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ABSTRACT 

 

 

Management of game species requires an understanding not just of population abundance, 

but also the structure of and connections between populations. Like other large-bodied 

carnivores, the cougar (Puma concolor) exhibits density –dependent dispersal and is capable 

of long-distance movement; in the absence of barriers to movement, these traits should lead 

to high connectivity between individuals and a lack of genetic differentiation across areas of 

continuous habitat. Previous research has suggested that cougar movement may be 

influenced by landscape variables such as forest cover, elevation, human population density, 

and highways. I assessed the population structure of cougars (Puma concolor) in Washington 

and southern British Columbia by examining patterns of genetic variation in 17 microsatellite 

loci, and the contribution of landscape variables to this genetic variation. 

I evaluated population structure using genetic clustering algorithms and spatial 

principal components analysis. I quantified the effect of distance on genetic variation by 

calculating the correlation between the genetic distance and geographic distance between 

every pair of individuals, as well as the spatial autocorrelation of genetic distances. To 

compare the observed pattern of genetic differentiation with that which would arise solely 

from isolation by distance, I simulated allele frequencies across the study area where the cost 

to movement between individuals was proportional to the distance between them. I also 

evaluated the support for evidence of male-biased dispersal in allele frequencies. Bayesian 

clustering analyses identified four populations in the study area, corresponding to the 

Olympic Peninsula, Cascade Mountains, northeastern Washington and Blue Mountains; these 

clusters were supported by patterns of genetic differentiation revealed with spatial PCA. 
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Although I found a significant relationship between the geographic and genetic distance 

between individuals, simulated allele frequencies displayed no meaningful spatial pattern of 

differentiation, suggesting that male dispersal would be adequate within the scale of the study 

area to prevent genetic isolation from occurring if the only factor to affect dispersal was 

geographic distance. 

While cougars are capable of long-distance dispersal movements, dispersal in 

heterogeneous landscapes may be mediated by the resistance of the landscape to movement. I 

derived resistance surfaces for forest canopy cover, elevation, human population density and 

highways based on GIS data and estimated the landscape resistance between pairs of 

individuals using circuit theory. I quantified the effect of the resistance to movement due to 

each landscape factor on genetic distance using multiple regression on distance matrices and 

boosted regression tree analysis. Both models indicated that only forest canopy cover and the 

geographic distance between individuals had an effect on genetic distance, with forest cover 

exhibiting the greatest relative influence.  

The boundaries between the genetic clusters I found largely corresponded with breaks 

in forest cover, showing agreement between population structure and landscape variable 

selection. The greater relative influence of forest cover may also explain why a significant 

relationship was found between geographic and genetic distance, yet geographic distance 

alone could not explain the observed pattern of allele frequencies. While cougars inhabit 

unforested areas in other parts of their range, forested corridors appear to be important for 

maintaining population connectivity in the northwest. 
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CHAPTER 1 

 

 

Cougar spatial genetic variation and population structure in Washington and southern 

British Columbia 

 

INTRODUCTION 

 

The cougar (Puma concolor) is an apex predator in Washington, where it is managed as a 

game species, and sport hunting is currently used as the primary mechanism of population 

control (WDFW 2011). Depending on the scale of hunting pressure, however, cougar 

population density may not be affected, as high mortality in one area may be offset by 

increased immigration of subadult males from surrounding areas (Robinson et al. 2008). 

Effective management of cougars therefore requires a better understanding of population 

structure across the state, specifically whether the state’s cougars comprise a single, 

panmictic population, or function as a metapopulation. 

Variation in selectively-neutral regions of the genome, such as microsatellites, can be 

used to infer population structure. Like other large-bodies carnivores, cougars are capable of 

dispersing across long distances, generally resulting in continuous populations across areas of 

suitable habitat (Anderson et al. 2004). Genetic differentiation may then result as a function 

of distance, where individuals separated by greater distances are less closely related than 

individuals in close proximity to each other; this phenomenon is referred to as isolation by 

distance (Wright 1943). Cougars typically disperse upon becoming independent from their 

mother, between 1 and 2 years of age (Logan and Sweanor 2010). Subadult males are more 

likely than subadult females to disperse, and generally travel farther than females (Logan and 
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Sweanor 2000; Sweanor et al. 2000); in Washington, the average male dispersal distance is 

190 – 250 km (R. Beausoleil, personal communication). This propensity for long-distance 

dispersal may be enough to prevent a pattern of isolation by distance from being observed in 

Washington, however isolation by distance has been reported in cougars from California and 

Wyoming (Ernest et al. 2003; Anderson et al. 2004). 

Inbreeding in small, isolated populations can result in a loss of heterozygosity, and 

over time deleterious alleles may accumulate in the population, resulting in losses of fitness. 

Evidence of inbreeding depression was clearly seen in Florida panthers (Puma concolor 

coryi), an isolated subspecies of the cougar, including sperm defects, undescended testicles, 

and heart defects (Roelke et al. 1993). The shrinking population and low reproduction 

success ultimately led U.S. Fish and Wildlife biologists to translocate eight female cougars 

from Texas to South Florida, to reverse decades of inbreeding (Pimm et al. 2006). One of 

only three previously identified genetic bottlenecks in North American cougars comes from 

the Olympic Peninsula (Culver et al. 2000), and the low level of heterozygosity observed in 

Olympic cougars led Beier (2010) to suggest that reintroductions may be needed to ward off 

inbreeding depression. Connectivity between individuals on the Olympic Peninsula and the 

nearby Cascade Mountains remains unresolved. 

Discrete populations can be identified and delimited using genetic clustering 

algorithms, which assign individuals to clusters by minimizing Hardy-Weinberg and linkage 

disequilibria within groups (Guillot et al. 2005). Allele frequencies in a population at Hardy-

Weinberg equilibrium do not change from one generation to the next, allowing genotype 

frequencies to be estimated based on the squared sum of the frequency of alleles. The 
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population’s heterozygosity, which refers to having two different alleles at a particular locus, 

can then be calculated, and provides an indication of the amount of genetic variability in the 

population. Hardy-Weinberg equilibrium is an idealized state where natural selection exerts 

no influence on any locus being considered, there is no mutation or migration of individuals 

into the population, population size is infinite and mating is random. Linkage disequilibrium 

is the non-random association between alleles at two or more different loci, and can be an 

indication of non-random mating or population structure within an area (Freeland 2006).   

The primary aim of this study was to describe patterns of genetic variation across the 

state, in order to reveal the underlying population structure in the region. This was 

accomplished using cluster analysis and spatial principal components analysis (PCA). Based 

on these analyses, I sought to clarify the status of Olympic Peninsula cougars, and reevaluate 

their isolation from the rest of Washington and British Columbia. I also looked for genetic 

evidence of male-biased dispersal. Finally, to compare the spatial genetic variation which 

would arise solely from isolation by distance with the observed variation, I simulated allele 

frequencies across the study area where distance between individuals was the only cost to 

movement. 

 

METHODS 

Sample collection and genotyping 

The Washington Department of Fish and Wildlife (WDFW) collected 612 muscle or tissue 

samples from cougars across the state of Washington between 2003 and 2010. Additionally, 

55 samples were obtained from the British Columbia Ministry of Forests, Lands and Natural 



4 

 

Resource Operations. Samples were taken from animals that were killed by hunters, removed 

in response to public safety concerns or livestock depredation, or from live research subjects. 

All genotyping was performed by the WDFW molecular genetics laboratory in Olympia, 

Washington. DNA was extracted from blood and tissue samples using DNeasy blood and 

tissue isolation kits. Polymerase chain reaction was used to amplify 18 previously 

characterized microsatellite markers (Menotti-Raymond and O’Brien 1995; Culver 1999; 

Menotti-Raymond et al. 1999). PCR products were visualized with an ABI3730 capillary 

sequencer (Applied Biosystems) and sized using the Gene-Scan 500-Liz standard (Applied 

Biosystems). Locations of each animal were plotted based on hunter descriptions and added 

to a point shapefile; locations are considered accurate within 10 km (Figure 1).   

 I checked for amplification and allele scoring errors using Microchecker version 2.2.3 

(van Oosterhout et al. 2004). I used Genepop version 4.1 (Rousset 2008) to test for deviations 

from Hardy-Weinberg and linkage equilibria; alpha was adjusted using a simple Bonferroni 

correction to accommodate multiple tests (Rice 1989).   

