grizzly bears, grey wolves, 

wolverines, and golden eagles (Festa-Bianchet and Côté 2008). The mountain goat also has 

great cultural significance to Native American Tribes in Washington and is an icon of the 

rugged Cascade high country for outdoor and wildlife enthusiasts. In addition to the local 

ecological value of mountain goats, research by Hampe and Petit (2005) found that 

populations residing at the low-latitude margins of species’ distribution ranges, such as the 

mountain goat population in Washington, may be disproportionately important for the long-

term conservation of a species’ genetic diversity, phylogenetic history, and evolutionary 

potential.  

 With this research I bridge the gap between Shirk’s analysis of the mountain goat 

population in Washington and the landscape connectivity model created by the WHCWG by 



3 
 

collecting genetic samples from southern British Columbia. The expanded genetic sampling 

will provide the data necessary to identify a model of landscape resistance that accounts for 

population connectivity beyond the international border between Washington and Canada. In 

Chapter 1, I evaluated genetic structure based on discrete populations in order to identify 

potential barriers to gene flow. I also generated population-based and cline-based indices of 

genetic diversity, providing alternative approaches to quantify genetic diversity. In Chapter 2, 

I examined the effects of different landscape features on population connectivity relative to 

alternative mechanisms of genetic isolation. I then modeled gene flow across the study area 

based on the most supported model of genetic isolation. Collectively, this thesis offers a 

perspective of mountain goat genetic diversity and population connectivity that is based on 

empirical data and can be applied by wildlife managers to improve population viability.  
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CHAPTER 1 

 

Mountain Goat Genetic Structure and Molecular Diversity in Washington and 

Southern British Columbia 

 

INTRODUCTION 

Anthropogenic activities and the associated loss and fragmentation of natural habitat are key 

factors driving the range reduction and population extinction observed in many mammalian 

species worldwide (Lande 1998a, Ceballos and Ehrlich 2002). Small populations isolated by 

a fragmented landscape are more prone to extinction from stochastic environmental events, 

Allee effects (Lande 1998a), inbreeding depression (Crnokrak and Roff 1999, Keller and 

Waller 2002, Mainguy et al. 2009, Dunn et al. 2011), and genetic drift, reducing population 

viability (Keyghobadi 2007). Inbreeding depression and genetic drift contribute to the loss of 

allelic diversity, reduce evolutionary potential (Lande 1995, Willi et al. 2006), and increase 

the risk of random fixation of deleterious alleles (Lynch et al. 1995, Lande 1998b). Reduced 

fitness resulting from these genetic processes may cause further population decline, 

increasing vulnerability to stochastic events and the loss of genetic diversity, feeding into a 

positive feedback loop coined the extinction vortex (Gilpin and Soulé 1986, Fagan and 

Holmes 2006, Blomqvist et al. 2010, Palomares et al. 2012). Thus, the implications of habitat 

fragmentation documented by Ceballos and Ehrlich (2002) and Keyghobadi (2007) may 

serve as a harbinger of species extinction. Conversely, a landscape that supports the 

movement of organisms among populations moderates local population fluctuations by 
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facilitating re-occupancy of vacant habitat following local extinctions of small populations 

caused by stochastic factors and by allowing for gene flow among populations, counteracting 

the negative effects inbreeding and genetic drift (Crooks and Sanjayan 2006).  

 An understanding of genetic structure and genetic diversity is necessary to evaluate 

the extent of population isolation and the subsequent loss of genetic diversity. This analysis 

requires that the researcher is able to define boundaries around discrete subpopulations, 

either on the basis of obvious geographic features or by using molecular methods to assign 

individuals to subpopulations. Indices of genetic diversity can then be calculated for each 

subpopulation. This approach assumes isolation by barrier (IBB) between subpopulation and 

panmixia within subpopulations. This scenario fails to account for alternative mechanisms of 

isolation, such as isolation by distance (IBD) and isolation by resistance (IBR), that are more 

appropriate for continuously or patchily distributed species that display clinal genetic 

structure (Cushman et al. 2006). IBD predicts that genetic distance will increase with 

geographic distance (Wright 1943) and IBR predicts that genetic distance increases at a rate 

governed by geographic distance and resistance to gene flow from a heterogeneous landscape 

(Cushman et al. 2006, McRae 2006). Identifying the correct mechanism of genetic isolation 

is imperative to determine what features in the landscape may be driving genetic isolation. 

This information can inform decisions made by wildlife managers when assessing the role of 

genetic factors in population viability. 

 In this study, I examined the genetic structure and diversity of mountain goat 

populations from the southern periphery of the species’ range in Washington to the southern 

core of the species’ range in British Columbia (Figure 1). In 1961, the Washington 
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Department of Fish and Wildlife (WDFW) estimated the mountain goat population in the 

Washington Cascades to be 8,500, excluding Mount Rainier National Park and Yakama 

Indian Nation lands. More recent surveys by WDFW estimate the population to be around 

3,700, including Mount Rainier National Park and Yakama Indian Nation lands (Rice and 

Gay 2010). Mountain goat populations can be sensitive to overharvest, and this decline is 

likely the result of overhunting from the 1950s through the 1980s (Hamel et al. 2006, Rice 

and Gay 2010). Despite drastically reduced hunting pressure since the 1990s, many 

subpopulations in the Washington Cascades have not recovered and some historical habitat 

remains unoccupied (C. Rice, WDFW, unpublished).  

 The lack of recovery for many of these subpopulations may result from the way that 

the mountain goat population in Washington is structured. Mountain goats occupy the alpine 

and sub-alpine habitat that is distributed in discrete patches of variable size across the state. 

This patchy network of suitable habitat may separate the population into subpopulations that 

comprise a metapopulation, a set of subpopulations linked by migration (Hanksi and Gilpin 

1997). Although alpine habitat throughout most of the Washington Cascades is largely intact 

(approximately 42% of the state is under federal or state ownership), the intervening low 

elevation habitat has undergone varying degrees of anthropogenic alterations. The 

development of transportation corridors and the associated recreational areas, ski resorts, 

agriculture, and residential areas, coupled with timber harvest and the development of forest 

service roads, all potentially contribute to the isolation of mountain goat subpopulations 

within Washington and British Columbia.  
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 Indeed, previous work by Shirk (2009) found that migration across Interstate 90 (I-

90) is quite limited. Mountain goat populations at the periphery of the species’ range exhibit 

lower genetic diversity than populations from the core of the species’ range (Shafer 2011) 

and Mainguy et al. (2009) have recently demonstrated that reduced genetic diversity is 

correlated with lower juvenile survivorship in the Caw Ridge, Alberta mountain goat 

population. Lower indices of genetic diversity were observed in the two Washington 

subpopulations (Shirk 2009), and while this may be attributed to the location of these 

subpopulations at the southern periphery or the species’ range, any landscape factors that 

additionally isolate these subpopulations from core populations in British Columbia may 

further erode genetic diversity and limit the ability of the Washington population to recover 

from historical overharvest.  

 I evaluated the genetic structure of mountain goat populations in Washington and 

southern British Columbia using both discrete and clinal methods. This allowed me to 

consider genetic diversity in terms of discrete subpopulations where IBB is the mechanism of 

isolation and to consider genetic diversity as a gradient dictated by IBD or IBR. These 

alternative perspectives may provide a better understanding of the relationship between 

mountain goat populations in Washington and southern British Columbia and may also shed 

light on the underlying mechanisms of population isolation. This analysis may help identify 

existing and historical linkages, information that could guide efforts to preserve and improve 

existing linkages, restore historical linkages, and translocate individuals to artificially 

facilitate historical gene flow.  
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Historical translocations 

Mountain goat translocations have been utilized in both the United States and British 

Columbia to establish non-native populations and augment native populations. In the 1920s, 

4 individuals from the Selkirk Range in British Columbia (Hatter and Blower 1996) and 8 

individuals from the Chugach Range in Alaska were translocated to the Olympic peninsula 

prior to the establishment of Olympic National Park (ONP). By the 1980s, the Olympic 

population had increased to 1,200 individuals and the National Park Service (NPS) launched 

a program to reduce the size of this non-native mountain goat population in the park. As part 

of this effort, 130 animals were translocated from ONP to 15 sites within the Cascade Range 

in an effort to augment declining native populations (Houston et al. 1991). Near some of 

these release sites in the southern Cascades, Shirk (2009) found genetic evidence that at least 

some of these translocated animals survived and interbred with native Cascade animals.  

 Translocations within British Columbia were used to re-establish locally extirpated 

populations or augment existing populations. Four translocations took place within the study 

area in British Columbia (Hatter and Blower 1996, Mountain Goat Management Team 2010). 

Three translocations took place within the Okanagan region: 5 individuals were moved from 

Penticton Creek to Shorts Creek (~70 km), 3 individuals were moved from Penticton Creek 

to Tulameen Mountain (~110 km), and 8 individuals were moved from Penticton Creek to 

Snass Mountain (~100 km). The translocation to Shorts Creek was unsuccessful, low 

numbers are reported at Tulameen Mountain, and the status of the Snass Mountain 

translocation is unknown (Mountain Goat Management Team 2010). The fourth translocation 

was within the Kootenay region where 20 animals were moved from Toby Creek to the 
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Slocan Valley (~120 km). This translocation was successful (Mountain Goat Management 

Team 2010). Since source populations were geographically close to the translocation 

location, the ability to identify descendents of translocated animals in British Columbia is 

limited. Although these short distance translocations may confound genetic analysis at the 

local scale, patterns across the entire study area should not be affected. 

 

METHODS 

Study area 

The study area encompasses 151, 760 km2 and extends 930 km east to west across southern 

British Columbia and 760 km north to south from Mount Meager in the Coast Range to 

Mount Adams in the Cascade Range (Figure 1). The landscape includes four mountain 

ranges dominated by jagged peaks, serrated ridges, and glaciers that give way to subalpine 

meadows, montane forests, and glacial valleys. Elevation ranges from sea level to nearly 

4,400 m with deep, heavily forested valleys dissecting rugged alpine terrain (Scurlock 2011). 

The Fraser Valley forms the boundary between the Coast Range to the northwest and the 

Cascade Range to the south. The expansive Okanagan Valley separates the Selkirk 

Mountains and Purcell Mountains of southeastern British Columbia from the Coast Range to 

the west and the Cascade Range to the south.  Although much of the study area is remote and 

inaccessible, the region is not immune from anthropogenic influence. I-90 cuts across the 

Washington Cascades east -west and the Coquihalla Highway cuts across British Columbia 

north- south. Several secondary highways and numerous other roads also transect the study 

area. Developed areas and agricultural lands are present, particularly at lower elevations and 
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along transportation corridors. At higher elevations, ski resorts and residential areas have 

developed near major passes. Finally, the montane forests surrounding the alpine have been 

subject to timber harvest.  

 

Sample collection 

Mountain goats are sensitive to capture and exhibit higher rates of kid abandonment and 

delayed primiparity with handling (Festa-Bianchet and Côté 2008). In addition, acquiring 

tissue samples from an alpine specialist requires considerable manpower, supplies, and 

support. The development of noninvasive genetic sampling (NGS) has enabled the collection 

of critical genetic data while avoiding the negative effects of capture stress (Waits and 

Paetkau 2005). Hair is not a reliable source of mountain goat DNA because shed hair 

produces low genotyping success rates (Gagneux et al. 1997, Poole and Reynolds 2009).  