 

Study area 

The study area included all of Washington state and a portion of southern British Columbia 

(Figure 1). It was comprised of ten ecoregions: Columbia Mountains/Northern Rockies, 

North Cascades, Eastern Cascades slopes and foothills, Blue Mountains, Pacific and Nass 

Ranges, Strait of Georgia/Puget Lowland, Coast Range, Willamette Valley, Thompson-

Okanogan Plateau, and Columbia Plateau (Wiken et al. 2011). Elevation ranged from 0 to 

4,392 m above sea level. Human population density varied considerably across the study 
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area, ranging from roadless wilderness to the metropolitan areas of Seattle, Tacoma, and 

Spokane, WA. 

 

Cluster analysis 

I used two Bayesian clustering programs to explore patterns of population structure within 

the study area. Geneland version 3.3.0 (Guillot et al. 2005) estimates the number of clusters 

within the global population and assigns individuals to clusters by minimizing Hardy-

Weinberg and linkage disequilibria within groups. The geographic coordinates of each 

individual are included in their prior distributions (Guillot et al. 2005). I used the spatial 

model with null alleles and uncorrelated allele frequencies. The uncertainty attached to the 

coordinates for each individual was 10 km, a maximum of 10 populations was assumed, and 

10
6
 iterations were performed, of which every 100

th
 observation was retained. 

I used Structure version 2.3.4 (Falush et al. 2003) without prior location information 

to see if patterns of cluster assignment changed when based solely on allele frequencies. I 

used the admixture model with correlated allele frequencies, a burn-in period of 10
5
 

repetitions followed by 10
6
 Markov Chain Monte Carlo repetitions. Both Structure and 

Geneland assume that discrete subpopulations exist in the study area, and that allele 

frequencies in these subpopulations are in Hardy Weinberg and linkage equilibria. 

 

Spatial PCA 

Clustering algorithms are designed primarily to identify discrete groups of individuals, 

therefore I also used spatial PCA to detect clinal population structure. Spatial PCA is a 
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modified version of PCA where synthetic variables maximize the product of an individual’s 

principal component score, based on allele frequencies, and Moran’s I, a measure of spatial 

autocorrelation (Jombart et al. 2008). Spatial autocorrelation is calculated between 

neighboring points as defined by a connection network. I generated a Gabriel graph to define 

this connection network, which connects two sample points only if a circle drawn between 

those points does not include any others. A network based on a Gabriel graph has fewer 

connections than one based on a Delaunay triangulation, which may connect distant points on 

the edge of the network, and more connections than one based on a minimum spanning tree 

(Legendre and Legendre 2012). Unlike Geneland and Structure, spatial PCA does not make 

assumptions regarding Hardy Weinberg and linkage equilibria, so the results of this analysis 

are not subject to the same issues of interpretability as those of the above clustering 

programs. Spatial PCA breaks spatial autocorrelation into global structure, where neighbors 

are positively autocorrelated, and local structure, where neighbors are negatively 

autocorrelated (Jombart et al. 2008).  

 

Descriptive statistics 

I calculated total number of alleles, mean number of alleles per locus, number of private 

alleles, expected heterozygosity (Nei 1987), and observed heterozygosity for each population 

cluster identified by the Geneland analysis using Microsatellite Toolkit version 3.1.1 (Park 

2001). To compare genetic differentiation between clusters I calculated pairwise estimates of 

FST (Weir and Cockerham 1984) using Genepop version 4.1. I also used GENALEX v. 6.4 to 

estimate inbreeding coefficients (FIS) for each cluster (Peakall and Smouse 2006). 
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Sex-biased dispersal 

I looked for evidence of male-biased dispersal in genotype frequencies using Monte-Carlo 

permutation tests of three common population genetic statistics: assignment index (AIC), 

fixation index (FST), and inbreeding coefficient (FIS) in Fstat version 2.9.3.2 (Goudet 2001; 

Goudet et al. 2002). I calculated the mean of each test statistic separately for each sex, and 

then the difference between the means for each sex; genotypes were then randomly assigned 

a sex and the difference between the means was recalculated. All tests were conducted with 

1,000 permutations, and significance was assumed at P ≤ 0.05. The AIc calculates how likely 

a given genotype is to occur within that subpopulation, based on subpopulation-specific 

allele frequencies (Goudet et al. 2002); I used the results of Geneland clustering to define 

subpopulations. Since male cougars are more likely to disperse than females, males were 

expected to have a lower mean AIc value, because the genotypes of immigrants have a lower 

probability of occurring in a subpopulation than those of residents. Variance of AIc values 

should be highest for males, due to higher immigration. I also tested for differences in 

genetic differentiation between the sexes, in terms of FST and FIS. FST is a pairwise measure 

of the genetic differentiation between subpopulations, relative to total genetic variance. 

Immigration results in greater mixing of alleles, therefore FST was expected to be lower in 

males. FIS, on the other hand, describes the fit of genotype frequencies to Hardy-Weinberg 

conditions; higher immigration rates for male cougars imply that within a single 

subpopulation, males will be from multiple subpopulations. This subpopulation structure, 

referred to as the Wahlund effect, manifests itself as a reduction in observed heterozygosity, 

and should result in higher FIS values for males (Goudet et al. 2002).  



8 

 

Spatial autocorrelation 

To determine the scale at which spatial patterns are detectable in allele frequencies, I 

constructed a Mantel correlogram using GENALEX v. 6.4 (Peakall and Smouse 2006). The 

correlogram was based on a geographic distance matrix derived from the Euclidean distance 

between the coordinates of each individual, and the genetic distance between individuals, 

calculated as Peakall and Smouse’s r (Peakall and Smouse 2006). I used Sturges’ Rule to 

determine the number of distance classes (D) to use in the correlogram based on the range of 

pairwise distances (R) and the sample size (n): 

D =        R___       

        1 + log2 n 

(Sturges 1926). This resulted in 10 distance classes which were each 60 km wide. This 

analysis was then repeated separately for each sex. 

 

Isolation by distance  

I tested for an effect of geographic distance on genetic distance using a simple Mantel test in 

the ecodist package for R with 1,000 permutations (Goslee and Urban 2007). Euclidean 

distances between the coordinates for every pair of individuals were calculated in R. I used 

principal components analysis (PCA) of allele frequencies to calculate genetic distances 

between individuals; I created a distance matrix in R derived from the first principal 

component scores for each individual (Patterson et al. 2006; Shirk et al. 2010). 
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Simulation of allele frequencies 

To compare the observed pattern of spatial genetic variation with that which would arise 

under a scenario of isolation by distance, I used CDPOP version 1.2.08 (Landguth and 

Cushman 2010) to simulate allele frequencies at 17 microsatellite loci across the study area. 

Initial allele frequencies were randomized and the simulation was run for 6,000 years to 

approximate genetic exchange during the late Holocene. The population began with 3,000 

individuals; this number was based on the most recent estimate of juveniles and adults in 

Washington (WDFW 2011), and extrapolated to include kittens and individuals in south-

central British Columbia. In addition to the locations of the 667 samples described above, I 

generated 2,333 random locations in forested regions of the study area to serve as starting 

locations for potential mates. I used a Euclidean distance matrix as the cost matrix for mating 

movement and dispersal, where mating was random for pairs within 55 km of each other, 

based on the average female home range size in southeastern British Columbia (Spreadbury 

et al. 1996). Dispersal for both sexes was defined as the inverse square of the cost distance, 

with thresholds based on average dispersal distances: 32 km for females (Anderson et al. 

1992; Sweanor et al. 2000; Maehr et al. 2002), and 220 km for males (R. Beausoleil, personal 

communication). Females began reproducing at 2 years of age and the number of offspring 

was drawn from a Poisson distribution with a mean of 3. Age-specific mortality rates were 

taken from published values in a lightly-hunted population in central Washington (Cooley et 

al. 2009). I repeated the above clustering and sPCA analyses on the ending allele frequencies 

for comparison with the observed data. The relationships between simulated genetic distance 



10 

 

and geographic distance, as well as observed genetic distance, were assessed using simple 

Mantel tests as described above. 

 

RESULTS 

Genotyping 

I detected significant homozygote excess at 16 loci when all individuals were pooled into a 

single population, which could have resulted from the presence of null alleles or genetic 

structure in the study area, due to the Wahlund effect. Estimated frequencies of null alleles 

were ≤ 5.1% for all but one locus (FCA293, 13.5%). Geneland clustering revealed multiple 

populations in the study area (described below). After separating individuals into the clusters 

indicated by Geneland, the estimated frequency of null alleles at locus FCA293 was still 

greater than 10% in two of four clusters, therefore this locus was dropped and all subsequent 

analyses were based on the remaining 17 loci (Table 1).   

Eight loci were out of HWE after Bonferroni correction for multiple tests, suggesting 

that there is not a single, panmictic population in the study area. Concurrent with HWE 

testing, I detected significant departures from linkage equilibrium in 55 of 152 pairwise 

comparisons between loci after Bonferroni correction. Seven of 17 loci occur on separate 

chromosomes or linkage groups and should be considered independent (Menotti-Raymond et 

al. 1999), while one locus, FCA166, has yet to be mapped. After separating individuals into 

clusters identified by Geneland, no consistent patterns of linkage or Hardy-Weiberg 

disequilibria between clusters remained. All 17 retained loci were polymorphic, with 

between 2 and 9 alleles per locus and 91 total alleles globally. 
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Cluster analysis 

Support was highest for four populations in the study area in the Geneland simulations 

(Figure 2). The clusters corresponded roughly with the Blue Mountains in southeastern 

Washington, northeastern Washington, western Washington following the Cascade 

Mountains, and the Olympic Peninsula (Figure 3). Cluster 1 was geographically isolated and 

lay across the Columbia River Basin from clusters 2 and 3 (Figure 4a). The boundary 

between clusters 2 and 3 corresponded with the Okanogan Valley (Figure 4b and 4c), and 

cluster 3 was separated from cluster 4 by Puget Sound and the I-5 corridor (Figure 4d). 

I also clustered the samples using the STRUCTURE program without location 

information and the number of clusters set to 4. Greater spatial overlap between clusters 

could be seen in the Structure assignment results compared with those from Geneland 

(Figure 5). The barplot of probability of population membership shows a sharply defined 

Olympic Peninsula cluster (Figure 5, in yellow), while the other three clusters transition 

gradually from one to the next, with several individuals in each cluster having mixed 

membership in multiple clusters.  

 

sPCA 

The first two global sPCA axes explained most of the spatial genetic variation (Figure 7a), 

and were well differentiated from all other axes (Figure 7b); therefore only these two axes 

were retained. Additionally, the test for global structure, a Monte Carlo randomization test 

using 999 permutations, was highly significant (max(t) = 0.016, P = 0.001; Fig. 8). Local 

sPCA axes explained little spatial genetic variation (Figure 7a) and were poorly differentiated 
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from each other (Figure 7b); no evidence of local structure was found (max(t) = 0.0028, P = 

0.74; Figure 8b). 

The first global sPCA axis displayed strong east-west genetic differentiation across 

the study area; the strongest separation between neighboring samples was found along the 

Okanogan Valley and edge of the Columbia River Basin (Figure 9). The second global sPCA 

axis clearly separated out individuals on the Olympic Peninsula and in the Blue Mountains 

from the rest of the state, as well as showing a weak east-west gradient in genetic similarity 

in northeastern Washington, coinciding approximately with the Columbia River (Figure 10). 

This does not imply that cougars on the Olympic Peninsula and in the Blue Mountains are 

closely related to each other, rather that they are strongly differentiated from their nearest 

neighbors. 

 

Descriptive statistics 

The total and mean number of alleles was highest in the northeast and Cascades clusters, 

which also had the highest sample sizes (Table 2). Both expected and observed 

heterozygosity were far lower in the Olympic cluster than in all other clusters, indicating 

lower genetic diversity in Olympic cougars, and possibly greater isolation of this cluster 

(Table 2). Population differentiation (FST) increased with distance between clusters; 

differentiation was lowest between the northeast and Cascades clusters, and highest between 

the Olympic and Blue Mountain clusters (Table 3). The geographically adjacent Olympic and 

Cascades clusters showed a surprising degree of differentiation (FST = 0.145), in accord with 

greater isolation of the Olympic cluster. 
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Spatial autocorrelation 

I detected significant positive spatial autocorrelation in allele frequencies in the first three 

distance classes, and significant negative spatial autocorrelation in distance classes 4 through 

8; this indicates that spatial autocorrelation is positive up to 180 km, and negative beyond 

180 km (Figure 6a). The results beyond 480 km should not be interpreted due to high 

variances resulting from low sample sizes. When samples were separated by sex, the results 

for males did not differ from those of all samples combined (Figure 6b). For female samples, 

the 95% confidence interval for the 180 km distance class included 0, indicating that positive 

spatial autocorrelation was detected only up to 120 km (Figure 6c). This suggests that spatial 

autocorrelation of allele frequencies occurs over a smaller spatial scale for female cougars.  

 

Sex-biased dispersal 

The mean assignment index (AIc) value was significantly lower for males than for females, 

as would be expected with male-biased dispersal (P = 0.029; Table 4). The variance in AIc 

values was higher for male cougars, however this difference was not significant (Table 3). 

Also in keeping with male-biased dispersal, male cougars exhibited significantly higher FIS 

values than female cougars (P = 0.003; Table 4). FST values were lower, though not 

significantly, for male cougars (Table 4). 

 

Isolation by distance 

Genetic distance was positively correlated with geographic distance, however this 

relationship was fairly weak (r = 0.33, P = 0.001). Log-transforming geographic distance did 
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not strengthen the correlation. Low genetic distances were seen at a wide range of geographic 

distances, indicating that closely related individuals can be found hundreds of kilometers 

apart from each other (Figure 11). 

 

Simulation of allele frequencies 

Simulated genetic distance and geographic distance were not significantly correlated for 

randomized initial allele frequencies (r = -0.002, P = 0.82). There was a significant 

correlation between genetic and geographic distance for years 10 -2000, however this 

relationship never explained more than 2.5% of variation, and after year 2000 this 

relationship became nonsignificant (Figure 12). Geneland cluster analysis revealed a single 

population in the study area based on ending allele frequencies (Figure 13). Structure 

clustering split the proportion of samples equally between clusters for each value of K tested, 

which coupled with high variances indicated a single population as well. I retained only the 

first sPCA axis based on the screeplot of the eigenvalues (Figure 14), however there was no 

clear pattern in genetic differentiation observed in this axis (Figure 15). Simulated genetic 

distance and observed genetic distance were not significantly correlated (r = 0.023,                

P = 0.054). 

 

DISCUSSION 

My results strongly suggest that cougar populations in Washington and southern 

British Columbia are structured as a metapopulation, not a single, panmictic population. The 

results of Geneland clustering largely agreed with those of spatial PCA, showing four 
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clusters in the study area. The boundaries between these clusters are not sharply defined, as 

evinced by differences and overlap between clusters identified by Geneland and Structure. 

Mixed membership in multiple clusters, observed in both Geneland and Structure clustering 

results, as well as geographic separation between individuals belonging to the same cluster 

observed in the Structure results, suggest that limited gene flow has been maintained between 

clusters. Overall, the Structure results imply greater migration in the study area than those of 

Geneland; this is to be expected, as the algorithm underlying the Structure program is better 

suited to identifying migrants because it is based wholly on allele frequencies. Geneland 

clusters samples by breaking the study area into polygons consisting of individuals with 

similar allele frequencies, as such, a single migrant is more likely to be mixed in with 

individuals from that particular subpopulation (Guillot et al. 2005). Spatial PCA is also a 

powerful method for detecting migrants, which would be negatively spatially autocorrelated 

to neighboring samples, resulting in local, as opposed to global, structure (Jombart et al. 

2008). Given that the permutation test for local structure was not significant, and the spatial 

pattern in allele frequencies detected by the Geneland analysis closely matched that revealed 

by sPCA, these two methods seem to have produced the most realistic representation of 

population structure in the study area. 

State-wide analyses in Nevada (Musial 2009), Oregon (Andreasen et al. 2012) and 

California (Ernest et al. 2003) revealed spatially-structured cougar populations, however 

similar analyses in Wyoming (Anderson et al. 2004) and Utah (Sinclair et al. 2001) did not. 

Anderson et al. (2004) found less genetic differentiation between cougars in Wyoming than 

was observed in Washington, yet found a stronger relationship between genetic and 
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geographic distance (r=0.61, P=0.011). This suggests that although there was an isolation by 

distance effect, the sparsely-developed Wyoming landscape may be more permeable to 

movement than that of Washington. Given the lack of differentiation seen in Wyoming, 

dispersing subadult males may encounter more resistance due to territoriality of resident 

males in forested habitat than in less suitable, yet less densely-populated shrub-steppe areas. 

In Utah, Sinclair et al. (2001) found little evidence of population structure, however 

this may have been due to sampling design and low sample size. Genetic structure was 

evaluated using F-statistics where populations were a priori defined by management units, 

which may not have held any biological relevance, and each unit consisted of only 5 

individual samples. 