 For these reasons, I used a protocol based on the methods developed by Rutledge et 

al. (2009) to obtain DNA from scat. Fecal samples are prone to genotyping errors because of 

the low quantity and quality of target DNA obtained (Taberlet et al. 1996). Rutledge et al. 

(2009) were able to improve amplification success by increasing the amount of high quality 

target DNA extracted from the sample through swabbing the exterior of fresh scat samples in 

the field. Fresh pellets on a dry surface were selectively sampled because DNA does degrade 

quickly when exposed to the environment. Brinkman et al. (2009) found that exposure of 

deer scat samples to rainfall significantly increases DNA degradation and Poole and 

Reynolds (2009) found that mountain goat pellets collected on melting snowfields in summer 
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had lower amplification success, likely due to moisture exposure. In addition, UV exposure 

degrades DNA (Friedberg 2003).  

 Pellets were collected in 2010 and 2011 during the months of July, August, and 

September when mountain goat habitat is most accessible by foot, rainfall events are less 

frequent, and snow presence is at a minimum. Pellets were swabbed with a cotton-tipped 

applicator moistened with DET salt solution (20% dimethyl sulfoxide, 0.25 M sodium-

ethylenediaminetetraacetic acid [EDTA], 100 mM TRIS [tris (hydroxymethyl) 

aminomethane], pH 7.5, and saturated NaCl; Seutin et al. [1991]). Pellets, or areas of a pellet, 

that appear to have mucous matter present were assumed to have more contact with the 

digestive tract and were selectively swabbed. Care was taken to avoid sampling inside the 

pellet because samples taken from the interior of scat have been found to have lower success 

rates in other species (Stenglein et al. 2010). The applicator tip was then broken off into a 2 

ml vial containing 99% alcohol to preserve the sample.  

 

Genotyping 

Genotyping was performed by the Washington Department of Fish and Wildlife (WDFW) 

molecular genetics lab in Olympia, Washington from November 2011 to January 2012. 

Genomic DNA was extracted from scat material collected on cotton swabs stored in ethanol. 

Prior to extraction, ethanol was evaporated from the vial and initial extraction steps were 

conducted in the collection vial to maximize DNA collection. Extraction protocol followed 

the standard recommendations for the commercial single tube silica-membrane kits 

DNeasy® blood and tissue DNA isolation kit (Qiagen), except that lysis buffer volumes for 
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scat samples were doubled to cover the entire swab in liquid. DNA was eluted in 180µl and 

then concentrated to a final volume of 90µl. Polymerase chain reaction (PCR) was used to 

amplify 19 previously characterized polymorphic microsatellite markers (Mainguy et al. 

2005) using six uni- or multiplex  reactions  (multiplex Oam-A [BM121, BM4107, BM6444, 

TGLA122], Oam-B [OarCP26, OarHH35, RT27], Oam-C [BM1818, BM4630, RT9, 

URB038], Oam-D [BM203, BMC1009, HUJ616, McM527], Oam-E [BM1255, BM4513, 

HEL10] and TGLA10. PCR products were visualized using an ABI 3730 capillary sequencer 

(Applied Biosystems) and sized using the GeneScan 500-Liz size standard (Applied 

Biosystems) and GeneMapper 3.7 (Applied Biosystems). 

 I used GENEPOP 4.1.3 to detect deviations from Hardy-Weinberg equilibrium (HWE) 

and linkage equilibrium (LE) (Raymond and Rousset 1995). The complete enumeration 

method was used for loci with fewer than four alleles (Louis and Dempster 1987) and the 

Markov chain method was used for loci with more than four alleles (Guo and Thompson 

1992). Significance values were adjusted with the Bonferroni correction for multiple 

comparisons (Rice 1989). MICRO-CHECKER 2.2.3 (Van Oosterhout et al. 2004) was used to 

screen for genotyping errors such as allelic dropout, null alleles, and stuttering that might 

obscure the presence of heterozygotes. I used GENALEX 6.4 to identify matches and remove 

samples that were potentially from the same individual.  

 

Population Structure 

Three different methods were used to evaluate multiple mechanisms of genetic isolation. The 

first two methods evaluated discrete population structure and the third method evaluated 
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clinal population structure. First, I used STRUCTURE 2.3.3 (Pritchard et al. 2000) without 

location information to identify ONP and ONP-Cascade admixed individuals without the 

influence of the spatial location of the sample. Then, I used GENELAND 4.0.2 (Guillot et al. 

2005), a program that uses sample location information to inform the population model.  

Finally, a third method was used in case IBB was not the driving force of genetic isolation. In 

this case, I assessed clinal population structure with spatial principle component analysis 

(sPCA) using a method developed by Jombart (2008) that takes genetic variance between 

samples and spatial autocorrelation into account, allowing for the influence of IBD and IBR.  

 I used STRUCTURE 2.3.3 (Pritchard et al. 2000) to determine the most likely number of 

populations present, assign individuals to populations, and identify descendents from ONP 

mountain goats that were successfully translocated into the Cascades during the 1980s. 

STRUCTURE uses Bayesian inference to determine the most likely number of populations 

sampled and assigns individuals to populations by minimizing Hardy-Weinberg 

disequilibrium and linkage disequilibrium within populations. Markov chain Monte Carlo 

(MCMC) simulation is then used to estimate the posterior probability that the data fit the 

hypothesis of K populations P(X/K). I used the admixture model with correlated allele 

frequencies (100,000 step burn-in followed by 106 steps of data collection) to evaluate values 

of K ranging from 1 to 10. Five independent runs were performed for each value of K. I used 

the second order rate of change (ΔK) in probability as described by Evanno et al. (2005) to 

determine the best supported value of K.  

 The admixture model allows individuals to have mixed ancestry and calculates the 

fraction of an individual’s genome derived from each subpopulation (Q) (Falush et al. 2003).  
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This enabled me to evaluate an individual’s probability of ONP ancestry. While many 

individuals in the Cascades have some probability of ONP ancestry, samples with a low 

probability of ONP ancestry are not likely to bias results. In order to retain sufficient samples 

for analysis, I only classified individuals with Q greater than 0.25 for the ONP population to 

be “ONP-Cascade admixed” individuals. I removed all ONP and ONP-Cascade admixed 

individuals from the analysis and ran STRUCTURE again using the same parameters listed 

previously. This reduced the effects of historical translocations on modeled population 

structure in the study area. I also reran STRUCTURE on subpopulations that I suspected had 

substructure based on deviation from HWE and LE, the presence of null alleles, and the 

presence of stuttering within a subpopulation.  

 I used GENELAND 4.0.2 (Guillot et al. 2005) to introduce location data into the 

analysis. GENELAND also uses Bayesian inference with MCMC simulation to estimate the 

number of panmictic groups. GENELAND makes the assumption that some spatial dependence 

is present among samples and allows spatial coordinates to inform prior distribution. 

GENELAND identifies genetic discontinuities by minimizing Hardy-Weinberg disequilibrium 

and linkage disequilibrium. All ONP and ONP-Cascade admixed samples were excluded 

from this analysis. I used the uncorrelated allele frequency model because it was found to 

outperform the correlated allele frequency model when estimating the number of populations 

(K) (Guillot et al. 2005). I evaluated the support for 1 to 10 populations with 106 iterations 

and a burn-in of 1,000. Every 100th observation was sampled to reduce sample 

autocorrelation. After estimating the value of K, I simulated fixed K using the above 

parameters to determine population membership and generate posterior probability maps.  
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 Finally, I used sPCA to assess clinal population structure and avoid assigning 

individuals to discrete subpopulations. This method makes no assumption of HWE or LE 

(Jombart et al. 2008) and ordinates genotypes by summarizing multivariate genetic data into 

a few uncorrelated components that maximize variance among genotypes, accounting for 

both variance between individuals and spatial autocorrelation. This reveals two types of 

patterns defined as global structure, represented by positive autocorrelation, and local 

structure, represented by negative autocorrelation. Global structure occurs when individuals 

are more genetically similar to immediate neighbors than expected in a random spatial 

distribution, as would be expected in the presence of a genetic cline, and local structure 

occurs when individuals are more genetically dissimilar to immediate neighbors than 

expected in random spatial distribution, as would be expected when individuals from the 

same genetic pool are selected to avoid each other (Jombart et al. 2008).  The R package 

Adegenet was used to implement sPCA (Jombart 2008). Given that few long-distance 

dispersal events exceed 60 km (Festa-Bianchet and Côté 2008) and to keep methods 

comparable to previous analysis (Shirk 2009), samples were connected if they were between 

0 and 60 km using the neighborhood by distance connection network.  Significance of the 

global and local scores was tested with Monte Carlo tests executed in Adegenet.  

 

Genetic diversity and F-statistics 

I used GENALEX 6.4 (Peakall and Smouse 2006) to estimate observed heterozygosity (Ho), 

expected heterozygosity (He), the fixation index (FIS), and genetic differentiation (FST) for the 

discrete subpopulations identified by STRUCTURE and GENELAND. I tested the significance of 
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FST values with 9,999 random permutations of the dataset. I used FSTAT 2.9.3.2 (Goudet et al. 

2002) to estimate allelic richness (Ar), which is adjusted for sample size. 

  I used the software package sGD (Shirk and Cushman 2011) to detect fine-scale 

spatial heterogeneity in genetic diversity across the study area. This tool uses microsatellite 

genotypes and a cost-distance matrix to group individuals into genetic neighborhoods 

inferred from a correlogram depicting the autocorrelation of genotypes across a range of 

distance classes. I used a cost-distance matrix based on Euclidean distance between all 

individuals and a genetic neighborhood diameter defined by the largest cost-weighted 

distance class that is positively correlated with genetic distance and significant (alpha=0.05). 

I set the minimum population size to 10 individuals to minimize sampling error. This 

approach does not assume discretely bound, panmictic subpopulations and is more 

appropriate for species that form clinal populations (Chambers 1995, Shirk and Cushman 

2011).   

 

Migration 

I examined migration rates between populations with BAYESASS, a software package that 

employs a Bayesian approach and MCMC techniques to indirectly estimate contemporary 

migration rates with multilocus genotypes and population genetic models (Wilson and 

Rannala 2003). This model assumes LE but allows deviations from HWE (Faubet et al. 

2007).  I used a burn-in period of 106 iterations followed by 2x106 iterations and a sample 

frequency of 1 in 2,000. I set the delta value for allele frequency, migration rate, and 

inbreeding to 0.22, 0.07, and 0.25 respectively, such that the accepted number of proposed 
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changes was 20-40% of the total number of iterations, the proposed range to optimize mixing 

of the chain (Wilson and Rannala 2003).  

 

RESULTS 

Sample statistics 

In total 250 scat samples were collected for this analysis: 173 scat samples from 2010, 72 

scat samples from 2011, 1 scat sample from preliminary work conducted in 2007, and 4 scat 

samples from field work conducted in 2008. In addition, 2 hair samples with follicles 

attached, 1 tissue sample, and 1 bone sample were opportunistically collected. I obtained 

DNA from 24 genetic samples from the Selkirk and Purcell mountains that were acquired by 

Shafer et al. (2011) as tissue samples from legally permitted hunters from 2005 to 2007. I 

obtained DNA from 16 genetic samples from Mount Meager in the Coast Rang of British 

Columbia that were acquired by Poole and Reynolds (2009) in 2009 from scat and hair 

(Table 1). I used 159 genotypes from genetic samples (100 tissue samples, 58 blood samples 

and 1 bone sample collected from 2003 to 2008 in collaboration with the NPS and WDFW) 

obtained by Shirk (2009) from the Cascade Range and ONP in Washington.  