Musial (2009) detected a genetic cline in Oregon cougars where the eastern foothills 

of the Cascades meet the high desert, separating the state into eastern and western clusters. 

This closely resembles the pattern of differentiation I observed in the first sPCA axis, and 

between the Cascades and northeastern clusters in Geneland and Structure clustering, 

aligning approximately with the Okanogan Valley. Musial (2009) attributed this isolation to 

unsuitable habitat, characterized by low slope and the lack of vegetative cover, between the 

eastern and western clusters. Habitat in the Okanogan Valley is similar to that of the clinal 

region in Oregon, however the width of this unforested corridor in Washington is far 

narrower, ranging from 17 – 36 km. There is no doubt that cougars are physically capable of 

crossing this valley, however the frequency which with they do so, the resistance they meet 

from territorial resident males on the other side, their susceptibility to hunting mortality while 
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crossing and attempting to establish a new home range, and their probability of successfully 

mating once across are all unknown.  

The population clusters identified here correspond closely to existing Cougar 

Management Units (CMU) in Washington, with the exception of the Cascades cluster, which 

is currently divided into 5 CMUs (WDFW 2011). Each CMU has its own population 

objective and hunting regulations, however the lack of genetic differentiation observed 

between these 5 CMUs suggests that gene flow between them is high; achieving different 

population goals within these CMUs may be impractical, as mortality in one CMU may be 

offset by immigration from nearby units. 

Cougars are typically managed at the state level, however this may not be an apposite 

scale for analysis, as political boundaries often have no ecological relevance. Management 

agencies could make the most of limited resources for genetic analysis through collaboration 

with agencies in adjacent states or provinces to establish a consistent sampling procedure and 

series of genetic markers, so that analyses do not have to stop at the state line. This study 

shows that cougar populations overlap the international border between northern Washington 

and southern British Columbia, and likely extend into Idaho and Oregon as well. 

The results of the mean AIc and FST tests provided genetic evidence of male-biased 

dispersal, however the variance of AIc and FST tests were non-significant. Goudet et al. 

(2002) found that the variance of AIc test performs best when dispersal rates are <10%; the 

propensity for male cougars to disperse from natal areas may have resulted in low power for 

this particular test. Unlike AIc-based tests, spatial patterns in dispersal and genetic 

differentiation can diminish the power of the FST test, particularly when populations are 
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geographically distant (Goudet et al. 2002). The isolation by distance pattern observed in 

allele frequencies may have weakened my power to detect differences in FST between 

clusters. Furthermore, the extent of positive spatial autocorrelation was less for females than 

for males, consistent with shorter average dispersal distances for female cougars. 

Cougars on the Olympic Peninsula do not appear to be as isolated as previously 

thought. The Olympic cluster had the lowest mean observed heterozygosity, 0.33, of the four 

clusters (Table 2); this value was similar to that found by Culver et al. (2000), 0.31, for 

Olympic cougars. The percentage of polymorphic loci for this cluster, however, was much 

higher in the present study, 94%, than was previously found (50%; Culver et al. 2000). This 

difference may be attributable to a disparity in sample size; Culver et al.’s (2000) analysis 

was based on only four samples, while the Olympic cluster in the present study was 

comprised of 26 individuals. The Olympic cluster also had the highest inbreeding coefficient 

(FIS) of any cluster, at 0.078 (Table 2), yet this value was relatively low compared with those 

reported for small or isolated populations in California (0.03 - 0.20; Ernest et al. 2003) and 

the Intermountain West (0.036 – 0.227; Loxterman 2010). This evidence suggests that 

although the Olympic cougar population is small and relatively isolated from the rest of the 

state, genetic diversity is not as low as originally feared, and translocations do not appear to 

be necessary at this time. 

The dispersal of young male cougars is likely responsible for maintaining population 

connectivity at the scale of the study area. Accordingly, the population structure observed 

would be expected to be the result of landscape features impeding dispersal. Boundaries 

between clusters corresponded with the unforested Columbia River Basin, the Okanogan 
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Valley, and the I-5 corridor and Puget Sound. None of these barriers appeared to completely 

preclude dispersal, however, given the overlap between clusters and occurrence of probable 

migrants.   

While I found a significant correlation between genetic distance and geographic 

distance, distance alone cannot explain the genetic structure observed. Allele frequencies 

simulated under a scenario of isolation by distance did not result in multiple genetic clusters 

or a clear spatial pattern of differentiation. Furthermore, if distance were the only factor 

influencing allele frequencies, then both north-south and east-west genetic clines should be 

apparent. North-south clines were notably absent, however, even in the Cascades cluster 

which covers over 480 km from the northern to southern tip. This distance is well over the 

180 km threshold at which positive spatial autocorrelation was detectable, and nearly double 

the average male dispersal distance in Washington. The results of sPCA and Geneland and 

Structure clustering all indicate population structure within the study area, so some factor(s) 

other than or in addition to geographic distance must be driving this differentiation. Further 

analysis is needed to identify the landscape features which impede dispersal and isolate 

clusters from one another. 
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TABLES 

 

Table 1. Number of alleles, expected heterozygosity (HE) and observed heterozygosity (HO) 

for 17 cougar microsatellite loci. 

 

Locus No. of alleles He Ho 

FCA008 2 0.403 0.357 

FCA026 5 0.483 0.417 

FCA035 3 0.505 0.446 

FCA043 3 0.658 0.582 

FCA057 8 0.713 0.673 

FCA082 7 0.717 0.671 

FCA090 6 0.702 0.615 

FCA091 7 0.691 0.649 

FCA096 4 0.638 0.610 

FCA126 4 0.354 0.348 

FCA132 9 0.462 0.413 

FCA166 5 0.558 0.485 

FCA176 7 0.482 0.438 

FCA205 7 0.709 0.647 

FCA254 6 0.623 0.560 

FCA262 3 0.262 0.239 

FCA275 5 0.691 0.648 
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Table 2. Sample size, number of alleles, expected (HE) and observed heterozygosity (HO), 

and inbreeding coefficient (FIS) for cougar population clusters. 

 

Population n 

Total 

alleles 

Mean  

alleles/locus 

Private 

alleles 

Mean HE 

(SD) 

Mean HO 

(SD) FIS 

Blue Mtns 32 126 3.71 0 0.568 (0.04) 0.534 (0.02) 0.033 

Northeast 321 170 5.00 4 0.565 (0.03) 0.549 (0.01) 0.027 

Cascades 288 172 5.06 5 0.535 (0.04) 0.498 (0.01) 0.066 

Olympic 26 114 3.35 0 0.354 (0.06) 0.325 (0.02) 0.078 

 

 

 

Table 3. Estimates of genetic differentiation (FST) between cougar population clusters. 

 

 

Blue Mtns Northeast Cascades 

Northeast 0.094 -- -- 

Cascades 0.151 0.036 -- 

Olympic 0.310 0.205 0.145 

 

 

 

Table 4. Permutation test results for sex-biased dispersal in cougars. 

 

 

n Mean AIc Variance AIc FIS FST 

Female 301 0.388 25.02 0.0297 0.0629 

Male 308 -0.379 30.04 0.0761 0.0831 

P-value 

 

0.029 0.121 0.003 0.188 
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FIGURES 

 

 
 

Figure 1. Locations of cougar genetic samples. 
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Figure 2. Number of population clusters simulated from the Geneland posterior distribution, 

after a burn-in of 200 iterations and a thinning interval of 100 iterations. The maximum a 

posteriori estimate is shown by the clear mode at 4 clusters. 
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Figure 3. Posterior probability of membership in Geneland clusters. 
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Figure 4. Boundaries between Geneland clusters.  The posterior probability of Geneland 

cluster membership is shown in panels A-D, representing clusters 1-4, respectively, and 

lighter colors indicate a higher probability of membership to that cluster. 
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Figure 5. Prior probability of Structure cluster membership for all samples. The bar plot for 

K=4 is shown below. 
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(a) 

 
 

(b)

 
(c) 

 
 

Figure 6. Mantel correlogram showing spatial autocorrelation of allele frequencies for (a) all 

samples, (b) male samples and (c) female samples.  The dashed red lines represent the upper 

(U) and lower (L) 95% confidence limits of the null hypothesis that there is no spatial 

structure present in the dataset.  The value of Mantel’s correlation (r) is shown on the Y axis. 
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(a)

  

(b)