 Of the 250 scat samples, I removed 101 scat samples collected in 2010 and 26 scat 

samples collected in 2011 from the analysis because these genotypes were less than 63% 

complete (amplified at less than 12 of 19 loci). I retained 42% of the scat samples collected 

in 2010 and 64% of the scat samples collected in 2011. I removed 40 additional samples 

from the analysis that were potentially from the same individual. In addition to the samples 

provided by (Shirk 2009), Poole and Reynolds (2009), and Shafer et al. (2011),  I retained 83 
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scat samples, 2 hair samples, 1 tissue sample, and 1 bone sample from the preliminary field 

work in 2007 and 2008 and the 2010 and 2011 field seasons (Table 1). On average, the 87 

samples collected for this study were 92% complete, the 24 genetic samples collected by 

Shafer et al. (2011) from the Selkirk and Purcell mountains were 92% complete, the 16 

genetic samples collected by Poole and Reynolds (2009) from Mount Meager were 98% 

complete, and the 159 genotypes collected by Shirk (2009) from the Cascades and ONP were 

98% complete. I excluded URB038 from the analysis because it was monomorphic, and I 

excluded McM527 from the analysis because all the samples from the Selkirk and Purcell 

mountains failed to amplify at this locus. I retained the remaining 17 polymorphic loci for the 

analysis.  

 Significant departure from LE was detected in 76 of 136 pairwise comparisons of loci 

and significant departure from HWE was observed in 16 of 17 loci when all samples were 

considered a single population. The Wahlund effect (Wahlund 1928) predicts that 

populations will deviate from HWE and LE when the population is structured. Once I 

divided the data to the highest level of substructure detected by STRUCTURE (Appendix 1 and 

2), I found no significant departure from LE or HWE after Bonferroni correction for multiple 

comparisons. I did not find any evidence of allelic dropout or stuttering with MICRO-

CHECKER, but nine loci (BM203, BM1225, BM1818, BM4107, BM4513, BMC1009, HEL10, 

OarCP26, and RT9) did show significant homozygote excess, suggesting that null alleles 

may be present at these loci.  Each of these loci only showed significant homozygote excess 

in one or two of the nine subpopulations detected by STRUCTURE. Since the presence of null 

alleles was not systematic, I retained all nine of these loci in the analysis.  
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Population genetic structure  

When considering all samples in the STRUCTURE assignment test, the ΔK value peaks at K=6 

(Figure 2a). The CR, SC, and ONP all cluster distinctly, with evidence of ONP admixture in 

the SC (Figure 2c). The SM and PM cluster together with six samples from the northeast 

region of the OK (Figure 2c). Two clusters occur within the OK and NC region, but there is 

no clear distinction between the two regions. When the ONP and ONP-Cascade admixed 

samples are removed from the analysis, the highest peak of support is observed at K=4 

(Figure 2a) represented by the CR, SM/PM, OK/NC (the latter now only showing evidence 

for one subpopulation), and the SC. There is evidence for the presence of admixed 

individuals in the CR, OK/NC, and SC (Figure 3d) but little evidence of admixture in the 

SM/PM. Two individuals in the OK/NC were identified as SM/PM admixed individuals 

(Figure 2d), but both were determined to be ONP-Cascade admixed because they were 

approximately 50 km from ONP translocation sites (the Selkirk Mountains were one of the 

source populations for the original translocations to ONP) and a considerable distance from 

the SM/PM (350 km). I removed these two samples from further analysis. I looked for the 

presence of substructure by evaluating each subpopulation in STRUCTURE and I found 

evidence of substructure in both the SM/PM and OK/NC subpopulations (Appendix 1).  

 The GENELAND analysis also supports the presence of four subpopulations when the 

ONP and ONP-Cascade individuals are removed from analysis because K=4 is the most 

frequent value along the simulation chain (Figure 2b). GENELAND also detects genetic 

discontinuities, as suggested by the zones of probability of membership for each 

subpopulation, that agree with the STRUCTURE subpopulation assignments when K=4 (Figure 
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4). The sharpest decline in probability of membership occurs between the OK/NC and SC. 

The delineation between the OK/NC and SM/PM is also fairly abrupt, but the change in 

probability of membership is more gradual between the CR and OK/NC (Figure 4). 

 I detected significant global structure across the study area with sPCA analysis 

(P<0.0001) indicating positive spatial autocorrelation of genotypes. I did not find significant 

local population structure (P=0.18) indicating negative autocorrelation of genotypes was not 

present. For visualization purposes, I displayed the first three global axes that contributed 

significantly to genetic structure (Figure 5a). This revealed a genetic cline from the OK/NC 

to the SC (represented by the first global score), differentiation of the SM/PM from the three 

other subpopulations (represented by the second global score), and a genetic cline from the 

CR to the OK/NC (represented by the third global score) (Figure 5b).  

 

Genetic diversity 

Genetic diversity varied across the discrete populations identified by STRUCTURE and 

GENELAND (Table 2). The CR exhibited high genetic diversity with the highest Ar (4.22) and 

Ho (0.53) values and the lowest FIS value (0.07). The SM/PM and OK/NC subpopulations 

exhibited moderate genetic diversity with high Ar (3.61 and 3.41) and Ho (0.38 and 0.38) 

values. Both of these subpopulations had surprisingly high FIS values (0.24 and 0.16). The 

SC and ONP subpopulations exhibited low genetic diversity with the lowest Ar (2.82 and 

2.48) and Ho (0.35 and 0.36) values and moderate FIS values (0.10 and 0.11).  

 The sGD analysis of genetic diversity revealed fine-scale spatial heterogeneity in 

genetic diversity across the study area. The genetic neighborhood diameter where cost-
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weighted distance was no longer positively correlated with genetic distance was 165 km. The 

CR exhibited high genetic diversity across the region (Figures 6 and 9) and generally low FIS, 

with areas of slightly higher FIS along the southern extent of the region (Figure 8). The 

SM/PM exhibited moderately high Ar across the region (Figure 9), but Ho was variable with 

moderately high values in the SM and average values in the PM (Figure 6). FIS was also 

variable for the SM/PM region with average values in the SM and moderately high values in 

the PM (Figure 8). The OK region exhibited average to low Ar (Figure 9), uniformly low Ho 

(Figure 6), and uniformly high FIS (Figure 8). The NC exhibited moderately high Ar in the 

center of the region, average Ar towards the southern extent of the region, and low Ar around 

the Mount Baker area (Figure 9). Ho in the NC was average, except for the Mount Baker area 

that had moderately low Ho (Figure 6). FIS was variable across the NC with lower values in 

the central and south extent of the study area, trending towards average values to the 

northeast and low values towards the OK (Figure 8). The SC exhibited increasingly low Ar 

towards the southern extent of the region (Figure 9), uniformly low Ho (Figure 6), and 

variable FIS, with average levels in the northern part of the region and lower values to the 

south (Figure 8).  

 

Population differentiation and migration 

I found evidence of substantial structure across the study area (Table 3). As expected, the FST 

values between the introduced ONP population and all other subpopulations were the highest 

calculated. The SM/PM subpopulation had high FST values with all other subpopulations, 

including the adjacent OK/NC subpopulation. The OK/NC had similar FST values between 
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the adjacent CR and SC subpopulations (0.104 and 0.105) and was most differentiated 

(excluding the ONP population) from the SM/PM (0.194). The CR subpopulation had the 

lowest FST value between the adjacent OK/NC (0.104), followed by the SM/PM and SC 

subpopulations (0.184 and 0.23). All FST calculations were significant (alpha=0.05).  

 Migration rates between the four native subpopulations were as expected given 

STRUCTURE results and FST calculations (Table 4). Migration into the CR from the SM/PM 

and SC subpopulations was negligible (<0.01) and was 0.03 from the OK/NC subpopulation. 

All migration into the SM/PM from all three other subpopulations was limited, around 0.01. 

Migration into the OK/NC was negligible from the CR and SM/PM (<0.01) and was 0.02 

from the SC. Migration into the OK/NC from the CR is likely lower than migration in the 

opposite direction due to the higher sample density in the OK/NC, i.e. the fraction of 

migrants from the CR in the OK/NC is low due to the large difference in sample size. 

Migration into the SC from all three other subpopulations was negligible (<0.01).  

 

DISCUSSION 

Discrete vs. clinal models of population structure 

The STRUCTURE and GENELAND analysis based on discrete subpopulations and the sPCA 

analysis based on a clinal population offered complementary representations of population 

structure across the study area. The STRUCTURE assignment tests identified individuals in the 

CR, OK/NC, and SC with high probability of subpopulation membership from other 

subpopulations, suggesting the presence of a genetic gradient rather than discrete, panmictic 

subpopulations bound by impermeable barriers (Figure 3). The presence of a genetic gradient 
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is also supported by the degree of admixture within these three subpopulations detected in the 

STRUCTURE Q –plot (Figure 2d). The NC subpopulation had the most evidence of a genetic 

gradient due to the presence numerous individuals with high probability of membership from 

the SC and the CR. I also detected substructure within the NC when this subpopulation was 

evaluated separately (Appendix 1), additional evidence that this subpopulation is not 

panmictic and that IBD or IBR may be the driving force behind genetic structure. STRUCTURE 

and GENELEND both had the highest support for the presence of four subpopulations within 

the study area (Figure 2a and b). The substructure detected in the OK/NC subpopulation did 

not result in a clear distinction between subpopulations (Appendix 2) and was likely a result 

of a genetic cline within the subpopulation. Although evaluating substructure in the SM/PM 

clearly separated the six individuals from the northeast region of the Okanagan (Appendix 1 

and 2), this level of substructure was not supported in the GENELAND analysis (Figures 2b and 

4). For this reason, I generated all discrete diversity indices based on four subpopulations.  

 While GENELAND did not identify admixed individuals, both GENELAND and 

STRUCTURE identified discontinuities between the four subpopulations that correspond with 

transportation corridors and highly urbanized areas (Figures 3 and 4). The sharp decline in 

the GENELAND probability of membership between the OK/NC and SC and more gradual 

change between the OK/NC and CR may be a result of higher sample density adjacent to I-90 

rather than a greater barrier effect between those two subpopulations (Figure 4). While no 

goat mortalities from road traffic have been recorded in the study area (Washington State 

Department of Transportation, pers. comm. and British Columbia Ministry of Transportation, 

pers. comm.), mountain goats generally avoid urbanized areas. Reduced movement across 
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transportation corridors and urbanized areas may be a sign of behavioral avoidance of roads, 

or simply that mountain goat road kills have not been reported within the study area. 

Regardless, the development of roads, urban, recreational, and agricultural areas may now 

infringe upon habitat corridors that historically linked subpopulations.  

 The sPCA analysis supported clinal population structure across the study area. 

Evaluating the first three global axes that contributed significantly to global structure 

revealed the same pattern of genetic structure detected with discrete population analysis. The 

first global axis corresponds with a south to north gradient of genetic relatedness, the second 

global axis differentiated the SM/PM subpopulation, and the third global axis detected a 

genetic gradient from the CR to the OK/NC. Together, these three alternative methods used 

to evaluate population structure suggest that IBB may not be the driving force of isolation 

across the study area. I will evaluate the relative support for the alternative mechanisms of 

genetic isolation, IBD and IBR, with causal modeling and landscape genetics in Chapter 2.  

 

Patterns of genetic diversity 

Evaluating genetic diversity assuming the discretely bound, internally panmictic 

subpopulations identified by STRUCTURE and GENELAND reveals substantial differences in Ar, 

Ho, and FIS between the CR and the three other subpopulations (Table 2). The CR and the 

SM/PM subpopulations reside in the core of mountain goat habitat, where suitable habitat is 

present in large, continuous patches and populations are robust. Consequently, both of these 

subpopulations were expected to have high levels of genetic diversity. The CR had high 

levels of diversity and low FIS, but the SM/PM subpopulations had lower Ar, substantially 
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lower Ho, and very high FIS compared to the CR. While this may be a byproduct of the low 

level of sampling in the SM/PM region, Ar is corrected for sample size. A recent study by 

Shafer et al. (2011) of mountain goat genetic diversity across the species’ range also reported 

higher levels of diversity and lower FIS in the CR compared to the Selkirk and Purcell 

mountains. In addition, FIS may be inflated due to substructure and lack of panmixia within 

the SM/PM subpopulation. 

 The SC subpopulation had the lowest Ar and Ho values of the four subpopulations 

within the study area (Table 2). This is not surprising given the patchy distribution of suitable 

habitat across the region, isolation of the subpopulation at the southern extreme of the 

species’ range, and historical overharvest. The low genetic diversity observed within the SC 

is troubling given that low heterozygosity has been found to be negatively correlated with 

juvenile survivorship (Mainguy et al. 2009). Ar and Ho are moderately higher when the ONP-

Cascade admixed animals are included in the SC subpopulation, confirming that the ONP 

translocations into the Cascades did have a positive impact on genetic diversity. This 

suggests that additional translocations could be beneficial. The OK/NC had moderate Ar and 

Ho values and unexpectedly high FIS (Table 2). Once again, the high FIS observed in the 

OK/NC subpopulation can likely be attributed to the presence of substructure and lack of 

panmixia within the subpopulation. Ar is slightly higher when the ONP-Cascade admixed 

animals are included in the OK/NC subpopulation, but Ho does not change. This very modest 

increase in genetic diversity is not surprising given that I only detected two ONP-Cascade 

admixed individuals in the OK/NC.  
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 Considering genetic diversity strictly in the terms of discrete subpopulations ignores 

heterogeneity in diversity within the subpopulations. With the sGD analysis, I was able to 

detect pockets of higher and lower diversity across all subpopulations (Figures 6, 8, and 9). 

In particular, the central Cascades within the OK/NC exhibited higher Ar and Ho and lower 

FIS compared to the Mount Baker area and Okanagan region. The SM had higher Ho and 

lower FIS compared to the PM. Finally, Ar declined in a north to south gradient across the 

Cascades. These results support clinal population structure, where a heterogeneous 

environment structures genetic diversity across the study area according to landscape 

resistance. Isolation of local populations suffering from historical overharvest and inbreeding 

depression from more genetically diverse herds will further limit the potential of these local 

populations to recover. In Chapter 2, I will use sGD (Shirk and Cushman 2011) and an 

optimized model of landscape resistance to refine these estimates of spatially explicit indices 

of genetic diversity. 

 

Implications for conservation 

Pockets of low genetic diversity identified by the clinal analysis of diversity may point to a 

greater risk of local subpopulation extinction than suggested by the population-based analysis 

of diversity. Low diversity observed in the Mount Baker area, OK, and SC raises the 

possibility that these local populations have reduced connectivity with the more genetically 

diverse local populations in the central region of the NC and the highly diverse CR. This 

implies that the subpopulations identified by discrete methods are not panmictic and that the 

landscape within discretely bound subpopulations does not uniformly affect mountain goat 
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movement and subsequent gene flow.  Strategies for improving population connectivity 

should take this information into account. For example, wildlife exclusion fencing along I-90 

and wildlife passages across I-90 are currently under construction in an effort to reduce 

wildlife-vehicle collisions and mitigate the barrier effect of the I-90 corridor to wildlife 

migration (US Department of Transportation Federal Highway Administration and 

Washington State Department of Transportation). Assuming that the construction of wildlife 

exclusion fencing along I-90 and wildlife passages across I-90 will lower the resistance of I-

90 to mountain goat movement, these mitigation efforts cannot be expected to uniformly 

improve genetic diversity in the OK/NC and the SC. Rather, gene flow from the OK/NC into 

the SC and vice versa will also be affected by the prevailing mechanism of genetic isolation. 

If the prevailing mechanism is IBD, improvements in genetic diversity will diminish as the 

distance to a wildlife passage increases. If the mechanism is IBR, gene flow will diminish as 

the resistance distance to a wildlife passage increases. Only in the case of IBB and entirely 

panmictic subpopulations would gene flow across I-90 uniformly improve genetic diversity 

within the OK/NC and SC subpopulations. 

 The genetic diversity of donor populations should be considered in translocation 

efforts. These results point to the CR as the premier donor subpopulation for translocation 

efforts to improve genetic diversity in Washington because this subpopulation has the highest 

genetic diversity. If feasible, multiple source populations should be utilized as this strategy 

has the greatest potential to alleviate inbreeding depression. For example, because the ONP 

population was founded with individuals from Alaska and the Selkirks, translocations 

utilizing the ONP population may introduce unique alleles into the Cascades even though the 
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ONP population has very low genetic diversity. This approach was successful in Oregon, 

where four different source populations were used to reintroduce mountain goats to the 

Wallowa Mountains and Elkhorn Mountains (Oregon Department of Fish and Wildlife 

2003).  

 The clinal population structure detected suggests that donor and recipient local 

populations should be carefully evaluated. Individuals translocated from the CR to the central 

NC cannot be expected to improve genetic diversity in the Mount Baker herd or the local 

populations present in the OK. For example, although the OK was included in the OK/NC 

subpopulation when discrete subpopulations were identified, clinal analysis and sGD analysis 

suggest that this local population could benefit from the translocation of individuals from the 

central NC because the OK region exhibits low diversity compared to the central NC. 

Additionally, any translocated individuals will likely be closely tied to the release site and 

will not uniformly improve genetic diversity across the region. Indeed, I only detected ONP-

Cascade admixed individuals within 50 km of release sites in the SC. 

 This study has great potential to optimize efforts to improve population connectivity 

and viability in Washington. Conservation efforts to re-establish historical linkages, preserve 

existing linkages, and translocate animals cannot be expected to improve genetic diversity 

uniformly across a subpopulation but rather should be targeted to meet the specific 

management goals identified for local populations. Source populations need to be carefully 

selected and, when possible, multiple source populations should be utilized to maximize the 

potential to improve genetic diversity. Evaluating genetic structure and genetic diversity from 

alternative perspectives highlights the need to account for the effects of a complex landscape 
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on gene flow in conjunction with population dynamics and population demographics when 

developing and implementing management strategies to improve the population viability of 

mountain goats in Washington.   
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TABLES 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Sample sources and sample types retained for analysis after poor quality samples 
and samples from the same individual were removed.  

Sample Source n 
Collected 2007-2011 

      Scat 83 
     Hair 2 
     Tissue 1 
     Bone 1 
Shafer et al. (2011) 

      DNA-tissue 24 
Poole and Reynolds (2009) 

      DNA-scat and hair 16 
Shirk (2009) 

      Tissue 100 
     Blood 58 
     Bone 1 
Total  286 
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Table 2. Sample size (n), allelic richness (Ar), observed heterozygosity (Ho), expected 
heterozygosity (He), and inbreeding coefficient (FIS). 
Population n Ar Ho He FIS 

Coast Range (CR) 44 4.22 0.53 0.58 0.07 
Selkirk/Purcell Mtns. (SM/PM) 25 3.61 0.38 0.51 0.24 
Okanagan/N. Cascades* (OK/NC) 119 3.41 0.38 0.46 0.16 
OK/NC + ONP 121 3.44 0.38 0.46 0.16 
S. Cascades* (SC) 73 2.82 0.35 0.40 0.10 
SC + ONP 84 2.95 0.37 0.42 0.12 
Olympic National Park (ONP) 12 2.48 0.36 0.40 0.11 
*ONP-Cascade admixed individuals excluded 
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Table 3. Pairwise Fst values for the five mountain goat subpopulations in the study area are 
given below the diagonal and the associated P values are given above the diagonal.  
  CR SM/PM OK/NC* SC* ONP 
CR - <0.001 <0.001 <0.001 <0.001 
SM/PM 0.184 - <0.001 <0.001 <0.001 
OK/NC* 0.104 0.194 - <0.001 <0.001 
SC* 0.223 0.247 0.105 - <0.001 
ONP 0.274 0.292 0.317 0.369 - 
*ONP-Cascade admixed individuals are excluded in this table.  
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Table 4. The migration rate into each subpopulation. The subpopulations into which 
individuals are migrating are listed in the rows, and the origins of the migrants are listed in 
the columns. Values along the diagonal are the proportions of individuals derived from the 
source subpopulation each generation.  

  CR SM/PM OK/NC* SC* 
CR 0.955 0.007 0.030 0.008 
SM/PM 0.012 0.966 0.011 0.011 
OK/NC* 0.006 0.003 0.970 0.022 
SC* 0.004 0.005 0.006 0.986 
*ONP-Cascade admixed individuals are excluded in this table.  
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FIGURES 

 

 

Figure 1. Map of the study area showing location of genetic samples, translocation sites, 
transportation corridors, and current mountain goat range. CR: Coast Range; OK: Okanagan; 
SM: Selkirk Mountains; PM: Purcell Mountains; NC: North Cascades; SC: South Cascades; 
ONP: Olympic National Park. 1: Shorts Creek; 2: Tulameen Mountain; 3: Snass Mountain; 4: 
Slocan Valley. 
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(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)              Q     Population                      (d)             Q            Population   

                    
 
Figure 2. (a) The second order rate of change in the STRUCTURE assignment probability (ΔK) 
for 1 to 10 populations. (b) Density plot of the number of populations (K) along the 
GENELAND MCMC chain excluding ONP and ONP-admixed individuals. (c) STRUCTURE Q-
Plot showing the posterior probability of membership (Q) for each sample. Horizontal bars 
represent individuals grouped by a priori populations and ordered from north to south within 
each a priori population. (d) STRUCTURE Q-Plot showing the posterior probability of 
membership (Q) excluding ONP and ONP-Cascade admixed individuals. Horizontal bars 
represent individuals grouped by population and ordered from north to south within each 
population.  
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Figure 3. Samples represented by colored triangles indicate the STRUCTURE subpopulation to 
which they have the highest probability (>75%) of membership. Samples represented by stars 
indicate an individual admixed (<75% membership in one subpopulation) between the 
STRUCTURE subpopulation of the sample’s geographic location and the STRUCTURE 
subpopulation indicated by the color of the star.  
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Figure 4. The GENELAND posterior probability map of membership for the OK/NC 
subpopulation.  
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(a)   
   
            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. (a) sPCA eigenvalues for each global axis and local axis. (b) Individual samples 
are mapped according to the sample location’s geographic coordinates and colored according 
to the sample’s sPCA eigenvalues for the three global axes that contributed significantly to 
genetic structure. Gradation of red indicates the first global axis, gradation of green indicates 
the second global axis, and gradation of blue indicates the third global axis. 
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Figure 6. Observed heterozygosity (Ho) calculated using sGD with a genetic neighborhood 
diameter of 165 km and a minimum population of 10 individuals. 
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Figure 7. Expected heterozygosity (He) calculated using sGD with a genetic neighborhood 
diameter of 165 km and a minimum population of 10 individuals. 
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Figure 8. Inbreeding coefficient (FIS) calculated using sGD with a genetic neighborhood 
diameter of 165 km and a minimum population of 10 individuals. 
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Figure 9. Allelic richness (Ar) calculated using sGD with a genetic neighborhood diameter of 
165 km and a minimum population of 10 individuals.    
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CHAPTER 2 

 

Mountain Goat Population Connectivity in Washington and Southern British Columbia 

 

INTRODUCTION 

Anthropogenic modifications to natural landscapes including habitat fragmentation, habitat 

loss, and climate shifts are contributing to declines in global biodiversity (Thomas et al. 