  
Figure 7. (a) sPCA eigenvalues; the first two global axes (on left, in red) were retained while 

no local axes (on right) were retained.  (b) Scree plot of the spatial and variance components 

of the sPCA eigenvalues. Axes 1 and 2 (denoted by λ1 and λ2) were well differentiated from 

all others, therefore only these two were retained. 
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Figure 8. Spatial PCA Monte-Carlo permutation test results for global structure (a) and local 

structure (b), using 999 permutations. The location of the test statistic, max(t), is represented 

by a black diamond. Significant global structure, or positive spatial autocorrelation, was 

detected (max(t) = 0.016, P = 0.001). Local structure, or negative spatial autocorrelation, was 

not detected (max(t) = 0.0028, P = 0.74).    
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Figure 9. First global sPCA axis.  Genetic similarity is represented by color and size of 

squares, where squares of different color are strongly differentiated from each other, while 

squares of similar color but different size are weakly differentiated.  Geographic coordinates 

in UTM’s are shown on the X and Y axes. 
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Figure 10. Second global sPCA axis.  Genetic similarity is represented by color and size of 

squares.  Geographic coordinates in UTM’s are shown on the X and Y axes. 
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Figure 11. Relationship between geographic and genetic distance.  PCA-based genetic 

distance was derived from the first principal component scores of allele frequencies, and 

geographic distance was measured as the Euclidean distance between pairs of coordinates for 

each individual.  
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Figure 12. Correlation between genetic and geographic distance for simulated allele 

frequencies. Closed circles show correlations which were significant at α = 0.05; open circles 

were not significant.  
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Figure 13. Number of population clusters simulated from the Geneland posterior distribution 

for simulated allele frequencies, after a burn-in of 200 iterations and a thinning interval of 

100 iterations. The maximum a posteriori estimate is shown by the clear mode at 1 cluster. 
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Figure 14. Scree plot of the spatial and variance components of the sPCA for simulated 

allele frequencies. Axis 1 was well differentiated from all others, therefore only this axis was 

retained. 
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Figure 15. First global sPCA axis for simulated allele frequencies. Genetic similarity is 

represented by color and size of squares. Geographic coordinates in UTM’s are shown on the 

X and Y axes. 
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CHAPTER 2 

Cougar gene flow in a heterogeneous landscape 

INTRODUCTION 

In heterogeneous landscapes, dispersal may be facilitated or impeded by the resistance to 

movement inherent to the landscape matrix (Verbeylen et al. 2003). The cougar’s reclusive 

nature and sparse distribution across the landscape present challenges to studying dispersal in 

this species; much of what is known about habitat use during dispersal comes from small 

samples of radio-tagged individuals (Beier 1995; Sweanor et al. 2000). However, radio 

telemetry studies are of limited use because many dispersal events are unsuccessful in the 

sense that animals die before they reproduce. Unlike radio-telemetry studies, the use of 

genetic data can provide more information about dispersal in that the genetic structure of a 

population is a reflection only of successful dispersal events – those that have resulted in 

successful reproduction – that have occurred over the past few generations (Cushman et al. 

2006). Genetic distance, or relatedness, can therefore serve as a proxy for dispersal and can 

be used to gauge the degree of connectivity between populations.   

The primary driver of gene flow in cougars is the dispersal of subadults away from 

natal areas following independence from their mother between one and two years of age 

(Logan and Sweanor 2010).  Male cougars are more likely to leave their natal area than 

female cougars, and males generally disperse greater distances than females (Logan and 

Sweanor 2010). However, in areas of reduced or no hunting pressure gender differences may 

become trivial (Newby 2011). Factors shown to influence cougar movement include 
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elevation, slope, terrain ruggedness, landcover, forest cover, high-speed paved roads, human 

development, and proximity to water (Beier 1995; Dickson and Beier 2002; Dickson et al. 

2005; Kertson et al. 2011; Newby 2011).  Dispersing subadults in the Rocky Mountains used 

habitat types similar to those used by resident adults (Newby 2011).  

In western Washington, radio-collared cougars selected low elevation areas (Kertson 

et al. 2011). While there may be some differences between daily movements and dispersal 

movements, Newby (2011) also found selection for low elevations in dispersing subadults in 

the Rocky Mountains. Similarly, cougar space use in southern California was highest in 

canyon bottoms (Dickson and Beier 2007).  

Although cougars may cross open areas, they spend the majority of their time in 

forests with a developed understory, which provides stalking cover and concealment of food 

caches (Logan and Irwin 1985; Beier 1995).  Cougar space use in the Rocky Mountains and 

western Washington has been positively correlated with forest cover (Kertson et al. 2011; 

Newby 2011). 

Cougars may make use of dirt roads while traveling, however high-speed paved roads 

pose a serious mortality risk (Taylor et al. 2002; Dickson et al. 2005).  Previous studies have 

provided evidence that highways can reduce gene flow in cougars and other large mammals 

(McRae et al. 2005; Riley et al. 2006; Balkenhol and Waits 2009; Shirk et al. 2010).  

While they have been documented crossing urban areas, most cougars avoid areas of 

human habitation (Stoner and Wolfe 2012).  Additionally, cougars were less likely to use 

areas lit by artificial street lighting than those that were not (Beier 1995).  Cougar space use 
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has been negatively correlated with residential density in western Washington (Kertson et al. 

2011). 

The emerging field of landscape genetics focuses on the use of genetic distance 

between individuals, based on allele frequencies, to evaluate alternative hypotheses regarding 

landscape features that may influence gene flow (Manel et al. 2003; McRae 2006). For each 

hypothesis, a landscape resistance surface is derived from GIS data layers. A matrix of 

“resistance distances” between every pair of individuals is then generated (Spear et al. 2010) 

using either least cost paths (Cushman et al. 2006) or, more recently, Circuitscape, which 

uses circuit theory to model all possible dispersal pathways across the landscape (McRae 

2006). Circuitscape has the advantage, over least cost path analysis, that it more realistically 

accounts for the presence of multiple dispersal pathways and the effect of the width of 

dispersal pathways. The relationship between genetic distance and resistance distance for a 

given landscape variable can then be tested. Permutation tests are required to determine 

statistical significance because of the interdependence of elements of a distance matrix 

(Legendre and Legendre 2012).  

 The most common approach to relating landscape resistance to genetic distance has 

been to use partial Mantel tests, however this method has been criticized for having inflated 

Type I error rates (Raufaste and Rousset 2001; Guillot and Rousset 2013) and performing 

poorly in distinguishing between multiple correlated distance measures (Balkenhol et al. 

2009). Multiple regression on distance matrices has proven more accurate than Mantel tests 

in simulation studies (Balkenhol et al. 2009), and, unlike the Mantel test, the scale of 

resistance between the response and explanatory variables does not need to be known 
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beforehand. A linear relationship between variables is still assumed under multiple regression 

on distance matrices, and multicollinearity must be checked for. An alternative to linear 

regression, boosted regression tree analysis is a recently developed machine learning 

technique that can explain the relative influence of independent variables on a response 

variable, and is appropriate for nonlinear data (Elith et al. 2008).  

 My primary objective was to identify the landscape variables which influence gene 

flow in cougars. I generated resistance surfaces across the study area for four candidate 

variables based on previous studies of cougar movement and dispersal: elevation (Dickson 

and Beier 2007; Kertson et al. 2011; Newby 2011), forest canopy cover (Logan and Irwin 

1985; Beier 1995; Kertson et al. 2011; Newby 2011), human population density (Beier 1995; 

Kertson et al. 2011), and highways (Taylor et al. 2002; Dickson et al. 2005; McRae et al. 

2005). I estimated resistance between all pairs of cougar sample locations on each of these 

resistance surfaces using Circuitscape (McRae 2006). Finally, I evaluated the relative 

influence of these factors on gene flow by examining the relationship between genetic 

distance and resistance using two different statistical approaches: multiple regression on 

distance matrices and boosted regression trees. 

METHODS 

Study area 

The study area included all of Washington state, a portion of southern British Columbia, the 

western edge of Idaho and the northern edge of Oregon (Figure 1). It was comprised of ten 

ecoregions: Columbia Mountains/Northern Rockies, North Cascades, Eastern Cascades 

slopes and foothills, Blue Mountains, Pacific and Nass Ranges, Strait of Georgia/Puget 
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Lowland, Coast Range, Willamette Valley, Thompson-Okanogan Plateau, and Columbia 

Plateau (Wiken et al. 2011). Elevation ranged from 0 to 4,392 m above sea level. Human 

population density varied considerably across the study area, ranging from roadless 

wilderness to the metropolitan areas of Seattle and Tacoma, WA, Vancouver, BC , Spokane, 

WA, and the northern edge of Portland, OR. 