2004, Wiegand et al. 2005, Fischer and Lindenmayer 2007, Butchart et al. 2010). These 

perturbations reduce population viability by dividing large, well-connected populations into 

smaller, isolated populations with reduced gene flow and local effective population size, Ne 

(Keyghobadi 2007). Ne is dictated by population size, gene flow, and demographic factors 

(e.g. sex ratios, mating systems and population structure) and strongly influences the 

accumulation and loss of genetic diversity (Frankham 1996). The conservation of genetic 

variation is essential to maintain biodiversity because increased genetic diversity provides 

populations with the genetic capitol to adapt to environmental change and lower genetic 

diversity is directly linked to reduced population fitness (Reed and Frankham 2003). Failing 

to account for genetic factors may lead to an underestimation of extinction risk and the 

implementation of inadequate recovery plans (Frankham 2005). Maintaining connectivity 

among patchily distributed habitat is vital for population persistence because it facilitates the 

movement of individuals and gene flow across the landscape (Crooks and Sanjayan 2006). In 

addition to habitat loss and fragmentation, climate change is now a serious threat to global 

biodiversity and poses new conservation challenges (Thomas et al. 2004). Increasing 
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connectivity is the most common recommendation to reduce the negative impacts of climate 

change (Heller and Zavaleta 2009) and is the most effective method currently available to 

conserve biodiversity in the face of climate change (Krosby et al. 2010). For these reasons, it 

is imperative to consider landscape connectivity when developing conservation strategies for 

the future (Taylor et al. 1993).  

 The field of landscape genetics integrates landscape ecology and population genetics 

to provide powerful methods to evaluate how landscape features influence gene flow across a 

heterogeneous landscape (Manel et al. 2003).  Incorporating landscape ecology into 

landscape genetics builds on population genetics by accounting for heterogeneity in the 

matrix that separates patchily distributed habitat (Holderegger and Wagner 2008). This 

enables researchers to quantify the effects of landscape composition, configuration, and 

matrix quality on gene flow and spatial genetic variation (Storfer et al. 2007). Spatial genetic 

patterns are most effectively assessed with genetic data from many individuals with known 

geographic locations that are sampled across broad landscapes (Manel et al. 2003). 

Individual-based landscape genetic analyses can be applied to evaluate landscape effects on 

population connectivity and may lend insight into the genetic health, isolation, and viability 

of populations.  

 There are three conceptual models that potentially explain how gene flow occurs 

across the landscape: isolation by barrier (IBB), isolation by distance (IBD), and isolation by 

resistance (IBR).  IBB predicts that a strong barrier to dispersal exists between 

subpopulations and results in discrete subpopulations that are internally panmictic. IBD 

predicts that genetic distance is a function of the Euclidean distance between individuals and 
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the vagility of the species in question, resulting in a genetic gradient (Wright 1943). IBR 

predicts that genetic distance between individuals is dictated by the resistance of a 

heterogeneous landscape to gene flow (Cushman et al. 2006, McRae 2006). IBR allows for 

the assignment of variable resistance costs to landscape features, accounting for 

heterogeneity in the landscape matrix. Both IBD and IBR accumulate resistance over 

distance, but IBR builds resistance at a variable rate that is governed by the resistance of 

landscape features to individual movement. Failing to identify the correct mechanism of 

genetic isolation may lead to incorrect assumptions regarding the genetic structure of a 

population and ineffective conservation planning. 

 In this study, I employed individual-based methods in a causal modeling framework 

(Cushman et al. 2006, Cushman and Landguth 2010, Shirk et al. 2010) in order to determine 

the mechanism of genetic isolation for mountain goats in Washington and southern British 

Columbia (Figure 1). Mountain goats have declined by over 50% in Washington since the 

1950s, probably as a result of unsustainable harvest levels (Rice and Gay 2010). Although 

harvest levels were drastically reduced in the early 1990s, many subpopulations have not 

recovered and some historical habitat remains unoccupied. In contrast to many ecosystems, 

the alpine and sub-alpine environments mountain goats inhabit are largely intact within 

Washington State (approximately 42% of the state is under federal or state ownership). Thus, 

the lack of recovery of this population may be a result of low genetic diversity and reduced 

fitness due to inbreeding (Blomqvist et al. 2010, Johnson et al. 2010). Understanding how the 

landscape matrix may be contributing to genetic isolation is essential for the conservation of 

this species into the future.  
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  In Chapter 1, I evaluated genetic diversity across the study area using discrete and 

clinal models of population structure. Both STRUCTURE (Pritchard et al. 2000) and GENELAND 

(Guillot et al. 2005) identified discontinuities between the four subpopulations that 

corresponded with transportation corridors, highly urbanized areas, and agriculture, 

suggesting that IBB may be the dominant mechanism of genetic isolation. In contrast, sPCA 

analysis (Jombart et al. 2008) found significant global structure (positive autocorrelation) and 

revealed clinal genetic structure across the study area. The presence of potential migrants and 

admixed individuals in the STRUCTURE analysis also supports the presence of a genetic cline 

due to IBD or IBR. Causal modeling provides the framework to evaluate the relative support 

of IBB, IBD, and IBR and identify the prevailing mechanism of genetic isolation for this 

population of mountain goats.  

 Previous research (Shirk et al. 2010) of mountain goat population connectivity within 

the Cascade Range of Washington identified an optimized multivariate model of IBR that 

was better supported than IBB or IBD. This model of IBR indicated that an interstate 

highway, smaller highways, development, low elevation valleys, and water bodies all limit 

mountain goat gene flow in the Washington Cascades. In Chapter 1, I found that genetic 

diversity is lower for mountain goats in the Washington Cascades and the Okanagan region 

than in the Coast Range and Selkirk and Purcell mountain ranges. Together, these results 

suggest that modern anthropogenic landscape alterations limit gene flow among mountain 

goat populations in Washington and southern British Columbia.  

 I expand on Shirk’s work by extending the study area into southern British Columbia 

to gain a better understanding of gene flow between the genetically impoverished population 
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in Washington and the more robust and genetically diverse populations in British Columbia.  

Expanding the spatial extent to encompass a multinational study area facilitates an analysis 

of population connectivity based on the landscape rather than political boundaries. A study 

area that crosses regional and national borders also encourages the interagency collaboration 

that will be paramount when planning and implementing efforts to restore and maintain 

viable populations in the face of climate change and anthropogenic activities that reduce 

population connectivity (Beier et al. 2011). Simply applying the previously optimized model 

of IBR to the expanded study area may lead to erroneous conclusions about population 

connectivity because the ability to detect effects of landscape features on gene flow relies 

heavily on habitat amount, configuration, and contrast in landscape resistance between 

habitat and non-habitat (Cushman et al. 2013).  For example, even in the case that a species 

has a globally consistent response to a landscape feature, the effect of that landscape feature 

will only be detectable when the pattern across the study area is highly variable and limiting 

to gene flow (Short Bull et al. 2011). For these reasons, replication of landscape genetic 

research is crucial when identifying species’ habitat requirements for gene flow.  

 In Chapter 2, I evaluate the relative support for IBB, IBD, and multiple hypotheses of 

IBR that include four landscape features: distance to escape terrain, roads, landcover type 

and elevation. These features were selected a priori as potential factors influencing mountain 

goat movement based on previous research (Festa-Bianchet and Côté 2008, Shirk 2009, Shirk 

et al. 2010, Shafer et al. 2012, Wells 2012). I employed individual-based landscape genetic 

analysis in a causal modeling framework to correlate genetic distance with resistance 

distance (McRae 2006) and identify a best supported model of genetic isolation.  I then used 
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this optimized model of genetic isolation to parameterize models of gene flow across the 

study area. I conclude by discussing how this research can facilitate the development of a 

multiregional, multinational management plan that can effectively improve population 

viability of mountain goats in Washington.  

 

METHODS 

Study area 

The study area in Chapter 2 includes the Cascade Range in Washington, the Coast Range in 

British Columbia, the Selkirk and Purcell mountain ranges in British Columbia, and the 

Okanagan region in Washington and British Columbia (Figure 1).  

 

Sample collection and genotyping 

See methods section in Chapter 1 for sample collection and genotyping protocol. I identified 

13 individuals in the Cascade Range, Washington, that were highly related to the non-native 

Olympic National Park (ONP) population. These 13 individuals are likely descendents of 

animals translocated from ONP in the 1980s (Houston et al. 1991) and do not represent 

natural genetic diversity or gene flow. For this reason, these 13 samples, along with the 12 

samples from ONP, were excluded from the landscape genetic analysis in Chapter 2.  

 

GIS data 

I obtained a 30 m resolution digital elevation model (DEM) from the USGS and 

approximately 20 m resolution Canadian digital elevation data (CDED) from GeoBase. I 
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used ArcGIS 10 (ESRI 2010) to resample the CDED to a 30 m resolution with the nearest 

neighbor resample technique and combine the CDED with the DEM. Focal statistics were 

used to fill a small gap in the data along the border between Washington and British 

Columbia and create a complete DEM of the study area. I used ArcGIS to generate a slope 

raster from the DEM and the “Euclidean Distance” function to create a distance to escape 

terrain (Det) raster, with escape terrain defined as slope ≥ 50° (Smith 1994). Landcover data 

and road data at 100 m resolution were both obtained from the Washington Wildlife Habitat 

Connectivity Working Group (WHCWG 2010). The WHCWG road data were used to 

reclassify roads as pixels within 500 m from the road centerline for each of the following 

road categories: freeway, major highway, secondary highway, local road, and no road. 