 

Sample collection and genotyping 

See chapter 1 methods for sample collection and genotyping. Samples from southeastern 

Washington, referred to as the Blue Mountain cluster in chapter 1, were excluded from 

landscape resistance analysis due to their geographic isolation and the artificial barriers 

imposed by the boundaries of the study area, i.e. when calculating landscape conductance 

due to forest canopy cover with Circuitscape, current would be forced to travel across 

unforested areas of the study area, when in reality dispersing cougars could follow forested 

corridors outside of the study area to reach the Blue Mountains. After this cluster was 

removed a total of 633 individual samples remained (Figure 1). 

 

Landscape resistance surfaces 

I generated landscape resistance surfaces using data layers for elevation, forest canopy cover, 

human population density and highways. All GIS layers were projected in a modified Albers 

projection (see WHCWG 2010). The untransformed raw values of each layer were rescaled 

from 0 to 1 by dividing each cell by the maximum value for that layer; this was done to 

standardize resistance estimates and allow for evaluation of the relative importance of each 
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factor. Circuitscape treats 0 values as no data, therefore I added 1 to each cell, resulting in all 

layers being scaled from 1 to 2. The resolution of each layer was reduced to 300 m
2
 by 

aggregating cells based on the average cell value to maintain practical Circuitscape 

computation times. All sample points were at least 70 km from the map boundary, except 

where boundaries coincided with actual barriers to dispersal, such as Puget Sound; this buffer 

was used to minimize the risk of overestimating resistance near map edges (Koen et al. 

2010). 

 

Elevation 

U.S. elevation data was taken from the National Elevation Dataset (USGS 2012). Rasters 

were downloaded as tiles and mosaicked together. Canadian elevation data came from 

Terrain Resource Information Management Digital Elevation Model (Crown Registry and 

Geographic Base 2012). U.S. and Canadian elevation layers were mosaicked together, 

however some gaps were left along the international border. Gaps were filled in by creating a 

mask over the problem area and calculating the focal mean for a 5 by 5 rectangle around each 

cell within the mask (Figure 2).    

 

Forest canopy cover 

Forest canopy cover data was downloaded from the Washington Wildlife Habitat 

Connectivity Working Group (WHCWG 2010). U.S. forest canopy cover was based on 

Landsat imagery from 1999-2003. Canadian forest canopy cover was based on Landsat 

imagery from 2000. Forest canopy cover in this dataset was classified into four broad ranges 
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(nonforest, 0-40%, 40-70%, and 70-100% canopy cover). Each category was reclassified as 

the median of its range (Figure 3). 

 

Human population density 

A residential density layer was downloaded from WHCWG (2010).  U.S. residential density 

was based on census data from 2000.  Although more recent census data was available, the 

2000 census data may more realistically represent human impacts on cougar populations 

during the 2001-10 timeframe during which the genetic samples were collected since the 

genetic structure of the population reflects dispersal and mating events over the past several 

generations.  Canadian residential density was based on census data from 2001.  Residential 

density was classified into ranges based on acres per housing unit; I reclassified each 

category as the median of its range (Figure 4). 

 

Highways 

Rasters for freeways, major highways and secondary highways were downloaded from 

WHCWG (2010).  U.S. roads were based on 2000 U.S. census TIGER roads and the 

Washington state DNR GIS transportation data layer.  Canadian roads were based on Digital 

Road Atlas data for British Columbia (Figure 5).  The final raster was reclassified according 

to annual average daily traffic volumes for each category of highway (WSDOT 2012).   
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Resistance to gene flow 

I calculated pairwise resistance estimates for each landscape variable between every pair of 

individuals using Circuitscape version 3.5.8 (McRae et al. 2008). Circuitscape uses circuit 

theory algorithms to calculate the resistance cost for an individual moving between two 

points, in this case the coordinates of each genetic sample, based on a user-supplied 

resistance surface. Landscape resistance is likened to electrical current, allowing for multiple 

pathways of dispersal, with narrow dispersal corridors presenting higher resistance than wide 

corridors (McRae 2006). Elevation, human population density and highway traffic volume 

were run as resistance surfaces, while forest canopy cover was run as a conductance surface, 

where conductance is simply the reciprocal of resistance (McRae and Shah 2011). Regardless 

of whether the input is a resistance or conductance surface, the output is always a resistance 

estimate. I used an eight neighbor, average resistance/conductance cell connection scheme 

for each grid.  

 

Multiple regression on distance matrices 

I used multiple regression on distance matrices (Legendre et al. 1994) to evaluate the 

relationships between PCA-based genetic distance (see chapter 1) and resistance estimates 

for each landscape variable. While multiple regression on distance matrices produces 

coefficients and R
2
 values identical to those produced with ordinary multiple regression, 

significance must be determined using permutation tests because the individual elements of a 

distance matrix are not independent from one another (Legendre et al. 1994). In order to 

evaluate the contribution of geographic distance alone, I also included a pairwise distance 
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matrix based on the Euclidean distance between the coordinates for each genotyped 

individual, generated using the Ecodist package in R (Goslee and Urban 2007). Each 

resistance distance matrix was included as a term in a linear model, where genetic distance 

was the response variable: 

G ~ RE + RF + RP + RH + RG 

where G = Genetic distance, RE = Resistance due to elevation, RF = Resistance due to the 

reciprocal of forest canopy cover, RP = Resistance due to human population density, RH = 

Resistance due to highways, and RG = Resistance due to geographic distance 

 Resistance estimates were z-transformed to standardize partial regression coefficients. 

P-values were derived from 1,000 random permutations of the response (genetic distance) 

matrix. All regression modeling was performed using the Ecodist package in R (Goslee and 

Urban 2007). To remove variables which did not contribute significantly to model fit, I used 

forward selection with a P-to-enter value of 0.05 (Balkenhol et al. 2009). 

Geographic distance is a component of all resistance estimates, therefore some 

correlation was expected between resistance estimates for each landscape variable. Like other 

forms of linear regression, uncorrelated independent variables are an assumption of multiple 

regression on distance matrices. I calculated pairwise correlations between all resistance 

distance matrices using Mantel tests with the Ecodist package in R (Goslee and Urban 2007); 

I used the Pearson correlation method and significance was based on 1,000 permutations. As 

a complement to correlation analysis, I calculated the variance inflation factor for each 

resistance estimate using the Companion to Applied Regression (car) package in R (Fox and 
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Weisberg 2011); a variance inflation factor greater than 10 generally indicates that terms in a 

model are too highly correlated (Marquardt 1970).  

 

Boosted regression trees 

Regression trees are a nonparametric alternative to linear regression analysis; regression trees 

repeatedly split the response data into two groups based on a single variable, while trying to 

keep the groups as homogeneous as possible. The number of splits in the response, referred 

to as the size of the tree, can be determined by cross-validation, where a sequence of 

regression trees built on a random subset of the data is used to predict the response of the 

remaining data. The optimal tree size has the smallest error between the observed and 

predicted values. When numeric data is split, all values above the split value are placed in 

one group, while all values below the split value are placed in the other group, making only 

the rank order of the data important. Monotonic transformations of the explanatory variables, 

therefore, have no effect on the results of a regression tree; this is particularly advantageous 

in a landscape genetic framework, where the functional relationships between the response 

and explanatory variables are rarely known (De’ Ath and Fabricius 2000). Simple regression 

trees are generally used as an exploratory tool to detect patterns in the data, and are well-

suited to the noisy nature of landscape genetic relationships (Storfer et al. 2007). 

 Boosting algorithms aim to reduce the loss in predictive performance of a final 

model, referred to as deviance, by averaging or reweighting many models. Boosted 

regression trees minimize deviance by adding, at each step, a new tree that best reduces 

prediction error. The first regression tree reduces deviance by the greatest amount. The 
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second regression tree is then fitted to the residuals of the first tree and could contain 

different variables and split points than the first, and so on. Each tree becomes a term in the 

model, and the model is updated after the addition of each successive tree and the residuals 

recalculated (Elith et al. 2008). To avoid overfitting the model, the learning process is usually 

slowed down by shrinking the contribution of each tree; this learning rate, generally ≤ 0.1, is 

multiplied by the sum of all trees to yield the final fitted values (De’ath 2007). Stochasticity 

is introduced to the process by randomly selecting a fraction of the training set, called the bag 

fraction, to build each successive tree. The relative influence of each predictor variable is 

measured by the number of splits it accounts for weighted by the squared improvement to the 

model, averaged over all trees (Elith et al. 2008). 