Freeways are characterized by multiple lanes in each direction, median or concrete barriers 

between opposing traffic lanes, and high traffic volumes often exceeding 25,000 vehicles 

daily. Major highways are nationally and regionally important highways with highly variable 

traffic volumes between 800 and 20,000 vehicles daily. Secondary highways are hard-

surfaced and usually undivided roads with single- lane characteristics and highly variable 

traffic volumes between 500 and 10,000 vehicles daily. Local roads are characterized by 

neighborhood streets, short-distance roads connecting small towns, scenic park roads, 

unimproved or unpaved roads, and industrial roads.The WHCWG landcover data were 

reclassified into seven categories: alpine/sparsely vegetated, grass- dominated, wet forest/dry 

forest, shrub-dominated, water/wetland/riparian, agriculture and urban/developed. All GIS 

data were projected to Albers Equal Area Conic GCS North America Datum of 1983.  
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Quantifying genetic distance 

Genetic distance between individuals is often estimated by assuming a particular underlying 

model of microsatellite mutation, such as the infinite alleles model (Kimura and Crow 1964) 

or the stepwise mutation model (Ohta and Kimura 1973). Neither of these models may be 

valid for highly polymorphic microsatellite markers (Balloux and Lugon-Moulin 2002). For 

this reason, I used principle component analysis (PCA) to estimate genetic distance between 

individuals because PCA makes no biological assumptions regarding the mechanism of 

mutation. PCA reduces the multidimensional, multilocus microsatellite genotypes into one 

dimension (1st PCA axis) that contains most of the variance within the dataset (Patterson et 

al. 2006). I created a data frame in R 2.14.2 (The Comprehensive R Archive Network, 

CRAN) containing all individuals in the dataset in rows and all alleles present in the dataset 

as columns. Each individual was scored for each allele found in the population as 0 (not 

present), 1 (heterozygous), or 2 (homozygous). R 2.14.2 was used to calculate the 1st PCA 

axis eigenvalues, and the package Ecodist (Goslee and Urban 2007) was implemented in R 

2.14.2 to generate a n x n pairwise genetic distance matrix based on Euclidean distance 

between individuals on the 1st axis (n=261).  

 

Modeling IBB, IBD, and IBR 

I modeled IBB by generating an n x n distance matrix where distance between samples 

within the same subpopulation (as identified in Chapter 1 Table 2) was zero, distance 

between samples separated by one hypothetical barrier (Chapter 1 Figure 3) was one and 

distance between samples separated by two barriers (Chapter 1 Figure 3) was two. 
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 To model IBD, I used the Landscape Genetics Arc Toolbox (Etherington 2011) 

distance matrix tool to generate a n x n matrix of Euclidean distance (in meters) between all 

individual sample locations. I also tested the correlation of a Log10
 transformed n x n matrix 

of Euclidean distance between individuals with genetic distance because the logarithm of 

geographic distance would theoretically have a higher correlation with genetic distance in 

two-dimensional landscapes (Rousset 1997). 

 I modeled IBR by generating a n x n matrix of resistance distance for each IBR 

hypothesis tested (described below). Circuitscape 3.5.8 (McRae and Shah 2009) was used to 

fill each matrix with pairwise resistance distances between all individual sample locations 

according to the IBR hypothesis tested. Circuitscape uses graph and circuit theory to account 

for multiple pathways and calculate resistance distance between points given a landscape 

resistance surface represented as a GIS raster. I allowed gene flow to the eight nearest cells 

and calculated resistance between two cells as the average of the resistance value assigned to 

both cells. I utilized a cell size of 150 m in order to obtain a reasonable computation time. 

Elevation and Det were converted to this cell size by aggregating 5 x 5 blocks of 30 m pixels 

into a single pixel (based on average aggregation technique for the elevation raster and 

minimum aggregation technique for the Det raster). The landcover and road rasters were 

converted from 100 m resolution to 150 m resolution using the nearest resample technique.  

 

Evaluating the relative support for IBB, IBD and IBR 

I implemented the software package Ecodist (Goslee and Urban 2007) in R 2.14.2 to 

calculate the Mantel’s correlation coefficient between each landscape distance matrix and the 
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genetic distance matrix in order to assess support for IBB, IBD, and the multiple hypotheses 

of IBR. I then applied partial Mantel’s tests (Smouse 1986) to evaluate the relative support 

for each model of genetic isolation (IBB, IBD, and the best supported IBR hypothesis) while 

controlling for the effects of alternative models.  

 

Univariate IBR model optimization 

I evaluated four factors that were identified by Shirk (2009) as likely to influence mountain 

goat movement across the landscape: distance to escape terrain (Det), roads, landcover type, 

and elevation. I built multiple hypotheses of resistance for each factor by systematically 

varying parameters within mathematical functions related to each factor.  These 

mathematical functions were then used to reclassify raster data into alternative hypotheses of 

IBR for each factor that I evaluated to find the most supported model of IBR.  

 I reclassified the raster representing Euclidean distance to escape terrain (slope≥ 50°) 

into multiple hypotheses of landscape resistance due to Det with the following function: 

 R = (Det/Vmax)x * Rmax 

where R is the resistance for that raster cell, x is the response shape exponent, Rmax is the 

maximum possible resistance value, and Vmax is a constant representing the maximum 

allowed value of the variable such that as the variable increases to Vmax the resistance 

increases to Rmax. When x is equal to one, the increase to Rmax is linear, and when x is not 

equal to one, the increase is nonlinear. I evaluated four different response shape exponents 

and four different scales of Rmax.  
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 I ranked the five road categories in order of increasing resistance: no road, local road, 

secondary highway, major highway, and freeway. I then reclassified the road raster into 

multiple hypotheses of landscape resistance due to roads with the following function: 

 R = (Rank/Vmax)x * Rmax 

where R is the resistance for that raster cell, x is the response shape exponent, Rmax is the 

maximum possible resistance value, and Vmax is a constant  representing the maximum 

allowed value of the variable such that as the variable increases to Vmax the resistance 

increases to Rmax. When x is equal to one, the increase to Rmax is linear, and when x is not 

equal to one, the increase is nonlinear. I evaluated five different response shape exponents 

and five different scales of Rmax until I found a unimodal peak of support.  

 I reclassified the landcover type urban/developed to no data because, given mountain 

goat avoidance of urbanized areas, no gene flow would likely occur through this landcover 

type. The remaining six landcover type categories were ranked in order of increasing 

resistance: alpine/sparsely vegetated, grass-dominated, wet forest/dry forest, shrub-

dominated, water/wetland/riparian, and agriculture. I then reclassified the landcover raster 

into multiple hypotheses of landscape resistance due to landcover with the following 

function: 

 R = (Rank/Vmax)x * Rmax 

where R is the resistance for that raster cell, x is the response shape exponent, Rmax is the 

maximum possible resistance value, and Vmax is a constant representing the maximum 

allowed value of the variable such that as the variable increases to Vmax the resistance 

increases to Rmax. When x is equal to one, the increase to Rmax is linear, and when x is not 
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equal to one, the increase is nonlinear. I evaluated five different response shape exponents 

and five different scales of Rmax until I found a unimodal peak of support.  

 Mountain goats are adapted to utilize an optimal elevation range dissected by 

suboptimal elevations characterized by lowland valleys and glaciated peaks (Festa-Bianchet 

and Côté 2008, Shirk et al. 2010, Wells 2012). For this reason, I reclassified the elevation 

raster based on a Gaussian function that defines optimal elevation and standard deviation 

such that multiple hypotheses of landscape resistance due to elevation were generated by the 

function:  

 R = Rmax + 1 – Rmax * e-(elevation – Eopt)̂ 2/(2 * Esd)̂ 2 

where R is the resistance for that raster cell, Rmax is the maximum possible resistance value, 

Eopt is the optimal elevation, and Esd is the standard deviation such that as elevation moves 

away from Eopt resistance increases to Rmax at the rate dictated by Esd. I evaluated five 

Eopt values, three scales of Rmax, and three rates of Esd until I found a unimodal peak of 

support. 

 

Multivariate IBR model optimization 

After the optimal landscape resistance model for each univariate factor had been identified, I 

combined univariate factors into a multivariate model. Univariate factors were only included 

in the multivariate model if the Mantel’s correlation reached a unimodal peak of support that 

had a higher Mantel’s correlation value than the IBD null model and the P-value was 

significant (<0.05). I used raster algebra in ArcGIS10 (ESRI 2010) to add the optimized 

univariate landscape resistance models that met the above requirements into a single 
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multivariate model. To account for interactions between factors, I optimized the multivariate 

model by varying parameters for one variable at a time while holding the other variables 

constant. Factors were optimized in order of decreasing univariate Mantel’s correlation. The 

multivariate model optimization was repeated if any of the parameters changed in the 

multivariate context.  

 

Predicting population connectivity 

I used Circuitscape 3.5.8 (McRae and Shah 2009) to predict gene flow across the study area 

using the most highly supported multivariate hypothesis of IBR. Circuitscape calculates the 

flow of current across a given resistance surface, using current as a proxy for the probability 

that an individual moving by a “random walk” pattern will pass through a given cell (McRae 

et al. 2008). This allows for the evaluation of population connectivity and the identification 

of conservation corridors. I evaluated gene flow across the study area based on the maximum 

current map created by calculating current between three individuals: one individual located 

in the Coast Range, one individual located in the south Cascades, and one individual located 

in the Purcell Mountains, in pairwise mode. In this scenario, current represents the 

probability that an individual will pass through a given cell as it moves across the study area 

from the sources to the ground points. 

 

Spatially explicit genetic diversity 

I used the software package sGD (Shirk and Cushman 2011) to estimate genetic diversity 

indices based on microsatellite genotypes and the pairwise resistance distance matrix 



56 
 

generated from the multivariate optimized IBR model. This approach allows for the grouping 

of individuals based on spatially explicit genetic neighborhoods that take into account the 

effects of a heterogeneous landscape on the genetic diversity of clinal populations. I applied a 

genetic neighborhood diameter defined by the largest cost-weighted resistance distance that 

is positively correlated with genetic distance and significant (alpha=0.05).  I set the minimum 

population size to 5 individuals.  

 

RESULTS 

Univariate optimization 

The hypothesis of resistance due to Det most highly correlated with genetic distance had a 

shape exponent of 1 with resistance ranging from 1 to 5 (r=0.671, P=0.0001, Figure 2b). 

Support for this hypothesis did not reach a unimodal peak and the correlation was lower than 

the IBD null model (r=0.684, P=0.0001). For this reason, I excluded Det as a factor in the 

multivariate model.  

 The hypothesis of resistance due to roads most highly correlated with genetic distance 

had an infinite shape exponent with resistance ranging from 1 to 25 (r=0.711, P=0.0001, 

Figure 3b and 3c) where freeways had a resistance of 25 and all other pixels had a resistance 

of 1. The actual cost of crossing a freeway was 200 because freeways were generally eight 

pixels wide. Roads were included in the multivariate model because support for this 

hypothesis reached a unimodal peak and was more highly correlated with genetic distance 

than the IBD null model.  
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 The hypothesis of resistance due to landcover most highly correlated with genetic 

distance had an infinite shape exponent with resistance ranging from 1 to 25 (r=0.713, 

P=0.0001, Figure 4b and 4c) where agriculture had a resistance of 25 and all other pixels had 

a resistance of 1. Landcover was included in the multivariate model because support for this 

hypothesis reached a unimodal peak and was more highly correlated with genetic distance 

than the IBD null model. 

 The hypothesis of resistance due to elevation most highly correlated with genetic 

distance had optimal elevation of 1,600 m with a standard deviation of 1,500 m and 

resistance ranging from 1 to 5 (r=0.697, P=0.0001, Figure 5b). Elevation was included in the 

multivariate model because support for this hypothesis reached a unimodal peak and was 

more highly correlated with genetic distance than the IBD null model. 

 

Multivariate optimization 

 I began the multivariate optimization with landcover because this factor had the 

highest correlation with genetic distance. The optimal shape exponent did not change from 

the univariate optimal landcover hypothesis; however, the scale increased from 25 to 100 

(r=0.715, P=0.0001, Figure 6). I then optimized roads because this factor had the second 

highest correlation with genetic distance. The optimal shape exponent and scale did not 

change from the univariate optimal roads hypothesis. Elevation was optimized last because 

this factor had the lowest correlation with genetic distance. Optimal elevation, standard 

deviation, and scale did not change from the univariate optimal elevation hypothesis. I did 

not perform additional multivariate optimization because only the first landscape feature 
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considered, landcover, changed in the multivariate context. The resistance costs associated 

with the final optimized multivariate IBR model are displayed in Table 1.  

 

Relative support for IBB, IBD and IBR 

While the IBB model and IBD model both showed strong correlation with genetic distance 

(r=0.610, P=0.0001 and r=0.684, P=0.0001), the optimized multivariate IBR model had the 

highest correlation value (r=0.715, P=0.0001, Table 2). The IBD model was better supported 

than then IBDLOG10 model (r=0.684, P=0.0001 and r=0.523, P=0.0001). The IBB model 

retained a significant relationship with genetic distance when the variance due to IBD was 

partialled out (r=0.176, P=0.0001) and when the variance due to IBR was partialled out 

(r=0.105, P=0.0001, Table 2). The IBD model retained a significant relationship with genetic 

distance when the variance due to IBB was partialled out (r=0.422, P=0.0001) and when the 

variance due to IBR was partialled out (r=0.080, P=0.0073, Table 2). The IBR model 

retained a significant relationship with genetic distance when the variance due to IBB was 

partialled out (r=0.479, P=0.0001) and when the variance due to IBD was partialled out 

(r=0.297, P=0.0001, Table 2). The IBR model of genetic isolation retained a higher 

correlation with genetic distance when the variance due to IBB was partialled out than the 

IBB model of genetic isolation retained when the variance due to IBR was partialled out 

(r=0.479 and r=0.105, respectively, Table 2). The IBR model of genetic isolation also 

retained a higher correlation with genetic distance when the variance due to IBD was 

partialled out than the IBD model of genetic isolation retained when the variance due to IBR 

was partialled out (r=0.297 and r=0.080, respectively, Table 2). For this reason, the IBR 
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model of genetic isolation appears to have the strongest relationship with genetic distance 

among the three models considered.  

 

Gene flow 

Gene flow from the Coast Range into the north Cascades is restricted most severely by the 

development along Highway 99 in British Columbia where current is funneled through 

narrow breaks in the urban and agricultural landcover types (Figure 8). Less severe pinch 

points are present where gene flow must cross the Coquihalla Highway (Hwy 5) between 

areas of urban development and agriculture. Gene flow from the Purcell Mountains into the 

north Cascades is concentrated by agriculture and urban areas as it moves across the 

Okanagan Valley. As current moves into the north Cascades, it is concentrated by the low 

elevation and the development associated with the Interstate 5 corridor that runs along the 

western extent of the study area in Washington, and by the low elevation and agriculture 

present to the east of the study area in Washington.  As current moves south towards 

Highway 2, urbanization and agriculture begin to force gene flow towards the center of the 

north Cascades. The most severe channelization of current occurs as gene flow moves across 

I-90, where current must pass through narrow breaks in urban development and agriculture 

along I-90. The cost of crossing the Okanagan Valley and I-90 accounts for more than two-

thirds of the cost of moving all the way from the Purcell Mountains to the south Cascades. 

Similarly, the cost of moving across Highway 99, the Coquihalla Highway (Hwy 5), and I-90 

is very high.  
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Spatially explicit genetic diversity 

The spatially explicit analysis of genetic diversity revealed variable patterns across the study 

area.  The genetic neighborhood diameter where cost-weighted resistance distance was no 

longer positively correlated with genetic distance was 4.56. The Coast Range generally 

exhibited high genetic diversity with high Ho and Ar and moderate FIS (Figure 9, Figure 11, 

and Figure 12). The Okanagan exhibited the lowest genetic diversity with very low Ho and Ar 

and high FIS. The south Cascades exhibited very low Ho at the southern periphery of the 

study area, with Ho improving slightly moving north (Figure 9). The south Cascades also 

exhibited low Ar (Figure 12). FIS within the south Cascades was variable and ranged from 

moderately high to very low (Figure 11). Measures of genetic diversity were also variable 

within the north Cascades with the central Cascades displaying moderate Ho (Figure 9) and 

Ar (Figure 12). Ho and Ar were lower in the north Cascades in the Mount Baker region and to 

the south (Figure 9 and Figure 12). FIS within the north Cascades ranged from very low to 

moderate (Figure 11). Sample density was not high enough in the Purcell and Selkirk 

mountain ranges to yield any data points. These results should be interpreted with caution 

because the minimum population applied (5) was lower than the minimum population 

recommended by the sGD documentation (10, Shirk and Cushman 2011). This could 

introduce sampling error due to low sample density but was necessary to attain sufficient 

coverage of the area.    
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DISCUSSION 

This study expanded upon previous research (Shirk 2009) by extending the extent of the 

study area to gain insight regarding connectivity between mountain goat populations in 

Washington that are potentially genetically isolated and mountain goat populations in 

southern British Columbia that inhabit the core of the species’ range. Extending the study 

area into British Columbia allows for a more realistic analysis of population connectivity 

because individual movement and metapopulation dynamics are not necessarily bound by 

regional, state, or international boundaries. In addition, applying a model of landscape 

resistance created for one area to a different area may lead to incorrect assumptions about 

species’ habitat requirements for gene flow and the implementation of ineffective 

conservation strategies (Short Bull et al. 2011). I was also able to utilize a smaller cell size 

(150 m) than previously considered (Shirk 2009), possibly improving the ability to detect an 

effect of landscape features on gene flow.  

 The suitability of Mantel testing in landscape genetics has been questioned in the 

literature (Raufaste and Rousset 2001), but multiple analyses defend the use of this method 

when used to test hypotheses based on distance matrices (Legendre and Fortin 2010) and 

implemented within the framework of causal modeling (Cushman and Landguth 2010, Shirk 

et al. 2010, Cushman et al. 2013). Legendre and Fortin (2010) warn that statistical analyses 

based on distances, such as Mantel testing, lead to a large loss of statistical power. Standard 

Mantel tests have also been criticized for having high type 1 error rates when used to assess 

the relative importance of landscape variables due to high correlation among distance 

matrices (Balkenhol et al. 2009). Cushman and Landguth (2010) evaluated the power Mantel 
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testing within a causal model framework in individual-based landscape genetic analysis and 

found that simple Mantel tests do produce spurious correlations, but partial Mantel tests and 

causal modeling effectively rejected incorrect explanations and correctly identified the true 

causal process.  

 I minimized the risk of spurious correlations complicating model selection by 

imposing strict criteria for inclusion of univariate landscape features in the multivariate 

model and by employing partial Mantel tests to evaluate the relative support for IBB, IBD, 

and IBR. I excluded landscape features that did not have a stronger correlation with genetic 

distance than IBD or display a unimodal peak of support to ensure only landscape feature 

that significantly influence gene flow were included in the multivariate model. 

Systematically varying model parameters allows for nonlinear relationships between 

landscape features and genetic distance and applies variable scales of resistance to landscape 

features. Finally, the multivariate optimization process improves the model by accounting for 

interactions between landscape features.   

 I applied circuit theory to quantify resistance distance rather than least-cost-path 

(LCP) analysis because circuit theory takes the width and number of pathways into 

consideration when calculating resistance distances and does not assume that dispersing 

individuals have perfect knowledge of the landscape (McRae 2006). The stronger theoretical 

foundation of isolation by resistance as calculated with circuit theory and the ability of IBR 

to outperform LCP in both simulated landscapes and empirical analyses supports the use of 

IBR over LCP (McRae and Beier 2007). Circuit theory can also be used to predict gene flow 

between points by calculating current, or the net movement probability, in order to identify 
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important conservation corridors where gene flow is funneled through narrow channels 

between impermeable landscape features (McRae et al. 2008). 

 I was able to detect an effect of three landscape features on genetic isolation despite 

relatively low sample density. Implementing individual-based methods and using PCA to 

quantify genetic distance may have both improved the power of this analysis. Using the 

individual as the unit of observation eliminates the requirement to assign individuals to 

populations, an unrealistic representation of population structure for continuously or patchily 

distributed species. Individual-based methods also yield a higher number of observations 

than population-based methods, an important attribute for species that are difficult to sample. 

Genetic distance quantified as PCA is theoretically more sensitive to genetic dissimilarity 

than other genetic distance metrics because it reduces multidimensional data into one 

dimension that contains most of the variance. With this approach, alleles that contain the 

most genetic variation contribute more to genetic distance than common alleles. This is a 

benefit over more commonly applied methods, such as Rousset’s a (Rousset 2000) or the 

proportion of shared alleles (DPS; Bowcock et al. 1994), where all alleles contribute equally. 

Although PCA has not been widely applied to quantify genetic distance in landscape 

genetics, Shirk et al. (2010) found that causal modeling outcomes were consistent when 

using genetic distance based on either PCA, proportion of shared alleles, or Rousset’s a with 

PCA yielding the highest correlation values with landscape resistance.  

 Applying these methods, I was able to identify a model of genetic isolation by 

landscape resistance that was better supported than IBB or IBD (Table 2). The optimized 

model of IBR also agreed largely with the results from Chapter 1 and generally agreed with 
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previous research on mountain goat population connectivity (Shirk 2009). In Chapter 1, I 

identified genetic discontinuities that correspond with the transportation corridors of I-90 and 

the Coquihalla Highway (Hwy 5) and development and agriculture in the Okanagan Valley. 

Evidence of migrants and admixed individuals in Chapter 1 and greater relative support for 

IBR than IBB in Chapter 2 both suggest that these landscape features are not complete 

barriers, but do impose high resistance to movement (Figure 7). Assuming that the four 

subpopulations outlined in Chapter 1 are panmictic would mask considerable heterogeneity 

in the permeability of the landscape where urban and agriculture landcover types, freeways, 

and low elevation all resist gene flow within subpopulations. The Mantel’s correlation of 

IBD and genetic distance was only slightly lower than that of IBR and genetic distance, 

suggesting that IBD is also driving genetic structure in this population. Evaluating the 

relative support for IBD and IBR reveals that IBR retains a higher Mantel’s correlation, 

supporting the selection of IBR as the strongest driver of genetic isolation. The strong, 

significant Mantel’s correlations of all three conceptual models of genetic isolation 

emphasize the importance of evaluating the relative support for IBB, IBD, and IBR.  

 This analysis of a broader study area that incorporated southern British Columbia 

identified a similar optimized model of landscape resistance to the analysis of the 

Washington Cascades, but there were key differences between the models. Shirk (2009) 

conducted his analysis at a coarser scale (450 m), and I hypothesized that reducing the cell 

size may have given this analysis better sensitivity to detect an effect of distance to escape 

terrain. Although I conducted this analysis at a finer grain (150 m) than Shirk (2009), I was 

also unable to detect an effect of distance to escape terrain on genetic distance. This is 
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surprising because mountain goats depend heavily on escape terrain to avoid predation 

(Hamel and Côté 2007, Festa-Bianchet and Côté 2008). It is possible that this landscape 

feature does not influence the movement of dispersing individuals or that escape terrain is not 

a limiting feature in the landscape. Finally, the higher resolution that I applied may still not 

be fine enough to detect an effect of distance to escape terrain on genetic distance. 