The model with the lowest deviance based on cross-validation consisted of 1,100 

regression trees and a learning rate of 0.05. Given that geographic distance is a component of 

every resistance estimate I chose not to model interactions between predictor variables. In 

order to accurately model resistance, I constrained conductance/resistance due to forest 

canopy cover, human population density and highways to increase monotonically with 

genetic distance. I used the R package tree (Ripley 2013) for simple regression tree analysis 

and the packages gbm (Ridgeway 2013) and gbm.step (Elith et al. 2008) for boosted 

regression tree analysis.      
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RESULTS 

Data distribution and trends 

Visual inspection of the data indicated that although there was a fair bit of noise, forest 

canopy cover and geographic distance had a roughly linear relationship with genetic distance, 

while human population density was potentially logarithmically related to genetic distance 

(Figure 6). There did not appear to be a strong relationship between either elevation or 

highways and genetic distance (Figure 6). 

 

Multiple regression on distance matrices 

In the global model, resistance due to the reciprocal of forest canopy cover and geographic 

distance were the only two significant variables, and both variables had a positive 

relationship with genetic distance (Table 1). Following forward selection, again only these 

two variables were found to be significant, and the final model explained 14.8% of the 

variation in PCA-based genetic distance (Table 2). The null hypothesis that there was no 

relationship between any explanatory variable and PCA-based genetic distance was rejected 

(F = 17,388.4, P = 0.001; Table 2). 

As expected, nearly all resistance estimates were significantly correlated with each 

other, except for elevation, which was only correlated with geographic distance (Table 3). All 

Mantel r values were < 0.75 (Table 3). The most highly correlated resistance surfaces were 

forest canopy cover and human population density (Mantel r = 0.74, P = 0.001). In contrast 

to the Mantel test results, all variance inflation factor coefficients were < 4, suggesting that 

multicollinearity was not a problem (Table 4).    
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Boosted regression trees 

The single regression tree model had two splits, the first on forest canopy cover and the 

second on geographic distance, forming a total of three groups (Figure 7). This means that 

when  resistance due to the reciprocal of forest canopy cover is greater than 1.2 (the unitless 

measure of resistance generated by Circuitscape), which was slightly higher than the mean 

resistance for this variable, data was placed into the first group, which had a mean PCA-

based genetic distance of 3.2. To put these numbers into perspective, genetic distance ranged 

from 0 to 7.5, with a mean of 1.7. When resistance due to the reciprocal of forest canopy 

cover was less than 1.2, geographic distance became important (Figure 7). When geographic 

distance was greater than 159.7 km, data was placed into the second group, which had a 

mean genetic distance of 1.8. Individuals separated by less than 159.7 km fell into the third 

group, which had the lowest mean genetic distance at 1.3. In other words, when forest 

canopy cover resistance was high, suggesting that individuals were separated by unforested 

areas, individuals shared few alleles. When individuals were within forested areas, genetic 

distance was a function of geographic distance.   

The boosted regression tree model explained 19.2% of the deviance in PCA-based 

genetic distance. Of the explained deviance, resistance due to the reciprocal of forest canopy 

cover had the highest relative influence on the model (53.6%), followed by geographic 

distance (31.8%), human population density (8.9%), elevation (3.0%), and highways (2.8%; 

Figure 8). There was a negative marginal effect of resistance due to the reciprocal of forest 

cover at low resistances, and a positive marginal effect at high resistances (Figure 9). In other 

words, high percent canopy cover led to a decrease in genetic distance, and low percent 
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canopy cover led to an increase in genetic distance. Geographic distance appeared to have an 

approximately linear relationship with genetic distance up to 400 km; results beyond 400 km 

are highly variable and questionable, due to the small number of comparisons at this distance 

range (Figure 9). Resistance due to human population density and highways were flat across 

much of their range, which is in keeping with their low estimates of relative influence. 

Resistance due to elevation appeared to have an inverse Gaussian relationship with genetic 

distance, however the relative influence of this variable was very low, which cautions against 

drawing inferences based on this weak relationship (Figure 9). 

 

DISCUSSION 

The results of multiple regression on distance matrices and boosted regression tree analysis 

both suggest that forest canopy cover has the strongest influence on gene flow, followed by 

geographic distance. These factors explain the genetic differentiation I observed in chapter 1 

between the Cascades and northeastern clusters, which were separated by the unforested 

Okanogan Valley. Though the Blue Mountains cluster was not included in landscape 

resistance modeling, forest cover and geographic distance could both logically have 

contributed to the differentiation of this cluster from the others, as it is separated from them 

by the wide shrub-steppe expanse of the Columbia River Basin. 

 Geographic distance, or the combination of forest cover and geographic distance, 

could account for the differentiation observed in chapter 1 between the Olympic cluster and 

the northeastern and Blue Mountains clusters, but not between it and the adjacent Cascades 

cluster. The boundary between these two clusters is also mostly forested, so the lack of forest 
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cover does not explain the observed genetic differentiation either. Culver et al. (2000) found 

evidence for a genetic bottleneck in Olympic cougars, which Beier (2010) attributed to 

landcover change in the 19
th

 and early 20
th

 centuries, a severe reduction in population due to 

persecution, or to consistently low diversity due to the peninsular geography which limits 

dispersal. Other wildlife species on the Olympic peninsula have shown reduced genetic 

diversity compared with continental populations, including Cope’s giant salamander 

(Dicamptodon copeii; Spear et al. 2011) and Roosevelt elk (Cervus canadensis roosevelti; 

Dratch 1983). It is likely that the three factors listed above worked in concert with each other, 

to further restrict gene flow to an area that had always exhibited reduced genetic diversity. 

 Human population density did not have a significant effect on genetic distance in the 

multiple regression on distance matrices model. It appeared to have a curvilinear relationship 

with genetic distance in both the plotted raw resistance estimates (Figure 6) and the partial 

dependence function computed during boosted regression tree analysis (Figure 9); this 

departure from linearity might have explained its lack of significance in linear regression, 

however this theory is not supported by the relative influence results from boosted regression 

tree analysis, where population density only accounted for 8.9% of the explained deviance. 

Furthermore, because resistance estimates are, in part, a function of the distance between 

individuals, the negative marginal effect observed for both human population density and 

highways at low resistances may be due to very low resistance between points which are 

geographically very close together. As the distance, and therefore resistance, between 

individuals increases, however, these variables can no longer explain the variation in genetic 

distance. While collared cougars have generally avoided densely-populated urban areas 
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(Kertson et al. 2011; Newby 2011), urban crossings have been reported, and may be 

facilitated by greenbelts or riparian corridors (Stoner and Wolfe 2012). This suggests that 

although cougars may avoid residential areas in their daily movements, they do not present 

enough of a barrier to dispersal to affect gene flow at large spatial scales. An additional 

consideration is that the configuration of urban areas within the study area may not have been 

adequate for testing the effects of population density, due to the majority of urban areas being 

located directly adjacent to the map boundary (Figure 4). Given that the metropolitan areas of 

Vancouver, Seattle, and Tacoma border the Strait of Georgia and Puget Sound, their potential 

to impede cougar dispersal can’t be tested because no pairwise comparisons cross these areas 

(Figure 1). 

 Spear et al. (2010) stated that the greatest challenge in landscape genetics comes in 

parameterizing resistance surfaces; when using correlation analysis, such as Mantel tests, the 

scale of resistance and weighting relative to other factors must be specified a priori. In order 

to estimate these parameters, a range of values may be tested (Wasserman et al. 2010), or 

models may be optimized in an iterative process (Shirk et al. 2010). As the number of models 

being tested increases, however, so does the risk of Type I error, a risk that some consider too 

high under the Mantel test to begin with (Raufaste and Rousset 2001; Guillot and Rousset 

2013). Additionally, as resistances are transformed during optimization, relationships that 

were not collinear in the raw data could become so, which is a problem when using linear 

correlation analysis, such as the commonly used Pearson product-moment correlation 

coefficient within the Mantel test. By using analysis methods that objectively calculate 

parameter estimates based on the raw raster values, such as multiple regression, these 
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quandaries can be circumvented, provided that multicollinearity is not present in the initial 

resistance estimates (Garroway et al. 2011).    