Surprisingly, this analysis assigned a drastically lower cost to crossing a freeway (200) than 

Shirk (10,000) and did not support the inclusion of highways or water in the multivariate 

model. Low elevation did indirectly apply resistance to the large, low elevation lakes within 

the study area. Urban and agriculture landcover types along highways in the study area also 

indirectly add resistance to movement near highways even though I did not find support for 

inclusion of highways themselves. Low sample density around many of the roads in the 

Coast Range may have reduced my ability to detect an effect of highways. This low sample 

density near Highway 99 and Highway 5 in British Columbia is particularly striking in 

comparison to the much higher sample density near I-90 in Washington (Figure 1). 

Additionally, due to the expansion of the study area, I used data layers developed for the 

WHCWG, which covered both British Columbia and Washington, instead of the data layers 

used by Shirk (2009), which only covered Washington. Ultimately, the model of landscape 

resistance derived in this analysis, where urban development, agriculture, and freeways are 

the major resistors to gene flow, resulted in a model of landscape resistance that was 

qualitatively similar to that identified by Shirk (2009).  

 Although the model of landscape resistance predicted high gene flow across much of 

the study area, gene flow is constricted by Highway 99, the Coquihalla Highway (Hwy 5), 
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the Okanagan Valley, and I-90. Naturally occurring low elevation valleys further restrict 

movement. This has major implications for the genetic health of the mountain goat 

population in Washington that relies on connectivity with mountain goat populations in 

British Columbia as a source of genetic diversity. Within Washington, the south Cascades 

subpopulation is particularly isolated due to its location at the extreme periphery of the 

species’ range and the high resistance of I-90. The Okanagan region also appears to be fairly 

isolated with low elevation and high resistance landcover types limiting connectivity with the 

Coast Range and Selkirk and Purcell mountains. Indeed, spatially explicit analysis of genetic 

diversity revealed that the south Cascades and Okanagan region had uniformly low indices of 

diversity (Figure 9 and Figure 12). Genetic isolation increases the risk of inbreeding 

depression and the fixation of deleterious alleles and also reduced adaptive potential. 

Ultimately, the genetic consequences of isolated populations with smaller effective local 

population size lead to reduced population viability.   

 The results of this analysis are limited to the hypotheses of genetic isolation tested 

and it is possible that a better model of genetic isolation remained untested. Numerous 

univariate and multivariate landscape resistance hypotheses were not tested due to 

computational limitations. In particular, a multimodal response to an environmental variable 

will be problematic because this could lead to the identification of a local peak of support 

rather than a global peak of support. The application of complimentary methods could 

increase confidence in these results. For example, Shirk et al. (2012) used simulation of gene 

flow under the optimized model of landscape resistance developed by Shirk (2009) to 

determine if the observed genetic pattern was related to the simulated genetic pattern and 
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effectively validated the optimized landscape resistance model. Genetic algorithms 

approaches that more efficiently search parameter space to fit landscape resistance surfaces 

to observed spatial genetic patterns may soon be readily available as computational 

capabilities increase (Spear et al  2010).  Finally, low sample density, particularly in British 

Columbia, may have limited the ability of this analysis to detect effects of landscape features, 

such as highways. Despite these limitations, I was able to derive a model of genetic isolation 

by landscape resistance that exhibited high correlation with genetic structure. This model 

may be applied to inform efforts to improve population connectivity and optimize the utility 

of translocation events.  

 The model of gene flow across the study area identified four priority areas for 

corridor conservation. Gene flow into the north Cascades from the Coast Range is channeled 

into several pinch- points along Highway 99 and, to a lesser extent, Highway 5 (Figure 8). 

Agriculture and urban areas in the Okanagan concentrate modeled movement from the 

Purcell Mountains into the Cascades. Finally, current is severely restricted to several narrow 

channels across I-90 as it moves from the north Cascades into the south Cascades. 

Maintaining and improving connectivity through these pinch-points may increase the 

landscape’s permeability to individual movement and sustain gene flow within the study 

area. This model of gene flow suggests that the wildlife passages that are currently under 

construction across I-90 could be quite helpful (US Department of Transportation Federal 

Highway Administration and Washington State Department of Transportation). Although it 

is unknown if mountain goats will utilize these crossing structures, strategic placement of 

wildlife passages in areas with less development may facilitate movement across this highly 
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resistant landscape feature. Results from Chapter 1 suggest that the mountain goat population 

in Washington was historically better connected to the Coast Range than the Selkirk and 

Purcell mountains. Given that the Coast Range also has the highest indices of genetic 

diversity, conservation corridors that allow movement between the Coast Range and the 

north Cascades should be prioritized to improve the genetic health and resilience to climate 

change of the mountain goat population in Washington. Finally, translocations may be 

complimentary to corridor conservation and the construction of wildlife passages to improve 

genetic diversity in Washington over the short-term. As stated in Chapter 1, the Coast Range 

is the premier source population because of the evidence of historical linkage with the 

Washington Cascades and high genetic diversity. I found that the mountain goat populations 

in the south Cascades are both the most genetically isolated and the least genetically diverse, 

pointing to these populations as priority recipients of translocated individuals. In the north 

Cascades the Mount Baker, Okanagan, and Alpine Lakes regions exhibit lower genetic 

diversity and could also benefit from translocations.  
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TABLES 
 
 
 
 
 
 
 
 
 
 
 

Table 1.  Resistance cost for each factor that contributes to landscape resistance in the most 
highly supported IBR model. 

Factor Resistance   

Urban/developed Barrier Fixed 
Freeway 25 Optimized 
Agriculture 100 Optimized 
Elevation < or > 1600 m 2-5 Optimized 
All other pixels 1 Optimized 
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Table 2.  Mantel’s correlations and partial Mantel’s correlations with genetic distance (G) for 
the IBB, IBD, and IBDLOG10 null models and the most highly supported IBR model.  

Model Mantel's r Monte Carlo P value 
IBB~G 0.610 0.0001 
IBD~G 0.684 0.0001 
IBDLOG10~G 0.523 0.0001 
IBR~G 0.715 0.0001 
IBB~G|IBD 0.176 0.0001 
IBD~G|IBB 0.422 0.0001 
IBB~G|IBR 0.105 0.0001 
IBR~G|IBB 0.479  0.0001 
IBD~G|IBR 0.080 0.0073 
IBR~G|IBD 0.297  0.0001 
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FIGURES 

 

 

Figure 1.  The study area showing genetic sample locations (black triangles), freeways (thick 
grey lines), highways (thin grey lines), elevation represented as a DEM, and study area 
orientation extent. 
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a)  
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Figure 2. (a) The resistance assigned according to increasing distance from escape terrain 
(Resistance = (distance/max distance) x * Rmax, rescaled to range from 1 to the Rmax), given 
the response shape designated by the exponent (x) in a box along each shape curve. (b) The 
Mantel’s correlation with genetic distance for the 16 hypotheses of resistance due to distance 
to escape terrain that vary by x and Rmax. The grey area indicates hypotheses with a 
Mantel’s correlation lower than the null model. All hypotheses were significant (α=0.05).  
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a)  

 

 

 

 

 

 

 

 

 

b)       c) 

 

 

 

Figure 3. (a) The resistance assigned according to road type (Resistance = (road rank/max 
road rank)x * Rmax, rescaled to range from 1 to Rmax), given the response shape designated 
by the exponent (x) in a box along each shape curve. (b) The Mantel’s correlation with 
genetic distance for the 25 hypotheses of resistance due to roads that vary by x and Rmax. 
The grey area indicates hypotheses with a Mantel’s correlation lower than the null model. All 
hypotheses were significant (α=0.05). (c) The Mantel’s correlation with genetic distance for 
the 15 hypotheses of resistance due to roads with the highest Mantel’s correlation values. 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)       c)     

Figure 4. (a) The resistance assigned according to landcover type (Resistance = (landcover  
rank/max landcover rank)x * Rmax, rescaled to range from 1 to Rmax), given the response 
shape designated by the exponent (x) in a box along each shape curve. (b) The Mantel’s 
correlation with genetic distance for the 25 hypotheses of resistance due to landcover that 
vary by x and Rmax. The grey area indicates hypotheses with a Mantel’s correlation lower 
than the null model. All hypotheses were significant (α=0.05). (c) The Mantel’s correlation 
with genetic distance for the 14 hypotheses of resistance due to landcover with the highest 
Mantel’s correlation values. 
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Figure 5. (a) The resistance assigned to various elevations according to a Gaussian function 
(Resistance = Rmax + 1 – Rmax*e -(elevation-Eopt)^2/(2*Esd)^2, rescaled to range from 1 to Rmax), 
given the response shape designated by the standard deviation in a box along each shape 
curve. (b) The Mantel’s correlation with genetic distance for the 45 hypotheses of resistance 
due to elevation that vary by optimal elevation and Rmax/SD. The grey area indicates 
hypotheses with a Mantel’s correlation lower than the null model. All hypotheses were 
significant (α=0.05). 
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Figure 6. The Mantel’s correlation with genetic distance for the 12 hypotheses of resistance 
due to landcover that vary by shape exponent and scale. The resistance for each of these 
hypotheses was added to the most highly correlated univariate model of road and elevation 
resistance prior to testing the Mantel’s correlation. All hypotheses were significant (α=0.05). 
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Figure 7. The best supported model of IBR ranging from lowest resistance (dark grey) to 
highest resistance (white).  
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Figure 8. Gene glow across the study area represented as current. The color scale represents 
the amount of current flowing from the Coast Range and Purcell Mountains into the south 
Cascades. The landscape resistance between pairs of points is also noted.  
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Figure 9. Observed heterozygosity (Ho) calculated using sGD with a genetic neighborhood 
cost distance of 4.56 and a minimum population of 5 individuals. 
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Figure 10.  Expected heterozygosity (He) calculated using sGD with a genetic neighborhood 
cost distance of 4.56 and a minimum population of 5 individuals. 
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Figure 11. The inbreeding coefficient (FIS) calculated using sGD with a genetic 
neighborhood cost distance of 4.56 and a minimum population of 5 individuals. 
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Figure 12. Allelic richness (Ar) calculated using sGD with a genetic neighborhood cost 
distance of 4.56 and a minimum population of 5 individuals. 
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APPENDIX  

Appendix 1. The second order rate of change in the STRUCTURE assignment probability (ΔK) 
for 1 to 5 populations for a) SM/PM subpopulation and b) OK/NC subpopulation.  
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Appendix 2. Samples represented by colored triangles indicate the STRUCTURE 
subpopulation to which they have the highest probability (>75%) of membership. Samples 
represented by stars indicate an individual admixed (<75% membership in one 
subpopulation) between the STRUCTURE subpopulation of the sample’s geographic location 
and the STRUCTURE subpopulation indicated by the color of the star. CR: Coast Range; 
SM/PM: Selkirk Mountains/Purcell Mountains; OL: Okanagan Lake; OK: Okanagan; MB: 
Mount Baker; NC: North Cascades; SC: South Cascades.  
 
 

 
 

 

 