I found congruence in variable selection among the multiple regression on distance 

matrices global model, reduced model after forward selection, and boosted regression trees 

model. While multiple regression on distance matrices assumes a linear relationship between 

variables, I reached the same conclusion using boosted regression trees, which makes no 

such assumptions. This suggests that any nonlinear relationships in my data did not have a 

strong effect on the results, however this may not be the case for all datasets, highlighting the 

need for exploratory analysis and inference based on multiple methods. Few landscape 

genetics studies have taken advantage of recent advances in machine learning techniques (but 

see Balkenhol 2009; Murphy et al. 2010), yet the flexibility in error distributions and 

quantification of relative influence inherent to methods such as boosted regression trees and 

random forests make them well-suited to exploring landscape genetic relationships. Further 

research should focus on significance testing or some other framework for variable selection 

using these methods, as well as the effects of spatial autocorrelation on explanatory power. 

Models can be validated by using multiple approaches and finding congruence in variable 

selection, as was done here, or by simulating allele frequencies based on resistance surfaces 

for selected variables (Landguth and Cushman 2010; Shirk et al. 2012). 

Potential sources of error in this analysis included the imprecision associated with 

cougar sample coordinates, as well as nonuniform sample coverage across the study area. 

Coordinates for most genetic samples were based on hunter descriptions, and were accurate 

only to 10 km. Therefore, error could have been introduced into pairwise resistances at short 
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distances if capture sites were incorrectly placed. This was a random source of error, 

however, and should not have resulted in a systemic bias for any variable. Furthermore, 

Graves et al. (2012) found only a small reduction in the strength of landscape genetic 

relationships under a scenario of simulated spatial uncertainty. With regard to highways, all 

sample locations were on a known side of the highway, so there was no risk of placing a 

point on the wrong side of a linear feature. Cougar samples were obtained opportunistically, 

a necessity due to this species’ reclusiveness and solitary life history. This irregular sampling 

design provides a wide range of distances for pairwise comparisons, but can undersample or 

oversample some areas (Storfer et al. 2007). Indeed, sample coverage is very poor in 

wilderness areas and national parks (Figure 1), due to lack of access or prohibitions against 

hunting. The one variable this could have affected meaningfully was highways, as most 

cougar samples were obtained in proximity to paved roads. Maletzke (2010) reported mean 

cougar home range sizes from 199 to 753 km
2 

in Washington, depending on sex and hunting 

pressure, which suggests that the majority of cougars in the state have at least some exposure 

to highways in their daily movements. A bias toward proximity to highways in sample 

collection may not necessarily translate to a misrepresentative sample, then, if the home 

ranges of most cougars overlap one or more highways. 

Multiple regression on distance matrices and boosted regression trees both 

highlighted the importance of forest canopy cover and geographic distance, however each 

model explained only 15% and 19% of the variation in genetic distance, respectively. Models 

based on pairwise dissimilarities between points, as in distance matrices, generally have less 

explanatory power than those based on variables measured at the points themselves 
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(Legendre and Fortin 2010). Model fit in this study was similar to that reported by other 

researchers working with vagile predators (Balkenhol 2009; Garroway et al. 2010), and was 

likely limited by the cougar’s ecological niche as a habitat generalist. Clearly, however, other 

factors are influencing gene flow in northwestern cougars, factors that could include prey 

distribution and density, sport hunting, and intraspecies territoriality and social interactions. 

The influence of sport hunting on cougar gene flow is difficult to quantify, because it can 

both restrict dispersal, through direct mortality of immigrants, and encourage dispersal, when 

resident males are killed and dispersing subadults from other areas move in to take their 

place (Robinson et al. 2008).  

Cooley et al. (2009) demonstrated that low hunting mortality in an area led to 

increased emigration of subadults, while Robinson et al. (2008) showed that heavy hunting 

can produce a population sink. Building on these conclusions, the results of this study 

suggest that hunting pressure, male territoriality and forest cover interact to shape gene flow 

across the landscape. This is further supported by the pattern of genetic differentiation 

observed in chapter 1 being largely explained by breaks in forest cover. The implication then 

for management of cougars at the state level is that forested corridors between source and 

sink populations are essential to maintaining landscape connectivity. Regional population 

stability depends on the ability of migrants to move from source to sink populations, and 

regions that lose this connectivity could see local population declines and genetic isolation. 

Indices of inbreeding described in chapter 1 do not warrant concern over inbreeding 

depression at this time; however, as fragmentation of forested lands continues, forested 



56 

 

corridors will become increasingly important in maintaining genetic connectivity and 

population stability for cougars in the northwest. 
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TABLES 

 

Table 1. Multiple regression on distance matrices results for the global model explaining 

landscape effects on PCA-based genetic distance. P-values are based on 1,000 random 

permutations of the genetic distance matrix. 

 

 

β P 

Intercept 1.696 0.001 

Forest 0.346 0.001 

Population -0.014 0.760 

Elevation 0.017 0.564 

Highways -0.029 0.380 

Geographic 

distance 0.220 0.001 

   

 

Test 

statistic P 

R
2
 0.149 0.001 

F 7,003.1 0.001 

 

 

Table 2. Multiple regression on distance matrices results for the final model explaining 

landscape effects on PCA-based genetic distance, following forward selection with a P-to-

enter value of 0.05. P-values are based on 1,000 random permutations of the genetic distance 

matrix. 

 

 

β P 

Intercept 1.696 0.001 

Forest 0.319 0.001 

Geographic 

distance 0.229 0.001 

   

 

Test 

statistic P 

R
2
 0.148 0.001 

F 17,388.4 0.001 
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Table 3. Mantel r correlation values between Circuitscape resistance and geographic distance 

matrices. Significant results are shown in bold; significance was assessed at α = 0.05 and was 

based on 1,000 random permutations of one of the two matrices being compared.  

 

 

Population Highways Elevation 

Geographic 

Distance 

Forest 0.740 0.310 -0.089 0.619 

Population 

 

0.387 -0.240 0.312 

Highways 

  

-0.165 0.150 

Elevation 

   
0.094 

 

 

Table 4. Variance inflation factor coefficients for landscape resistance and geographic 

distance matrices. 

 

 

VIF  

Forest 3.50 

Population 2.64 

Highways 1.19 

Elevation 1.11 

Geographic 

Distance 1.79 
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FIGURES 

 

 
 

Figure 1. Locations of cougar genetic samples, with samples from the Blue Mountains 

removed to avoid artificially inflating resistance estimates due to the configuration of forest 

cover and boundaries of the study area. 



60 

 

 
 

Figure 2. Landscape resistance surface for elevation. Low elevations are expected to provide 

the least resistance to cougar gene flow, and high elevations the greatest. 
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Figure 3. Landscape resistance surface for forest canopy cover. Resistance to cougar gene 

flow is expected to decrease with increasing forest canopy cover. In Circuitscape forest 

canopy cover was treated as a conductance surface, where conductance is the reciprocal of 

resistance, however it is displayed here as resistance for ease of comparison with other 

resistance surfaces. 
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Figure 4. Landscape resistance surface for human population density. Resistance to cougar 

gene flow is expected to increase with increasing human population density. 
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Figure 5. Landscape resistance surface for highways. Resistance to cougar gene flow is 

expected to increase with increasing highway traffic volume. 
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Figure 6. Scatterplots of PCA-based genetic distance and raw resistance estimates. The X-

axis for the geographic distance plot is shown in units of km, while all other X-axes are 

shown in terms of Circuitscape resistance (unitless). Locally-weighted scatterplot smoothing 

(LOESS) lines (in blue) have been fitted to illustrate trends, but should not be interpreted as 

evidence of a significant relationship. 
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Figure 7. Single regression tree explaining variation in PCA-based genetic distance. 

Numbers at the terminal nodes represent the mean genetic distance for that group, where 

genetic distance ranges from 0 to 7.5, with a mean of 1.7. The top node splits the data based 

on resistance due to the reciprocal of forest canopy cover, which ranges from 0 to 3.2, with a 

mean of 0.9. The second node splits the data based on geographic distance, shown in km. The 

reduction in deviance from each split is proportional to branch length.  

 

km 
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Figure 8. Relative influence of landscape variables on explained deviance of boosted 

regression tree model. Total explained deviance = 19.2%. 
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Figure 9. Partial dependence plots from boosted regression tree modeling, in order of 

decreasing relative influence. The Y-axes shows the marginal effect of resistance on PCA-

based genetic distance. Negative marginal effects correspond to a decrease in genetic 

distance between individuals, and vice versa. The X-axis for the geographic distance plot is 

shown in units of km, while all other X-axes are shown in terms of Circuitscape resistance 

(unitless). In order to model landscape resistance, the reciprocal of forest cover was used, 

where resistance was greatest for unforested areas and least for densely forested areas. The 

relative influence of each variable on the explained deviance is shown in parentheses; total 

deviance explained by the model = 19.2%. 
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